Nonlinear Sciences

All posts under tag "Nonlinear Sciences"

20 posts total
Sorted by date
Confirmation of Lagrange Hypothesis for Twisted Elastic Rod

Confirmation of Lagrange Hypothesis for Twisted Elastic Rod

: ๋ณธ ๋…ผ๋ฌธ์€ ๊ตฌ์กฐ ์ตœ์ ํ™” ๋ถ„์•ผ์—์„œ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•˜๋Š” ๋ผ๊ทธ๋ž‘์ฃผ ๋ฌธ์ œ๋ฅผ ๋‹ค๋ฃจ๋ฉฐ, ํŠนํžˆ ๊ทธ๋ฆฐํž ๋ถ€๋Ÿฌ์ง ๋ฌธ์ œ์— ๋Œ€ํ•œ ์ƒˆ๋กœ์šด ์ ‘๊ทผ๋ฒ•์„ ์ œ์‹œํ•ฉ๋‹ˆ๋‹ค. ์ด ์—ฐ๊ตฌ๋Š” ์–‡์€ ํƒ„์„ฑ ๋ง‰๋Œ€์˜ ์ตœ์  ํ˜•ํƒœ๋ฅผ ์ฐพ๋Š”๋ฐ ์ดˆ์ ์„ ๋งž์ถ”๊ณ  ์žˆ์œผ๋ฉฐ, ์ด๋ฅผ ํ†ตํ•ด ๋ผ๊ทธ๋ž‘์ฃผ ๊ฐ€์„ค์ด ์‹ค์ œ๋กœ ์œ ํšจํ•จ์„ ์ฆ๋ช…ํ•˜๊ณ ์ž ํ•ฉ๋‹ˆ๋‹ค. 1. ์„œ๋ก  ์„œ๋ก ์—์„œ๋Š” ๋ณธ ๋…ผ๋ฌธ์˜ ์ฃผ์š” ๋ชฉํ‘œ์™€ ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ์„ ์„ค๋ช…ํ•ฉ๋‹ˆ๋‹ค. ๊ตฌ์กฐ ์ตœ์ ํ™” ๊ณผํ•™์—์„œ ์ค‘์š”ํ•œ ๋ฌธ์ œ ์ค‘ ํ•˜๋‚˜์ธ ๊ทธ๋ฆฐํž ๋ถ€๋Ÿฌ์ง ๋ฌธ์ œ๋ฅผ ๋‹ค๋ฃจ๋ฉฐ, ์ด ๋ฌธ์ œ๋Š” ์–‡์€ ํƒ„์„ฑ ๋ง‰๋Œ€๊ฐ€ ํŠน์ • ๋ชจ๋ฉ˜ํŠธ ํ•˜์ค‘์— ๋Œ€ํ•ด ์–ด๋–ป๊ฒŒ ํœ˜์–ด์ง€๋Š”์ง€๋ฅผ ๋ถ„์„ํ•˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๋ผ๊ทธ๋ž‘์ฃผ

MATH-PH Mathematics Nonlinear Sciences
No Image

Reductions of lattice mKdV to $q$-$mathrm{P}_{VI}$

์ด ๋…ผ๋ฌธ์€ ๋น„์ž์œจ์  ๋ผํŠธ๋ ˆ(lattice) ์ˆ˜์ •๋œ Korteweg de Vries (mKdV) ๋ฐฉ์ •์‹๊ณผ ์ œ6 ํŒŒ์ธ๋ ˆ๋น„(q Painlevรฉ VI) ๋ฐฉ์ •์‹ ์‚ฌ์ด์˜ ๊นŠ์€ ๊ด€๊ณ„๋ฅผ ํƒ๊ตฌํ•ฉ๋‹ˆ๋‹ค. ํŠนํžˆ, ๋…ผ๋ฌธ์—์„œ๋Š” mKdV ๋ฐฉ์ •์‹์„ q P VI๋กœ ๊ฐ์ถ•ํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์†Œ๊ฐœํ•˜๋ฉฐ, ์ด ๊ณผ์ •์—์„œ ์ƒˆ๋กœ์šด Lax ์Œ์„ ๋„์ž…ํ•˜๊ณ  ์ด๋ฅผ ํ†ตํ•ด ์ดˆ์›”์  ์ด์‚ฐํ™”๋ฅผ ์ˆ˜ํ–‰ํ•˜์—ฌ u P VI๋ฅผ ์œ ๋„ํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์„ค๋ช…ํ•ฉ๋‹ˆ๋‹ค. 1. ๋น„์ž์œจ์  mKdV ๋ฐฉ์ •์‹๊ณผ q P VI์˜ ๊ด€๊ณ„ ๋…ผ๋ฌธ์€ ๋น„์ž์œจ์  mKdV ๋ฐฉ์ •์‹ (1) ฮฑl(ww ww) ฮฒm(ww ww) 0 ํ˜•ํƒœ๋ฅผ ๋‹ค๋ฃน๋‹ˆ๋‹ค. ์ด ๋ฐฉ์ •

Nonlinear Sciences
A non-standard Lax formulation of the Harry Dym hierarchy and its   supersymmetric extension

A non-standard Lax formulation of the Harry Dym hierarchy and its supersymmetric extension

์ด ๋…ผ๋ฌธ์€ ๊ณ ์ „ ํ†ตํ•ฉ ๊ฐ€๋Šฅํ•œ ์‹œ์Šคํ…œ์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๋ฅผ ์ง„ํ–‰ํ•˜๋ฉด์„œ ํŠนํžˆ Korteweg de Vries (KdV) ๋ฐฉ์ •์‹๊ณผ Harry Dym (HD) ๋ฐฉ์ •์‹์„ ์ค‘์‹ฌ์œผ๋กœ ์ƒˆ๋กœ์šด N 2 ์ดˆ๋Œ€์นญ HD ๋ฐฉ์ •์‹์„ ๋ฐœ๊ฒฌํ•˜๊ณ ์ž ํ•ฉ๋‹ˆ๋‹ค. ์ด๋“ค ๋ฐฉ์ •์‹์€ ์ˆ˜์‹ญ ๋…„ ๋™์•ˆ ๋‹ค์–‘ํ•œ ํ™•์žฅ์ด ์ด๋ฃจ์–ด์ ธ ์™”์œผ๋ฉฐ, ํŠนํžˆ ์ˆ˜ํผ ๋Œ€์นญ ํ™•์žฅ์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๊ฐ€ ํ™œ๋ฐœํ–ˆ์Šต๋‹ˆ๋‹ค. 1. ๊ณ ์ „ ํ†ตํ•ฉ ๊ฐ€๋Šฅํ•œ ์‹œ์Šคํ…œ๊ณผ ์ˆ˜ํผ ๋Œ€์นญํ™” ๊ณ ์ „ ํ†ตํ•ฉ ๊ฐ€๋Šฅํ•œ ์‹œ์Šคํ…œ์€ ์†”๋ฆฌํ†ค ๋ฐฉ์ •์‹์œผ๋กœ ์•Œ๋ ค์ ธ ์žˆ์œผ๋ฉฐ, ์ด๋“ค ๋ฐฉ์ •์‹์€ ๋‹ค์–‘ํ•œ ํ™•์žฅ์ด ๊ฐ€๋Šฅํ•ฉ๋‹ˆ๋‹ค. ํŠนํžˆ ์ˆ˜ํผ ๋Œ€์นญ ํ™•์žฅ์„ ํ†ตํ•ด ์ƒˆ๋กœ์šด ๋ณด์† ํ•„๋“œ๊ฐ€ ๋„์ž…๋˜๊ฑฐ๋‚˜ ๊ธฐ

