Model

All posts under tag "Model"

101 posts total
Sorted by date
Multiscale approach for bone remodeling simulation based on finite   element and neural network computation

Multiscale approach for bone remodeling simulation based on finite element and neural network computation

: ๋ณธ ๋…ผ๋ฌธ์€ ๊ณจ ์žฌ๊ตฌ์„ฑ ๊ณผ์ •์„ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ํ•˜๊ธฐ ์œ„ํ•œ ์ƒˆ๋กœ์šด ๋‹ค์ค‘ ๊ทœ๋ชจ ์ ‘๊ทผ ๋ฐฉ์‹, ์ฆ‰ ํ•˜์ด๋ธŒ๋ฆฌ๋“œ FENN(Finite Element and Neural Network) ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ์ด ๋ฐฉ๋ฒ•์˜ ํ•ต์‹ฌ์€ ์œ ํ•œ ์š”์†Œ ๋ถ„์„๊ณผ ์ธ๊ณต ์‹ ๊ฒฝ๋ง ๊ณ„์‚ฐ์„ ๊ฒฐํ•ฉํ•˜์—ฌ ๊ณจ ์žฌ๊ตฌ์„ฑ ๊ณผ์ •์—์„œ ๋ฐœ์ƒํ•˜๋Š” ๋ณต์žกํ•œ ํ˜„์ƒ์„ ํšจ๊ณผ์ ์œผ๋กœ ๋ชจ๋ธ๋งํ•˜๊ณ  ์‹œ๋ฎฌ๋ ˆ์ด์…˜ํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•˜๋Š” ๊ฒƒ์ด๋‹ค. 1. ๋‹ค์ค‘ ๊ทœ๋ชจ ์ ‘๊ทผ ๋ฐฉ์‹์˜ ํ•„์š”์„ฑ ๊ณจ ์žฌ๊ตฌ์„ฑ์€ ๋ผˆ์˜ ๋ฏธ์„ธ ๊ตฌ์กฐ๋ถ€ํ„ฐ ๊ฑฐ์‹œ์  ํ–‰๋™๊นŒ์ง€ ๋‹ค์–‘ํ•œ ๊ทœ๋ชจ์—์„œ ๋ฐœ์ƒํ•˜๋Š” ๋ณต์žกํ•œ ๊ณผ์ •์ด๋‹ค. ์ด ๊ณผ์ •์„ ์ •ํ™•ํ•˜๊ฒŒ ๋ชจ๋ธ๋งํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ๊ฐ ์ˆ˜์ค€์—์„œ์˜ ์ƒํ˜ธ

Quantitative Biology Model Network Physics
Fingerprint recognition using standardized fingerprint model

Fingerprint recognition using standardized fingerprint model

์ง€๋ฌธ ์ธ์‹์€ ์ƒ์ฒด ์ธ์‹ ๊ธฐ์ˆ  ์ค‘ ํ•˜๋‚˜๋กœ, ๊ณ ์œ ํ•œ ํŠน์ง•๊ณผ ์ง€์†์„ฑ ๋•๋ถ„์— ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•ฉ๋‹ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ €ํ’ˆ์งˆ ์ด๋ฏธ์ง€๋‚˜ ์†Œํ˜• ์˜์—ญ์—์„œ ํš๋“๋œ ๋ฐ์ดํ„ฐ๋ฅผ ์ฒ˜๋ฆฌํ•˜๋Š” ๋ฐ ์–ด๋ ค์›€์ด ์žˆ์Šต๋‹ˆ๋‹ค. ์ด ๋…ผ๋ฌธ์—์„œ๋Š” ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ํ‘œ์ค€ํ™”๋œ ์ง€๋ฌธ ํ…œํ”Œ๋ฆฟ ๋ชจ๋ธ์„ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. 1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ์ง€๋ฌธ ์ธ์‹์˜ ํ•ต์‹ฌ์€ ํ…œํ”Œ๋ฆฟ๊ณผ ์ฟผ๋ฆฌ ์ง€๋ฌธ ๊ฐ„์˜ ๋งค์นญ์ž…๋‹ˆ๋‹ค. ์ด ๊ณผ์ •์—์„œ ๋‹ค์–‘ํ•œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์ด ๊ฐœ๋ฐœ๋˜์—ˆ์ง€๋งŒ, ํŠนํžˆ ์ง€๋ฌธ์ด ํšŒ์ „๋˜๊ฑฐ๋‚˜ ๊ต์ฐจ ๋ถ€๋ถ„์ด ์ž‘์€ ๊ฒฝ์šฐ ์ •ํ™•๋„๊ฐ€ ๋–จ์–ด์ง‘๋‹ˆ๋‹ค. ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ํ‘œ์ค€ํ™”๋œ ์ง€๋ฌธ ํ…œํ”Œ๋ฆฟ ๋ชจ๋ธ์„ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. 2. ์—ฐ๊ตฌ ๋ฐฉ๋ฒ•

Model Computer Vision Computer Science
HanoiWorld : A Joint Embedding Predictive Architecture BasedWorld Model for Autonomous Vehicle Controller

HanoiWorld : A Joint Embedding Predictive Architecture BasedWorld Model for Autonomous Vehicle Controller

๋ณธ ๋…ผ๋ฌธ์€ ์ž์œจ์ฃผํ–‰ ์ œ์–ด์— ์žˆ์–ด ๊ฐ•ํ™”ํ•™์Šต(RL)์ด ์ง๋ฉดํ•œ ๊ทผ๋ณธ์ ์ธ ํ•œ๊ณ„๋ฅผ ์งš์–ด๋‚ธ ๋’ค, JEPA ๊ธฐ๋ฐ˜ ์ž๊ธฐ์ง€๋„ ํ•™์Šต์ด ์ œ๊ณตํ•  ์ˆ˜ ์žˆ๋Š” ๋Œ€์•ˆ์„ ์ œ์‹œํ•œ๋‹ค. ๊ธฐ์กด RL ์ ‘๊ทผ๋ฒ•์€ ๋ณด์ƒ ์„ค๊ณ„๊ฐ€ ๋ณต์žกํ•˜๊ณ , ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ํ˜น์€ ์‹ค์ œ ๋„๋กœ์—์„œ ์ˆ˜๋ฐฑ๋งŒ ๋‹จ๊ณ„์— ๋‹ฌํ•˜๋Š” ๋ฐ์ดํ„ฐ๊ฐ€ ํ•„์š”ํ•˜๋‹ค. ํŠนํžˆ ํ”ฝ์…€ ์ˆ˜์ค€์˜ ์žฌ๊ตฌ์„ฑ ์†์‹ค์„ ์ตœ์†Œํ™”ํ•˜๋ ค๋Š” ๋ชฉํ‘œ๋Š” ๊ณ ์ฐจ์› ์ž…๋ ฅ ๊ณต๊ฐ„์—์„œ ์žก์Œ(๋…ธ์ด์ฆˆ) ํŠน์„ฑ์„ ๊ณผ๋„ํ•˜๊ฒŒ ํ•™์Šตํ•˜๊ฒŒ ๋งŒ๋“ค๋ฉฐ, ์ด๋Š” ์ •์ฑ…์˜ ๋ถˆ์•ˆ์ •์„ฑ๊ณผ ์•ˆ์ „์„ฑ ์ €ํ•˜๋กœ ์ด์–ด์ง„๋‹ค. ์ธ๊ฐ„์ด ์ƒˆ๋กœ์šด ๊ธฐ์ˆ ์„ ์Šต๋“ํ•  ๋•Œ โ€˜์ƒ์ƒโ€™๊ณผ โ€˜์˜ˆ์ธกโ€™ ๊ณผ์ •์„ ํ†ตํ•ด ์ ์€ ๊ฒฝํ—˜๋งŒ์œผ๋กœ๋„ ์ผ๋ฐ˜ํ™”๋œ ๋ชจ๋ธ์„ ๊ตฌ์ถ•

Computer Science Robotics Model
KGCE: Knowledge-Augmented Dual-Graph Evaluator for Cross-Platform Educational Agent Benchmarking with Multimodal Language Models

KGCE: Knowledge-Augmented Dual-Graph Evaluator for Cross-Platform Educational Agent Benchmarking with Multimodal Language Models

KGCE ๋…ผ๋ฌธ์€ ํ˜„์žฌ ๊ต์œก์šฉ AI ์—์ด์ „ํŠธ ํ‰๊ฐ€ ์ฒด๊ณ„๊ฐ€ ์ง๋ฉดํ•œ ๋‘ ๊ฐ€์ง€ ํ•ต์‹ฌ ํ•œ๊ณ„๋ฅผ ์ฒด๊ณ„์ ์œผ๋กœ ์ง„๋‹จํ•˜๊ณ , ์ด๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•œ ์„ค๊ณ„ ์›์น™์„ ๋ช…ํ™•ํžˆ ์ œ์‹œํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ ํ•œ๊ณ„๋Š” โ€˜ํ”„๋ผ์ด๋น— ๋„๋ฉ”์ธ ์†Œํ”„ํŠธ์›จ์–ดโ€™์— ๋Œ€ํ•œ ๊ตฌ์กฐ์  ์ดํ•ด ๋ถ€์กฑ์ด๋‹ค. XiaoYa Intelligent Assistant๋‚˜ HuaShi XiaZi์™€ ๊ฐ™์€ ํ•™๊ต ์ „์šฉ ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜์€ UI ํ๋ฆ„, API ํ˜ธ์ถœ ๋ฐฉ์‹, ๋ฐ์ดํ„ฐ ํฌ๋งท ๋“ฑ์ด ์ผ๋ฐ˜ ์ƒ์šฉ ์†Œํ”„ํŠธ์›จ์–ด์™€ ํฌ๊ฒŒ ๋‹ค๋ฅด๋‹ค. ๊ธฐ์กด ๋ฉ€ํ‹ฐ๋ชจ๋‹ฌ LLM ๊ธฐ๋ฐ˜ ์—์ด์ „ํŠธ๋Š” ์‚ฌ์ „ ํ•™์Šต ๋ฐ์ดํ„ฐ์— ์ด๋Ÿฌํ•œ ํŠน์ˆ˜ ์‚ฌ๋ก€๊ฐ€ ๊ฑฐ์˜ ํฌํ•จ๋˜์ง€ ์•Š์•„, ์‹ค์ œ ์‹คํ–‰

Computer Science Artificial Intelligence Model
No Image

The Illusion of Insight in Reasoning Models

์ด ๋…ผ๋ฌธ์€ ์ตœ๊ทผ AI ์ปค๋ฎค๋‹ˆํ‹ฐ์—์„œ ํ™”์ œ๊ฐ€ ๋œ โ€œ์ถ”๋ก  ์ค‘ โ€˜์•„ํ•˜!โ€™ ์ˆœ๊ฐ„โ€์ด๋ผ๋Š” ํ˜„์ƒ์„ ๊ณผํ•™์ ์œผ๋กœ ๊ฒ€์ฆํ•˜๋ ค๋Š” ์‹œ๋„์ด๋‹ค. ์ €์ž๋“ค์€ ๋จผ์ € ๊ธฐ์กด ์—ฐ๊ตฌ๊ฐ€ ์ œ์‹œํ•œ ์‚ฌ๋ก€, ์ฆ‰ DeepSeekโ€‘R1โ€‘Zero๊ฐ€ ์ค‘๊ฐ„ ๋‹จ๊ณ„์—์„œ ๊ฐ‘์ž‘์Šค๋Ÿฌ์šด ์ „๋žต ์ „ํ™˜์„ ๋ณด์ด๋ฉฐ ์ •๋‹ต์„ ๋„์ถœํ•œ๋‹ค๋Š” ์ฃผ์žฅ์„ ์žฌํ˜„ํ•˜๋ ค ํ–ˆ๋‹ค. ์ด๋ฅผ ์œ„ํ•ด 1๋ฐฑ๋งŒ ๊ฐœ๊ฐ€ ๋„˜๋Š” ์ถ”๋ก  ํŠธ๋ ˆ์ด์Šค๋ฅผ ์ˆ˜์ง‘ํ•˜๊ณ , ๊ฐ ํŠธ๋ ˆ์ด์Šค์—์„œ ํ† ํฐ ์ˆ˜์ค€์˜ ํ™•๋ฅ  ๋ณ€ํ™”, ๋‚ด๋ถ€ ํ‘œํ˜„์˜ ๋ณ€๋™, ๊ทธ๋ฆฌ๊ณ  ์ถœ๋ ฅ ์ •ํ™•๋„๋ฅผ ๋™์‹œ์— ๊ธฐ๋กํ–ˆ๋‹ค. ๋ถ„์„ ๋Œ€์ƒ์€ ์ž์—ฐ์–ด ์งˆ๋ฌธโ€‘๋‹ต๋ณ€, ์ˆ˜ํ•™ ๋ฌธ์ œ ํ’€์ด, ์ฝ”๋”ฉ ์ƒ์„ฑ์ด๋ผ๋Š” ์„ธ ๊ฐ€์ง€ ๋„๋ฉ”์ธ์œผ๋กœ, ๊ฐ๊ฐ์˜ ๋„๋ฉ”์ธ

Computer Science Artificial Intelligence Model
Can Large Language Models Still Explain Themselves? Investigating the Impact of Quantization on Self-Explanations

Can Large Language Models Still Explain Themselves? Investigating the Impact of Quantization on Self-Explanations

