Network

All posts under tag "Network"

33 posts total
Sorted by date
Optimizing LSTM Neural Networks for Resource-Constrained Retail Sales Forecasting: A Model Compression Study

Optimizing LSTM Neural Networks for Resource-Constrained Retail Sales Forecasting: A Model Compression Study

์ด ๋…ผ๋ฌธ์€ ์†Œ๋งค ํŒ๋งค ์˜ˆ์ธก ๋ถ„์•ผ์—์„œ LSTM ๋„คํŠธ์›Œํฌ์˜ ํšจ์œจ์„ฑ๊ณผ ์ •ํ™•์„ฑ์„ ๊ทน๋Œ€ํ™”ํ•˜๋Š” ๋ฐฉ๋ฒ•์— ๋Œ€ํ•ด ๊นŠ์ด ์žˆ๊ฒŒ ํƒ๊ตฌํ•˜๊ณ  ์žˆ๋‹ค. ํŠนํžˆ, ์ด ์—ฐ๊ตฌ๋Š” ์ž์› ์ œ์•ฝ์„ ๊ฐ€์ง„ ์†Œ๊ทœ๋ชจ ๋ฐ ์ค‘์†Œ ๊ทœ๋ชจ ๋งค์žฅ์—์„œ๋„ ํšจ๊ณผ์ ์ธ AI ๊ธฐ๋ฐ˜ ์˜ˆ์ธก ์‹œ์Šคํ…œ์„ ๊ตฌ์ถ•ํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•˜๋Š” ๋ชจ๋ธ ์••์ถ• ๊ธฐ๋ฒ•์˜ ์ค‘์š”์„ฑ์„ ๊ฐ•์กฐํ•œ๋‹ค. ๊ธฐ์ˆ ์  ํ˜์‹ ์„ฑ ์ด ๋…ผ๋ฌธ์€ LSTM ๋„คํŠธ์›Œํฌ๋ฅผ ์••์ถ•ํ•˜๋Š” ๋‹ค์–‘ํ•œ ๋ฐฉ๋ฒ•๋ก ์„ ์ฒด๊ณ„์ ์œผ๋กœ ํ‰๊ฐ€ํ•˜๊ณ , ํŠนํžˆ 64๊ฐœ ์€๋‹‰ ์œ ๋‹›์„ ๊ฐ€์ง„ ๋ชจ๋ธ์ด ๊ฐ€์žฅ ๋†’์€ ์˜ˆ์ธก ์ •ํ™•๋„๋ฅผ ๋ณด์ด๋Š” ๊ฒƒ์„ ๋ฐœ๊ฒฌํ–ˆ๋‹ค. ์ด๋Š” ํ‘œ์ค€ LSTM(128๊ฐœ ์€๋‹‰ ์œ ๋‹›)๋ณด๋‹ค ๋ฉ”๋ชจ๋ฆฌ ์‚ฌ์šฉ๋Ÿ‰์„ ์ค„์ด๊ณ  ์ถ”๋ก 

Computer Science Network Machine Learning Model
No Image

The Asymptotic Mandelbrot Law of Some Evolution Networks

๋ณธ ๋…ผ๋ฌธ์€ ๋ณต์žกํ•œ ๋„คํŠธ์›Œํฌ์—์„œ ๊ด€์ฐฐ๋˜๋Š” ๋งŒ๋ธ๋ธŒ๋กœํŠธ ๋ฒ•์น™์— ๋Œ€ํ•œ ์—„๋ฐ€ํ•œ ์ˆ˜ํ•™์  ์ฆ๋ช…์„ ์ œ๊ณตํ•˜๋ฉฐ, ์ด๋ฅผ ํ†ตํ•ด ์„ ํ˜• ์„ ํ˜ธ ๋ถ€์ฐฉ ๋ชจ๋ธ์ด ์–ด๋–ป๊ฒŒ ์ด๋Ÿฌํ•œ ํŠน์„ฑ์„ ์ƒ์„ฑํ•˜๋Š”์ง€ ๊นŠ๊ฒŒ ๋ถ„์„ํ•œ๋‹ค. ๋…ผ๋ฌธ์€ ์ฃผ์š” ์„ธ ๊ฐ€์ง€ ๊ทผ์‚ฌ๋ฒ•์„ ์‚ฌ์šฉํ•˜์—ฌ ์ฐจ์ˆ˜ ๋ถ„ํฌ์˜ ๊ทนํ•œ ํ˜•ํƒœ๋ฅผ ์œ ๋„ํ•˜๊ณ , ๊ฐ ๋ฐฉ๋ฒ•์˜ ๊ฒฐ๊ณผ๋ฅผ ๋น„๊ตํ•œ๋‹ค. 1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ์ค‘์š”์„ฑ ๋ณต์žก ๋„คํŠธ์›Œํฌ๋Š” ๋‹ค์–‘ํ•œ ํ•™๋ฌธ ๋ถ„์•ผ์—์„œ ์ค‘์š”ํ•œ ๊ด€์‹ฌ ๋Œ€์ƒ์ด๋‹ค. ํŠนํžˆ, ์ด๋Ÿฌํ•œ ๋„คํŠธ์›Œํฌ์˜ ๊ทœ๋ชจ ์ž์œ  ํŠน์„ฑ์€ ๊ทธ ๋ณดํŽธ์„ฑ๊ณผ ์ค‘์š”์„ฑ์„ ๊ฐ•์กฐํ•˜๋ฉฐ, ์ด๋Š” ๋„คํŠธ์›Œํฌ ๋‚ด ๋…ธ๋“œ๋“ค์˜ ์ฐจ์ˆ˜ ๋ถ„ํฌ๊ฐ€ ์ „๋ ฅ๋ฒ•์น™์— ๋”ฐ๋ผ ๊ฒฐ์ •๋œ๋‹ค๋Š” ๊ฒƒ์„ ์˜๋ฏธํ•œ๋‹ค. ๋ฐ”๋ฐ”๋ผ์‹œ์™€

Computer Science Physics Social Networks Network
Self-Organizing Mixture Networks for Representation of Grayscale Digital   Images

Self-Organizing Mixture Networks for Representation of Grayscale Digital Images

๋ณธ ๋…ผ๋ฌธ์€ ๊ทธ๋ ˆ์ด ์Šค์ผ€์ผ ๋””์ง€ํ„ธ ์ด๋ฏธ์ง€๋ฅผ ํ‘œํ˜„ํ•˜๊ณ  ํด๋Ÿฌ์Šคํ„ฐ๋งํ•˜๋Š” ๋ฐฉ๋ฒ•์— ๋Œ€ํ•ด ์‹ฌ๋„ ์žˆ๊ฒŒ ๋‹ค๋ฃจ๊ณ  ์žˆ๋‹ค. ํŠนํžˆ, ์ฝ”ํ˜ธ๋„จ ๋„คํŠธ์›Œํฌ (Self Organizing Map, SOM)๊ณผ ํ˜ผํ•ฉ ์†Œ์Šค ์ฝ”ํ˜ธ๋„จ ๋„คํŠธ์›Œํฌ (Self Organizing Mixture Network, SOMN)๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์ด๋ฏธ์ง€๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ํ‘œํ˜„ํ•˜๊ณ  ํด๋Ÿฌ์Šคํ„ฐ๋งํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. 1. ๊ทธ๋ ˆ์ด ์Šค์ผ€์ผ ์ด๋ฏธ์ง€์˜ ํ‘œํ˜„ ๊ทธ๋ ˆ์ด ์Šค์ผ€์ผ ์ด๋ฏธ์ง€๋Š” ํ”ฝ์…€ ๊ทธ๋ฆฌ๋“œ๋กœ ์ •์˜๋˜๋ฉฐ, ๊ฐ ํ”ฝ์…€์€ ๋ฐ๊ธฐ ๊ฐ•๋„ ๊ฐ’์„ ๊ฐ€์ง„๋‹ค. ์ด ๊ฐ’๋“ค์€ ์ผ๋ฐ˜์ ์œผ๋กœ 0์—์„œ 255 ์‚ฌ์ด์˜ ์ •์ˆ˜๋กœ ๋””ํฌ๋ ˆํ‹ฐํ™”๋˜์–ด ์ปดํ“จํ„ฐ ๋ฉ”

Artificial Intelligence Network Computer Science
No Image

Model of Opinion Spreading in Social Networks

๋ณธ ๋…ผ๋ฌธ์€ ์†Œ์…œ ๋„คํŠธ์›Œํฌ์—์„œ ์ •๋ณด์™€ ์˜๊ฒฌ์ด ์–ด๋–ป๊ฒŒ ํ™•์‚ฐ๋˜๋Š”์ง€์— ๋Œ€ํ•œ ์‹ฌ๋„ ์žˆ๋Š” ๋ถ„์„์„ ์ œ๊ณตํ•œ๋‹ค. ํŠนํžˆ, ๊ธฐ์กด ๋ชจ๋ธ๋“ค์ด ๋…ผ์Ÿ ๊ฐ€๋Šฅํ•œ ์ •๋ณด์˜ ํ™•์‚ฐ ๊ณผ์ •์„ ์ •ํ™•ํžˆ ์„ค๋ช…ํ•˜์ง€ ๋ชปํ•˜๋Š” ํ•œ๊ณ„๋ฅผ ์ง€์ ํ•˜๊ณ , ์ด๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•œ ์ƒˆ๋กœ์šด ์ ‘๊ทผ๋ฒ•์„ ์ œ์‹œํ•œ๋‹ค. 1. ๊ธฐ์กด ์—ฐ๊ตฌ์™€์˜ ์ฐจ๋ณ„ํ™” ์ „์—ผ๋ณ‘ ํ™•์‚ฐ ๋ชจ๋ธ : ์ด ๋ชจ๋ธ์€ ์ •๋ณด๋‚˜ ์˜๊ฒฌ์ด ํ™•์‚ฐ๋˜๋Š” ๊ณผ์ •์„ ์งˆ๋ณ‘ ์ „์—ผ๊ณผ ์œ ์‚ฌํ•˜๊ฒŒ ์„ค๋ช…ํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜, ๋…ผ์Ÿ ๊ฐ€๋Šฅํ•œ ์ •๋ณด๋Š” ๋‹จ์ˆœํžˆ ๋…ธ์ถœ์— ์˜ํ•œ ๊ฐ์—ผ๋งŒ์œผ๋กœ ์„ค๋ช…ํ•˜๊ธฐ ์–ด๋ ต๋‹ค. ๊ธฐ์ค€ ๋ชจ๋ธ (๋ณต์žกํ•œ ์ „์—ผ) : ์ด ๋ชจ๋ธ์€ ๊ฐœ์ธ์˜ ์˜๊ฒฌ ํ˜•์„ฑ์ด ๊ทธ์˜ ์ฃผ๋ณ€ ๋„คํŠธ์›Œํฌ ๊ตฌ์„ฑ์›๋“ค์˜ ์˜ํ–ฅ์„ ๋ฐ›