Nonlinear Sciences
Financial Rogue Waves Appearing in the Coupled Nonlinear Volatility and   Option Pricing Model

Financial Rogue Waves Appearing in the Coupled Nonlinear Volatility and Option Pricing Model

์ด ๋…ผ๋ฌธ์€ ๋น„์„ ํ˜• ๊ณผํ•™์—์„œ ์ค‘์š”ํ•œ ๊ฐœ๋…์ธ ํ”„๋ฆฌํฌ ํŒŒ๋„๋ฅผ ๊ธˆ์œต ์‹œ์žฅ์— ์ ์šฉํ•˜์—ฌ ์ƒˆ๋กœ์šด ๋ชจ๋ธ์„ ์ œ์‹œํ•œ๋‹ค. ํ”„๋ฆฌํฌ ํŒŒ๋„๋Š” ํ•ด์–‘ํ•™, ๊ด‘ํ•™ ๋“ฑ ๋‹ค์–‘ํ•œ ๋ถ„์•ผ์—์„œ ์—ฐ๊ตฌ๋˜์—ˆ์œผ๋ฉฐ, ์ด ํ˜„์ƒ์˜ ํŠน์ง•์€ ๊ทน๋‹จ์ ์ธ ์‚ฌ๊ฑด์ด ๋ฐœ์ƒํ•  ๋•Œ ๋‚˜ํƒ€๋‚˜๋Š” ๊ฑฐ๋Œ€ํ•œ ํŒŒ๋„์ด๋‹ค. ๋…ผ๋ฌธ์—์„œ๋Š” ์ด๋Ÿฌํ•œ ๊ฐœ๋…์„ ๊ธˆ์œต ์‹œ์žฅ์— ์ ์šฉํ•˜์—ฌ ๋ณ€๋™์„ฑ๊ณผ ์˜ต์…˜ ๊ฐ€๊ฒฉ ๊ฐ„์˜ ์ƒํ˜ธ์ž‘์šฉ์„ ๋ถ„์„ํ•˜๊ณ , ์ด๋ฅผ ํ†ตํ•ด ๊ธˆ์œต ์œ„๊ธฐ์™€ ๊ฐ™์€ ๊ทน๋‹จ์ ์ธ ์‚ฌ๊ฑด์„ ์„ค๋ช…ํ•˜๋ ค๊ณ  ํ•œ๋‹ค. 1. ํ”„๋ฆฌํฌ ํŒŒ๋„ ํ˜„์ƒ ํ”„๋ฆฌํฌ ํŒŒ๋„๋Š” ๋น„์„ ํ˜• ๊ณผํ•™์—์„œ ์ค‘์š”ํ•œ ๊ฐœ๋…์œผ๋กœ, ๋‹ค์–‘ํ•œ ๋ถ„์•ผ์—์„œ ์—ฐ๊ตฌ๋˜์—ˆ๋‹ค. ์ด ๋…ผ๋ฌธ์—์„œ๋Š” ์ด๋Ÿฌํ•œ ํ”„๋ฆฌํฌ ํŒŒ๋„์˜ ํŠน์„ฑ์„ ๊ธˆ

Nonlinear Sciences Quantitative Finance Model
No Image

On elliptic solutions of nonlinear ordinary differential equations

: ๋ณธ ๋…ผ๋ฌธ์€ ๋น„์„ ํ˜• ์ƒ์ˆ˜ ๋ฏธ๋ถ„๋ฐฉ์ •์‹(ODE)์˜ ๋ชจ๋“  ์ด์ค‘ ์ฃผ๊ธฐ ๋ฉ”๋กœ๋ชจ๋ฅด ์†”๋ฃจ์…˜์„ ์ฐพ๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ œ์•ˆํ•˜๊ณ , ์ด๋ฅผ ํ†ตํ•ด ํƒ€์› ํ•จ์ˆ˜๋ฅผ ํ™œ์šฉํ•œ ๋‹ค์–‘ํ•œ ๋ฐฉ๋ฒ•๋ก ์„ ํ†ตํ•ฉํ•œ๋‹ค. ํŠนํžˆ Weierstrass ํ•จ์ˆ˜์™€ Jacobi ํƒ€์› ํ•จ์ˆ˜ ๋ฐฉ๋ฒ• ๋“ฑ ๊ธฐ์กด ์—ฐ๊ตฌ์—์„œ ์‚ฌ์šฉ๋œ ์—ฌ๋Ÿฌ ์ ‘๊ทผ ๋ฐฉ์‹์„ ๋ฐ”ํƒ•์œผ๋กœ ์ƒˆ๋กœ์šด ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ๊ฐœ๋ฐœํ•˜์˜€๋‹ค. ๋…ผ๋ฌธ์˜ ํ•ต์‹ฌ์€ ๋น„์„ ํ˜• ODE์˜ ๋ชจ๋“  ํƒ€์› ์†”๋ฃจ์…˜ ํŒจ๋ฐ€๋ฆฌ๋ฅผ ์ฐพ๋Š” ๋ฐ ์žˆ๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ๋…ผ๋ฌธ์—์„œ๋Š” ๋กœ๋ Œ์ธ  ๊ธ‰์ˆ˜๋ฅผ ํ™œ์šฉํ•œ ๋ฐฉ๋ฒ•๋ก ์„ ์ œ์‹œํ•œ๋‹ค. ์ด ๋ฐฉ๋ฒ•๋ก ์€ ๋ฐฉ์ •์‹์˜ ํŠน์ด์  ์ฃผ๋ณ€์—์„œ์˜ ๊ตญ๋ถ€์  ๋ถ„์„๊ณผ, ์ด๋Ÿฌํ•œ ๋ถ„์„ ๊ฒฐ๊ณผ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ํƒ€์›