๋ณธ ๋…ผ๋ฌธ์€ ์–‘์žํ™”๊ฐ€ ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(Large Language Model, LLM)์˜ ์ž๊ธฐ์„ค๋ช…(selfโ€‘explanations, SE) ๋Šฅ๋ ฅ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ์ฒด๊ณ„์ ์œผ๋กœ ์กฐ์‚ฌํ•œ ์ตœ์ดˆ์˜ ์—ฐ๊ตฌ๋ผ ํ•  ์ˆ˜ ์žˆ๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ์—์„œ๋Š” ์–‘์žํ™”๊ฐ€ ๋ชจ๋ธ์˜ ์ถ”๋ก  ์†๋„์™€ ๋ฉ”๋ชจ๋ฆฌ ์‚ฌ์šฉ๋Ÿ‰์„ ํฌ๊ฒŒ ๊ฐœ์„ ํ•œ๋‹ค๋Š” ์ ์— ์ดˆ์ ์„ ๋งž์ถ”์—ˆ์ง€๋งŒ, SE์™€ ๊ฐ™์ด ๋ชจ๋ธ ๋‚ด๋ถ€์˜ ์ถ”๋ก  ๊ณผ์ •์„ ์™ธ๋ถ€์— ์„ค๋ช…ํ•˜๋„๋ก ์š”๊ตฌ๋˜๋Š” ๊ณ ์ฐจ์› ์ž‘์—…์— ๋Œ€ํ•œ ์˜ํ–ฅ์€ ๊ฐ„๊ณผ๋˜์–ด ์™”๋‹ค. ์ด ์ ์„ ๋ฉ”์šฐ๊ธฐ ์œ„ํ•ด ์ €์ž๋“ค์€ ๋‘ ๊ฐ€์ง€ SE ์œ ํ˜•, ์ฆ‰ ์ž์—ฐ์–ด ์„ค๋ช…(NLE)๊ณผ ๋ฐ˜์‚ฌ์‹ค ์˜ˆ์‹œ(counterfactual exa

Computer Science NLP Model
Defensive M2S: Training Guardrail Models on Compressed Multi-turn Conversations

Defensive M2S: Training Guardrail Models on Compressed Multi-turn Conversations

Defensive M2S๋Š” ๊ธฐ์กด ๊ฐ€๋“œ๋ ˆ์ผ ๋ชจ๋ธ์ด ์ „์ฒด ๋Œ€ํ™” ํžˆ์Šคํ† ๋ฆฌ๋ฅผ ์ž…๋ ฅ์œผ๋กœ ๋ฐ›์•„์•ผ ํ•˜๋Š” ๊ตฌ์กฐ์  ํ•œ๊ณ„๋ฅผ ๊ทผ๋ณธ์ ์œผ๋กœ ํ•ด๊ฒฐํ•œ๋‹ค๋Š” ์ ์—์„œ ์˜๋ฏธ๊ฐ€ ํฌ๋‹ค. ๋‹ค์ค‘ํ„ด ๋Œ€ํ™”๋Š” ์ผ๋ฐ˜์ ์œผ๋กœ ํ† ํฐ ์ˆ˜๊ฐ€ O(nยฒ) ์ˆ˜์ค€์œผ๋กœ ๊ธ‰์ฆํ•˜๋Š”๋ฐ, ์ด๋Š” ํŠนํžˆ 10ํ„ด ์ด์ƒ์œผ๋กœ ๊ธธ์–ด์ง€๋Š” ์‹ค์ œ ์„œ๋น„์Šค ์‹œ๋‚˜๋ฆฌ์˜ค์—์„œ GPU ๋ฉ”๋ชจ๋ฆฌ์™€ ์—ฐ์‚ฐ ์‹œ๊ฐ„์˜ ๋ณ‘๋ชฉ์„ ์ดˆ๋ž˜ํ•œ๋‹ค. ๋…ผ๋ฌธ์€ ์ด๋ฅผ โ€˜Multiโ€‘turn to Singleโ€‘turn (M2S)โ€™ ์••์ถ•์ด๋ผ๋Š” ๊ฐ„๋‹จํ•˜์ง€๋งŒ ํšจ๊ณผ์ ์ธ ๋ณ€ํ™˜ ๊ทœ์น™์œผ๋กœ ์ „ํ™˜ํ•œ๋‹ค. ๊ตฌ์ฒด์ ์œผ๋กœ, ๊ฐ ํ„ด์˜ ํ•ต์‹ฌ ๋ฐœํ™”๋งŒ์„ ๋‚จ๊ธฐ๊ณ , ๋Œ€ํ™” ํ๋ฆ„์„ ์œ ์ง€ํ•˜๊ธฐ ์œ„ํ•ด ํ•˜์ดํ”ˆ(โ€“),

Computer Science NLP Model
Robust Uncertainty Quantification for Factual Generation of Large Language Models

Robust Uncertainty Quantification for Factual Generation of Large Language Models

์ด ๋…ผ๋ฌธ์€ LLM์˜ โ€˜ํ™˜๊ฐโ€™ ๋ฌธ์ œ๋ฅผ ๋ถˆํ™•์‹ค์„ฑ ์ •๋Ÿ‰ํ™”๋ผ๋Š” ๊ด€์ ์—์„œ ์ ‘๊ทผํ•œ๋‹ค๋Š” ์ ์—์„œ ์˜๋ฏธ๊ฐ€ ํฌ๋‹ค. ๊ธฐ์กด์˜ ๋ถˆํ™•์‹ค์„ฑ ์ถ”์ • ๊ธฐ๋ฒ•โ€”์˜ˆ๋ฅผ ๋“ค์–ด ๋ฒ ์ด์ง€์•ˆ ์‹ ๊ฒฝ๋ง, MCโ€‘Dropout, ์—”์‚ผ๋ธ” ๋ฐฉ๋ฒ•โ€”์€ ์ฃผ๋กœ ์ •ํ˜•ํ™”๋œ QA ๋ฐ์ดํ„ฐ์…‹์—์„œ ๊ฒ€์ฆ๋˜์—ˆ์œผ๋ฉฐ, ์งˆ๋ฌธ์ด ์˜๋„์ ์œผ๋กœ ํ˜ผ๋™์„ ์ฃผ๋Š” ํ˜•ํƒœ์ผ ๋•Œ๋Š” ์‹ ๋ขฐ๋„ ์ ์ˆ˜๊ฐ€ ๊ธ‰๊ฒฉํžˆ ์™œ๊ณก๋˜๋Š” ํ•œ๊ณ„๋ฅผ ๋ณด์˜€๋‹ค. ์ €์ž๋“ค์€ ์ด๋Ÿฌํ•œ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด โ€˜ํ•จ์ • ์งˆ๋ฌธ(trap question)โ€™์ด๋ผ๋Š” ์ƒˆ๋กœ์šด ํ‰๊ฐ€ ๋„๊ตฌ๋ฅผ ์„ค๊ณ„ํ–ˆ๋Š”๋ฐ, ์—ฌ๊ธฐ์—๋Š” ์‹ค์ œ ์กด์žฌํ•˜์ง€ ์•Š๋Š” ์ธ๋ฌผ๋ช…์ด๋‚˜ ํ—ˆ์œ„ ์‚ฌ์‹ค์ด ์‚ฝ์ž…๋˜์–ด ๋ชจ๋ธ์ด ์‚ฌ์‹ค์„ ์ƒ์„ฑํ•˜๋„๋ก ์œ ๋„ํ•œ๋‹ค.

Computer Science NLP Model
Modeling Language as a Sequence of Thoughts

Modeling Language as a Sequence of Thoughts

์ด ๋…ผ๋ฌธ์€ ํ˜„์žฌ ๊ฐ€์žฅ ๋„๋ฆฌ ์‚ฌ์šฉ๋˜๋Š” ํŠธ๋žœ์Šคํฌ๋จธ ๊ธฐ๋ฐ˜ ์–ธ์–ด ๋ชจ๋ธ์ด โ€œํ‘œ๋ฉด์ โ€ ํ† ํฐ ์—ฐ๊ด€์„ฑ์— ๊ณผ๋„ํ•˜๊ฒŒ ์˜์กดํ•œ๋‹ค๋Š” ๊ทผ๋ณธ์ ์ธ ํ•œ๊ณ„๋ฅผ ์งš๊ณ  ์žˆ๋‹ค. ํ† ํฐ ์ˆ˜์ค€์—์„œ๋งŒ ํ•™์Šต์ด ์ด๋ฃจ์–ด์ง€๋ฉด ๋ชจ๋ธ์€ ๋ฌธ๋งฅ ์ „์ฒด์— ๊ฑธ์นœ ์ผ๊ด€๋œ ์—”ํ‹ฐํ‹ฐยท์‚ฌ๊ฑด ํ‘œํ˜„์„ ๊ตฌ์ถ•ํ•˜์ง€ ๋ชปํ•œ๋‹ค. ๊ฒฐ๊ณผ์ ์œผ๋กœ โ€œ์—ญ์ „ ์ €์ฃผโ€(์˜ˆ: โ€œ์•„๋ฒ„์ง€๊ฐ€ ์•„๋“ค์„ ๋‚ณ์•˜๋‹คโ€์™€ โ€œ์•„๋“ค์ด ์•„๋ฒ„์ง€๋ฅผ ๋‚ณ์•˜๋‹คโ€๋ฅผ ๊ตฌ๋ถ„ํ•˜์ง€ ๋ชปํ•จ)์™€ ๊ฐ™์€ ๊ด€๊ณ„ ์ผ๋ฐ˜ํ™” ์˜ค๋ฅ˜๊ฐ€ ๋ฐœ์ƒํ•˜๊ณ , ๋™์ผํ•œ ์˜๋ฏธ๋ฅผ ๊ฐ€์ง„ ๋‹ค์–‘ํ•œ ํ‘œํ˜„์„ ํ•™์Šตํ•˜๊ธฐ ์œ„ํ•ด ๋ถˆํ•„์š”ํ•˜๊ฒŒ ๋งŽ์€ ๋ฐ์ดํ„ฐ๊ฐ€ ์š”๊ตฌ๋œ๋‹ค. ์ธ์ง€๊ณผํ•™ ์—ฐ๊ตฌ์—์„œ๋Š” ์ธ๊ฐ„์ด ์–ธ์–ด๋ฅผ ์ฒ˜๋ฆฌํ•  ๋•Œ ์ž…๋ ฅ ์ŠคํŠธ๋ฆผ์„ ์ผ์‹œ์ ์ธ ํ‘œ

Computer Science NLP Model
No Image

Multi-modal cross-domain mixed fusion model with dual disentanglement for fault diagnosis under unseen working conditions

์ด ๋…ผ๋ฌธ์€ ์‚ฐ์—… ํ˜„์žฅ์—์„œ ํ”ํžˆ ๋งˆ์ฃผ์น˜๋Š” โ€˜๋ณด์ด์ง€ ์•Š๋Š” ์ž‘์—… ์กฐ๊ฑดโ€™์ด๋ผ๋Š” ๋ฌธ์ œ๋ฅผ ํ•ต์‹ฌ์œผ๋กœ ์‚ผ์•„, ๊ธฐ์กด ๊ฒฐํ•จ ์ง„๋‹จ ๋ชจ๋ธ๋“ค์˜ ์ผ๋ฐ˜ํ™” ํ•œ๊ณ„๋ฅผ ์ฒด๊ณ„์ ์œผ๋กœ ๊ทน๋ณตํ•˜๊ณ ์ž ํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ ํ•ต์‹ฌ ๊ธฐ์—ฌ๋Š” ์ด์ค‘ ๋ถ„๋ฆฌ(disentanglement) ํ”„๋ ˆ์ž„์›Œํฌ ์ด๋‹ค. ์—ฌ๊ธฐ์„œ๋Š” ๋‘ ์ฐจ์›์˜ ๋ถ„๋ฆฌ๋ฅผ ๋™์‹œ์— ์ˆ˜ํ–‰ํ•œ๋‹ค. ํ•˜๋‚˜๋Š” ๋ชจ๋‹ฌ๋ฆฌํ‹ฐ ์ฐจ์› ์œผ๋กœ, ์„œ๋กœ ๋‹ค๋ฅธ ์„ผ์„œ(์˜ˆ: ์ „๋ฅ˜, ์ง„๋™, ์˜จ๋„)์—์„œ ์ถ”์ถœ๋œ ํŠน์ง•์„ โ€˜๋ชจ๋‹ฌ๋ฆฌํ‹ฐ ๋ถˆ๋ณ€(modalityโ€‘invariant)โ€™๊ณผ โ€˜๋ชจ๋‹ฌ๋ฆฌํ‹ฐ ํŠนํ™”(modalityโ€‘specific)โ€™๋กœ ๋‚˜๋ˆˆ๋‹ค. ์ด๋Š” ๊ฐ ์„ผ์„œ๊ฐ€ ์ œ๊ณตํ•˜๋Š” ๊ณ ์œ ํ•œ ๋ฌผ๋ฆฌ์  ์ •

Computer Science Artificial Intelligence Model
No Image

Understanding and Steering the Cognitive Behaviors of Reasoning Models at Test-Time

๋ณธ ๋…ผ๋ฌธ์€ ํ˜„์žฌ LLM์ด ๋ณต์žกํ•œ ๋ฌธ์ œ ํ•ด๊ฒฐ์— ํ”ํžˆ ์‚ฌ์šฉํ•˜๋Š” CoT(Chainโ€‘ofโ€‘Thought) ๋ฐฉ์‹์ด โ€œ๊ณผ๋‹ค ํ† ํฐ ์ƒ์„ฑโ€๊ณผ โ€œ๋ถˆ์•ˆ์ •ํ•œ ์‚ฌ๊ณ  ํ๋ฆ„โ€์ด๋ผ๋Š” ๋‘ ๊ฐ€์ง€ ์ฃผ์š” ๋ณ‘๋ชฉ์„ ์•ˆ๊ณ  ์žˆ๋‹ค๋Š” ์ ์„ ์ •ํ™•ํžˆ ์งš์–ด๋‚ธ๋‹ค. ์ €์ž๋“ค์€ ๋จผ์ € ๋Œ€๊ทœ๋ชจ ๋ชจ๋ธ(์˜ˆ: GPTโ€‘NeoX, LLaMA)์—์„œ ์ถ”๋ก  ์‹œ ์ƒ์„ฑ๋˜๋Š” ํ† ํฐ ์‹œํ€€์Šค๋ฅผ ๋‹จ๊ณ„๋ณ„๋กœ ๋ถ„์„ํ•˜๊ณ , ๊ฐ ๋‹จ๊ณ„๊ฐ€ ์–ด๋–ค ์ธ์ง€์  ์—ญํ• ์„ ์ˆ˜ํ–‰ํ•˜๋Š”์ง€ ๋ฉ”ํƒ€๋ฐ์ดํ„ฐํ™”ํ•œ๋‹ค. ์ด ๊ณผ์ •์—์„œ ํŠนํžˆ โ€˜๊ฒ€์ฆ(verification)โ€™ ๋‹จ๊ณ„์™€ โ€˜์—ญ์ถ”์ (backtracking)โ€™ ๋‹จ๊ณ„๊ฐ€ ๋ณ„๋„์˜ ์–ดํ…์…˜ ํ—ค๋“œ์— ์ง‘์ค‘๋˜์–ด ์žˆ๋‹ค๋Š” ์‚ฌ์‹ค์„