Model Physics Network Social Networks Computer Science
Diffusion of Confidential Information on Networks

Diffusion of Confidential Information on Networks

: ๋ณธ ๋…ผ๋ฌธ์€ ๋””์ง€ํ„ธ ์„ธ์ƒ์—์„œ ๊ฐœ์ธ์ •๋ณด์™€ ๋น„๋ฐ€์ •๋ณด๊ฐ€ ์–ด๋–ป๊ฒŒ ํผ์ ธ๋‚˜๊ฐ€๋Š”์ง€๋ฅผ ์ˆ˜ํ•™์ ์œผ๋กœ ๋ชจ๋ธ๋งํ•˜๊ณ  ๋ถ„์„ํ•˜๋Š” ๋ฐ ์ดˆ์ ์„ ๋งž์ถ”๊ณ  ์žˆ๋‹ค. ์ด๋Š” ์ •๋ณด ๊ธฐ์ˆ ์˜ ๋ฐœ์ „์œผ๋กœ ์ธํ•ด ์–ธ์ œ ์–ด๋””์„œ๋“  ์ •๋ณด๋ฅผ ๊ณต์œ ํ•  ์ˆ˜ ์žˆ๊ฒŒ ๋˜๋ฉด์„œ, ๋ฏผ๊ฐํ•œ ์ฝ˜ํ…์ธ ์˜ ๋ณด์•ˆ ์œ ์ง€๊ฐ€ ๋”์šฑ ์ค‘์š”ํ•˜๊ฒŒ ๋œ ์ƒํ™ฉ์„ ๋ฐ˜์˜ํ•œ๋‹ค. ๋„คํŠธ์›Œํฌ ๊ตฌ์กฐ์™€ ๊ฐœ์ธ์ •๋ณด ํ™•์‚ฐ ๋ณธ ๋…ผ๋ฌธ์€ ๋„คํŠธ์›Œํฌ ์ด๋ก ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ๋‹ค์–‘ํ•œ ์œ ํ˜•์˜ ๋„คํŠธ์›Œํฌ์—์„œ ์ •๋ณด์˜ ํ™•์‚ฐ ํŒจํ„ด์„ ๋ถ„์„ํ•˜๊ณ  ์žˆ๋‹ค. ๋„คํŠธ์›Œํฌ๋Š” ์ (๋…ธ๋“œ)๊ณผ ์„ (์—ฃ์ง€)์œผ๋กœ ๊ตฌ์„ฑ๋˜๋ฉฐ, ๋…ธ๋“œ์™€ ์—ฃ์ง€์˜ ์—ฐ๊ฒฐ ๋ฐฉ์‹์— ๋”ฐ๋ผ ์—ฌ๋Ÿฌ ๊ฐ€์ง€ ํ˜•ํƒœ๋กœ ๊ตฌ๋ถ„๋œ๋‹ค. 1. ์™„์ „ํ•œ ๋„คํŠธ์›Œํฌ : ๋ชจ

Computer Science Physics Social Networks Network
Accelerating Storage-Based Training for Graph Neural Networks

Accelerating Storage-Based Training for Graph Neural Networks

๋ณธ ์—ฐ๊ตฌ๋Š” ๊ทธ๋ž˜ํ”„ ์‹ ๊ฒฝ๋ง(GNN) ํ•™์Šต์„ ๋Œ€๊ทœ๋ชจ ์‹ค์„ธ๊ณ„ ๊ทธ๋ž˜ํ”„์— ์ ์šฉํ•˜๊ธฐ ์œ„ํ•ด ์™ธ๋ถ€ ์Šคํ† ๋ฆฌ์ง€๋ฅผ ํ™œ์šฉํ•˜๋Š” โ€˜์Šคํ† ๋ฆฌ์ง€ ๊ธฐ๋ฐ˜โ€™ ์ ‘๊ทผ๋ฒ•์˜ ๊ทผ๋ณธ์ ์ธ ํ•œ๊ณ„๋ฅผ ์งš์–ด๋‚ธ๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค์€ ์ฃผ๋กœ ๋ฉ”๋ชจ๋ฆฌ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด NVMe SSD์™€ ๊ฐ™์€ ๊ณ ์† ์ €์žฅ์†Œ๋ฅผ ์ด์šฉํ–ˆ์ง€๋งŒ, ๊ทธ๋ž˜ํ”„ ๊ตฌ์กฐ๊ฐ€ ๋งค์šฐ ๋ถˆ๊ทœ์น™ํ•˜๊ณ  ์—ฃ์ง€์™€ ๋…ธ๋“œ๊ฐ€ ์ˆ˜๋ฐฑ๋งŒ~์ˆ˜์‹ญ์–ต ์ˆ˜์ค€์œผ๋กœ ๋ถ„์‚ฐ๋ผ ์žˆ๊ธฐ ๋•Œ๋ฌธ์— ํ•™์Šต ๊ณผ์ •์—์„œ ๋ฐœ์ƒํ•˜๋Š” ์ˆ˜์‹ญ๋งŒ~์ˆ˜๋ฐฑ๋งŒ ๊ฐœ์˜ ์ž‘์€ I/O ์š”์ฒญ์„ ํšจ์œจ์ ์œผ๋กœ ๋ณ‘ํ•ฉํ•˜๊ฑฐ๋‚˜ ์Šค์ผ€์ค„๋งํ•˜์ง€ ๋ชปํ•œ๋‹ค. ์ด๋Ÿฌํ•œ โ€˜์†Œํ˜• I/O ํญ์ฃผโ€™๋Š” ์Šคํ† ๋ฆฌ์ง€์˜ ์ˆœ์ฐจ ์ „์†ก ๋Œ€์—ญํญ์„ ํ™œ์šฉํ•˜์ง€ ๋ชปํ•˜๊ฒŒ ๋งŒ๋“ค๊ณ , ๊ฒฐ

Machine Learning Computer Science Network
An AI Monkey Gets Grapes for Sure -- Sphere Neural Networks for Reliable Decision-Making

An AI Monkey Gets Grapes for Sure -- Sphere Neural Networks for Reliable Decision-Making

๋ณธ ์—ฐ๊ตฌ๋Š” ํ˜„์žฌ ์ธ๊ณต์ง€๋Šฅ ์ถ”๋ก  ๋ถ„์•ผ์—์„œ ๊ฐ€์žฅ ๋…ผ์Ÿ์ด ๋˜๋Š” ์„ธ ๊ฐ€์ง€ ์ ‘๊ทผ๋ฒ•์„ ์ฒด๊ณ„์ ์œผ๋กœ ๋น„๊ตํ•จ์œผ๋กœ์จ, โ€œ์‹ ๋ขฐ์„ฑโ€์ด๋ผ๋Š” ๊ด€์ ์—์„œ ์ค‘์š”ํ•œ ํ†ต์ฐฐ์„ ์ œ๊ณตํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ ๋ฒ”์ฃผ์ธ ๋Œ€๊ทœ๋ชจ ์–ธ์–ด ๋ชจ๋ธ(LLM) ๊ธฐ๋ฐ˜ ์ถ”๋ก ์€ ๋ฐฉ๋Œ€ํ•œ ํ…์ŠคํŠธ ์ฝ”ํผ์Šค๋ฅผ ์‚ฌ์ „ ํ•™์Šตํ•จ์œผ๋กœ์จ ์–ธ์–ด์  ์œ ์—ฐ์„ฑ์„ ์–ป์ง€๋งŒ, ๋…ผ๋ฆฌ์  ์ผ๊ด€์„ฑ ์œ ์ง€์™€ ๊ฐ™์€ ์—„๊ฒฉํ•œ ํŒ๋‹จ์—์„œ๋Š” ์—ฌ์ „ํžˆ ๋ถˆ์•ˆ์ •ํ•œ ๊ฒฐ๊ณผ๋ฅผ ๋ณด์ธ๋‹ค. ์ด๋Š” LLM์ด ํ†ต๊ณ„์  ํŒจํ„ด์— ๊ธฐ๋ฐ˜ํ•œ ์˜ˆ์ธก์„ ์ˆ˜ํ–‰ํ•˜๊ธฐ ๋•Œ๋ฌธ์—, ๋ช…์‹œ์ ์ธ ๋…ผ๋ฆฌ ๊ทœ์น™์„ ๋‚ด์žฌํ™”ํ•˜์ง€ ๋ชปํ•œ๋‹ค๋Š” ๊ทผ๋ณธ์ ์ธ ํ•œ๊ณ„์™€ ์—ฐ๊ฒฐ๋œ๋‹ค. ๋‘ ๋ฒˆ์งธ์ธ ๊ฐ๋… ํ•™์Šต ๊ธฐ๋ฐ˜ ์ถ”๋ก ์€ ํŠน์ • ๋…ผ๋ฆฌ ๊ณผ์ œ์— ๋Œ€ํ•ด ๋ผ