Nonlinear Sciences
Generalization of Conways 'Game of Life' to a continuous domain -   SmoothLife

Generalization of Conways 'Game of Life' to a continuous domain - SmoothLife

๋ณธ ๋…ผ๋ฌธ์€ ์ฝ˜์›จ์ด์˜ '๋ผ์ดํ”„ ๊ฒŒ์ž„'์„ ์—ฐ์† ๋„๋ฉ”์ธ์œผ๋กœ ์ผ๋ฐ˜ํ™”ํ•˜๋Š” SmoothLife ๋ชจ๋ธ์— ๋Œ€ํ•ด ์„ค๋ช…ํ•œ๋‹ค. ์ด ๋ชจ๋ธ์€ ๊ธฐ์กด์˜ ์ด์‚ฐ์ ์ธ ์ƒํƒœ์™€ ์ด์›ƒ ๊ตฌ์กฐ๋ฅผ ์—ฐ์†์ ์ธ ๊ฐ’๊ณผ ํ•จ์ˆ˜๋กœ ๋Œ€์ฒดํ•˜์—ฌ, ๋” ๋ณต์žกํ•˜๊ณ  ๋ฏธ๋ฌ˜ํ•œ ํŒจํ„ด ์ƒ์„ฑ์ด ๊ฐ€๋Šฅํ•˜๋„๋ก ํ•œ๋‹ค. 1. SmoothLife ๋ชจ๋ธ์˜ ๊ฐœ๋… SmoothLife๋Š” ์…€์˜ ํฌ๊ธฐ๊ฐ€ ๋ฌดํ•œ์†Œ๊ฐ€ ์•„๋‹Œ ์œ ํ•œํ•˜๋‹ค๊ณ  ๊ฐ€์ •ํ•˜๋ฉฐ, ์ด์— ๋”ฐ๋ผ ์…€์˜ ์ƒํƒœ์™€ ์ด์›ƒ ๊ตฌ์กฐ๋ฅผ ์—ฐ์†์ ์ธ ํ•จ์ˆ˜๋กœ ํ‘œํ˜„ํ•œ๋‹ค. ๊ฐ ์…€์€ ์›ํ˜• ํ˜•ํƒœ๋ฅผ ๊ฐ€์ง€๋ฉฐ, ๊ทธ ๋‚ด๋ถ€์™€ ์™ธ๋ถ€์˜ '์ฑ„์šฐ๊ธฐ' ๊ฐ’์„ ํ†ตํ•ด ์ƒํƒœ๋ฅผ ๊ฒฐ์ •ํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ์ ‘๊ทผ ๋ฐฉ์‹์„ ํ†ตํ•ด ๊ธฐ์กด GoL์—์„œ ๋ฐœ

Nonlinear Sciences
Quantum Entanglement Phase Transition in Werner State

Quantum Entanglement Phase Transition in Werner State

: ๋ณธ ๋…ผ๋ฌธ์€ ๊ณ„์‚ฐ ์—ญํ•™์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ ์ƒˆ๋กœ์šด ์ ‘๊ทผ๋ฒ•์„ ํ†ตํ•ด ์–‘์ž ์‹œ์Šคํ…œ์˜ ๋ณต์žก์„ฑ์„ ์ธก์ •ํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ด ์—ฐ๊ตฌ๋Š” ๊ณ ์ „์  ๋ณต์žก์„ฑ ์ธก์ • ์ง€ํ‘œ์™€ ๋‹ฌ๋ฆฌ, ์–ฝํž˜๊ณผ ๊ฐ™์€ ์–‘์ž ํšจ๊ณผ๋ฅผ ํฌ์ฐฉํ•  ์ˆ˜ ์žˆ๋Š” ์ƒˆ๋กœ์šด ์ง€ํ‘œ ๊ฐœ๋ฐœ์— ์ดˆ์ ์„ ๋งž์ถ”๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. 1. ๊ณ„์‚ฐ ์—ญํ•™์˜ ๊ธฐ์ดˆ ๊ณ„์‚ฐ ์—ญํ•™์€ Crutchfield์™€ Young์ด ์ œ์•ˆํ•œ ๊ฐœ๋…์œผ๋กœ, ๋™์—ญํ•™ ์‹œ์Šคํ…œ์˜ ๋ณต์žก์„ฑ์„ ์ธก์ •ํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค. ์ด ์ ‘๊ทผ๋ฒ•์—์„œ๋Š” ํ™•๋ฅ ์  ์ž๋™๋ฌธ์„ ์ƒ์„ฑํ•˜์—ฌ ๋ถ„์„ ์‹œ์Šคํ…œ์˜ ๊ธฐํ˜ธ ์—ญํ•™์„ ๋ชจ๋ฐฉํ•˜๊ณ , ์ด๋ฅผ ํ†ตํ•ด ๋‚ด์žฌ์ ์ธ ๊ณ„์‚ฐ ๋ฐ ๋ณต์žก์„ฑ์„ ์ •๋Ÿ‰ํ™”ํ•ฉ๋‹ˆ๋‹ค. 2. ์–‘์ž ์ƒ

Physics Nonlinear Sciences Quantum Physics
Comment on 'The separation of variables and bifurcations of first   integrals in one problem of D.N.Goryachev' by Pavel E. Ryabov   (Archive:1102.2588v1)

Comment on 'The separation of variables and bifurcations of first integrals in one problem of D.N.Goryachev' by Pavel E. Ryabov (Archive:1102.2588v1)