Computer Science NLP Model
No Image

HOLOGRAPH: Active Causal Discovery via Sheaf-Theoretic Alignment of Large Language Model Priors

HOLOGRAPH ๋…ผ๋ฌธ์€ ์ธ๊ณผ ๊ตฌ์กฐ ํ•™์Šต์ด๋ผ๋Š” ์˜ค๋ž˜๋œ ๋ฌธ์ œ์— ์ตœ์‹  ์ธ๊ณต์ง€๋Šฅ ๊ธฐ์ˆ ์„ ์ˆ˜ํ•™์ ์œผ๋กœ ๊ฒฐํ•ฉํ•œ ์‹œ๋„๋ผ ํ•  ์ˆ˜ ์žˆ๋‹ค. ์ „ํ†ต์ ์ธ ์ธ๊ณผ ๋ฐœ๊ฒฌ ๋ฐฉ๋ฒ•์€ ์กฐ๊ฑด๋ถ€ ๋…๋ฆฝ์„ฑ ๊ฒ€์ •์ด๋‚˜ ๊ตฌ์กฐ์  ๋ฐฉ์ •์‹ ๋ชจ๋ธ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•˜์ง€๋งŒ, ๊ด€์ธก ๋ฐ์ดํ„ฐ๋งŒ์œผ๋กœ๋Š” ๋™์ผํ•œ ๋งˆ๋ฅด์ฝ”ํ”„ ๋“ฑ๊ฐ€ ํด๋ž˜์Šค ๋‚ด์˜ ์—ฌ๋Ÿฌ ๊ทธ๋ž˜ํ”„๋ฅผ ๊ตฌ๋ถ„ํ•˜๊ธฐ ์–ด๋ ต๋‹ค. ์ด ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด ์—ฐ๊ตฌ์ž๋“ค์€ ์™ธ๋ถ€ ์ง€์‹, ํŠนํžˆ ์ธ๊ฐ„์ด ๋งŒ๋“  ์ง€์‹ ๊ทธ๋ž˜ํ”„๋‚˜ ๋„๋ฉ”์ธ ์ „๋ฌธ๊ฐ€์˜ ์˜๊ฒฌ์„ ์‚ฌ์ „ํ™•๋ฅ ๋กœ ๋„์ž…ํ•ด ์™”๋‹ค. ์ตœ๊ทผ์—๋Š” LLM์ด ๋ฐฉ๋Œ€ํ•œ ํ…์ŠคํŠธ ์ฝ”ํผ์Šค๋ฅผ ํ•™์Šตํ•จ์œผ๋กœ์จ โ€œ์ธ๊ณผ์  ์ง๊ด€โ€์„ ๋‚ดํฌํ•˜๊ณ  ์žˆ๋‹ค๋Š” ์ ์— ์ฃผ๋ชฉํ•ด, LLM์„

Machine Learning Computer Science Model
iCLP: Large Language Model Reasoning with Implicit Cognition Latent Planning

iCLP: Large Language Model Reasoning with Implicit Cognition Latent Planning

iCLP๋Š” ๊ธฐ์กด โ€œ์ฒด์ธโ€‘์˜ค๋ธŒโ€‘์ƒ๊ฐโ€(CoT) ์ ‘๊ทผ๋ฒ•์˜ ๋‘ ๊ฐ€์ง€ ํ•œ๊ณ„๋ฅผ ๋™์‹œ์— ํ•ด๊ฒฐํ•˜๋ ค๋Š” ์‹œ๋„์ด๋‹ค. ์ฒซ ๋ฒˆ์งธ๋Š” ์ธ๊ฐ„์ด ๋ฌธ์ œ๋ฅผ ํ’€ ๋•Œ ํ…์ŠคํŠธ๋กœ ๋ช…์‹œ์ ์ธ ๊ณ„ํš์„ ์„ธ์šฐ์ง€ ์•Š๋”๋ผ๋„, ๊ณผ๊ฑฐ ๊ฒฝํ—˜์—์„œ ์ถ”์ถœ๋œ ์••์ถ•๋œ ํŒจํ„ด์„ ๋ฌด์˜์‹์ ์œผ๋กœ ํ™œ์šฉํ•œ๋‹ค๋Š” ์ ์ด๋‹ค. ์ด๋Ÿฌํ•œ ์•”๋ฌต์  ์ธ์ง€๋Š” LLM์ด ์ง์ ‘ ํ…์ŠคํŠธ ๊ณ„ํš์„ ์ƒ์„ฑํ•  ๋•Œ ๋ฐœ์ƒํ•˜๋Š” โ€œํ™˜๊ฐโ€(hallucination) ๋ฌธ์ œ๋ฅผ ํšŒํ”ผํ•  ์ˆ˜ ์žˆ๋Š” ๊ฐ€๋Šฅ์„ฑ์„ ์ œ๊ณตํ•œ๋‹ค. ๋‘ ๋ฒˆ์งธ๋Š” ๋‹ค์–‘ํ•œ ๋„๋ฉ”์ธ๊ณผ ์งˆ๋ฌธ ํ˜•ํƒœ์— ๋Œ€ํ•ด ์ผ๊ด€๋œ ํ…์ŠคํŠธ ๊ณ„ํš์„ ์„ค๊ณ„ํ•˜๋Š” ๊ฒƒ์ด ๋น„ํ˜„์‹ค์ ์ด๋ผ๋Š” ์ ์ด๋‹ค. iCLP๋Š” ๋ช…์‹œ์  ๊ณ„ํš์„ ๋จผ์ € ์ˆ˜์ง‘ํ•˜๊ณ , ์ด

Computer Science NLP Model
Investigating Deep Learning Models for Ejection Fraction Estimation from Echocardiography Videos

Investigating Deep Learning Models for Ejection Fraction Estimation from Echocardiography Videos

๋ณธ ๋…ผ๋ฌธ์€ ์‹ฌ์žฅ๊ธฐ๋Šฅ ์ง„๋‹จ์— ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•˜๋Š” LVEF๋ฅผ ์ถ”์ •ํ•˜๊ธฐ ์œ„ํ•ด ๋‹ค์–‘ํ•œ ๋”ฅ๋Ÿฌ๋‹ ์•„ํ‚คํ…์ฒ˜์˜ ์„ฑ๋Šฅ์„ ํ‰๊ฐ€ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ดˆ์ŒํŒŒๅฟƒๅŠจๅ›พไฝœไธบไธ€็งๅธธ็”จ็š„ไธดๅบŠๅทฅๅ…ท๏ผŒ็”จไบŽ่ฏ„ไผฐๅฟƒ่„ๅŠŸ่ƒฝ๏ผŒไฝ†ๆ‰‹ๅŠจๅˆ†ๆžๅญ˜ๅœจๆ—ถ้—ดๆˆๆœฌ้ซ˜ๅ’Œ่ง‚ๅฏŸ่€…้—ดๅ˜ๅผ‚ๆ€งๅคง็š„้—ฎ้ข˜ใ€‚ๆทฑๅบฆๅญฆไน ๆ–นๆณ•็š„ๅผ•ๅ…ฅไธบ่ฟ™ไธช้—ฎ้ข˜ๆไพ›ไบ†ไธ€ไธชๆœ‰ๆฝœๅŠ›็š„่งฃๅ†ณๆ–นๆกˆใ€‚ๆœฌ็ ”็ฉถไธญ๏ผŒไฝœ่€…ๆŽข่ฎจไบ†ไธ‰็งไธๅŒ็š„ๆทฑๅบฆๅญฆไน ๆžถๆž„๏ผš3D Inceptionใ€ๅŒๆตๆจกๅž‹ไปฅๅŠCNN RNNๆจกๅž‹๏ผŒๅนถๅฏน่ฟ™ไบ›ๆจกๅž‹่ฟ›่กŒไบ†็ณป็ปŸๆ€ง็š„่ฏ„ไผฐไปฅ็กฎๅฎšๆœ€ไฝณ้…็ฝฎใ€‚ๅฎž้ชŒ็ป“ๆžœ่กจๆ˜Ž๏ผŒ็ป่ฟ‡ไฟฎๆ”นๅŽ็š„3D Inceptionๆžถๆž„่กจ็Žฐๆœ€ไผ˜๏ผŒๅ…ถๅ‡ๆ–นๆ น่ฏฏๅทฎ๏ผˆRMSE๏ผ‰ไธบ6.79%ใ€‚ๆญคๅค–๏ผŒ็ ”็ฉถ่ฟ˜ๅ‘็Žฐ่พƒๅฐไธ”็ฎ€ๅ•็š„ๆจกๅž‹ๅœจๆณ›ๅŒ–่ƒฝๅŠ›ไธŠไผ˜ไบŽๅคๆ‚

Model Learning
Unleashing Foundation Vision Models: Adaptive Transfer for Diverse Data-Limited Scientific Domains

Unleashing Foundation Vision Models: Adaptive Transfer for Diverse Data-Limited Scientific Domains

๋ณธ ์—ฐ๊ตฌ๋Š” ํ˜„์žฌ ์ปดํ“จํ„ฐ ๋น„์ „ ๋ถ„์•ผ์—์„œ ๊ฐ€์žฅ ํฐ ๋„์ „ ๊ณผ์ œ ์ค‘ ํ•˜๋‚˜์ธ โ€œ๋Œ€๊ทœ๋ชจ ์‚ฌ์ „ ํ•™์Šต ๋ชจ๋ธ์„ ๋ฐ์ดํ„ฐ๊ฐ€ ๋ถ€์กฑํ•œ ํŠน์ˆ˜ ๋„๋ฉ”์ธ์— ํšจ๊ณผ์ ์œผ๋กœ ์ „์ด์‹œํ‚ค๋Š” ๋ฐฉ๋ฒ•โ€์„ ํ•ด๊ฒฐํ•˜๊ณ ์ž ํ•œ๋‹ค. ๊ธฐ์กด์˜ ํŒŒ์ธํŠœ๋‹ ๋ฐฉ์‹์€ ์‚ฌ์ „ ํ•™์Šต๋œ ๊ฐ€์ค‘์น˜๋ฅผ ๊ทธ๋Œ€๋กœ ์‚ฌ์šฉํ•˜๊ฑฐ๋‚˜, ์ „์ฒด ๋„คํŠธ์›Œํฌ๋ฅผ ๋ฏธ์„ธ์กฐ์ •ํ•˜๋Š” ๋ฐฉ์‹์— ๋จธ๋ฌผ๋Ÿฌ ์žˆ์–ด, ๋„๋ฉ”์ธ ๊ฐ„ ๋ถ„ํฌ ์ฐจ์ด๊ฐ€ ํด ๊ฒฝ์šฐ ๊ณผ์ ํ•ฉ์ด๋‚˜ ํ‘œํ˜„ ์†์‹ค์ด ๋ฐœ์ƒํ•œ๋‹ค. CLAdapter๋Š” ์ด๋Ÿฌํ•œ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด ๋‘ ๊ฐ€์ง€ ํ•ต์‹ฌ ์•„์ด๋””์–ด๋ฅผ ๊ฒฐํ•ฉํ•œ๋‹ค. ์ฒซ์งธ, ํด๋Ÿฌ์Šคํ„ฐ ์ค‘์‹ฌ์„ ํ™œ์šฉํ•ด ์ž…๋ ฅ ํŠน์ง• ๊ณต๊ฐ„์„ ์—ฌ๋Ÿฌ ๊ฐœ์˜ ์˜๋ฏธ๋ก ์  ๊ทธ๋ฃน์œผ๋กœ ๋‚˜๋ˆ„๊ณ , ๊ฐ ํด๋Ÿฌ์Šคํ„ฐ์—

Data Model
Efficient Multi-Model Orchestration for Self-Hosted Large Language Models

Efficient Multi-Model Orchestration for Self-Hosted Large Language Models

๋ณธ ์—ฐ๊ตฌ๋Š” ๋Œ€๊ทœ๋ชจ ์–ธ์–ด ๋ชจ๋ธ์„ ์ž์ฒด ๋ฐ์ดํ„ฐ์„ผํ„ฐ์— ๊ตฌ์ถ•ํ•˜๋ ค๋Š” ๊ธฐ์—…ยท๊ธฐ๊ด€์„ ๋Œ€์ƒ์œผ๋กœ, ๊ธฐ์กด์˜ ์ •์  ๋ฐฐํฌ ๋ฐฉ์‹์ด ์•ˆ๊ณ  ์žˆ๋˜ ๋น„ํšจ์œจ์„ฑ์„ ๊ทผ๋ณธ์ ์œผ๋กœ ๊ฐœ์„ ํ•˜๊ณ ์ž ํ•˜๋Š” ์‹œ๋„์ด๋‹ค. ์ฒซ ๋ฒˆ์งธ ํ•ต์‹ฌ ๋ฌธ์ œ๋Š” GPU ์ž์›์˜ ๋น„์ •์ƒ์  ์‚ฌ์šฉ์ด๋‹ค. LLM์€ ๋ชจ๋ธ ํฌ๊ธฐ์— ๋”ฐ๋ผ ์ˆ˜์‹ญ์—์„œ ์ˆ˜๋ฐฑ ๊ฐœ์˜ GPU๊ฐ€ ํ•„์š”ํ•˜์ง€๋งŒ, ์‹ค์ œ ์š”์ฒญ๋Ÿ‰์€ ์‹œ๊ฐ„๋Œ€๋ณ„, ์„œ๋น„์Šค๋ณ„๋กœ ํฌ๊ฒŒ ๋ณ€๋™ํ•œ๋‹ค. ์ •์  ํ• ๋‹น์€ ํ”ผํฌ ์‹œ์ ์—๋Š” ์„ฑ๋Šฅ ์ €ํ•˜, ๋น„ํ”ผํฌ ์‹œ์ ์—๋Š” ์ž์› ๋‚ญ๋น„๋ฅผ ์ดˆ๋ž˜ํ•œ๋‹ค. ๋‘ ๋ฒˆ์งธ๋Š” ๋‹ค์–‘ํ•œ ๋ชจ๋ธ๊ณผ ์›Œํฌ๋กœ๋“œ๋ฅผ ๋™์‹œ์— ์šด์˜ํ•  ๋•Œ ๋ฐœ์ƒํ•˜๋Š” ๋ผ์šฐํŒ… ๋ณต์žก์„ฑ์ด๋‹ค. ๋ชจ๋ธ๋งˆ๋‹ค ์ •ํ™•๋„ยท์‘๋‹ต์‹œ๊ฐ„ยท๋น„์šฉ ํŠน์„ฑ