Network Computer Science Artificial Intelligence
Signal-SGN++: Topology-Enhanced Time-Frequency Spiking Graph Network for Skeleton-Based Action Recognition

Signal-SGN++: Topology-Enhanced Time-Frequency Spiking Graph Network for Skeleton-Based Action Recognition

์ด ๋…ผ๋ฌธ์€ ์‹ ํ˜ธ SGN++๋ผ๋Š” ์ƒˆ๋กœ์šด ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์•ˆํ•˜์—ฌ ๊ทธ๋ž˜ํ”„ ์ปจ๋ณผ๋ฃจ์…˜ ๋„คํŠธ์›Œํฌ(GCNs)์™€ ์ŠคํŒฝํ‚น ์‹ ๊ฒฝ๋ง(SNNs)์˜ ์žฅ์ ์„ ๊ฒฐํ•ฉํ•˜๊ณ ์ž ํ•ฉ๋‹ˆ๋‹ค. GCNs๋Š” ๊ด€์ ˆ ๊ตฌ์กฐ๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ๋ชจ๋ธ๋งํ•  ์ˆ˜ ์žˆ์ง€๋งŒ, ์‹ค์ˆ˜ ๊ณ„์‚ฐ์— ๋”ฐ๋ฅธ ์—๋„ˆ์ง€ ์†Œ๋น„๊ฐ€ ๋†’์€ ๋ฐ˜๋ฉด, SNNs๋Š” ์—๋„ˆ์ง€ ํšจ์œจ์ ์ด์ง€๋งŒ ์ธ๊ฐ„ ๋™์ž‘์˜ ๋ณต์žกํ•œ ์‹œ๊ฐ„ ์ฃผํŒŒ์ˆ˜ ๋ฐ ์œ„์ƒ ์˜์กด์„ฑ์„ ํฌ์ฐฉํ•˜๋Š” ๋ฐ ํ•œ๊ณ„๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค. ์‹ ํ˜ธ SGN++์€ ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด 1D Spiking Graph Convolution(1D SGC)๊ณผ Frequency Spiking Convolution(FSC)

Network
From Priors to Predictions: Explaining and Visualizing Human Reasoning in a Graph Neural Network Framework

From Priors to Predictions: Explaining and Visualizing Human Reasoning in a Graph Neural Network Framework

์ด ๋…ผ๋ฌธ์€ ์ธ๊ฐ„์˜ ์ถ”์ƒ์  ์‚ฌ๊ณ ์™€ ๋ฌธ์ œ ํ•ด๊ฒฐ ๋Šฅ๋ ฅ์— ์ดˆ์ ์„ ๋งž์ถ”๋ฉฐ, ์ด๋ฅผ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•˜๋Š” ๊ท€๋‚ฉ์  ํŽธํ–ฅ์„ฑ์˜ ๊ณ„์‚ฐ์  ๊ตฌ์กฐ์™€ ์‹ ๊ฒฝํ•™์  ๊ตฌํ˜„์„ ํƒ๊ตฌํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์—ฐ๊ตฌ์ง„์€ ๊ทธ๋ž˜ํ”„ ์ด๋ก ๊ณผ GNN์„ ๊ฒฐํ•ฉํ•œ ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์‹œํ•˜์—ฌ ์ด๋Ÿฌํ•œ ํŽธํ–ฅ์„ฑ์„ ๋ช…ํ™•ํžˆ ์ •์‹ํ™”ํ•˜๊ณ , ์ด๋ฅผ ํ†ตํ•ด ์ธ๊ฐ„์˜ ์ถ”๋ก  ๊ณผ์ •์„ ๋” ์ž˜ ์ดํ•ดํ•  ์ˆ˜ ์žˆ๋Š” ๋ฐฉ๋ฒ•์„ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค. ํŠนํžˆ, ๋ณธ ๋…ผ๋ฌธ์—์„œ ์‚ฌ์šฉ๋œ ๋ฐ์ดํ„ฐ์…‹์€ Abstraction and Reasoning Corpus (ARC)์—์„œ ์ ์‘๋œ ๊ฒƒ์œผ๋กœ, ์ด๋Š” ์ธ๊ฐ„ ํ–‰๋™ ๋ฐ์ดํ„ฐ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•˜์—ฌ ์‹ค์ œ ์ธ๊ฐ„์˜ ๋ฌธ์ œ ํ•ด๊ฒฐ ๋Šฅ๋ ฅ์„ ๋ฐ˜์˜ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.

Network Framework
Advancing LLM-Based Security Automation with Customized Group Relative Policy Optimization for Zero-Touch Networks

Advancing LLM-Based Security Automation with Customized Group Relative Policy Optimization for Zero-Touch Networks

๋ณธ ๋…ผ๋ฌธ์€ ์ฐจ์„ธ๋Œ€ 6G ํ†ต์‹ ๋ง์—์„œ ํ•ต์‹ฌ์ ์ธ ๋ณด์•ˆ ๊ณผ์ œ๋ฅผ ๋‘ ๋‹จ๊ณ„๋กœ ๋ช…ํ™•ํžˆ ๊ตฌ๋ถ„ํ•˜๊ณ , ๊ฐ๊ฐ์— ๋Œ€ํ•œ ํ˜์‹ ์ ์ธ ํ•ด๊ฒฐ์ฑ…์„ ์ œ์‹œํ•œ๋‹ค๋Š” ์ ์—์„œ ํ•™์ˆ ์ ยท์‹ค์šฉ์  ์˜์˜๊ฐ€ ํฌ๋‹ค. ์ฒซ ๋ฒˆ์งธ ๊ณผ์ œ๋Š” โ€œ๋ณด์•ˆ ์ „๋žต์˜ ์ „์ฃผ๊ธฐ ์ž๋™ํ™”โ€์ด๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค์€ ์ฃผ๋กœ ์นจ์ž… ํƒ์ง€ยท์ฐจ๋‹จ๊ณผ ๊ฐ™์€ ๊ฐœ๋ณ„ ๊ธฐ๋Šฅ์— ์ดˆ์ ์„ ๋งž์ถ”์—ˆ์œผ๋ฉฐ, ์ „๋žต ์ˆ˜๋ฆฝ๋ถ€ํ„ฐ ๊ฒ€์ฆ, ์—…๋ฐ์ดํŠธ๊นŒ์ง€์˜ ์—ฐ์†์ ์ธ ํ๋ฆ„์„ ์ž๋™ํ™”ํ•˜๋Š” ์ฒด๊ณ„๋Š” ๋ถ€์žฌํ–ˆ๋‹ค. ์—ฌ๊ธฐ์„œ ์ €์ž๋“ค์€ ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(LLM)์„ ํ™œ์šฉํ•ด ์ธ๊ฐ„ ์ „๋ฌธ๊ฐ€๊ฐ€ ์ˆ˜ํ–‰ํ•˜๋˜ ์ „๋žต ์ƒ์„ฑ ๊ณผ์ •์„ ์ž๋™ํ™”ํ•˜๊ณ , ์ด๋ฅผ ๋„คํŠธ์›Œํฌ ์˜ค์ผ€์ŠคํŠธ๋ ˆ์ด์…˜ ์—”์ง„๊ณผ ์—ฐ๋™์‹œ์ผœ ์‹ค์‹œ๊ฐ„ ๋Œ€์‘๊นŒ์ง€ ํ™•์žฅ

Network
Variational Quantum Rainbow Deep Q-Network for Optimizing Resource Allocation Problem

Variational Quantum Rainbow Deep Q-Network for Optimizing Resource Allocation Problem

๋ณธ ๋…ผ๋ฌธ์€ ์ „ํ†ต์ ์ธ ์‹ฌ์ธต ๊ฐ•ํ™”ํ•™์Šต์ด ์ง๋ฉดํ•œ ํ‘œํ˜„๋ ฅ ํ•œ๊ณ„๋ฅผ ์–‘์ž ์ปดํ“จํŒ…์˜ ๊ณ ์œ  ํŠน์„ฑ์„ ์ด์šฉํ•ด ๊ทน๋ณตํ•˜๊ณ ์ž ํ•˜๋Š” ์‹œ๋„์ด๋‹ค. ๊ธฐ์กด Rainbow DQN์€ Double DQN, Prioritized Experience Replay, Dueling Network, Multiโ€‘step Learning, Distributional RL ๋“ฑ ์—ฌ์„ฏ ๊ฐ€์ง€ ๊ฐœ์„  ๊ธฐ๋ฒ•์„ ํ†ตํ•ฉํ•ด ์„ฑ๋Šฅ์„ ๋Œ์–ด์˜ฌ๋ ธ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ด๋“ค ๋ชจ๋‘๋Š” ๊ณ ์ „์ ์ธ ๋‰ด๋Ÿด ๋„คํŠธ์›Œํฌ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•˜๋ฉฐ, ํŒŒ๋ผ๋ฏธํ„ฐ ์ˆ˜๊ฐ€ ๊ธ‰๊ฒฉํžˆ ์ฆ๊ฐ€ํ•˜๋ฉด ํ•™์Šต์ด ๋ถˆ์•ˆ์ •ํ•ด์ง€๊ณ  ๋ฉ”๋ชจ๋ฆฌ ์š”๊ตฌ๋Ÿ‰์ด ์ปค์ง€๋Š” ๋ฌธ์ œ๊ฐ€ ์žˆ๋‹ค. ๋ณ€๋ถ„ ์–‘์ž