: ๋ณธ ๋…ผ๋ฌธ์€ Goryachev ์‹œ์Šคํ…œ์— ๋Œ€ํ•œ ๋ณ€์ˆ˜ ๋ถ„๋ฆฌ์™€ ์ฒซ ๋ฒˆ์งธ ํ†ตํ•ฉ์˜ ๋ถ„๊ธฐ๋ฅผ ๋‹ค๋ฃจ๋ฉฐ, ํŠนํžˆ ๊ฒŒ์˜ค๋ฉ”ํŠธ๋ฆญ ์นผ๋ผ๋ชจํ”„ ๋ฐฉ๋ฒ•์ด ์ ์šฉ๋  ๋•Œ ๋น„์ปค๋„ '์ƒˆ๋กœ์šด ๋ณ€์ˆ˜ ๋ถ„๋ฆฌ'๊ฐ€ ๋ฐœ์ƒํ•œ๋‹ค๋Š” ๊ฒƒ์„ ์ฆ๋ช…ํ•œ๋‹ค. ์ด ์—ฐ๊ตฌ๋Š” Goryachev ์‹œ์Šคํ…œ์„ ์„ค๋ช…ํ•˜๊ธฐ ์œ„ํ•ด ๊ฐ์šด๋™๋Ÿ‰ ๋ฒกํ„ฐ M๊ณผ ํฌ์•„์†ก ๋ฒกํ„ฐ ฮฑ๋ฅผ ์‚ฌ์šฉํ•˜๋ฉฐ, ์ด๋ฅผ ํ†ตํ•ด eโˆ—(3) ๋ฆฌ ํฌ์•„์†ก ๋ธŒ๋ž˜ํ‚ท๊ณผ ์—ฐ๊ด€๋œ ํฌ์•„์†ก ๋ธŒ๋ž˜ํ‚ท์„ ์ •์˜ํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ์ ‘๊ทผ๋ฒ•์€ Goryachev ์‹œ์Šคํ…œ์˜ ๋™์—ญํ•™์  ํŠน์„ฑ์„ ์ดํ•ดํ•˜๋Š” ๋ฐ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•œ๋‹ค. ๋…ผ๋ฌธ์—์„œ ์ €์ž๋Š” ๋‘ ๋ณด์กด๋Ÿ‰ H์™€ K ์‚ฌ์ด์˜ ์ƒํ˜ธ์ž‘์šฉ์„ ๋ถ„์„ํ•˜๊ณ , ์ด๋“ค ๊ฐ„์˜ ๊ด€

Nonlinear Sciences
Size Effect of Diagonal Random Matrices

Size Effect of Diagonal Random Matrices

1. ๋ฌด์ž‘์œ„ ํ–‰๋ ฌ ์ด๋ก ์˜ ๋ฐฐ๊ฒฝ ๋ฌด์ž‘์œ„ ํ–‰๋ ฌ ์ด๋ก ์€ ํ˜ผ๋ž€์Šค๋Ÿฌ์šด ์–‘์ž ์‹œ์Šคํ…œ์˜ ์ŠคํŽ™ํŠธ๋Ÿผ ํ†ต๊ณ„์  ํŠน์„ฑ์„ ์„ค๋ช…ํ•˜๋Š” ์ค‘์š”ํ•œ ๋„๊ตฌ์ด๋‹ค. ํŠนํžˆ, ์‹œ๊ฐ„ ๋ฐ˜์ „ ๋ถˆ๋ณ€ ์–‘์ž ์‹œ์Šคํ…œ์€ ํšŒ์ „ ๋Œ€์นญ์„ ๊ฐ€์งˆ ๋•Œ ๊ฐ€์šฐ์Šค ์ง๊ต ์ง‘ํ•ฉ(GOE)์˜ ๋ฌด์ž‘์œ„ ํ–‰๋ ฌ๋กœ ํ‘œํ˜„๋œ๋‹ค. ์ด๋Š” ํ˜ผ๋ž€์Šค๋Ÿฌ์šด ์‹œ์Šคํ…œ์—์„œ ์ˆ˜์ค€ ์ƒ๊ด€ ๊ด€๊ณ„๋ฅผ ์„ค๋ช…ํ•˜๋Š” ๋ฐ ์‚ฌ์šฉ๋˜๋ฉฐ, N์ด ๋ฌดํ•œ๋Œ€๋กœ ์ ‘๊ทผํ•  ๋•Œ ๊ฐ€์žฅ ํฅ๋ฏธ๋กœ์šด ๊ฒฐ๊ณผ๊ฐ€ ์–ป์–ด์ง„๋‹ค. 2. ๋Œ€๊ฐ ๋ฌด์ž‘์œ„ ํ–‰๋ ฌ์˜ ํŠน์„ฑ ๋…ผ๋ฌธ์€ N์ฐจ์› ๋Œ€๊ฐ ๋ฌด์ž‘์œ„ ํ–‰๋ ฌ์˜ ๊ณ ์œ ๊ฐ’ ํ†ต๊ณ„ํ•™์„ ๋ถ„์„ํ•œ๋‹ค. ํŠนํžˆ, ์ˆ˜์ค€ ๊ฐ„ ๊ฐ„๊ฒฉ(NNS) ๋ถ„ํฌ์™€ ๋ถ„์‚ฐ ฮฃยฒ๋ฅผ ํ†ตํ•ด ๋‹จ๊ธฐ ๋ฐ ์žฅ๊ธฐ ์ƒ๊ด€ ๊ด€๊ณ„๋ฅผ

Nonlinear Sciences Condensed Matter
A Class of Special Solutions for the Ultradiscrete Painleve II   Equation

A Class of Special Solutions for the Ultradiscrete Painleve II Equation

: ๋ณธ ๋…ผ๋ฌธ์€ ํŒŒ์ธ๋ ˆ๋ธŒ II ๋ฐฉ์ •์‹์˜ ์ดˆ๊ณ ๊ธ‰ ์ด์‚ฐํ™”๋œ ํ˜•ํƒœ๋ฅผ ์—ฐ๊ตฌํ•˜๊ณ , ์ด๋ฅผ ํ†ตํ•ด ์–ป์–ด์ง€๋Š” ํŠน๋ณ„ํ•œ ํ•ด์— ๋Œ€ํ•ด ์‹ฌ๋„ ์žˆ๊ฒŒ ๋ถ„์„ํ•œ๋‹ค. ํŠนํžˆ, q ์ฐจ๋ถ„ ์œ ์‚ฌํ˜• ์—์–ด๋ฆฌ ๋ฐฉ์ •์‹์„ ๊ธฐ๋ฐ˜์œผ๋กœ udPII (์ดˆ๊ณ ๊ธ‰ ์ด์‚ฐํ™” ํŒŒ์ธ๋ ˆ๋ธŒ II) ๋ฐฉ์ •์‹์˜ ํŠน์ˆ˜ํ•ด๋ฅผ ๊ตฌ์ถ•ํ•˜๊ณ  ๊ทธ ์„ฑ์งˆ์„ ํƒ๊ตฌํ•œ๋‹ค. ์ดˆ๊ณผ ์ด์‚ฐํ™”์™€ p ์ดˆ๊ณผ ์ด์‚ฐํ™” ์ดˆ๊ณผ ์ด์‚ฐํ™”๋Š” ์ฃผ์–ด์ง„ ์ฐจ๋ถ„ ๋ฐฉ์ •์‹์„ ์…€ ์˜คํ† ๋งˆํ†ค์œผ๋กœ ๋ณ€ํ™˜ํ•˜๋Š” ๊ณผ์ •์ด๋‹ค. ์ด ๊ณผ์ •์—์„œ ์ข…์† ๋ณ€์ˆ˜ x<sub>n</sub> ์€ ์ด์‚ฐ ๊ฐ’์„ ๊ฐ€์ง€๊ฒŒ ๋˜๋ฉฐ, ์ด๋ฅผ ํ†ตํ•ด ์›๋ž˜์˜ ๋ฏธ๋ถ„ ๋ฐฉ์ •์‹์ด ์กฐ๊ฐ ์„ ํ˜• ๋ฐฉ์ •์‹์œผ๋กœ ๊ทผ์‚ฌ๋œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ '์Œ์˜ ๋ฌธ์ œ'๋กœ