Model
Semiparametric Preference Optimization: Your Language Model is Secretly a Single-Index Model

Semiparametric Preference Optimization: Your Language Model is Secretly a Single-Index Model

์ด ๋…ผ๋ฌธ์€ ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(LLMs)์˜ ์„ ํ˜ธ๋„ ์ •ํ•ฉ์„ฑ ๋ฌธ์ œ๋ฅผ ๋‹ค๋ฃจ๋ฉฐ, ํŠนํžˆ ์•Œ๋ ค์ง€์ง€ ์•Š์€ ๋งํฌ ํ•จ์ˆ˜์— ๋Œ€ํ•œ ์ ‘๊ทผ๋ฒ•์„ ์ œ์‹œํ•œ๋‹ค. ๋ณดํ†ต LLMs๋Š” ํŠน์ • ์—ฐ๊ฒฐ ํ•จ์ˆ˜(์˜ˆ: ๋กœ์ง“ ๋ธŒ๋ผ๋“ค๋ฆฌ ํ…Œ๋ฆฌ ์—ฐ๊ฒฐ)๋ฅผ ๊ฐ€์ •ํ•˜์—ฌ ๊ด€์ฐฐ๋œ ์„ ํ˜ธ์™€ ์ž ์žฌ์  ๋ณด์ƒ ์‚ฌ์ด์˜ ๊ด€๊ณ„๋ฅผ ๋ชจ๋ธ๋งํ•˜๋Š”๋ฐ, ์ด๋Ÿฌํ•œ ์—ฐ๊ฒฐ ํ•จ์ˆ˜๊ฐ€ ์ž˜๋ชป ์ง€์ •๋˜๋ฉด ์ถ”๋ก ๋œ ๋ณด์ƒ๊ณผ ํ•™์Šต๋œ ์ •์ฑ…์ด ๋ถˆ์ผ์น˜ํ•˜๊ฒŒ ๋œ๋‹ค. ๋…ผ๋ฌธ์€ ์•Œ๋ ค์ง€์ง€ ์•Š์€ ๋งํฌ ํ•จ์ˆ˜์— ๋Œ€ํ•ด f ๋ถ„์‚ฐ ์ œ์•ฝ ์กฐ๊ฑด ํ•˜์—์„œ ๋ณด์ƒ ์ตœ๋Œ€ํ™”์˜ ์‹คํ˜„ ๊ฐ€๋Šฅ์„ฑ ๋ฌธ์ œ๋ฅผ ๋‹ค๋ฃจ๋ฉฐ, ์ด๋ฅผ ํ†ตํ•ด ๋ฐ˜ํŒŒ๋ผ๋ฉ”ํŠธ๋ฆญ ๋‹จ์ผ ์ธ๋ฑ์Šค ์ด์ง„ ์„ ํƒ ๋ชจ๋ธ์„ ์œ ๋„ํ•œ๋‹ค. ์ด ๋ชจ๋ธ์—์„œ๋Š” ์ •์ฑ… ์ข…์†

Model
Reflection Pretraining Enables Token-Level Self-Correction in Biological Sequence Models

Reflection Pretraining Enables Token-Level Self-Correction in Biological Sequence Models

Chain of Thought(CoT) ํ”„๋กฌํ”„ํŠธ๋Š” ์ตœ๊ทผ ์ž์—ฐ์–ด ์ฒ˜๋ฆฌ ๋ถ„์•ผ์—์„œ ๊ฐ€์žฅ ์ฃผ๋ชฉ๋ฐ›๋Š” ๊ธฐ๋ฒ• ์ค‘ ํ•˜๋‚˜์ด๋‹ค. ๊ธฐ์กด์˜ โ€œ์งˆ๋ฌธโ€‘๋‹ต๋ณ€โ€ ํ˜•ํƒœ ํ”„๋กฌํ”„ํŠธ๋Š” ๋ชจ๋ธ์ด ๋ฐ”๋กœ ์ตœ์ข… ๋‹ต์„ ์ถœ๋ ฅํ•˜๋„๋ก ๊ฐ•์š”ํ•˜์ง€๋งŒ, CoT๋Š” ๋ชจ๋ธ์ด ์ค‘๊ฐ„์— ๋…ผ๋ฆฌ์ ยท์ˆ˜ํ•™์  ์ถ”๋ก  ๊ณผ์ •์„ ํ…์ŠคํŠธ ํ† ํฐ ํ˜•ํƒœ๋กœ ์„œ์ˆ ํ•˜๋„๋ก ๋งŒ๋“ ๋‹ค. ์ด๋Ÿฌํ•œ โ€œ๋น„๋‹ต๋ณ€ ํ† ํฐโ€์€ ๋ชจ๋ธ์ด ๋ณต์žกํ•œ ์—ฐ์‚ฐ์„ ๋‹จ๊ณ„๋ณ„๋กœ ํ’€์–ด๊ฐ€๊ฒŒ ํ•จ์œผ๋กœ์จ, ํŠนํžˆ ๋‹ค์ค‘ ๋‹จ๊ณ„ ๋…ผ๋ฆฌ, ์ˆ˜์‹ ์ „๊ฐœ, ํ˜น์€ ์ฝ”๋“œ ์ƒ์„ฑ๊ณผ ๊ฐ™์€ ์ž‘์—…์—์„œ ์˜ค๋ฅ˜์œจ์„ ํฌ๊ฒŒ ๋‚ฎ์ถ˜๋‹ค. CoT๊ฐ€ ์„ฑ๊ณต์„ ๊ฑฐ๋‘˜ ์ˆ˜ ์žˆ์—ˆ๋˜ ํ•ต์‹ฌ์€ ๋‘ ๊ฐ€์ง€์ด๋‹ค. ์ฒซ์งธ, ์ธ๊ฐ„ ์–ธ์–ด ์ž์ฒด๊ฐ€ ํ’๋ถ€ํ•œ

Model
Automated stereotactic radiosurgery planning using a human-in-the-loop reasoning large language model agent

Automated stereotactic radiosurgery planning using a human-in-the-loop reasoning large language model agent

๋ณธ ์—ฐ๊ตฌ๋Š” ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ์น˜๋ฃŒ ๊ณ„ํš ์‹œ์Šคํ…œ์ด ์ž„์ƒ ํ˜„์žฅ์—์„œ ์‹ ๋ขฐ๋ฅผ ์–ป๊ธฐ ์œ„ํ•ด์„œ๋Š” โ€˜์„ค๋ช… ๊ฐ€๋Šฅ์„ฑโ€™์ด ํ•„์ˆ˜์ ์ด๋ผ๋Š” ๊ฐ€์ •์„ ๊ฒ€์ฆํ•œ๋‹ค. ๊ธฐ์กด์˜ ๋Œ€ํ˜•์–ธ์–ด๋ชจ๋ธ(LLM) ๊ธฐ๋ฐ˜ ์ž๋™ํ™”๋Š” ๋†’์€ ์„ฑ๋Šฅ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ  ๋‚ด๋ถ€ ์˜์‚ฌ๊ฒฐ์ • ๊ณผ์ •์„ ๊ฒ€์ฆํ•  ์ˆ˜ ์—†๋‹ค๋Š” ํ•œ๊ณ„๊ฐ€ ์žˆ์—ˆ๋‹ค. ์ด๋ฅผ ๊ทน๋ณตํ•˜๊ณ ์ž ์—ฐ๊ตฌํŒ€์€ โ€˜์ฒด์ธ์˜ค๋ธŒ์ƒ๊ฐ(Chainโ€‘ofโ€‘Thought, CoT)โ€™์ด๋ผ๋Š” ์‚ฌ๊ณ  ํ๋ฆ„์„ ๋ช…์‹œ์ ์œผ๋กœ ์ƒ์„ฑํ•˜๋„๋ก ํ”„๋กฌํ”„ํŠธ๋ฅผ ์„ค๊ณ„ํ•˜์˜€๋‹ค. CoT๋Š” ๋ชจ๋ธ์ด ๋ฌธ์ œ๋ฅผ ๋‹จ๊ณ„๋ณ„๋กœ ๋ถ„ํ•ดํ•˜๊ณ , ๊ฐ ๋‹จ๊ณ„์—์„œ ์ œ์•ฝ์กฐ๊ฑด์„ ํ™•์ธํ•˜๋ฉฐ, ๊ฐ€๋Šฅํ•œ ๋Œ€์•ˆ์„ ๋…ผ์˜ํ•˜๋„๋ก ์œ ๋„ํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ๊ณผ์ •์€ ์ตœ์ข… ์„ ๋Ÿ‰ ์ตœ์ 

Model
Retrieval-augmented Prompt Learning for Pre-trained Foundation Models

Retrieval-augmented Prompt Learning for Pre-trained Foundation Models

๋ณธ ๋…ผ๋ฌธ์€ ์‚ฌ์ „ ํ•™์Šต๋œ ๋Œ€ํ˜• ๋ชจ๋ธ(Preโ€‘trained Foundation Models, ์ดํ•˜ PFM)์ด ๋ฉ€ํ‹ฐ๋ชจ๋‹ฌ ํ•™์Šต์—์„œ ์ฐจ์ง€ํ•˜๋Š” ์ „๋žต์  ์œ„์น˜๋ฅผ ์žฌ์กฐ๋ช…ํ•œ๋‹ค. ๊ธฐ์กด์˜ โ€œpreโ€‘train, prompt, predictโ€ ํ๋ฆ„์€ ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ์ง์ ‘ ์—…๋ฐ์ดํŠธํ•˜๋Š” ์ „ํ†ต์ ์ธ ๋ฏธ์„ธ์กฐ์ • ๋ฐฉ์‹๊ณผ ๋‹ฌ๋ฆฌ, ํ”„๋กฌํ”„ํŠธ ํ† ํฐ์„ ์‚ฝ์ž…ํ•˜๊ฑฐ๋‚˜ ํ…œํ”Œ๋ฆฟ์„ ์„ค๊ณ„ํ•จ์œผ๋กœ์จ ๋ชจ๋ธ ์ž์ฒด๋Š” ๊ณ ์ •๋œ ์ฑ„ ์™ธ๋ถ€ ์ž…๋ ฅ๋งŒ์œผ๋กœ ์ž‘์—…์„ ์ˆ˜ํ–‰ํ•˜๋„๋ก ๋งŒ๋“ ๋‹ค. ์ด๋Ÿฌํ•œ ์ ‘๊ทผ์€ ํŒŒ๋ผ๋ฏธํ„ฐ ํšจ์œจ์„ฑ์„ ํฌ๊ฒŒ ๋†’์˜€์ง€๋งŒ, ์—ฌ์ „ํžˆ โ€œ๊ธฐ์–ต ์ค‘์‹ฌโ€์˜ ์ผ๋ฐ˜ํ™” ํ•œ๊ณ„์— ์ง๋ฉดํ•œ๋‹ค. ๊ตฌ์ฒด์ ์œผ๋กœ, ์ œํ•œ๋œ ๋ผ๋ฒจ ๋ฐ์ดํ„ฐ๋งŒ์œผ๋กœ ํ”„

Model Learning
$M^3-Verse$: A 'Spot the Difference' Challenge for Large Multimodal Models

$M^3-Verse$: A 'Spot the Difference' Challenge for Large Multimodal Models

์ด ๋…ผ๋ฌธ์€ ์ธ๊ณต์ง€๋Šฅ, ํŠนํžˆ ๋Œ€ํ˜• ๋ฉ€ํ‹ฐ๋ชจ๋‹ฌ ๋ชจ๋ธ(LMM)์ด โ€œ์ƒํƒœ ๋ณ€ํ™”(state transition)โ€๋ฅผ ์–ผ๋งˆ๋‚˜ ์ž˜ ์ดํ•ดํ•˜๊ณ  ์ถ”๋ก ํ•  ์ˆ˜ ์žˆ๋Š”์ง€๋ฅผ ํ‰๊ฐ€ํ•˜๊ธฐ ์œ„ํ•œ ์ƒˆ๋กœ์šด ๋ฒค์น˜๋งˆํฌ๋ฅผ ์ œ์•ˆํ•œ๋‹ค. ๊ธฐ์กด์˜ ํ‰๊ฐ€ ์ฒด๊ณ„๋Š” ๋Œ€๋ถ€๋ถ„ ์ •์ ์ธ ์ƒํ™ฉ, ์ฆ‰ ํ•˜๋‚˜์˜ ์ด๋ฏธ์ง€ ํ˜น์€ ์˜์ƒ ํ”„๋ ˆ์ž„์— ๋Œ€ํ•œ ์งˆ๋ฌธ์— ๊ตญํ•œ๋œ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด โ€œ์นจ๋Œ€ ์˜† ์„œ๋ž์ด ์—ด๋ ค ์žˆ๋‚˜์š”?โ€์™€ ๊ฐ™์€ ์งˆ๋ฌธ์— ๋Œ€ํ•ด ๋ชจ๋ธ์ด โ€œ์—ด๋ฆผโ€ ํ˜น์€ โ€œ๋‹ซํž˜โ€์ด๋ผ๋Š” ๋‹จ์ผ ๋‹ต๋ณ€์„ ์ œ์‹œํ•˜๋„๋ก ์š”๊ตฌํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ์ ‘๊ทผ์€ ์ธ๊ฐ„์ด ์ผ์ƒ ์ƒํ™œ์—์„œ ๊ฒฝํ—˜ํ•˜๋Š” โ€œ์‹œ๊ฐ„์— ๋”ฐ๋ฅธ ๋ณ€ํ™”โ€๋ฅผ ํฌ์ฐฉํ•˜์ง€ ๋ชปํ•œ๋‹ค. ์ธ๊ฐ„์€ ๋™์ผํ•œ ๋ฌผ์ฒด๊ฐ€ ์‹œ๊ฐ„