Network
Privacy in Federated Learning with Spiking Neural Networks

Privacy in Federated Learning with Spiking Neural Networks

์ŠคํŒŒ์ดํ‚น ์‹ ๊ฒฝ๋ง(SNN)์ด ์ตœ๊ทผ ์—ฃ์ง€ ๋””๋ฐ”์ด์Šค์™€ ์ €์ „๋ ฅ AI ์†”๋ฃจ์…˜์—์„œ ๊ฐ๊ด‘๋ฐ›๋Š” ์ด์œ ๋Š”, ๋‰ด๋Ÿฐ์ด ์ŠคํŒŒ์ดํฌ(์ด์‚ฐ์ ์ธ ์ „๊ธฐ ํŽ„์Šค) ํ˜•ํƒœ๋กœ ์ •๋ณด๋ฅผ ์ „๋‹ฌํ•จ์œผ๋กœ์จ ์—ฐ์‚ฐ๋Ÿ‰๊ณผ ์—๋„ˆ์ง€ ์†Œ๋น„๋ฅผ ์ตœ์†Œํ™”ํ•  ์ˆ˜ ์žˆ๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค. ์ด๋Ÿฌํ•œ ๊ตฌ์กฐ์  ํŠน์„ฑ์€ ๊ธฐ์กด์˜ ์—ฐ์†์ ์ธ ํ™œ์„ฑ๊ฐ’์„ ์‚ฌ์šฉํ•˜๋Š” ์ธ๊ณต์‹ ๊ฒฝ๋ง(ANN)๊ณผ ๊ทผ๋ณธ์ ์œผ๋กœ ๋‹ค๋ฅด๋ฉฐ, ํŠนํžˆ ํ•™์Šต ๊ณผ์ •์—์„œ๋„ ์ฐจ๋ณ„์ ์„ ๋งŒ๋“ ๋‹ค. ANN์€ ์—ญ์ „ํŒŒ๋ฅผ ํ†ตํ•ด ์ •ํ™•ํ•œ ๋ฏธ๋ถ„๊ฐ’์„ ๊ณ„์‚ฐํ•ด ๊ฐ€์ค‘์น˜๋ฅผ ์—…๋ฐ์ดํŠธํ•˜์ง€๋งŒ, SNN์€ ์ŠคํŒŒ์ดํฌ ๋ฐœ์ƒ ์ž์ฒด๊ฐ€ ๋น„๋ฏธ๋ถ„ ๊ฐ€๋Šฅํ•˜๊ธฐ ๋•Œ๋ฌธ์— ๋Œ€๋ฆฌ ๊ทธ๋ž˜๋””์–ธํŠธ(surrogate gradient)๋ผ๋Š” ๊ทผ์‚ฌ ๋ฐฉ๋ฒ•์„ ๋„

Network Learning
Wireless Power Transfer and Intent-Driven Network Optimization in AAVs-assisted IoT for 6G Sustainable Connectivity

Wireless Power Transfer and Intent-Driven Network Optimization in AAVs-assisted IoT for 6G Sustainable Connectivity

๋ณธ ์—ฐ๊ตฌ๋Š” 6G ์‹œ๋Œ€์— ๊ธ‰์ฆํ•˜๋Š” ์ดˆ์—ฐ๊ฒฐ IoT ํ™˜๊ฒฝ๊ณผ ์ž์œจํ•ญ๊ณต๊ธฐ(AAV)์˜ ํ˜‘์—…์„ ์œ„ํ•œ ํ•ต์‹ฌ ๊ธฐ์ˆ ์  ๊ณผ์ œ๋ฅผ ์ฒด๊ณ„์ ์œผ๋กœ ํ•ด๊ฒฐํ•˜๊ณ ์ž ํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ ๊ณผ์ œ๋Š” ์‚ฌ์šฉ์ž ์˜๋„๋ฅผ ์ •ํ™•ํžˆ ํŒŒ์•…ํ•˜๋Š” ๊ฒƒ์ด๋‹ค. ๊ธฐ์กด์˜ ์˜๋„ ์ถ”๋ก  ๋ชจ๋ธ์€ ์ฃผ๋กœ ํ…์ŠคํŠธ ๊ธฐ๋ฐ˜์˜ ๋ช…์‹œ์  ํ‘œํ˜„์— ์˜์กดํ•˜๋Š”๋ฐ, ์‹ค์ œ ํ˜„์žฅ์—์„œ๋Š” ์Œ์„ฑ, ์„ผ์„œ ๋ฐ์ดํ„ฐ, ๋น„์ •ํ˜• ์‹ ํ˜ธ ๋“ฑ ๋‹ค์–‘ํ•œ ํ˜•ํƒœ์˜ ๋ชจํ˜ธํ•˜๊ณ  ๋ถˆ์™„์ „ํ•œ ์ž…๋ ฅ์ด ์กด์žฌํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ์ƒํ™ฉ์—์„œ ์•”์‹œ์  ์˜๋„ ๋ชจ๋ธ๋ง์„ ๋„์ž…ํ•จ์œผ๋กœ์จ, ์ž…๋ ฅ์˜ ๋ถˆํ™•์‹ค์„ฑ์„ ํ™•๋ฅ ์  ํ‘œํ˜„์œผ๋กœ ์ „ํ™˜ํ•˜๊ณ , ํ•˜์ดํผ์ฐจ์›(Hyperdimensional) ๊ณต๊ฐ„์— ๋งคํ•‘ํ•จ์œผ๋กœ์จ ๊ณ ์ฐจ์› ํŠน์„ฑ

Network
Performance Measurement of the Heterogeneous Network

Performance Measurement of the Heterogeneous Network

์ด ๋…ผ๋ฌธ์€ M/M/2 ํ ์‹œ์Šคํ…œ์„ ํ™œ์šฉํ•˜์—ฌ ๋„คํŠธ์›Œํฌ ์ง€์—ฐ ๋ฌธ์ œ๋ฅผ ๋ถ„์„ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ด ๋ชจ๋ธ์€ ๋‘ ๊ฐœ์˜ ์„œ๋ฒ„๋กœ ๊ตฌ์„ฑ๋˜๋ฉฐ, ๊ฐ ์„œ๋ฒ„๋Š” ์„œ๋กœ ๋‹ค๋ฅธ ์ฒ˜๋ฆฌ ๋Šฅ๋ ฅ์„ ๊ฐ€์ง€๊ณ  ์žˆ์–ด ์ž‘์—… ์Šค์ผ€์ค„๋ง ๋ฐฉ์‹์€ FCFS(First Come First Served)์ž…๋‹ˆ๋‹ค. 1. M/M/2 ํ ์‹œ์Šคํ…œ M/M/2 ํ ์‹œ์Šคํ…œ์€ ๋„คํŠธ์›Œํฌ ์ง€์—ฐ ๋ฌธ์ œ๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ๋ชจ๋ธ๋งํ•˜๊ธฐ ์œ„ํ•œ ๋„๊ตฌ๋กœ, ์ด ์‹œ์Šคํ…œ์˜ ์ฃผ์š” ํŠน์ง• ์ค‘ ํ•˜๋‚˜๋Š” ๋‘ ๊ฐœ์˜ ์„œ๋ฒ„๊ฐ€ ์„œ๋กœ ๋‹ค๋ฅธ ์ฒ˜๋ฆฌ ๋Šฅ๋ ฅ์„ ๊ฐ€์ง€๊ณ  ์žˆ๋‹ค๋Š” ์ ์ž…๋‹ˆ๋‹ค. ์ž‘์—… ์Šค์ผ€์ค„๋ง ๋ฐฉ์‹์€ FCFS๋กœ, ์ž‘์—…์ด ๋„์ฐฉํ•œ ์ˆœ์„œ๋Œ€๋กœ ์ฒ˜๋ฆฌ๋ฉ๋‹ˆ๋‹ค. 2. ์ƒํƒœ

Networking Network Computer Science
An Efficient Preprocessing Methodology for Discovering Patterns and   Clustering of Web Users using a Dynamic ART1 Neural Network

An Efficient Preprocessing Methodology for Discovering Patterns and Clustering of Web Users using a Dynamic ART1 Neural Network

๋ณธ ๋…ผ๋ฌธ์€ ์›น ์‚ฌ์šฉ์ž ํŒจํ„ด ๋ถ„์„์„ ์œ„ํ•œ ์ „์ฒ˜๋ฆฌ ๋ฐ ํด๋Ÿฌ์Šคํ„ฐ๋ง ๋ฐฉ๋ฒ•๋ก ์— ์ค‘์ ์„ ๋‘๊ณ  ์žˆ๋‹ค. ์ฃผ์š” ๋‚ด์šฉ๊ณผ ๊ทธ ์ค‘์š”์„ฑ, ๊ทธ๋ฆฌ๊ณ  ์ œ์•ˆ๋œ ์ ‘๊ทผ ๋ฐฉ์‹์˜ ํšจ๊ณผ๋ฅผ ์‹ฌ๋„ ์žˆ๊ฒŒ ๋ถ„์„ํ•ด๋ณด์ž. 1. ์ „์ฒ˜๋ฆฌ์˜ ํ•„์š”์„ฑ ์›น ๋กœ๊ทธ ๋ฐ์ดํ„ฐ๋Š” ์›น์‚ฌ์ดํŠธ ๋ฐฉ๋ฌธ์ž์˜ ํ–‰๋™์„ ๊ธฐ๋กํ•œ ๋Œ€๋Ÿ‰์˜ ์ •๋ณด๋กœ ๊ตฌ์„ฑ๋˜์–ด ์žˆ์œผ๋ฉฐ, ์ด ๋ฐ์ดํ„ฐ์—์„œ ์œ ์˜๋ฏธํ•œ ํŒจํ„ด์„ ๋ฐœ๊ฒฌํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ์ •๊ตํ•œ ์ „์ฒ˜๋ฆฌ ๊ณผ์ •์ด ํ•„์ˆ˜์ ์ด๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์ „์ฒ˜๋ฆฌ๋ฅผ ํ†ตํ•ด ์ดˆ๊ธฐ ๋กœ๊ทธ ํŒŒ์ผ ํฌ๊ธฐ๋ฅผ 73 82%๊นŒ์ง€ ์ค„์ด๋Š” ๋™์‹œ์— ํ’๋ถ€ํ•˜๊ณ  ๊ตฌ์กฐํ™”๋œ ๋ฐ์ดํ„ฐ๋ฅผ ์ œ๊ณตํ•˜๋Š” ๋ฐฉ๋ฒ•๋ก ์„ ์ œ์‹œํ•œ๋‹ค. ์ „์ฒ˜๋ฆฌ์˜ ์ฃผ์š” ๋ชฉํ‘œ๋Š” ๋ถ„์„ ๋Œ€์ƒ ๋ฐ์ดํ„ฐ์˜