Mathematics Nonlinear Sciences
Integration of Constraint Equations in Problems of a Disc and a Ball   Rolling on a Horizontal Plane

Integration of Constraint Equations in Problems of a Disc and a Ball Rolling on a Horizontal Plane

์ด ๋…ผ๋ฌธ์€ ์›ํ˜•๊ณผ ๊ตฌ๊ฐ€ ์ˆ˜ํ‰๋ฉด์—์„œ ๋ฏธ๋„๋Ÿฌ์ง ์—†์ด ๊ตด๋Ÿฌ๊ฐ€๋Š” ๋™์—ญํ•™์  ๋ฌธ์ œ๋ฅผ ์ฒด๊ณ„์ ์œผ๋กœ ๋ถ„์„ํ•˜๋ฉฐ, ์ด๋ฅผ ํ†ตํ•ด ๊ณ ์ „ ์—ญํ•™์˜ ๋ณต์žกํ•œ ๋ฌธ์ œ๋ฅผ ๋‹จ์ˆœํ™”ํ•˜๊ณ  ํ•ด๊ฒฐํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์‹œํ•ฉ๋‹ˆ๋‹ค. ํŠนํžˆ, ์ž์—ฐ ๋ฐฉ์ •์‹์„ ํ™œ์šฉํ•˜์—ฌ ์ ‘์ด‰ ๊ถค์ ์˜ ๊ณก๋ฅ  ์˜์กด์„ฑ์„ ๋ช…ํ™•ํžˆ ํ‘œํ˜„ํ•จ์œผ๋กœ์จ, ๊ตด๋Ÿฌ๊ฐ€๋Š” ๋™์ž‘์— ๋Œ€ํ•œ ๊นŠ์€ ์ดํ•ด์™€ ์ •๋Ÿ‰์ ์ธ ๋ถ„์„์ด ๊ฐ€๋Šฅํ•ด์ง‘๋‹ˆ๋‹ค. 1. ์›ํ˜•๊ณผ ๊ตฌ์˜ ๊ตด๋Ÿฌ๊ฐ€๋Š” ์šด๋™ ์›ํ˜•๊ณผ ๊ตฌ๊ฐ€ ์ˆ˜ํ‰๋ฉด์—์„œ ๊ตด๋Ÿฌ๊ฐˆ ๋•Œ, ์ด๋“ค์˜ ์›€์ง์ž„์€ ๋น„ํ™€๋ก ์  ์ œ์•ฝ์ด๋ผ๋Š” ๋ณต์žกํ•œ ๋™์—ญํ•™์  ์กฐ๊ฑด์— ์˜ํ•ด ๊ฒฐ์ •๋ฉ๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ์ œ์•ฝ์€ ์ ‘์ด‰์  P์˜ ์œ„์น˜์™€ ์›ํ˜• ๋˜๋Š” ๊ตฌ์˜ ํšŒ์ „๊ฐ ฯ•, ์ „๋‹จ๊ฐ ฯˆ, ๊ทธ

Mathematics Nonlinear Sciences
Damage spreading in the sandpile model of SOC

Damage spreading in the sandpile model of SOC

๋ณธ ๋…ผ๋ฌธ์€ ๋ชจ๋ž˜๋”๋ฏธ ๋ชจ๋ธ์—์„œ ์ž‘์€ ๊ต๋ž€์ด ์–ด๋–ป๊ฒŒ ํ™•์‚ฐ๋˜๋Š”์ง€๋ฅผ ์—ฐ๊ตฌํ•˜๋Š” ๊ฒƒ์œผ๋กœ, ์ด๋Š” ์ž์œจ ์‹œ์Šคํ…œ์˜ ๋™์  ํ–‰๋™์— ๋Œ€ํ•œ ์ค‘์š”ํ•œ ์ดํ•ด๋ฅผ ์ œ๊ณตํ•œ๋‹ค. ํŠนํžˆ, ์ด ์—ฐ๊ตฌ๋Š” ์†์ƒ(damage)์˜ ํ™•์‚ฐ์„ ํ†ตํ•ด SOC ์ƒํƒœ์—์„œ์˜ ์—ญ๋™์„ฑ์„ ํƒ๊ตฌํ•˜๋ฉฐ, ์ด๋ฅผ ํ†ตํ•ด ๋ชจ๋ž˜๋”๋ฏธ ๋ชจ๋ธ์ด ์–ด๋–ป๊ฒŒ ์ž๊ธฐ ์กฐ์งํ™”๋˜๊ณ  ๋น„ํŒ์ ์ธ ์ƒํƒœ๋ฅผ ์œ ์ง€ํ•˜๋Š”์ง€์— ๋Œ€ํ•œ ๊นŠ์€ ํ†ต์ฐฐ๋ ฅ์„ ์ œ๊ณตํ•œ๋‹ค. 1. ๋ชจ๋ธ ๋ฐ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๋ชจ๋ž˜๋”๋ฏธ ๋ชจ๋ธ์€ ๊ฒฉ์ž ์ž๋™์ž ๋ชจ๋ธ๋กœ, ๊ฐ ์‚ฌ์ดํŠธ๋Š” ์ •์ˆ˜ ๊ฐ’์„ ๊ฐ€์งˆ ์ˆ˜ ์žˆ๋Š” ๋ณ€์ˆ˜ z(i, j)๋ฅผ ๊ฐ–๋Š”๋‹ค. ์ด ๊ฐ’์€ ๋ชจ๋ž˜ ์ž…์ž๊ฐ€ ์ถ”๊ฐ€๋  ๋•Œ๋งˆ๋‹ค ์ฆ๊ฐ€ํ•˜๊ณ , ํŠน์ • ์ž„๊ณ„๊ฐ’ zm์—