Model
Revisiting the Learning Objectives of Vision-Language Reward Models

Revisiting the Learning Objectives of Vision-Language Reward Models

์ด ๋…ผ๋ฌธ์€ ์ตœ๊ทผ ๊ธ‰๋ถ€์ƒํ•˜๊ณ  ์žˆ๋Š” ๋Œ€์กฐ์  ๋น„์ „โ€‘์–ธ์–ด ๋ชจ๋ธ(VLM)์„ ๋ณด์ƒ ํ•จ์ˆ˜ ํ•™์Šต์— ์ ์šฉํ•˜๋Š” ์—ฐ๊ตฌ ํ๋ฆ„์„ ๋น„ํŒ์ ์œผ๋กœ ์žฌ์กฐ๋ช…ํ•œ๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค์€ VLM์„ ํ™œ์šฉํ•ด ์ธ๊ฐ„ ๋ผ๋ฒจ๋ง ์—†์ด๋„ ๋กœ๋ด‡ ์ œ์–ด๋‚˜ ๊ฐ•ํ™”ํ•™์Šต ํ™˜๊ฒฝ์—์„œ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ๋Š” ํ’๋ถ€ํ•œ ๋ณด์ƒ ์‹ ํ˜ธ๋ฅผ ์ƒ์„ฑํ•œ๋‹ค๋Š” ์ ์—์„œ ํฐ ๊ธฐ๋Œ€๋ฅผ ๋ชจ์•˜๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ด๋Ÿฌํ•œ ์—ฐ๊ตฌ๋“ค์€ ์„œ๋กœ ๋‹ค๋ฅธ ์‚ฌ์ „ํ•™์Šต ๋ฐ์ดํ„ฐ์…‹(์˜ˆ: CLIP, ALIGN), ์„œ๋กœ ๋‹ค๋ฅธ ๋„คํŠธ์›Œํฌ ์•„ํ‚คํ…์ฒ˜(ResNet, ViT), ๊ทธ๋ฆฌ๊ณ  ์„œ๋กœ ๋‹ค๋ฅธ ํŒŒ์ธํŠœ๋‹ ํ”„๋กœํ† ์ฝœ์„ ์‚ฌ์šฉํ–ˆ๊ธฐ ๋•Œ๋ฌธ์—, ์‹ค์ œ๋กœ ์–ด๋А ํ•™์Šต ๋ชฉํ‘œ๊ฐ€ ์„ฑ๋Šฅ ํ–ฅ์ƒ์— ๊ธฐ์—ฌํ–ˆ๋Š”์ง€๋ฅผ ๋ช…ํ™•ํžˆ ํŒŒ์•…ํ•˜

Learning Model
Decoding Fake Narratives in Spreading Hateful Stories: A Dual-Head RoBERTa Model with Multi-Task Learning

Decoding Fake Narratives in Spreading Hateful Stories: A Dual-Head RoBERTa Model with Multi-Task Learning

์ด ๋…ผ๋ฌธ์€ ์‚ฌํšŒ ๋ฏธ๋””์–ด ํ”Œ๋žซํผ์—์„œ ํ˜์˜ค ๋ฐœ์–ธ๊ณผ ๊ฑฐ์ง“ ์ •๋ณด์˜ ํ™•์‚ฐ ๋ฌธ์ œ๋ฅผ ๋‹ค๋ฃจ๋ฉฐ, ํŠนํžˆ ์ฝ”๋“œ๋ฏน์Šค ํžŒ๋”” ์˜์–ด ํ…์ŠคํŠธ์—์„œ ๊ฐ€์งœ ์ด์•ผ๊ธฐ์— ์˜ํ•ด ์œ ๋ฐœ๋œ ํ˜์˜ค ๋ฐœ์–ธ์„ ๊ฐ์ง€ํ•˜๋Š” Faux Hate ๊ณต๋™ ์ž‘์—…์„ ํƒ๊ตฌํ•ฉ๋‹ˆ๋‹ค. ์ด ์—ฐ๊ตฌ๋Š” ๋‘ ๊ฐ€์ง€ ์ฃผ์š” ํ•˜์œ„ ์ž‘์—…์„ ์ˆ˜ํ–‰ํ•˜๋Š”๋ฐ, ์ฒซ์งธ๋กœ ์ด์ง„ Faux Hate ๊ฐ์ง€๋Š” ๊ฑฐ์ง“๊ณผ ํ˜์˜ค ๋ฐœ์–ธ์„ ๋ถ„๋ฅ˜ํ•˜๊ณ , ๋‘˜์งธ๋กœ ๋Œ€์ƒ ๋ฐ ์‹ฌ๊ฐ์„ฑ ์˜ˆ์ธก์€ ํ˜์˜ค ๋ฐœ์–ธ์˜ ๋ชฉํ‘œ์™€ ๊ทธ ์ •๋„๋ฅผ ๋ฒ”์ฃผํ™”ํ•ฉ๋‹ˆ๋‹ค. ์—ฐ๊ตฌํŒ€์ด ๊ฐœ๋ฐœํ•œ ์‹œ์Šคํ…œ์€ ๊ณ ๊ธ‰ ์ž์—ฐ์–ด ์ฒ˜๋ฆฌ ๊ธฐ์ˆ ๊ณผ ๋„๋ฉ”์ธ ํŠนๅผ‚ๆ€ง้ข„่ฎญ็ปƒ็›ธ็ป“ๅˆ๏ผŒๆ—จๅœจๆ้ซ˜่ฟ™ไธค้กนไปปๅŠก็š„ๆ€ง่ƒฝใ€‚่ฏฅ็ณป็ปŸๅœจๆฏ”่ต›ไธญๅ–ๅพ—ไบ†ๆœ‰็ซžไบ‰ๅŠ›็š„็ป“ๆžœ๏ผŒ่ฏๆ˜Žไบ†

Model Learning
KineST: A Kinematics-guided Spatiotemporal State Space Model for Human Motion Tracking from Sparse Signals

KineST: A Kinematics-guided Spatiotemporal State Space Model for Human Motion Tracking from Sparse Signals

KineST๋Š” AR/VR ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜์—์„œ ์ „์‹  ๋™์ž‘ ์ถ”์ ์ด ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•˜๋Š” ์ƒํ™ฉ์—์„œ, ํ—ค๋“œ ๋งˆ์šดํŠธ ๋””์Šคํ”Œ๋ ˆ์ด๋ฅผ ํ†ตํ•ด ์–ป์€ ์ œํ•œ์ ์ธ ์‹ ํ˜ธ๋กœ ์‹ค์ œ์ด๊ณ  ๋‹ค์–‘ํ•œ ๋™์ž‘์„ ์žฌ๊ตฌ์„ฑํ•˜๋Š” ๋ฌธ์ œ์— ์ดˆ์ ์„ ๋งž์ถฅ๋‹ˆ๋‹ค. ๊ธฐ์กด์˜ ๋ฐฉ๋ฒ•๋“ค์€ ๋†’์€ ๊ณ„์‚ฐ ๋น„์šฉ์ด๋‚˜ ๋ณ„๋„์˜ ๊ณต๊ฐ„์ ๊ณผ ์‹œ๊ฐ„์  ์˜์กด์„ฑ์„ ๋ชจ๋ธ๋งํ•จ์œผ๋กœ์จ ์ •ํ™•์„ฑ, ์‹œ๊ณ„์—ด ์ผ๊ด€์„ฑ ๋ฐ ํšจ์œจ์„ฑ ์‚ฌ์ด์—์„œ ๊ท ํ˜•์„ ๋งž์ถ”๋Š” ๊ฒƒ์ด ์–ด๋ ต๋‹ค๋Š” ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด KineST๊ฐ€ ์ œ์•ˆ๋˜์—ˆ์Šต๋‹ˆ๋‹ค. ์ด ๋ชจ๋ธ์€ ๋‘ ๊ฐ€์ง€ ํ•ต์‹ฌ ์•„์ด๋””์–ด๋กœ ๊ตฌ์„ฑ๋ฉ๋‹ˆ๋‹ค: ์ฒซ์งธ, ์ƒํƒœ๊ณต๊ฐ„ ์ด์ค‘์„ฑ ํ”„๋ ˆ์ž„์›Œํฌ ๋‚ด์˜ ์Šค์บ๋‹ ์ „๋žต์„ ๋™์—ญํ•™ ์ง€ํ–ฅ ์–‘๋ฐฉํ–ฅ ์Šค์บ”์œผ๋กœ

Model
The Evolution of Reranking Models in Information Retrieval: From Heuristic Methods to Large Language Models

The Evolution of Reranking Models in Information Retrieval: From Heuristic Methods to Large Language Models

๋ณธ ๋…ผ๋ฌธ์€ ์ •๋ณด ๊ฒ€์ƒ‰(IR) ์‹œ์Šคํ…œ์—์„œ ์žฌ์ˆœ์œ„ํ™”๊ฐ€ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•˜๋Š” ์ด์œ ์™€ ๊ทธ ๋ฐœ์ „ ๊ณผ์ •์„ ์ฒด๊ณ„์ ์œผ๋กœ ๋ถ„์„ํ•ฉ๋‹ˆ๋‹ค. ํŠนํžˆ, ์ตœ๊ทผ์˜ Retrieval Augmented Generation (RAG) ํŒŒ์ดํ”„๋ผ์ธ์— ์ค‘์ ์„ ๋‘๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. RAG๋Š” ๊ฒ€์ƒ‰๋œ ๋ฌธ์„œ๋“ค์ด ์ถœ๋ ฅ ํ’ˆ์งˆ์— ํฐ ์˜ํ–ฅ์„ ๋ฏธ์น˜๋ฏ€๋กœ ์žฌ์ˆœ์œ„ํ™” ๊ธฐ๋ฒ•์˜ ์ค‘์š”์„ฑ์ด ๋”์šฑ ๋ถ€๊ฐ๋ฉ๋‹ˆ๋‹ค. ๋…ผ๋ฌธ์€ ์žฌ์ˆœ์œ„ํ™” ๊ธฐ๋ฒ•์˜ ์—ญ์‚ฌ์  ๋ฐœ์ „ ๊ฒฝ๋กœ๋ฅผ ํƒ๊ตฌํ•˜๋ฉฐ, ์ดˆ๊ธฐ ์ ‘๊ทผ ๋ฐฉ์‹์—์„œ ์‹œ์ž‘ํ•ด ๋‹ค์–‘ํ•œ ์‹ ๊ฒฝ๋ง ์•„ํ‚คํ…์ฒ˜๊นŒ์ง€ ๋‹ค๋ฃน๋‹ˆ๋‹ค. ์ด ์ค‘์—๋Š” ํฌ๋กœ์Šค ์ธ์ฝ”๋”, T5์™€ ๊ฐ™์€ ์‹œํ€€์Šค ์ƒ์„ฑ ๋ชจ๋ธ, ๊ตฌ์กฐ์  ์ •๋ณด๋ฅผ ํ™œ์šฉํ•˜๋Š” ๊ทธ๋ž˜

Model
No Image

Topic Modelling Black Box Optimization

๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” LDA ๋ชจ๋ธ์—์„œ ์ฃผ์ œ ์ˆ˜ T๋ฅผ ์„ ํƒํ•˜๋Š” ๋ฌธ์ œ๋ฅผ ์ด์‚ฐ ๋ธ”๋ž™๋ฐ•์Šค ์ตœ์ ํ™” ๋ฌธ์ œ๋กœ ์ •์‹ํ™”ํ•˜๊ณ , ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•œ ๋‹ค์–‘ํ•œ ์ตœ์ ํ™” ๋ฐฉ๋ฒ•๋“ค์„ ๋น„๊ตํ•œ๋‹ค. ํŠนํžˆ, ๋ณธ ๋…ผ๋ฌธ์€ GA์™€ ES๋ผ๋Š” ๋‘ ๊ฐ€์ง€ ์ง„ํ™” ์•Œ๊ณ ๋ฆฌ์ฆ˜๊ณผ PABBO ๋ฐ SABBO๋ผ๋Š” ํ•™์Šต ๊ธฐ๋ฐ˜ ์•ฐORTIZED ์ ‘๊ทผ๋ฒ•์„ ํ‰๊ฐ€ํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ์ ‘๊ทผ๋ฒ•๋“ค์€ ๊ฐ๊ฐ์˜ ์žฅ๋‹จ์ ์„ ๊ฐ€์ง€๊ณ  ์žˆ์œผ๋ฉฐ, ์‹คํ—˜ ๊ฒฐ๊ณผ๋ฅผ ํ†ตํ•ด ๊ทธ ํšจ์œจ์„ฑ์„ ๋น„๊ตํ•œ๋‹ค. GA์™€ ES๋Š” ์ „ํ†ต์ ์ธ ์ง„ํ™” ์•Œ๊ณ ๋ฆฌ์ฆ˜์œผ๋กœ์„œ, ๋‹ค์–‘ํ•œ ํ•ด์˜ ์กฐํ•ฉ์„ ์ƒ์„ฑํ•˜๊ณ  ์„ ํƒ ๊ณผ์ •์„ ๊ฑฐ์ณ ์ตœ์ ํ•ด์— ๋„๋‹ฌํ•˜๋ ค๊ณ  ๋…ธ๋ ฅํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฐฉ๋ฒ•์€ ๋ณต์žกํ•œ ๋ฌธ์ œ ๊ณต๊ฐ„์—์„œ