Neural Computing Network Computer Science
Multiscale approach for bone remodeling simulation based on finite   element and neural network computation

Multiscale approach for bone remodeling simulation based on finite element and neural network computation

: ๋ณธ ๋…ผ๋ฌธ์€ ๊ณจ ์žฌ๊ตฌ์„ฑ ๊ณผ์ •์„ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ํ•˜๊ธฐ ์œ„ํ•œ ์ƒˆ๋กœ์šด ๋‹ค์ค‘ ๊ทœ๋ชจ ์ ‘๊ทผ ๋ฐฉ์‹, ์ฆ‰ ํ•˜์ด๋ธŒ๋ฆฌ๋“œ FENN(Finite Element and Neural Network) ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ์ด ๋ฐฉ๋ฒ•์˜ ํ•ต์‹ฌ์€ ์œ ํ•œ ์š”์†Œ ๋ถ„์„๊ณผ ์ธ๊ณต ์‹ ๊ฒฝ๋ง ๊ณ„์‚ฐ์„ ๊ฒฐํ•ฉํ•˜์—ฌ ๊ณจ ์žฌ๊ตฌ์„ฑ ๊ณผ์ •์—์„œ ๋ฐœ์ƒํ•˜๋Š” ๋ณต์žกํ•œ ํ˜„์ƒ์„ ํšจ๊ณผ์ ์œผ๋กœ ๋ชจ๋ธ๋งํ•˜๊ณ  ์‹œ๋ฎฌ๋ ˆ์ด์…˜ํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•˜๋Š” ๊ฒƒ์ด๋‹ค. 1. ๋‹ค์ค‘ ๊ทœ๋ชจ ์ ‘๊ทผ ๋ฐฉ์‹์˜ ํ•„์š”์„ฑ ๊ณจ ์žฌ๊ตฌ์„ฑ์€ ๋ผˆ์˜ ๋ฏธ์„ธ ๊ตฌ์กฐ๋ถ€ํ„ฐ ๊ฑฐ์‹œ์  ํ–‰๋™๊นŒ์ง€ ๋‹ค์–‘ํ•œ ๊ทœ๋ชจ์—์„œ ๋ฐœ์ƒํ•˜๋Š” ๋ณต์žกํ•œ ๊ณผ์ •์ด๋‹ค. ์ด ๊ณผ์ •์„ ์ •ํ™•ํ•˜๊ฒŒ ๋ชจ๋ธ๋งํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ๊ฐ ์ˆ˜์ค€์—์„œ์˜ ์ƒํ˜ธ

Quantitative Biology Model Network Physics
Learning from Historical Activations in Graph Neural Networks

Learning from Historical Activations in Graph Neural Networks

HISTOGRAPH๋Š” ๊ทธ๋ž˜ํ”„ ์‹ ๊ฒฝ๋ง(GNN) ๋ถ„์•ผ์˜ ์ค‘์š”ํ•œ ๋ฐœ์ „์„ ์ด๋Œ์–ด๋‚ด๋ฉฐ, ํŠนํžˆ ๋…ธ๋“œ ์ž„๋ฒ ๋”ฉ์˜ ์ง„ํ™”์™€ ๊ณต๊ฐ„์  ์ƒํ˜ธ์ž‘์šฉ์„ ๋™์‹œ์— ๋ชจ๋ธ๋งํ•˜๋Š” ๋ฐ ์ค‘์ ์„ ๋‘๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ์ ‘๊ทผ๋ฒ•์€ ๊ธฐ์กด GNN ์•„ํ‚คํ…์ฒ˜๋ฅผ ๊ฐœ์„ ํ•˜๊ณ , ๋‹ค์–‘ํ•œ ๊ทธ๋ž˜ํ”„ ๊ด€๋ จ ์ž‘์—…์—์„œ ์šฐ์ˆ˜ํ•œ ์„ฑ๋Šฅ์„ ๋‹ฌ์„ฑํ•  ์ˆ˜ ์žˆ๋Š” ์ƒˆ๋กœ์šด ๋ฐฉํ–ฅ์„ฑ์„ ์ œ์‹œํ•ฉ๋‹ˆ๋‹ค. ๊ธฐ์ˆ ์  ํ˜์‹ ์„ฑ: HISTOGRAPH์˜ ํ•ต์‹ฌ ํ˜์‹  ์ค‘ ํ•˜๋‚˜๋Š” ์—ญ์‚ฌ์  ํ™œ์„ฑํ™” ์ถ”์  ์ž…๋‹ˆ๋‹ค. ์ด ์ ‘๊ทผ๋ฒ•์€ GNN์ด ๋ฉ”์‹œ์ง€ ์ „๋‹ฌ๊ณผ ์ง‘๊ณ„๋ฅผ ํ†ตํ•ด ๋…ธ๋“œ ์ž„๋ฒ ๋”ฉ์„ ์ƒ์„ฑํ•˜๋Š” ๊ณผ์ •์—์„œ ๋ฐœ์ƒํ•œ ์‹œ๊ฐ„์  ๊ฒฝ๋กœ๋ฅผ ๊ณ ๋ คํ•ฉ๋‹ˆ๋‹ค. ๊ฐ ๋…ธ๋“œ์˜ ์ธต๋ณ„ ํ‘œํ˜„์„ ์‹œํ€€์Šค

Computer Science Network Learning Machine Learning
Scale-aware Adaptive Supervised Network with Limited Medical Annotations

Scale-aware Adaptive Supervised Network with Limited Medical Annotations

SASNet์€ ์˜๋ฃŒ ์˜์ƒ ๋ถ„์•ผ์—์„œ ํ”ํžˆ ๋งˆ์ฃผ์น˜๋Š” ๋ผ๋ฒจ๋ง ๋น„์šฉ์˜ ์ œ์•ฝ์„ ๊ทน๋ณตํ•˜๊ณ ์ž ์„ค๊ณ„๋œ ๋ฐ˜์ง€๋„ ํ•™์Šต ํ”„๋ ˆ์ž„์›Œํฌ์ด๋‹ค. ๊ธฐ์กด์˜ ๋ฐ˜์ง€๋„ ์„ธ๊ทธ๋ฉ˜ํ…Œ์ด์…˜ ๋ฐฉ๋ฒ•๋“ค์€ ์ฃผ๋กœ ๋‹จ์ผ ์Šค์ผ€์ผ์˜ ํŠน์ง•์„ ํ™œ์šฉํ•˜๊ฑฐ๋‚˜, ๋ผ๋ฒจ์ด ์—†๋Š” ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•ด ๋‹จ์ˆœํžˆ ์ผ๊ด€์„ฑ ์†์‹ค์„ ์ ์šฉํ•˜๋Š” ๋ฐ ๊ทธ์ณค๋‹ค. ์ด๋Ÿฌํ•œ ์ ‘๊ทผ๋ฒ•์€ ๋ณต์žกํ•œ ํ•ด๋ถ€ํ•™์  ๊ตฌ์กฐ๋ฅผ ๋‹ค์–‘ํ•œ ํ•ด์ƒ๋„์—์„œ ํฌ์ฐฉํ•˜๊ธฐ ์–ด๋ ค์›Œ, ํŠนํžˆ ์ž‘์€ ๋ณ‘๋ณ€์ด๋‚˜ ๊ฒฝ๊ณ„๊ฐ€ ํ๋ฆฟํ•œ ์˜์—ญ์—์„œ ์„ฑ๋Šฅ ์ €ํ•˜๋ฅผ ๋ณด์ธ๋‹ค. SASNet์€ ๋‘ ๊ฐœ์˜ ๋ณ‘๋ ฌ ๋ธŒ๋žœ์น˜๋ฅผ ๊ฐ–๋Š”๋‹ค. ํ•˜๋‚˜๋Š” ๋ผ๋ฒจ์ด ์ถฉ๋ถ„ํžˆ ์ œ๊ณต๋œ ์†Œ๋Ÿ‰์˜ ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•ด ์ „ํ†ต์ ์ธ ์ง€๋„ ํ•™์Šต์„ ์ˆ˜ํ–‰ํ•˜๊ณ , ๋‹ค๋ฅธ ํ•˜