Condensed Matter Nonlinear Sciences Model
No Image

Exact solutions of the generalized $K(m,m)$ equations

๋ณธ ๋…ผ๋ฌธ์€ ๋น„์„ ํ˜• ๋ถ„์‚ฐ๊ณผ ์•ก์ฒด ๋ฐฉ์šธ ํŒจํ„ด ํ˜•์„ฑ์˜ ์ดํ•ด๋ฅผ ๋ชฉํ‘œ๋กœ ํ•œ ์—ฐ๊ตฌ์—์„œ ์‹œ์ž‘๋œ๋‹ค. ์ด ์—ฐ๊ตฌ๋Š” ๋กœ์ž์šฐ์™€ ํ•˜์ด๋งŒ์ด ์ œ์‹œํ•œ K(m, n) ๋ฐฉ์ •์‹ ๊ฐ€์กฑ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ๋‹ค. ํŠนํžˆ, K(2, 2) ๋ฐฉ์ •์‹์€ ์ด๋Ÿฌํ•œ ๋ฐฉ์ •์‹๋“ค์˜ ๋†€๋ผ์šด ํŠน์„ฑ์„ ๋ณด์—ฌ์ฃผ๋Š” ์˜ˆ๋กœ ์‚ฌ์šฉ๋˜์—ˆ๋‹ค. ๋…ผ๋ฌธ์˜ ํ•ต์‹ฌ ๋‚ด์šฉ์€ ์ผ๋ฐ˜ํ™”๋œ K(m, m) ๋ฐฉ์ •์‹์— ๋Œ€ํ•œ ์ฃผ๊ธฐํŒŒ ํ•ด๋ฅผ ๊ตฌ์ถ•ํ•˜๋Š” ๊ฒƒ์ด๋‹ค. ์ด๋Š” ๋น„์„ ํ˜• ๋ถ€๋ถ„๋ฏธ๋ถ„๋ฐฉ์ •์‹ ๊ฐ€์กฑ ์ค‘ ํ•˜๋‚˜๋กœ, ํŠน์ • ๋งค๊ฐœ๋ณ€์ˆ˜ m๊ณผ n์— ๋”ฐ๋ผ ๋‹จ๋…ํŒŒ ํ•ด๊ฐ€ ์œ ํ•œํ•œ ํ•ต์‹ฌ ์˜์—ญ ๋‚ด์—์„œ๋งŒ ์ •์˜๋˜๋Š” ํŠน์„ฑ์„ ๊ฐ€์ง€๊ณ  ์žˆ๋‹ค. ๋…ผ๋ฌธ์€ ๋ฐฉ์ •์‹ (1)์„ ์ค‘์‹ฌ์œผ๋กœ ์ง„ํ–‰๋˜๋ฉฐ, ์ด๋Š”

Nonlinear Sciences
The quadratic WDVV solution $E_8(a_1)$

The quadratic WDVV solution $E_8(a_1)$

์ด ๋…ผ๋ฌธ์€ ๊ณ ์ฐจ์› ๋ฆฌ ๋Œ€์ˆ˜์™€ ํ”„๋กœ๋ฒค๋ฆฌ์šฐ์Šค ๋งŒ๋Œ(Frobenius Manifold) ์‚ฌ์ด์˜ ๊นŠ์€ ๊ด€๊ณ„๋ฅผ ํƒ๊ตฌํ•ฉ๋‹ˆ๋‹ค. ํŠนํžˆ, Eโ‚ˆ(aโ‚)๋ผ๋Š” ํŠน์ •ํ•œ ๊ฒฝ์šฐ์— ์ดˆ์ ์„ ๋งž์ถ”๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ด ์—ฐ๊ตฌ๋Š” Witten Dijkgraaf Verlinde Verlinde (WDVV) ๋ฐฉ์ •์‹์ด๋ผ๋Š” ์ค‘์š”ํ•œ ํŽธ๋ฏธ๋ถ„ ๋ฐฉ์ •์‹ ์‹œ์Šคํ…œ์˜ ํ•ด๋ฅผ ๊ตฌ์„ฑํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ํƒ๊ตฌํ•ฉ๋‹ˆ๋‹ค. ํ”„๋กœ๋ฒค๋ฆฌ์šฐ์Šค ๋งŒ๋Œ์€ ๋Œ€์ˆ˜์  ๊ตฌ์กฐ์™€ ๊ธฐํ•˜ํ•™์  ๊ตฌ์กฐ๊ฐ€ ๊ฒฐํ•ฉ๋œ ๋ณต์žกํ•œ ์ˆ˜ํ•™์  ๊ฐ์ฒด์ž…๋‹ˆ๋‹ค. ์ด ๋…ผ๋ฌธ์—์„œ๋Š” ์ด๋Ÿฌํ•œ ๊ตฌ์กฐ๊ฐ€ ์–ด๋–ป๊ฒŒ Eโ‚ˆ ๋ฆฌ ๋Œ€์ˆ˜์™€ ์—ฐ๊ฒฐ๋˜๋Š”์ง€, ๊ทธ๋ฆฌ๊ณ  ๊ทธ ์ž ์žฌ ํ•จ์ˆ˜๋Š” ์–ด๋–ค ํ˜•ํƒœ๋ฅผ ๊ฐ€์ง€๋Š”์ง€๋ฅผ ๋ถ„

MATH-PH Mathematics Nonlinear Sciences
Hyperdeterminant and an integrable partial differential equation

Hyperdeterminant and an integrable partial differential equation

๋ณธ ๋…ผ๋ฌธ์€ ํ•˜์ดํผ๊ฒฐ์ •์‹๊ณผ ๋น„์„ ํ˜• ํŽธ๋ฏธ๋ถ„๋ฐฉ์ •์‹ ๊ฐ„์˜ ๊ด€๊ณ„๋ฅผ ํƒ๊ตฌํ•˜๋ฉฐ, ํŠนํžˆ ๋ฐฐํ„ด ๋ฐฉ์ •์‹๊ณผ ์œ ์‚ฌํ•œ ํ˜•ํƒœ์˜ ์ƒˆ๋กœ์šด ๋น„์„ ํ˜• ํŽธ๋ฏธ๋ถ„๋ฐฉ์ •์‹์„ ์ œ์‹œํ•ฉ๋‹ˆ๋‹ค. ์ด ์—ฐ๊ตฌ๋Š” ์ˆ˜ํ•™์  ๊ตฌ์กฐ์™€ ๋ฌผ๋ฆฌํ•™์  ์‘์šฉ ์‚ฌ์ด์˜ ์—ฐ๊ฒฐ์„ ๊ฐ•ํ™”ํ•˜๋Š” ์ค‘์š”ํ•œ ๋‹จ๊ณ„๋กœ ๋ณผ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. 1. ํ•˜์ดํผ๊ฒฐ์ •์‹๊ณผ ๋ฐฐํ„ด ๋ฐฉ์ •์‹ ๋ฐฐํ„ด ๋ฐฉ์ •์‹์€ ๋ ˆ๊ทธ๋กœ ๋ณ€ํ™˜์„ ํ†ตํ•ด ์„ ํ˜•ํ™”๋  ์ˆ˜ ์žˆ๋Š” ํŠน์„ฑ์„ ๊ฐ€์ง€๊ณ  ์žˆ์œผ๋ฉฐ, ์ด๋Š” ํŒŒ์ธ๋ ˆ๋ฒ  ํ…Œ์ŠคํŠธ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๋ถ€๋ถ„ ๋ฏธ๋ถ„๋ฐฉ์ •์‹์˜ ์ ๋ถ„ ๊ฐ€๋Šฅ์„ฑ์„ ์—ฐ๊ตฌํ•˜๋Š” ๋ฐ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•ฉ๋‹ˆ๋‹ค. ๋ฐฐํ„ด ๋ฐฉ์ •์‹์€ ๋‹ค์–‘ํ•œ ๋ฌผ๋ฆฌํ•™์  ํ˜„์ƒ์—์„œ ๋‚˜ํƒ€๋‚˜๋ฉฐ, ํŠนํžˆ ๋น„์„ ํ˜• ํŽธ๋ฏธ๋ถ„๋ฐฉ์ •์‹์˜ ํ•ด์„์— ์žˆ์–ด ํ•ต