Model
Bayesian Updating of constitutive parameters under hybrid uncertainties with a novel surrogate model applied to biofilms

Bayesian Updating of constitutive parameters under hybrid uncertainties with a novel surrogate model applied to biofilms

์ด ๋…ผ๋ฌธ์€ ๋ฐ”์ด์˜คํ•„๋ฆ„ ์„ฑ์žฅ ๋ชจ๋ธ๋ง ๋ถ„์•ผ์—์„œ โ€˜ํ•˜์ด๋ธŒ๋ฆฌ๋“œ ๋ถˆํ™•์‹ค์„ฑโ€™์ด๋ผ๋Š” ๋ณตํ•ฉ์ ์ธ ๋‚œ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๋ ค๋Š” ์‹œ๋„๋กœ ๋ˆˆ๊ธธ์„ ๋ˆ๋‹ค. ๊ธฐ์กด์˜ ๋ฒ ์ด์ง€์•ˆ ๋ชจ๋ธ ์—…๋ฐ์ดํŠธ๋Š” ์ฃผ๋กœ ์ธ์‹ ๋ถˆํ™•์‹ค์„ฑ๋งŒ์„ ๊ณ ๋ คํ•˜๊ฑฐ๋‚˜, ์šฐ์—ฐ ๋ถˆํ™•์‹ค์„ฑ์„ ๋ณ„๋„์˜ ๋ชฌํ…Œ์นด๋ฅผ๋กœ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์œผ๋กœ ์ฒ˜๋ฆฌํ•ด ์ด์ค‘ ๋ฃจํ”„ ๊ตฌ์กฐ๋ฅผ ์ทจํ•œ๋‹ค. ์ด์ค‘ ๋ฃจํ”„๋Š” ๋งค ๋ฐ˜๋ณต๋งˆ๋‹ค ๊ณ ๋น„์šฉ์˜ ์ „๋ฐฉ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ์ˆ˜ํ–‰ํ•ด์•ผ ํ•˜๋ฏ€๋กœ ๊ณ„์‚ฐ๋Ÿ‰์ด ๊ธ‰๊ฒฉํžˆ ์ฆ๊ฐ€ํ•˜๊ณ , ์‹ค์‹œ๊ฐ„ ํ˜น์€ ๋Œ€๊ทœ๋ชจ ํŒŒ๋ผ๋ฏธํ„ฐ ํƒ์ƒ‰์— ๋ถ€์ ํ•ฉํ•˜๋‹ค. ์ €์ž๋“ค์€ ์ด๋Ÿฌํ•œ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด ์‹œ๊ฐ„๋ถ„๋ฆฌ ํ™•๋ฅ ์—ญํ•™(TSM) ๊ธฐ๋ฐ˜ ์ฐจ์›์ถ•์†Œ ๋ชจ๋ธ(ROM)์„ ๋„์ž…ํ•œ๋‹ค. TSM์€ ์‹œ์Šคํ…œ์˜

Model
No Image

Optimizing Agentic Language Model Inference via Speculative Tool Calls

๋ณธ ๋…ผ๋ฌธ์€ ์–ธ์–ด ๋ชจ๋ธ(LMs)์˜ ์„ฑ๋Šฅ ํ–ฅ์ƒ์„ ์œ„ํ•ด ๋„๊ตฌ ํ˜ธ์ถœ์— ๋Œ€ํ•œ ์ตœ์ ํ™” ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. LMs๋Š” ์™ธ๋ถ€ ๋„๊ตฌ์™€ ์ƒํ˜ธ์ž‘์šฉํ•˜์—ฌ ํŒŒ์ผ ๊ฒ€์ƒ‰, ์ฝ”๋“œ ์‹คํ–‰, API ํ˜ธ์ถœ ๋“ฑ์„ ์ˆ˜ํ–‰ํ•˜๋ฉฐ, ์ด๋Ÿฌํ•œ ์ž‘์—…๋“ค์€ ์ถ”๋ก  ๊ณผ์ •์—์„œ ๋ณ‘๋ชฉ ํ˜„์ƒ์ด ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ๋Š” ์ฃผ์š” ์›์ธ์ž…๋‹ˆ๋‹ค. ๋…ผ๋ฌธ์—์„œ๋Š” ์ด ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ๋„๊ตฌ ํ˜ธ์ถœ์„ ์˜ˆ์ธกํ•˜๊ณ  ์ธํผ๋Ÿฐ์Šค ์—”์ง„์— ์‹œํ€€์Šค๋ฅผ ์ตœ์†Œํ•œ์˜ ์˜ค๋ฒ„ํ—ค๋“œ๋กœ ์œ ์ง€ํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. ์ œ์•ˆ๋œ ์ตœ์ ํ™” ๊ธฐ๋ฒ•์€ LM ์—์ด์ „ํŠธ์˜ ์ฒ˜๋ฆฌ๋Ÿ‰์„ ํฌ๊ฒŒ ํ–ฅ์ƒ์‹œํ‚ต๋‹ˆ๋‹ค. ํŠนํžˆ, ์ดˆ๋‹น ์ˆ˜๋ฐฑ ํ† ํฐ์˜ ์ฒ˜๋ฆฌ๋Ÿ‰ ํ–ฅ์ƒ์„ ๋ณด์—ฌ์ฃผ๋ฉฐ, ์ด๋Š” LMs๊ฐ€ ๋ณต์žกํ•œ ์ถ”

Model
Seeing Beyond Words: Self-Supervised Visual Learning for Multimodal Large Language Models

Seeing Beyond Words: Self-Supervised Visual Learning for Multimodal Large Language Models

์ด ๋…ผ๋ฌธ์€ MLLMs์˜ ์‹œ๊ฐ์  ์ดํ•ด๋ ฅ ํ–ฅ์ƒ์„ ์œ„ํ•ด JARVIS๋ผ๋Š” ์ƒˆ๋กœ์šด ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์•ˆํ•œ๋‹ค. ๊ธฐ์กด MLLMs๋Š” ์ฃผ๋กœ ์–ธ์–ด์ ์ธ ์„ค๋ช…์„ ํ†ตํ•ด ํ•™์Šตํ•˜๋ฏ€๋กœ, ์ด์— ๋”ฐ๋ฅธ ํ•œ๊ณ„์ ์ด ์กด์žฌํ•œ๋‹ค. ํŠนํžˆ, ์–ธ์–ด ๊ธฐ๋ฐ˜ ๊ฐ๋… ์‹ ํ˜ธ์˜ ์ฃผ๊ด€์„ฑ๊ณผ ๋ถˆ์™„์ „ํ•จ์œผ๋กœ ์ธํ•ด ์‹œ๊ฐ์  ์ถ”๋ก  ๋Šฅ๋ ฅ์ด ์ œํ•œ์ ์ด๋ฉฐ, ๋‹ค์ค‘๋ชจ๋‹ฌ ์ง€์‹œ์–ด ํŠœ๋‹์˜ ๊ทœ๋ชจ๊ฐ€ ์ž‘์•„ ์‹œ๊ฐ์  ์„ธ๋ถ€ ์‚ฌํ•ญ์„ ๋ฌด์‹œํ•˜๋Š” ๊ฒฝํ–ฅ์ด ์žˆ๋‹ค. JARVIS๋Š” ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด JEPA ํ•™์Šต ํŒจ๋Ÿฌ๋‹ค์ž„์„ MLLMs ํ›ˆ๋ จ ํŒŒ์ดํ”„๋ผ์ธ์— ํ†ตํ•ฉํ•œ๋‹ค. ์ด ํ”„๋ ˆ์ž„์›Œํฌ๋Š” ๋™๊ฒฐ๋œ ์‹œ๊ฐ ๊ธฐ๋ฐ˜ ๋ชจ๋ธ์„ ํ™œ์šฉํ•˜์—ฌ ์˜ˆ์ธก๊ธฐ๋ฅผ ํ›ˆ๋ จ์‹œํ‚ค๊ณ , ์–ธ์–ด

Model Learning
Model-First Reasoning LLM Agents: Reducing Hallucinations through Explicit Problem Modeling

Model-First Reasoning LLM Agents: Reducing Hallucinations through Explicit Problem Modeling

์ด ๋…ผ๋ฌธ์€ ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(LLMs)์ด ๋ณต์žกํ•œ ๊ณ„ํš ์ž‘์—…์—์„œ ์ œ์•ฝ ์œ„๋ฐ˜, ์ผ๊ด€์„ฑ ์—†๋Š” ์ƒํƒœ ์ถ”์  ๋ฐ ์ทจ์•ฝํ•œ ์†”๋ฃจ์…˜์„ ์ƒ์„ฑํ•˜๋Š” ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด Model First Reasoning(MFR)์ด๋ผ๋Š” ์ƒˆ๋กœ์šด ์ ‘๊ทผ๋ฒ•์„ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. MFR์€ ๋‘ ๋‹จ๊ณ„๋กœ ๊ตฌ์„ฑ๋˜๋Š”๋ฐ, ์ฒซ ๋ฒˆ์งธ ๋‹จ๊ณ„์—์„œ๋Š” LLM์ด ๋ฌธ์ œ์˜ ๊ตฌ์กฐํ™”๋œ ๋ชจ๋ธ์„ ๋ช…์‹œ์ ์œผ๋กœ ๊ตฌ์„ฑํ•˜๊ณ , ๋‘ ๋ฒˆ์งธ ๋‹จ๊ณ„์—์„œ๋Š” ์ด ๋ชจ๋ธ์— ๋Œ€ํ•œ ์ถ”๋ก  ๋ฐ ๊ณ„ํš์„ ์ˆ˜ํ–‰ํ•ฉ๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฐฉ๋ฒ•์€ ์ธ๊ฐ„์˜ ๊ณผํ•™์  ์ถ”๋ก , ๊ณ ์ „ AI ๊ณ„ํš, ๊ทธ๋ฆฌ๊ณ  ์˜์‚ฌ๊ฒฐ์ • ์ธ์ง€ ๋ชจ๋ธ์—์„œ ์˜๊ฐ์„ ๋ฐ›์•„ ์ œ์•ˆ๋˜์—ˆ์Šต๋‹ˆ๋‹ค. ์‹คํ—˜ ๊ฒฐ๊ณผ MFR์€ ๋‹ค์–‘ํ•œ

Model
ReadyPower: A Reliable, Interpretable, and Handy Architectural Power Model Based on Analytical Framework

ReadyPower: A Reliable, Interpretable, and Handy Architectural Power Model Based on Analytical Framework

๋ณธ ๋…ผ๋ฌธ์˜ ํ•ต์‹ฌ์€ ํ˜„๋Œ€ ํ”„๋กœ์„ธ์„œ ์„ค๊ณ„์—์„œ ์ „๋ ฅ ๋ชจ๋ธ๋ง์˜ ์ค‘์š”์„ฑ์„ ๊ฐ•์กฐํ•˜๊ณ , ์ด๋ฅผ ์œ„ํ•ด ๊ณ ์ „์ ์ธ ๋ถ„์„ํ˜• ์•„ํ‚คํ…์ฒ˜ ์ˆ˜์ค€์˜ ์ „๋ ฅ ๋ชจ๋ธ๊ณผ ML ๊ธฐ๋ฐ˜ ์ „๋ ฅ ๋ชจ๋ธ์˜ ํ•œ๊ณ„๋ฅผ ์ง€์ ํ•˜๋ฉฐ ์ƒˆ๋กœ์šด ์ ‘๊ทผ ๋ฐฉ์‹์„ ์ œ์•ˆํ•˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค. ReadyPower ํ”„๋ ˆ์ž„์›Œํฌ๋Š” ๊ธฐ์กด์˜ ๋ฌธ์ œ์ ์„ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ๋‹ค์–‘ํ•œ ์ˆ˜์ค€์˜ ๋งค๊ฐœ๋ณ€์ˆ˜๋ฅผ ๋„์ž…ํ•˜์—ฌ McPAT ๋ถ„์„ ๋ชจ๋ธ์— ํ†ตํ•ฉํ•จ์œผ๋กœ์จ, ๊ณ ์ •๋ฐ€๋„์™€ ์‹ ๋ขฐ์„ฑ์„ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค. ReadyPower์˜ ์ฃผ์š” ์žฅ์ ์€ ์„ธ ๊ฐ€์ง€์ž…๋‹ˆ๋‹ค: ์ฒซ์งธ, ์‹ ๋ขฐ์„ฑ. ReadyPower๋Š” ์‹ค์ œ ํ”„๋กœ์„ธ์„œ ๊ตฌํ˜„๊ณผ ์•„ํ‚คํ…์ฒ˜ ์ˆ˜์ค€์˜ ๋ถ„์„ ๋ชจ๋ธ ๊ฐ„์˜ ๋ถˆ์ผ์น˜๋ฅผ ํ•ด๊ฒฐํ•จ์œผ๋กœ์จ

Framework Model
A Disproof of Large Language Model Consciousness: The Necessity of Continual Learning for Consciousness

A Disproof of Large Language Model Consciousness: The Necessity of Continual Learning for Consciousness