Image Processing Network Electrical Engineering and Systems Science
No Image

Pathology Context Recalibration Network for Ocular Disease Recognition

๋ณธ ๋…ผ๋ฌธ์€ ์•ˆ๊ณผ ์˜์ƒ ์ง„๋‹จ ๋ถ„์•ผ์—์„œ โ€˜๋ณ‘๋ฆฌํ•™์  ๋งฅ๋ฝโ€™๊ณผ โ€˜์ „๋ฌธ๊ฐ€ ๊ฒฝํ—˜โ€™์ด๋ผ๋Š” ๋‘ ๊ฐ€์ง€ ์ธ๊ฐ„ ์ค‘์‹ฌ์˜ ์‚ฌ์ „ ์ •๋ณด๋ฅผ ๋”ฅ๋Ÿฌ๋‹ ๋ชจ๋ธ์— ์ฒด๊ณ„์ ์œผ๋กœ ํ†ตํ•ฉํ•˜๋ ค๋Š” ์‹œ๋„๋ฅผ ์ œ์‹œํ•œ๋‹ค. ๋จผ์ € ์ œ์•ˆ๋œ Pathology Recalibration Module(PRM)์€ ๋‘ ๋‹จ๊ณ„๋กœ ๊ตฌ์„ฑ๋œ๋‹ค. ์ฒซ ๋ฒˆ์งธ ๋‹จ๊ณ„์ธ ํ”ฝ์…€โ€‘๋‹จ์œ„ ๋งฅ๋ฝ ์••์ถ• ์—ฐ์‚ฐ์ž๋Š” ๊ณ ํ•ด์ƒ๋„ ์•ˆ๊ตฌ ์ด๋ฏธ์ง€์—์„œ ์ง€์—ญ์  ํŠน์ง•์„ ์ €์ฐจ์› ํ‘œํ˜„์œผ๋กœ ์••์ถ•ํ•จ์œผ๋กœ์จ ์—ฐ์‚ฐ ํšจ์œจ์„ฑ์„ ๋†’์ด๊ณ , ๋™์‹œ์— ๋ณ‘๋ณ€์ด ๋‚˜ํƒ€๋‚˜๋Š” ์˜์—ญ์˜ ์ „๋ฐ˜์ ์ธ ๊ตฌ์กฐ์  ์ •๋ณด๋ฅผ ๋ณด์กดํ•œ๋‹ค. ๋‘ ๋ฒˆ์งธ ๋‹จ๊ณ„์ธ ๋ณ‘๋ฆฌํ•™์  ๋ถ„ํฌ ์ง‘์ค‘ ์—ฐ์‚ฐ์ž๋Š” ์••์ถ•๋œ ํŠน์ง• ๋งต์„ ๊ธฐ๋ฐ˜์œผ๋กœ

Computer Vision Computer Science Network
No Image

Tubular Riemannian Laplace Approximations for Bayesian Neural Networks

๋ณธ ์—ฐ๊ตฌ๋Š” ๋ฒ ์ด์ง€์•ˆ ์‹ ๊ฒฝ๋ง(BNN)์—์„œ ๋ผํ”Œ๋ผ์Šค ๊ทผ์‚ฌ์˜ ํ•œ๊ณ„๋ฅผ ์ •ํ™•ํžˆ ์งš์–ด๋‚ธ ๋’ค, ๋ฆฌ๋งŒ ๊ธฐํ•˜ํ•™์„ ๋„์ž…ํ•ด ์ด๋ฅผ ๊ทน๋ณตํ•˜๋ ค๋Š” ์‹œ๋„๋ฅผ ๋ณด์—ฌ์ค€๋‹ค. ์ „ํ†ต์ ์ธ ๋ผํ”Œ๋ผ์Šค ๊ทผ์‚ฌ๋Š” MAP(์ตœ๋Œ€ ์‚ฌํ›„ ํ™•๋ฅ ) ์ถ”์ •์  ์ฃผ๋ณ€์„ ์œ ํด๋ฆฌ๋“œ ๊ฑฐ๋ฆฌ ๊ธฐ๋ฐ˜์˜ ๋‹ค๋ณ€๋Ÿ‰ ์ •๊ทœ๋ถ„ํฌ๋กœ ๊ทผ์‚ฌํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๋”ฅ๋Ÿฌ๋‹ ๋ชจ๋ธ์€ ์ˆ˜๋ฐฑ๋งŒ ์ฐจ์›์˜ ํŒŒ๋ผ๋ฏธํ„ฐ ๊ณต๊ฐ„์— ๋ณต์žกํ•œ ๋น„์„ ํ˜• ๊ตฌ์กฐ์™€ ๋‹ค์ค‘ ๋Œ€์นญ(์˜ˆ: ๋ ˆ์ด์–ด ์ˆœ์—ด, ์Šค์ผ€์ผ ๋ณ€ํ™˜ ๋“ฑ)๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ์–ด, ์†์‹ค ํ‘œ๋ฉด์€ ๊ทน๋„๋กœ ์–‡๊ณ  ๊ธด ๊ณจ์งœ๊ธฐ ํ˜•ํƒœ๋ฅผ ๋ค๋‹ค. ์ด๋Ÿฐ ์ƒํ™ฉ์—์„œ ์œ ํด๋ฆฌ๋“œ ๋ฉ”ํŠธ๋ฆญ์€ ์‹ค์ œ ๊ณก๋ฅ ์„ ๋ฌด์‹œํ•˜๊ณ , ๊ฒฐ๊ณผ์ ์œผ๋กœ ๊ณผ๋„ํ•˜๊ฒŒ ์ถ•์†Œ๋œ ํ˜น์€ ๊ณผ๋„ํ•˜๊ฒŒ

Computer Science Network Machine Learning
BLISS: Bandit Layer Importance Sampling Strategy for Efficient Training of Graph Neural Networks

BLISS: Bandit Layer Importance Sampling Strategy for Efficient Training of Graph Neural Networks

๋ณธ ๋…ผ๋ฌธ์€ ๊ทธ๋ž˜ํ”„ ์‹ ๊ฒฝ๋ง(GNN)์˜ ํ™•์žฅ์„ฑ ๋ฌธ์ œ๋ฅผ ๊ทผ๋ณธ์ ์œผ๋กœ ์žฌ๊ณ ํ•˜๋Š” ์ ‘๊ทผ๋ฒ•์„ ์ œ์‹œํ•œ๋‹ค. ์ „ํ†ต์ ์ธ GNN ํ•™์Šต์—์„œ๋Š” ๊ฐ ๋…ธ๋“œ๊ฐ€ ์ž์‹ ์˜ 1โ€‘hop ์ด์›ƒ์„ ๋ชจ๋‘ ์ง‘๊ณ„ํ•˜๋Š” ๊ณผ์ •์ด ํ•„์ˆ˜์ ์ด๋‹ค. ์ด ๊ณผ์ •์€ ๊ทธ๋ž˜ํ”„๊ฐ€ ์ปค์งˆ์ˆ˜๋ก ์ธ์ ‘ ํ–‰๋ ฌ์˜ ํฌ์†Œ์„ฑ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ  ๋ฉ”๋ชจ๋ฆฌ ์‚ฌ์šฉ๋Ÿ‰๊ณผ ์—ฐ์‚ฐ ๋ณต์žก๋„๊ฐ€ ๊ธ‰๊ฒฉํžˆ ์ฆ๊ฐ€ํ•œ๋‹ค๋Š” ํ•œ๊ณ„๋ฅผ ๊ฐ–๋Š”๋‹ค. ์ตœ๊ทผ์—๋Š” GraphSAGE, FastGCN, LADIES์™€ ๊ฐ™์€ ์ •์  ํ˜น์€ ํ™•๋ฅ ์  ์ƒ˜ํ”Œ๋ง ๊ธฐ๋ฒ•์ด ์ œ์•ˆ๋˜์—ˆ์ง€๋งŒ, ์ด๋“ค ๋ฐฉ๋ฒ•์€ ์‚ฌ์ „์— ์ •์˜๋œ ์ƒ˜ํ”Œ๋ง ๋น„์œจ์ด๋‚˜ ํ™•๋ฅ  ๋ถ„ํฌ์— ์˜์กดํ•œ๋‹ค. ๋”ฐ๋ผ์„œ ๊ทธ๋ž˜ํ”„ ๊ตฌ์กฐ๊ฐ€ ํ•™์Šต ์ง„ํ–‰ ์ค‘์— ๋ณ€ํ™”ํ•˜๊ฑฐ๋‚˜,

Network
Human-like visual computing advances explainability and few-shot learning in deep neural networks for complex physiological data

Human-like visual computing advances explainability and few-shot learning in deep neural networks for complex physiological data

์ด ๋…ผ๋ฌธ์€ ํ˜„๋Œ€ ์˜๋ฃŒ ์ธ๊ณต์ง€๋Šฅ์ด ์ง๋ฉดํ•œ ๋‘ ๊ฐ€์ง€ ํ•ต์‹ฌ ๋ฌธ์ œโ€”๋ฐ์ดํ„ฐ ๋ถ€์กฑ๊ณผ ๋ธ”๋ž™๋ฐ•์Šค ํ˜„์ƒโ€”์— ๋Œ€ํ•œ ํ˜์‹ ์ ์ธ ํ•ด๊ฒฐ์ฑ…์„ ์ œ์‹œํ•œ๋‹ค. ๋จผ์ €, โ€˜๊ฐ€์งœ ์ƒ‰์ฑ„(pseudoโ€‘colouring)โ€™๋ผ๋Š” ๊ฐœ๋…์€ ์›๋ž˜ ์ธ๊ฐ„ ์ „๋ฌธ๊ฐ€๊ฐ€ ECG๋ฅผ ์‹œ๊ฐ์ ์œผ๋กœ ํ•ด์„ํ•  ๋•Œ ์ค‘์š”ํ•œ ์‹œ๊ฐ„์  ํŠน์ง•, ์˜ˆ์ปจ๋Œ€ QT ๊ฐ„๊ฒฉ์„ ์ƒ‰์ƒ์œผ๋กœ ๊ฐ•์กฐํ•จ์œผ๋กœ์จ ์ธ์ง€ ๋ถ€ํ•˜๋ฅผ ๋‚ฎ์ถ”๋Š” ๋ฐฉ๋ฒ•์œผ๋กœ ์•Œ๋ ค์ ธ ์žˆ๋‹ค. ์ด๋ฅผ ๋””์ง€ํ„ธ ์ด๋ฏธ์ง€์— ๊ทธ๋Œ€๋กœ ์ ์šฉํ•˜๋ฉด, ์‹ ๊ฒฝ๋ง์ด ์›์‹œ ์ „์•• ํŒŒํ˜• ๋Œ€์‹  ์ƒ‰์ƒ ์ฑ„๋„์„ ํ†ตํ•ด ์˜๋ฏธ ์žˆ๋Š” ์ •๋ณด๋ฅผ ์ง์ ‘ ๋ฐ›์•„๋“ค์ผ ์ˆ˜ ์žˆ๋‹ค. ์ƒ‰์ƒ์€ 3์ฐจ์›(RGB) ๊ณต๊ฐ„์—์„œ ์„œ๋กœ ๋‹ค๋ฅธ ์‹œ๊ฐ„ ๊ตฌ๊ฐ„์„ ๊ตฌ๋ถ„ํ•˜