Nonlinear Sciences
Toda tau functions with quantum torus symmetries

Toda tau functions with quantum torus symmetries

: ๋ณธ ๋…ผ๋ฌธ์€ ์œ„์ƒ ๋ฌธ์ž์—ด์˜ ๋…น๋Š” ๊ฒฐ์ • ๋ชจ๋ธ๊ณผ 5์ฐจ์› ๊ฒŒ์ด์ง€ ์ด๋ก  ๊ฐ„์˜ ํ†ตํ•ฉ ๊ฐ€๋Šฅ์„ฑ์„ ํƒ๊ตฌํ•œ๋‹ค. ๋…น๋Š” ๊ฒฐ์ • ๋ชจ๋ธ์€ ๋ฌผ๋ฆฌํ•™์—์„œ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•˜๋Š” ๋ชจ๋ธ๋กœ, ํŠนํžˆ ์œ„์ƒ ๋ฌธ์ž์—ด๊ณผ ๊ด€๋ จ๋œ ๋ฌธ์ œ๋ฅผ ๋‹ค๋ฃจ๋Š”๋ฐ ํ™œ์šฉ๋œ๋‹ค. ๋…ผ๋ฌธ์—์„œ๋Š” ์ด๋Ÿฌํ•œ ๋ชจ๋ธ์˜ ๋ถ„ํ•  ํ•จ์ˆ˜๊ฐ€ ํŠน์ • ์™ธ๋ถ€ ์ž ์žฌ๋ ฅ์— ์˜ํ•ด ๋ณ€ํ˜•๋  ๋•Œ Toda ๊ณ„์ธต์˜ ํƒ€์šฐ ํ•จ์ˆ˜์™€ ๋ณธ์งˆ์ ์œผ๋กœ ๋™์ผํ•˜๋‹ค๋Š” ๊ฒƒ์„ ๋ณด์—ฌ์ค€๋‹ค. Toda ๊ณ„์ธต์€ ํ†ต์ƒ์ ์ธ ํŽ˜๋ฅด๋ฏธ์˜จ ์‹œ์Šคํ…œ์—์„œ ํŒŒ์ƒ๋œ ์ค‘์š”ํ•œ ์ˆ˜ํ•™์  ๊ตฌ์กฐ๋กœ, ์ด๋ก  ๋ฌผ๋ฆฌํ•™๊ณผ ์ˆ˜ํ•™์—์„œ ๋„๋ฆฌ ์—ฐ๊ตฌ๋˜๊ณ  ์žˆ๋‹ค. ๋…ผ๋ฌธ์—์„œ๋Š” Toda ํƒ€์šฐ ํ•จ์ˆ˜์™€ ๋ณ€ํ˜•๋œ ๋ถ„ํ•  ํ•จ์ˆ˜ ๊ฐ„์˜ ๊ด€๊ณ„๋ฅผ ์–‘์ž ํ† 

HEP-TH Nonlinear Sciences Mathematics MATH-PH
No Image

Projection Operator in Adaptive Systems

์ด ๋…ผ๋ฌธ์€ ์ ์‘ ์ œ์–ด ๋ถ„์•ผ์—์„œ ํˆฌ์˜ ์—ฐ์‚ฐ์ž์˜ ์—ญํ• ๊ณผ ํŠน์„ฑ์„ ๊นŠ์ด ์žˆ๊ฒŒ ํƒ๊ตฌํ•œ๋‹ค. ํŠนํžˆ, ์ด์‚ฐ ์ง‘ํ•ฉ์˜ ์„ฑ์งˆ์„ ์ด์šฉํ•ด ํˆฌ์˜ ์—ฐ์‚ฐ์ž๋ฅผ ์ •์˜ํ•˜๊ณ , ๊ทธ ๊ธฐํ•˜ํ•™์  ํ•ด์„์„ ํ†ตํ•ด ์ดํ•ด๋ฅผ ๋•๋Š”๋‹ค. 1. ์ด๋ก ์  ๋ฐฐ๊ฒฝ ๋…ผ๋ฌธ์€ ๋จผ์ € ์ด์‚ฐ ์ง‘ํ•ฉ์˜ ์„ฑ์งˆ์— ๋Œ€ํ•ด ์„ค๋ช…ํ•œ๋‹ค. ์ด์‚ฐ ์ง‘ํ•ฉ E ๋‚ด์—์„œ ๋‘ ์  x์™€ y๊ฐ€ ์ฃผ์–ด์กŒ์„ ๋•Œ, ์ด ๋‘ ์ ์„ ์—ฐ๊ฒฐํ•˜๋Š” ์„ ๋ถ„ ์œ„์˜ ๋ชจ๋“  ์ ๋„ E์— ์†ํ•œ๋‹ค๋Š” ์„ฑ์งˆ์ด ์ค‘์š”ํ•˜๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ํˆฌ์˜ ์—ฐ์‚ฐ์ž์˜ ์ •์˜๋ฅผ ์ดํ•ดํ•  ์ˆ˜ ์žˆ๋Š” ๊ธฐ์ดˆ์ ์ธ ๊ฐœ๋…์„ ์ œ๊ณตํ•œ๋‹ค. 2. ํˆฌ์˜ ์—ฐ์‚ฐ์ž์™€ ๊ทธ ํŠน์„ฑ ํˆฌ์˜ ์—ฐ์‚ฐ์ž๋Š” R^k ๋‚ด์—์„œ ๋‘ ๋ฒกํ„ฐ ฮธ, y์— ๋Œ€ํ•ด ๋‹ค์Œ

Nonlinear Sciences Computer Science System Mathematics Systems and Control
No Image