๋ณธ ๋…ผ๋ฌธ์€ ํ˜„๋Œ€ ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(LLMs)์˜ ์˜์‹ ๊ฐ€๋Šฅ์„ฑ์— ๋Œ€ํ•œ ์ฒ ํ•™์ ์ด๊ณ  ๊ณผํ•™์ ์ธ ์ ‘๊ทผ๋ฒ•์„ ์ œ์‹œํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ €์ž๋Š” ์ฆ๋ช… ๋ถˆ๊ฐ€๋Šฅ์„ฑ๊ณผ ๋น„์ž๋ช…์„ฑ์„ ์ถฉ์กฑํ•˜๋Š” ์ด๋ก ์ด ์žˆ์–ด์•ผ ํ•œ๋‹ค๋Š” ์š”๊ตฌ ์‚ฌํ•ญ์„ ๊ฐ•์กฐํ•˜๋ฉฐ, ์ด๋ฅผ ํ†ตํ•ด ํ˜„๋Œ€ LLMs์˜ ์˜์‹ ๊ฐ€๋Šฅ์„ฑ์„ ๊ฒ€์ฆํ•ฉ๋‹ˆ๋‹ค. ๋…ผ๋ฌธ์€ ๊ธฐ์กด์˜ ์ธ๊ณผ ๊ตฌ์กฐ์™€ ๊ธฐ๋Šฅ์— ๊ธฐ๋ฐ˜ํ•œ ์˜์‹ ์ด๋ก ๋“ค์ด ์ด๋Ÿฌํ•œ ์š”๊ตฌ ์กฐ๊ฑด์„ ๋งŒ์กฑํ•˜์ง€ ๋ชปํ•œ๋‹ค๋Š” ์ ์„ ์ง€์ ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. LLMs๋Š” ์ž…๋ ฅ/์ถœ๋ ฅ ๊ธฐ๋Šฅ ์ธก๋ฉด์—์„œ ํŠน์ • ์‹œ์Šคํ…œ๋“ค๊ณผ ๋™๋“ฑํ•˜๊ธฐ ๋•Œ๋ฌธ์—, ๊ทธ๋“ค์— ๋Œ€ํ•œ ์˜์‹ ๊ฐ€๋Šฅ์„ฑ์€ ์ฆ๋ช… ๋ถˆ๊ฐ€๋Šฅ์„ฑ๊ณผ ๋น„์ž๋ช…์„ฑ์„ ์ถฉ์กฑํ•˜๋Š” ์ด๋ก ์ด ์กด์žฌํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜

Learning Model
Human-Inspired Learning for Large Language Models via Obvious Record and Maximum-Entropy Method Discovery

Human-Inspired Learning for Large Language Models via Obvious Record and Maximum-Entropy Method Discovery

์ด ๋…ผ๋ฌธ์€ ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(LLMs)์˜ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด ์ธ๊ฐ„ ํ•™์Šต ๊ณผ์ •์—์„œ ์˜๊ฐ์„ ์–ป๋Š” ์ƒˆ๋กœ์šด ์ ‘๊ทผ๋ฒ•์„ ์ œ์•ˆํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. LLMs์€ ํฐ ๊ทœ๋ชจ์˜ ๋ฐ์ดํ„ฐ๋กœ๋ถ€ํ„ฐ ์ผ๋ฐ˜์ ์ธ ํŒจํ„ด์„ ์ถ”์ถœํ•˜๋Š” ๋ฐ ํƒ์›”ํ•˜์ง€๋งŒ, ํฌ๊ท€ํ•˜๊ฑฐ๋‚˜ ์ €์ž์› ์ƒํ™ฉ์—์„œ๋Š” ์ด๋Ÿฌํ•œ ํŒจํ„ด์ด ๋ฐ์ดํ„ฐ ๋‚ด์— ์ถฉ๋ถ„ํžˆ ๋‚˜ํƒ€๋‚˜์ง€ ์•Š์•„ ์˜ˆ์ธก ๋Šฅ๋ ฅ์ด ์ œํ•œ๋ฉ๋‹ˆ๋‹ค. ์ด ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ๋…ผ๋ฌธ์€ ๋‘ ๊ฐ€์ง€ ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ํ†ตํ•ฉํ•˜๋Š” ์ธ๊ฐ„ ์˜๊ฐ ํ•™์Šต ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค: ์ฒซ ๋ฒˆ์งธ๋กœ, '๋ช…์‹œ์  ๊ธฐ๋ก'์€ ์›์ธ ๊ฒฐ๊ณผ ๋˜๋Š” ์งˆ๋ฌธ ํ•ด๊ฒฐ์ฑ… ๊ด€๊ณ„๋ฅผ ์ƒ์ง•์  ๋ฉ”๋ชจ๋ฆฌ์— ์ €์žฅํ•˜์—ฌ ๋‹จ์ผ ๋˜๋Š” ๋ถˆ๊ทœ์น™ํ•œ ๊ฒฝํ—˜์—์„œ๋„ ์ง€์†์ ์ธ

Learning Model
Lemon: A Unified and Scalable 3D Multimodal Model for Universal Spatial Understanding

Lemon: A Unified and Scalable 3D Multimodal Model for Universal Spatial Understanding

์ด ๋…ผ๋ฌธ์€ ๋Œ€๊ทœ๋ชจ ๋‹ค์ค‘ ๋ชจ๋‹ฌ ๋ชจ๋ธ(LMMs)์˜ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ณ , ํŠนํžˆ 3D ๋ฐ์ดํ„ฐ ์ดํ•ด์— ํ•„์š”ํ•œ ์ƒˆ๋กœ์šด ์ ‘๊ทผ๋ฒ•์„ ์ œ์‹œํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. Lemon์ด๋ผ๋Š” ์ด๋ฆ„์˜ ๋ชจ๋ธ์€ ๊ธฐ์กด์˜ ๋ถ„๋ฆฌ๋œ ์•„ํ‚คํ…์ฒ˜์™€ ๋‹ฌ๋ฆฌ ํ†ตํ•ฉ ๋ณ€ํ˜• ์•„ํ‚คํ…์ฒ˜๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์  ํด๋ผ์šฐ๋“œ ๋ฐ์ดํ„ฐ์™€ ์–ธ์–ด ํ† ํฐ์„ ๋™์‹œ์— ์ฒ˜๋ฆฌํ•˜๋Š” ๋Šฅ๋ ฅ์„ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค. ์ด ์ ‘๊ทผ๋ฒ•์€ ์ค‘๋ณต๋˜๋Š” ์ธ์ฝ”๋”๋ฅผ ์ œ๊ฑฐํ•˜๊ณ , ํŒŒ๋ผ๋ฏธํ„ฐ ํšจ์œจ์„ฑ์„ ๋†’์ด๋ฉฐ, ๋ชจ๋ธ์˜ ํ™•์žฅ์„ ๋” ํšจ๊ณผ์ ์œผ๋กœ ์ง€์›ํ•จ์œผ๋กœ์จ ๊ธฐ์กด์˜ ๋ฌธ์ œ์ ์„ ํ•ด๊ฒฐํ•ฉ๋‹ˆ๋‹ค. ๋˜ํ•œ, Lemon์€ 3D ๋ฐ์ดํ„ฐ์˜ ํŠน์„ฑ์— ๋งž๊ฒŒ ๊ตฌ์กฐํ™”๋œ ํŒจ์น˜ํ™” ๋ฐ ํ† ํฐํ™” ๋ฐฉ์‹์„ ๊ฐœ๋ฐœํ•˜์—ฌ ๊ณต๊ฐ„์  ๋งฅ๋ฝ์„ ์œ 

Model
Scone: Bridging Composition and Distinction in Subject-Driven Image Generation via Unified Understanding-Generation Modeling

Scone: Bridging Composition and Distinction in Subject-Driven Image Generation via Unified Understanding-Generation Modeling

์ด ๋…ผ๋ฌธ์€ ์ฃผ์ œ ์ค‘์‹ฌ ์ด๋ฏธ์ง€ ์ƒ์„ฑ ๋ถ„์•ผ์—์„œ ์ค‘์š”ํ•œ ์ด์Šˆ๋ฅผ ๋‹ค๋ฃจ๊ณ  ์žˆ๋‹ค. ํŠนํžˆ, ๋‹จ์ผ ์ฃผ์ œ์—์„œ ๋‹ค์ค‘ ์ฃผ์ œ๋กœ์˜ ์ „ํ™˜ ๊ณผ์ •์—์„œ ๋ฐœ์ƒํ•˜๋Š” ๊ตฌ๋ถ„๋ ฅ ๋ถ€์กฑ ๋ฌธ์ œ์— ์ง‘์ค‘ํ•œ๋‹ค. Scone์ด๋ผ๋Š” ์ƒˆ๋กœ์šด ์ ‘๊ทผ๋ฒ•์„ ์ œ์‹œํ•จ์œผ๋กœ์จ, ์ด ๋…ผ๋ฌธ์€ ์ด๋ฏธ์ง€ ์ƒ์„ฑ ๋ชจ๋ธ์ด ๋ณต์žกํ•œ ์‹œ๋‚˜๋ฆฌ์˜ค์—์„œ๋„ ํšจ๊ณผ์ ์œผ๋กœ ์ž‘๋™ํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•˜๋Š” ๋ฐ ์ค‘์ ์„ ๋‘๊ณ  ์žˆ๋‹ค. Scone์˜ ํ•ต์‹ฌ ์•„์ด๋””์–ด๋Š” ์ดํ•ด ์ „๋ฌธ๊ฐ€์™€ ์ƒ์„ฑ ์ „๋ฌธ๊ฐ€ ์‚ฌ์ด์— ์˜๋ฏธ์ ์ธ ๋‹ค๋ฆฌ๋ฅผ ๋งŒ๋“œ๋Š” ๊ฒƒ์ด๋‹ค. ์ด ๋‹ค๋ฆฌ๋Š” ์ž…๋ ฅ๋œ ์—ฌ๋Ÿฌ ์ฃผ์ œ๋“ค ์ค‘์—์„œ ์˜ฌ๋ฐ”๋ฅธ ์ฃผ์ œ๋ฅผ ์‹๋ณ„ํ•˜๊ณ  ๊ทธ ์ •์ฒด์„ฑ์„ ์œ ์ง€ํ•˜๋Š” ๋ฐ ํ•„์ˆ˜์ ์ด๋‹ค. ๋‘ ๋‹จ๊ณ„ ํ›ˆ๋ จ ๋ฐฉ์‹์„ ํ†ตํ•ด

Model
AI Transparency Atlas: Framework, Scoring, and Real-Time Model Card Evaluation Pipeline

AI Transparency Atlas: Framework, Scoring, and Real-Time Model Card Evaluation Pipeline

์ด ๋…ผ๋ฌธ์€ AI ๋ชจ๋ธ ๋ฌธ์„œ์˜ ํˆฌ๋ช…์„ฑ ๋ฌธ์ œ๋ฅผ ์ฒด๊ณ„์ ์œผ๋กœ ๋ถ„์„ํ•˜๊ณ  ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•œ ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์‹œํ•ฉ๋‹ˆ๋‹ค. ํŠนํžˆ, ๋‹ค์–‘ํ•œ ํ”Œ๋žซํผ์—์„œ ์ œ๊ณต๋˜๋Š” AI ๋ชจ๋ธ ๋ฌธ์„œ๋Š” ๊ตฌ์กฐ์™€ ๋‚ด์šฉ์— ์ผ๊ด€์„ฑ์ด ๋ถ€์กฑํ•˜์—ฌ ์‚ฌ์šฉ์ž๋“ค์ด ํ•„์š”ํ•œ ์ •๋ณด๋ฅผ ์‰ฝ๊ฒŒ ์ฐพ๊ธฐ ์–ด๋ ต๋‹ค๋Š” ์ ์„ ์ง€์ ํ•ฉ๋‹ˆ๋‹ค. ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด EU AI Act Annex IV์™€ ์Šคํƒ ํผ๋“œ ํˆฌ๋ช…์„ฑ ์ง€์ˆ˜๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ ๊ฐ€์ค‘ ํˆฌ๋ช…๋„ ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ๊ฐœ๋ฐœํ•˜์˜€์Šต๋‹ˆ๋‹ค. ์ด ํ”„๋ ˆ์ž„์›Œํฌ๋Š” ์•ˆ์ „์„ฑ์ด ์ค‘์š”ํ•œ ๊ณต๊ฐœ ์‚ฌํ•ญ์„ ์šฐ์„ ์‹œํ•˜๋ฉฐ, ์ด๋ฅผ ํ†ตํ•ด ๋ชจ๋ธ์˜ ์•ˆ์ „์„ฑ์„ ํ‰๊ฐ€ํ•˜๋Š” ๋ฐ ํ•„์š”ํ•œ ์ •๋ณด๋ฅผ ์ฒด๊ณ„์ ์œผ๋กœ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค. ๋˜ํ•œ, ๋…ผ๋ฌธ์€ AI ๋ชจ

Model Framework
Stochastic Volatility Modelling with LSTM Networks: A Hybrid Approach for S&P 500 Index Volatility Forecasting

Stochastic Volatility Modelling with LSTM Networks: A Hybrid Approach for S&P 500 Index Volatility Forecasting