Network Data Learning
No Image

Bridging Efficiency and Safety: Formal Verification of Neural Networks with Early Exits

๋ณธ ๋…ผ๋ฌธ์€ ์ตœ๊ทผ ์ธ๊ณต์ง€๋Šฅ ์‹œ์Šคํ…œ์—์„œ ๋‘๋“œ๋Ÿฌ์ง€๋Š” ๋‘ ๊ฐ€์ง€ ์š”๊ตฌ, ์ฆ‰ ์•ˆ์ „์„ฑ(robustness) ๊ณผ ํšจ์œจ์„ฑ(efficiency) ์„ ๋™์‹œ์— ๋งŒ์กฑ์‹œํ‚ค๊ธฐ ์œ„ํ•œ ์ƒˆ๋กœ์šด ์—ฐ๊ตฌ ๋ฐฉํ–ฅ์„ ์ œ์‹œํ•œ๋‹ค. ์ „ํ†ต์ ์ธ ์‹ ๊ฒฝ๋ง ๊ฒ€์ฆ ์—ฐ๊ตฌ๋Š” ์ฃผ๋กœ ์ „์ฒด ๋„คํŠธ์›Œํฌ๊ฐ€ ๋‹จ์ผ ๊ฒฝ๋กœ๋กœ ์‹คํ–‰๋œ๋‹ค๋Š” ์ „์ œ ํ•˜์—, ์ž…๋ ฅ ๋ณ€๋™์— ๋Œ€ํ•œ ์ถœ๋ ฅ ๋ณ€๋™์„ ์ˆ˜ํ•™์ ์œผ๋กœ ์ œํ•œํ•˜๋Š” ๋ฐฉ์‹์œผ๋กœ ์ง„ํ–‰๋˜์–ด ์™”๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์‹ค์ œ ์„œ๋น„์Šค ํ™˜๊ฒฝ์—์„œ๋Š” ์ง€์—ฐ ์‹œ๊ฐ„๊ณผ ์—ฐ์‚ฐ ๋น„์šฉ์„ ์ ˆ๊ฐํ•˜๊ธฐ ์œ„ํ•ด ์กฐ๊ธฐ ์ข…๋ฃŒ(early exit) ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ๋„์ž…ํ•˜๋Š” ๊ฒฝ์šฐ๊ฐ€ ๋Š˜์–ด๋‚˜๊ณ  ์žˆ๋‹ค. ์กฐ๊ธฐ ์ข…๋ฃŒ๋Š” ์ค‘๊ฐ„ ๋ ˆ์ด์–ด์—์„œ ์ถฉ๋ถ„ํžˆ ๋†’์€ ์‹ ๋ขฐ๋„

Network
Binary Neural Network Implementation for Handwritten Digit Recognition on FPGA

Binary Neural Network Implementation for Handwritten Digit Recognition on FPGA

์ด ๋…ผ๋ฌธ์€ ์ด์ง„์‹ ๊ฒฝ๋ง(BNN)์„ ํ™œ์šฉํ•œ ์†๊ธ€์”จ ์ˆซ์ž ์ธ์‹ ๊ฐ€์†๊ธฐ์˜ ์„ค๊ณ„์™€ ๊ตฌํ˜„์„ ๋‹ค๋ฃน๋‹ˆ๋‹ค. BNN๋Š” ๋ถ€๋™์†Œ์ˆ˜์  ์—ฐ์‚ฐ ๋Œ€์‹  ๋น„ํŠธ ๋…ผ๋ฆฌ ์—ฐ์‚ฐ์„ ์‚ฌ์šฉํ•จ์œผ๋กœ์จ, ์ €์ „๋ ฅ๊ณผ ๊ณ ์† ์ถ”๋ก ์ด ๊ฐ€๋Šฅํ•œ ํŠน์„ฑ์„ ๊ฐ€์ง€๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ํŠนํžˆ ์ด ์—ฐ๊ตฌ์—์„œ๋Š” Xilinx Artix 7 FPGA๋ฅผ ํƒ€๊ฒŸ์œผ๋กœ ํ•˜์—ฌ Verilog ์–ธ์–ด๋กœ ์ˆ˜์ž‘์—… ์„ค๊ณ„๋ฅผ ์ˆ˜ํ–‰ํ•˜์˜€์Šต๋‹ˆ๋‹ค. ์ด๋Š” ๊ณ ์ˆ˜์ค€ ํ•ฉ์„ฑ ๋„๊ตฌ ์—†์ด๋„ ์‹ค์‹œ๊ฐ„ ๋ถ„๋ฅ˜ ์„ฑ๋Šฅ์„ ๋‹ฌ์„ฑํ•  ์ˆ˜ ์žˆ์Œ์„ ๋ณด์—ฌ์ฃผ๋ฉฐ, 80 MHz์—์„œ ์ž‘๋™ํ•˜๋ฉด์„œ ๋‚ฎ์€ ์ „๋ ฅ ์†Œ๋น„์™€ ์˜ˆ์ธก ๊ฐ€๋Šฅํ•œ ํƒ€์ด๋ฐ์„ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค. MNIST ๋ฐ์ดํ„ฐ์…‹์— ๋Œ€ํ•œ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๊ฒฐ๊ณผ์—์„œ๋Š”

Network
Adaptive Accountability in Networked MAS: Tracing and Mitigating Emergent Norms at Scale

Adaptive Accountability in Networked MAS: Tracing and Mitigating Emergent Norms at Scale

์ด ๋…ผ๋ฌธ์€ ๊ธ‰๊ฒฉํžˆ ํ™•๋Œ€๋˜๋Š” ๋‹ค์ค‘ ์—์ด์ „ํŠธ ์‹œ์Šคํ…œ(MAS)์ด ์‚ฌํšŒยท๊ฒฝ์ œ์  ์ธํ”„๋ผ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ๊ณ ๋ คํ•  ๋•Œ, ๊ธฐ์กด์˜ ์ค‘์•™์ง‘์ค‘์‹ ๊ทœ์ œ๋‚˜ ์‚ฌํ›„ ๊ฐ์‚ฌ๋งŒ์œผ๋กœ๋Š” ์‹œ์Šคํ…œ ๋‚ด๋ถ€์—์„œ ๋ฐœ์ƒํ•˜๋Š” ๋น„์ •์ƒ์ ยท๋น„์œค๋ฆฌ์  ํ–‰๋™์„ ์–ต์ œํ•˜๊ธฐ ์–ด๋ ต๋‹ค๋Š” ๋ฌธ์ œ์˜์‹์„ ๋ฐ”ํƒ•์œผ๋กœ ์—ฐ๊ตฌ๊ฐ€ ์ง„ํ–‰๋˜์—ˆ๋‹ค. ์ €์ž๋“ค์€ ์ฑ…์ž„ ํ๋ฆ„์„ โ€˜๋ผ์ดํ”„์‚ฌ์ดํดโ€‘์ธ์‹ ๊ฐ์‚ฌ ์›์žฅ(lifecycleโ€‘aware audit ledger)โ€™์— ๊ธฐ๋กํ•จ์œผ๋กœ์จ, ๊ฐ ์—์ด์ „ํŠธ๊ฐ€ ์–ธ์ œ, ์–ด๋–ค ์˜์‚ฌ๊ฒฐ์ •์„ ๋‚ด๋ ธ๋Š”์ง€๋ฅผ ํˆฌ๋ช…ํ•˜๊ฒŒ ์ถ”์ ํ•œ๋‹ค. ์ด ์›์žฅ์€ ๋ธ”๋ก์ฒด์ธ๊ณผ ์œ ์‚ฌํ•œ ๋ถˆ๋ณ€์„ฑ์„ ๊ฐ–์ถ”๋ฉด์„œ๋„, ์—์ด์ „ํŠธ ๊ฐ„ ํ†ต์‹  ์ง€์—ฐ์ด๋‚˜ ๋ถ€๋ถ„ ๊ด€์ธก์„ฑ

Network
No Image

Towards Explainable Quantum AI: Informing the Encoder Selection of Quantum Neural Networks via Visualization