On the variational noncommutative Poisson geometry

: ์ด ๋…ผ๋ฌธ์€ ๊ณ ์ฐจ์› ๊ณต๊ฐ„์—์„œ ๋น„์ปค๋ฎค๋‹ˆํ‹ฐ ๋ณ€๋ถ„ ํฌ์Šจ ๊ธฐํ•˜ํ•™์„ ํƒ๊ตฌํ•˜๊ณ , ํŠนํžˆ ๋น„์ปค๋„ ์„ฑ์งˆ์„ ๊ฐ€์ง„ ํ•ด๋ฐ€ํ„ด ์—ฐ์‚ฐ์ž๊ฐ€ ๋ฌผ๋ฆฌ์  ์‹œ์Šคํ…œ์˜ ์ง„ํ™”๋ฅผ ์–ด๋–ป๊ฒŒ ์„ค๋ช…ํ•˜๋Š”์ง€์— ์ดˆ์ ์„ ๋งž์ถ”๊ณ  ์žˆ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ์ƒˆ๋กœ์šด ์ˆ˜ํ•™์  ๋„๊ตฌ์™€ ์ด๋ก ์ด ๋ฌผ๋ฆฌํ•™์—์„œ์˜ ์‘์šฉ ๊ฐ€๋Šฅ์„ฑ์— ๋Œ€ํ•ด ๊นŠ๊ฒŒ ๋ถ„์„ํ•˜๊ณ  ์žˆ๋‹ค. ๋น„์ปค๋ฎค๋‹ˆํ‹ฐ ์ œํŠธ ๊ณต๊ฐ„ ๋…ผ๋ฌธ์€ n์ฐจ์› ์œ ํ–ฅ R ๋‹ค์ค‘๋ณ€ ๊ณก๋ฉด ์œ„์—์„œ ์ •์˜๋˜๋Š” ๋ฌดํ•œ ์ œํŠธ ๊ณต๊ฐ„์„ ํƒ๊ตฌํ•œ๋‹ค. ์ด ๊ณต๊ฐ„์€ Noether ๋น„์ปค๋ฎค๋‹ˆํ‹ฐ ์„ ํ˜• ํ–‰๋ ฌ ์—ฐ์‚ฐ์ž๋ฅผ ํฌํ•จํ•˜๋ฉฐ, ์ด๋ฅผ ํ†ตํ•ด ๋ฌผ๋ฆฌ์  ์‹œ์Šคํ…œ์˜ ๋ณ€๋ถ„ ๊ตฌ์กฐ๋ฅผ ์ดํ•ดํ•  ์ˆ˜ ์žˆ๋‹ค. ํŠนํžˆ, A์˜ ๊ณต์—ญ Aโ€ ๋Š” pโ‚๊ณผ A(pโ‚‚)

HEP-TH Mathematics MATH-PH Nonlinear Sciences
No Image

Reply to 'Comment' by A. V. Tsiganov

: ๋ณธ ๋…ผ๋ฌธ์€ A. V. Tsiganov์˜ 'Comment'์— ๋Œ€ํ•œ ๋ฐ˜๋ก ์„ ์ œ์‹œํ•˜๋ฉด์„œ ๊ณ ๋ ˆ์•„ํ”„ ๋ฌธ์ œ์—์„œ ์‚ฌ์šฉ๋˜๋Š” ๋ถ„๋ฆฌ ๋ณ€์ˆ˜์™€ ๊ทธ ์„ฑ์งˆ์— ๋Œ€ํ•ด ์‹ฌ๋„ ์žˆ๊ฒŒ ๊ฒ€ํ† ํ•œ๋‹ค. ํŠนํžˆ, ๋…ผ๋ฌธ์—์„œ๋Š” Tsiganov๊ฐ€ ์ฃผ์žฅํ•œ uโ‚, uโ‚‚ ๋ณ€์ˆ˜๊ฐ€ ์ดˆ๊ธฐ ํฌ์•„์†ก ๋ธŒ๋ž˜ํ‚ท์— ๋Œ€ํ•ด ๋น„๊ณต์œ ์ ์ด๊ธฐ ๋•Œ๋ฌธ์— ๋ถ„๋ฆฌ ๋ณ€์ˆ˜๊ฐ€ ์•„๋‹ˆ๋ผ๋Š” ์ฃผ์žฅ์„ ๋ฐ˜๋ฐ•ํ•˜๊ณ  ์žˆ๋‹ค. 1. ๋ณ€์ˆ˜ uโ‚, uโ‚‚์˜ ๋น„๊ณต์œ ์„ฑ๊ณผ ๋ถ„๋ฆฌ ๋ณ€์ˆ˜ Tsiganov๋Š”

Nonlinear Sciences
No Image

Markov-Binary Visibility Graph: a new method for analyzing Complex Systems

์ฃ„์†กํ•ฉ๋‹ˆ๋‹ค, ํ•˜์ง€๋งŒ ์ œ๊ณต๋œ ํ…์ŠคํŠธ ์กฐ๊ฐ์—๋Š” ์‹ค์ œ ๋‚ด์šฉ์ด ํฌํ•จ๋˜์–ด ์žˆ์ง€ ์•Š์•„์„œ ๋…ผ๋ฌธ์˜ ์ดˆ๋ก์ด๋‚˜ ์‹ฌ๋„ ๋ถ„์„์„ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์—†์Šต๋‹ˆ๋‹ค. ๋…ผ๋ฌธ์˜ ๋ณธ๋ฌธ ๋˜๋Š” ์ค‘์š”ํ•œ ๋ถ€๋ถ„์„ ํฌํ•จํ•˜๋Š” ์ถ”๊ฐ€ ์ •๋ณด๊ฐ€ ํ•„์š”ํ•ฉ๋‹ˆ๋‹ค. ๋งŒ์•ฝ ๋…ผ๋ฌธ์˜ ํŠน์ • ์„น์…˜์ด๋‚˜ ์š”์•ฝ, ๊ทธ๋ž˜ํ”„, ํ‘œ ๋“ฑ์„ ์ œ๊ณตํ•ด ์ฃผ์‹ค ๊ฒฝ์šฐ, ๊ทธ์— ๋”ฐ๋ฅธ ๋ถ„์„๊ณผ ๋ฒˆ์—ญ์„ ๋„์™€๋“œ๋ฆด ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

Physics Nonlinear Sciences System

< Category Statistics (Total: 771) >

Electrical Engineering and Systems Science
7
General
272
General Relativity
9
HEP-EX
7
HEP-PH
12
HEP-TH
7
MATH-PH
4
NUCL-TH
1
Quantum Physics
10

Start searching

Enter keywords to search articles

โ†‘โ†“
โ†ต
ESC
โŒ˜K Shortcut