์ด ๋…ผ๋ฌธ์€ ์–‘์ž ์‹ ๊ฒฝ๋ง(QNNs) ๊ฐœ๋ฐœ์—์„œ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•˜๋Š” ์ธ์ฝ”๋” ์„ ํƒ์— ์ดˆ์ ์„ ๋งž์ถ”๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. QNNs๋Š” ์–‘์ž ์ปดํ“จํŒ…๊ณผ ๋‰ด๋Ÿด ๋„คํŠธ์›Œํฌ ์•„ํ‚คํ…์ฒ˜๋ฅผ ๊ฒฐํ•ฉํ•œ ๊ฒƒ์œผ๋กœ, ๊ณ ์ฐจ์› ๋ฐ์ดํ„ฐ์™€ ์–ฝํž˜๋œ ๋ฐ์ดํ„ฐ์˜ ์ฒ˜๋ฆฌ ์†๋„ ํ–ฅ์ƒ ๋ฐ ํšจ์œจ์„ฑ์„ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ ์ ˆํ•œ ์ธ์ฝ”๋” ์„ ํƒ์€ ์‹œ์Šคํ…œ์ ์ธ ์ง€์นจ ๋ถ€์กฑ๊ณผ ์‹คํ—˜์  ์ ‘๊ทผ ๋ฐฉ์‹ ๋•Œ๋ฌธ์— ์–ด๋ ค์›€์„ ๊ฒช๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ด ๋…ผ๋ฌธ์—์„œ๋Š” ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด XQAI Eyes๋ผ๋Š” ์ƒˆ๋กœ์šด ์‹œ๊ฐํ™” ๋„๊ตฌ๋ฅผ ์ œ์•ˆํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. XQAI Eyes๋Š” QNN ๊ฐœ๋ฐœ์ž๊ฐ€ ํด๋ž˜์‹ ๋ฐ์ดํ„ฐ ํŠน์ง•๊ณผ ํ•ด๋‹น ์–‘์ž ์ƒํƒœ ์‚ฌ์ด์˜ ๋น„๊ต๋ฅผ

Network
No Image

PerNodeDrop: A Method Balancing Specialized Subnets and Regularization in Deep Neural Networks

๋”ฅ ๋‰ด๋Ÿด ๋„คํŠธ์›Œํฌ๋Š” ๋ณต์žกํ•œ ํŒจํ„ด์„ ํ•™์Šตํ•˜๋Š” ๋ฐ ๋งค์šฐ ํšจ๊ณผ์ ์ด์ง€๋งŒ, ์ด ๊ณผ์ •์—์„œ ์œ ํ•ดํ•œ ๊ณต์ ์‘์ด ๋ฐœ์ƒํ•˜์—ฌ ์ผ๋ฐ˜ํ™” ์„ฑ๋Šฅ์ด ์ €ํ•˜๋˜๋Š” ๋ฌธ์ œ๋ฅผ ์•ˆ๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ๋“œ๋กญ์•„์›ƒ๊ณผ ๋“œ๋กญ์ปค๋„ฅํŠธ์™€ ๊ฐ™์€ ๊ธฐ์กด์˜ ๋…ธ์ด์ฆˆ ๊ธฐ๋ฐ˜ ์ •๊ทœํ™” ๋ฐฉ๋ฒ•์€ ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ๋ฌด์ž‘์œ„ ๋ณ€๋™์„ ์ฃผ์ž…ํ•˜์ง€๋งŒ, ์ด๋“ค ๋ฐฉ๋ฒ•์€ ์ธต์ด๋‚˜ ๋ฐฐ์น˜ ๋‹จ์œ„๋กœ ๊ท ์ผํ•œ ๋…ธ์ด์ฆˆ๋ฅผ ์ ์šฉํ•˜๋ฏ€๋กœ ์œ ์šฉํ•œ ๊ณต์ ์‘๊นŒ์ง€ ์–ต์ œํ•˜๋Š” ๋ถ€์ž‘์šฉ์ด ์žˆ์Šต๋‹ˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” PerNodeDrop์ด๋ผ๋Š” ์ƒˆ๋กœ์šด ์ •๊ทœํ™” ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. PerNodeDrop์€ ์ƒ˜ํ”Œ๋ณ„, ๋…ธ๋“œ๋ณ„๋กœ ๋ณ€๋™์„ฑ์„ ์ฃผ์ž…ํ•จ์œผ๋กœ์จ ๊ธฐ์กด์˜ ๊ท ์ผํ•œ ๋…ธ์ด์ฆˆ ์ ์šฉ

Network
Stochastic Volatility Modelling with LSTM Networks: A Hybrid Approach for S&P 500 Index Volatility Forecasting

Stochastic Volatility Modelling with LSTM Networks: A Hybrid Approach for S&P 500 Index Volatility Forecasting

๋ณธ ์—ฐ๊ตฌ๋Š” ๊ธˆ์œต ์‹œ์žฅ์—์„œ ๋ณ€๋™์„ฑ ์˜ˆ์ธก์˜ ์ค‘์š”์„ฑ์„ ๊ฐ•์กฐํ•˜๋ฉฐ, ์ด๋ฅผ ์œ„ํ•ด ํ™•๋ฅ ์  ๋ณ€๋™์„ฑ(SV) ๋ชจ๋ธ๊ณผ ์žฅ๋‹จ๊ธฐ ๋ฉ”๋ชจ๋ฆฌ(LSTM) ์‹ ๊ฒฝ๋ง์„ ํ†ตํ•ฉํ•œ ํ•˜์ด๋ธŒ๋ฆฌ๋“œ ๋ชจ๋ธ๋ง ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์•ˆํ•œ๋‹ค. SV ๋ชจ๋ธ์€ ํ†ต๊ณ„์ ์ธ ์ •ํ™•์„ฑ๊ณผ ์ž ์žฌ์ ์ธ ๋ณ€๋™์„ฑ ๋™ํƒœ๋ฅผ ํฌ์ฐฉํ•˜๋Š” ๋Šฅ๋ ฅ์„ ์ œ๊ณตํ•˜๋ฉฐ, ํŠนํžˆ ์˜ˆ์ƒ์น˜ ๋ชปํ•œ ์‚ฌ๊ฑด์— ๋Œ€ํ•œ ๋ฐ˜์‘์—์„œ ์œ ์šฉํ•˜๋‹ค. ํ•œํŽธ, LSTM ๋„คํŠธ์›Œํฌ๋Š” ๊ธˆ์œต ์‹œ๊ณ„์—ด ๋ฐ์ดํ„ฐ์—์„œ ๋ณต์žกํ•˜๊ณ  ๋น„์„ ํ˜• ํŒจํ„ด์„ ๊ฐ์ง€ํ•  ์ˆ˜ ์žˆ๋Š” ๋Šฅ๋ ฅ์ด ์žˆ์–ด, SV ๋ชจ๋ธ์˜ ํ†ต๊ณ„์  ์ •ํ™•์„ฑ๊ณผ ๊ฒฐํ•ฉํ•˜์—ฌ ๋” ์šฐ์ˆ˜ํ•œ ์˜ˆ์ธก ์„ฑ๋Šฅ์„ ์ œ๊ณตํ•œ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” S&P 500 ์ง€์ˆ˜ ์ผ๋ณ„ ๋ฐ์ดํ„ฐ๋ฅผ ์‚ฌ

Network Model
State Synchronization for Homogeneous Networks of Non-introspective   Agents in Presence of Input Saturation -A Scale-free Protocol Design

State Synchronization for Homogeneous Networks of Non-introspective Agents in Presence of Input Saturation -A Scale-free Protocol Design

This paper addresses the challenge of achieving global and semi global regulated state synchronization in homogeneous networks of non introspective agents, particularly under input saturation conditions. The key contribution is a scalable protocol design that does not require detailed knowledge abou

Computer Science Systems and Control Network Electrical Engineering and Systems Science
Shenjing: A low power reconfigurable neuromorphic accelerator with   partial-sum and spike networks-on-chip

Shenjing: A low power reconfigurable neuromorphic accelerator with partial-sum and spike networks-on-chip

This paper introduces Shenjing, a novel architecture that aims to achieve energy efficient deep neural networks (DNNs). The primary focus is on addressing the high energy consumption of DNNs, especially in on device AI applications where both computation and communication consume significant amounts

Emerging Technologies Neural Computing Network Computer Science Hardware Architecture
No Image

The Degree Sequence of Random Apollonian Networks

๋ณธ ๋…ผ๋ฌธ์€ ๋žœ๋ค ์•„ํด๋กœ๋‹ˆ ๋„คํŠธ์›Œํฌ(RANs)์˜ ์ •๋„ ๋ถ„ํฌ์— ๋Œ€ํ•œ ๊นŠ์ด ์žˆ๋Š” ๋ถ„์„์„ ์ œ๊ณตํ•˜๋ฉฐ, ์ด๋Š” ๊ทธ๋ž˜ํ”„ ์ด๋ก ์—์„œ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•˜๋Š” ๋ชจ๋ธ ์ค‘ ํ•˜๋‚˜์ด๋‹ค. RANs๋Š” ํ‰๋ฉด ๊ทธ๋ž˜ํ”„๋กœ์„œ, ๊ฐ ๋‹จ๊ณ„์—์„œ ๋ฌด์ž‘์œ„๋กœ ์‚ผ๊ฐํ˜•์„ ์„ ํƒํ•˜๊ณ  ๊ทธ ๋‚ด๋ถ€์— ์ƒˆ๋กœ์šด ์ •์ ์„ ์ถ”๊ฐ€ํ•˜์—ฌ ๋„คํŠธ์›Œํฌ๋ฅผ ํ™•์žฅํ•œ๋‹ค. 1. ์„œ๋ก  ์„œ๋ก ์—์„œ๋Š” ๋ณธ ๋…ผ๋ฌธ์˜ ์ฃผ์š” ๋ชฉํ‘œ์™€ ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ์ด ์„ค๋ช…๋œ๋‹ค. RANs๋Š”

Physics Network Mathematics Social Networks Computer Science

< Category Statistics (Total: 743) >

Electrical Engineering and Systems Science
7
General
272
General Relativity
7
HEP-EX
5
HEP-PH
12
HEP-TH
5
MATH-PH
3
NUCL-TH
1
Quantum Physics
10

Start searching

Enter keywords to search articles

โ†‘โ†“
โ†ต
ESC
โŒ˜K Shortcut