๋ณธ ์—ฐ๊ตฌ๋Š” ๊ธˆ์œต ์‹œ์žฅ์—์„œ ๋ณ€๋™์„ฑ ์˜ˆ์ธก์˜ ์ค‘์š”์„ฑ์„ ๊ฐ•์กฐํ•˜๋ฉฐ, ์ด๋ฅผ ์œ„ํ•ด ํ™•๋ฅ ์  ๋ณ€๋™์„ฑ(SV) ๋ชจ๋ธ๊ณผ ์žฅ๋‹จ๊ธฐ ๋ฉ”๋ชจ๋ฆฌ(LSTM) ์‹ ๊ฒฝ๋ง์„ ํ†ตํ•ฉํ•œ ํ•˜์ด๋ธŒ๋ฆฌ๋“œ ๋ชจ๋ธ๋ง ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์•ˆํ•œ๋‹ค. SV ๋ชจ๋ธ์€ ํ†ต๊ณ„์ ์ธ ์ •ํ™•์„ฑ๊ณผ ์ž ์žฌ์ ์ธ ๋ณ€๋™์„ฑ ๋™ํƒœ๋ฅผ ํฌ์ฐฉํ•˜๋Š” ๋Šฅ๋ ฅ์„ ์ œ๊ณตํ•˜๋ฉฐ, ํŠนํžˆ ์˜ˆ์ƒ์น˜ ๋ชปํ•œ ์‚ฌ๊ฑด์— ๋Œ€ํ•œ ๋ฐ˜์‘์—์„œ ์œ ์šฉํ•˜๋‹ค. ํ•œํŽธ, LSTM ๋„คํŠธ์›Œํฌ๋Š” ๊ธˆ์œต ์‹œ๊ณ„์—ด ๋ฐ์ดํ„ฐ์—์„œ ๋ณต์žกํ•˜๊ณ  ๋น„์„ ํ˜• ํŒจํ„ด์„ ๊ฐ์ง€ํ•  ์ˆ˜ ์žˆ๋Š” ๋Šฅ๋ ฅ์ด ์žˆ์–ด, SV ๋ชจ๋ธ์˜ ํ†ต๊ณ„์  ์ •ํ™•์„ฑ๊ณผ ๊ฒฐํ•ฉํ•˜์—ฌ ๋” ์šฐ์ˆ˜ํ•œ ์˜ˆ์ธก ์„ฑ๋Šฅ์„ ์ œ๊ณตํ•œ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” S&P 500 ์ง€์ˆ˜ ์ผ๋ณ„ ๋ฐ์ดํ„ฐ๋ฅผ ์‚ฌ

Network Model
HLS4PC: A Parametrizable Framework For Accelerating Point-Based 3D Point Cloud Models on FPGA

HLS4PC: A Parametrizable Framework For Accelerating Point-Based 3D Point Cloud Models on FPGA

์ด ๋…ผ๋ฌธ์€ ๊ณ ์† ์ฒ˜๋ฆฌ๋ฅผ ์œ„ํ•ด FPGA ๊ธฐ๋ฐ˜์˜ HLS4PC ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์‹œํ•˜๊ณ , ์ด๋ฅผ ํ†ตํ•ด 3D ํฌ์ธํŠธ ํด๋ผ์šฐ๋“œ ๋ชจ๋ธ์˜ ํšจ์œจ์ ์ธ ์ฒ˜๋ฆฌ๋ฅผ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•ฉ๋‹ˆ๋‹ค. ํŠนํžˆ, PointMLP Elite ๋ชจ๋ธ์— ๋Œ€ํ•œ ๋‹ค์–‘ํ•œ ์••์ถ• ๊ธฐ๋ฒ•์„ ์ ์šฉํ•˜์—ฌ ๋ณต์žก์„ฑ์„ ์ค„์ด๋ฉด์„œ๋„ ์ •ํ™•๋„ ํ•˜๋ฝ์„ ์ตœ์†Œํ™”ํ•˜๋Š” PointMLP Lite ๋ณ€ํ˜•์„ ๊ฐœ๋ฐœํ•˜์˜€์Šต๋‹ˆ๋‹ค. ์ด๋Š” 3D ํฌ์ธํŠธ ํด๋ผ์šฐ๋“œ ๋ฐ์ดํ„ฐ์˜ ํŠน์„ฑ์ƒ GPU์—์„œ ๋ฐœ์ƒํ•˜๋Š” ๊ณ„์‚ฐ ๋ฐ ๋ฉ”๋ชจ๋ฆฌ ์š”๊ตฌ ์‚ฌํ•ญ์˜ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ณ , ์‹ค์‹œ๊ฐ„ ์„ฑ๋Šฅ์„ ํ–ฅ์ƒ์‹œํ‚ค๋Š”๋ฐ ๊ธฐ์—ฌํ•ฉ๋‹ˆ๋‹ค. ๋˜ํ•œ, FPGA ๊ฐ€์†ํ™”๋ฅผ ํ†ตํ•ด CPU์™€ GPU์— ๋น„ํ•ด ๋†’์€ ์ฒ˜๋ฆฌ๋Ÿ‰์„

Framework Model
SoccerMaster: A Vision Foundation Model for Soccer Understanding

SoccerMaster: A Vision Foundation Model for Soccer Understanding

์ถ•๊ตฌ ๋งˆ์Šคํ„ฐ๋Š” ์ถ•๊ตฌ ๊ด€๋ จ ์ด๋ฏธ์ง€์™€ ๋™์˜์ƒ ์ž๋ฃŒ๋ฅผ ํ™œ์šฉํ•˜์—ฌ ๋‹ค์–‘ํ•œ ์ถ•๊ตฌ ๊ด€๋ จ ์ž‘์—…์„ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ๋Š” ํ†ตํ•ฉ ๋น„์ „ ๋ชจ๋ธ์ž…๋‹ˆ๋‹ค. ์ด ๋ชจ๋ธ์€ ์ฃผ์„ ์ƒ์„ฑ, ๊ฐ์ง€, ์ถ”์ , ๋ถ„๋ฅ˜ ๋“ฑ๊ณผ ๊ฐ™์€ ์—ฌ๋Ÿฌ ๊ฐ€์ง€ ์ถ•๊ตฌ ์ดํ•ด ์ž‘์—…์— ์ ์šฉ๋  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. SoccerMaster๋Š” ์ถ•๊ตฌ ์ฝ˜ํ…์ธ ์˜ ๋‹ค์–‘์„ฑ์„ ํ™œ์šฉํ•จ์œผ๋กœ์จ, ์ถ•๊ตฌ ๊ด€๋ จ ๋ฐ์ดํ„ฐ๋กœ๋ถ€ํ„ฐ ์–ป์„ ์ˆ˜ ์žˆ๋Š” ์ •๋ณด๋ฅผ ์ตœ๋Œ€ํ•œ ํ™œ์šฉํ•˜์—ฌ ๋ณด๋‹ค ์ •ํ™•ํ•˜๊ณ  ํšจ๊ณผ์ ์ธ ๊ฒฐ๊ณผ๋ฅผ ๋„์ถœํ•ฉ๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ๋ชจ๋ธ์€ ์ถ•๊ตฌ ๋ถ„์„, ์„ ์ˆ˜ ํ‰๊ฐ€, ๊ฒฝ๊ธฐ ์ „๋žต ๋“ฑ ๋‹ค์–‘ํ•œ ์˜์—ญ์—์„œ ํ™œ์šฉ๋  ์ˆ˜ ์žˆ์œผ๋ฉฐ, ํŠนํžˆ ์‹ค์‹œ๊ฐ„ ์ฃผ์„ ์ƒ์„ฑ๊ณผ ๊ฐ™์€ ๋น ๋ฅธ ์˜์‚ฌ๊ฒฐ์ •์ด ํ•„์š”ํ•œ ์ƒ

Model
Color encoding in Latent Space of Stable Diffusion Models

Color encoding in Latent Space of Stable Diffusion Models

๋ณธ ๋…ผ๋ฌธ์€ ์ตœ์‹  ํ™•์‚ฐ ๋ชจ๋ธ์ธ Stable Diffusion์˜ ๋‚ด๋ถ€ ํ‘œํ˜„ ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ์ƒ‰์ฑ„๋ผ๋Š” ๊ตฌ์ฒด์ ์ธ ์ง€๊ฐ ์†์„ฑ์— ์ดˆ์ ์„ ๋งž์ถ”์–ด ํŒŒํ—ค์นœ๋‹ค. ์—ฐ๊ตฌ์ž๋Š” ๋จผ์ € ์ƒ‰์ƒ๊ณผ ํ˜•ํƒœ๊ฐ€ ๋ช…ํ™•ํžˆ ๊ตฌ๋ถ„๋œ ํ•ฉ์„ฑ ์ด๋ฏธ์ง€ ๋ฐ์ดํ„ฐ์…‹์„ ์ œ์ž‘ํ•˜์˜€๋‹ค. ์ด ๋ฐ์ดํ„ฐ์…‹์€ ์ƒ‰์ƒ๋งŒ์„ ๋ณ€ํ˜•์‹œํ‚ค๋Š” ๋ฒ„์ „๊ณผ ํ˜•ํƒœ๋งŒ์„ ๋ณ€ํ˜•์‹œํ‚ค๋Š” ๋ฒ„์ „์œผ๋กœ ๊ตฌ์„ฑ๋ผ ์žˆ์–ด, ๊ฐ ์†์„ฑ์ด ์ž ์žฌ ๊ณต๊ฐ„์— ์–ด๋–ป๊ฒŒ ๋งคํ•‘๋˜๋Š”์ง€๋ฅผ ๋…๋ฆฝ์ ์œผ๋กœ ์ธก์ •ํ•  ์ˆ˜ ์žˆ๋‹ค. ์ž ์žฌ ํ‘œํ˜„์„ ๋ถ„์„ํ•˜๊ธฐ ์œ„ํ•ด ์ €์ž๋Š” Stable Diffusion์˜ UNet ์ธ์ฝ”๋” ๋‹จ๊ณ„์—์„œ ์ถ”์ถœํ•œ ์ค‘๊ฐ„ ํŠน์ง• ๋งต์„ ๋ฒกํ„ฐํ™”ํ•˜๊ณ , ์ „์ฒด ๋ฐ์ดํ„ฐ์…‹์— ๋Œ€ํ•ด ์ฃผ์„ฑ๋ถ„ ๋ถ„์„(PC

Model
No Image

What Kind of Reasoning (if any) is an LLM actually doing? On the Stochastic Nature and Abductive Appearance of Large Language Models

์ด ๋…ผ๋ฌธ์€ ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(LLMs)์—์„œ ํ† ํฐ ์™„์„ฑ ๊ธฐ๋ฐ˜์˜ ์ถ”๋ก  ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ํƒ๊ตฌํ•˜๋ฉฐ, ํŠนํžˆ ์ด๋Ÿฌํ•œ LLMs์ด ํ•™์Šต๋œ ์—ฐ๊ด€์„ฑ์„ ํ†ตํ•ด ์ƒ์„ฑ๋˜๋Š” ํ…์ŠคํŠธ์™€ ์ธ๊ฐ„์˜ ์ถ”์ธก์  ์ถ”๋ก (abductive reasoning) ์‚ฌ์ด์˜ ์œ ์‚ฌ์„ฑ์„ ๋ถ„์„ํ•œ๋‹ค. ๋…ผ๋ฌธ์€ LLMs๊ฐ€ ์ง์ ‘์ ์ธ ์ง„๋ฆฌ๋‚˜ ์˜๋ฏธ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•˜์ง€ ์•Š๊ณ ๋„ ๊ฐ€๋Šฅ์„ฑ์ด ์žˆ๋Š” ๊ฐ€์„ค์„ ์ œ์‹œํ•˜๊ณ , ์ƒ์‹์  ์ถ”๋ก ์„ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ํ•˜๋ฉฐ, ์„ค๋ช…์ ์ธ ๋‹ต๋ณ€์„ ์ œ๊ณตํ•˜๋Š” ๋ฐฉ์‹์„ ํ†ตํ•ด ๊ทธ๋“ค์˜ ์ถœ๋ ฅ์ด ์‹ค์ œ ์ถ”์ธก์  ์ถ”๋ก ๊ณผ ์œ ์‚ฌํ•˜๊ฒŒ ๋ณด์ผ ์ˆ˜ ์žˆ๋‹ค๋Š” ์ ์— ์ฃผ๋ชฉํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ๋ชจ๋ธ์˜ ํ™•๋ฅ ์  ํ•ต์‹ฌ๊ณผ ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜์—์„œ ๋‚˜ํƒ€๋‚˜๋Š” ์ถ”์ธก์  ์ถ”๋ก ์˜

Model
VFM-VLM: Vision Foundation Model and Vision Language Model based Visual Comparison for 3D Pose Estimation

VFM-VLM: Vision Foundation Model and Vision Language Model based Visual Comparison for 3D Pose Estimation

๋ณธ ์—ฐ๊ตฌ๋Š” ์ตœ๊ทผ ๊ธ‰๋ถ€์ƒํ•œ ๋น„์ „ ํŒŒ์šด๋ฐ์ด์…˜ ๋ชจ๋ธ(VFM)๊ณผ ๋น„์ „โ€‘์–ธ์–ด ๋ชจ๋ธ(VLM)์ด ๋กœ๋ด‡ ์กฐ์ž‘, ํŠนํžˆ ์†โ€‘๋ฌผ์ฒด ๊ทธ๋ฆฝ ์ƒํ™ฉ์—์„œ 6D ๊ฐ์ฒด ํฌ์ฆˆ ์ถ”์ •์— ์–ด๋–ป๊ฒŒ ๋‹ค๋ฅธ ๊ฐ•์ ์„ ๋ฐœํœ˜ํ•˜๋Š”์ง€๋ฅผ ์ฒด๊ณ„์ ์œผ๋กœ ๋น„๊ตํ•œ๋‹ค. CLIP์€ ๋Œ€๊ทœ๋ชจ ์ด๋ฏธ์ง€โ€‘ํ…์ŠคํŠธ ์Œ์œผ๋กœ ์‚ฌ์ „ ํ•™์Šต๋œ ๋ฉ€ํ‹ฐ๋ชจ๋‹ฌ ๋ชจ๋ธ๋กœ, ์–ธ์–ด์™€ ์‹œ๊ฐ ์ •๋ณด๋ฅผ ์ •๋ ฌํ•จ์œผ๋กœ์จ โ€œ์ปตโ€, โ€œํ•ธ๋“คโ€ ๋“ฑ ๊ฐ์ฒด์˜ ์˜๋ฏธ์  ์นดํ…Œ๊ณ ๋ฆฌ๋ฅผ ๊ฐ•๋ ฅํžˆ ์ธ์‹ํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ์˜๋ฏธ์  ์ดํ•ด๋Š” ๋ณต์žกํ•œ ์žฅ๋ฉด์—์„œ ๊ฐ์ฒด๋ฅผ ์ •ํ™•ํžˆ ๊ตฌ๋ถ„ํ•˜๊ณ , ์ธ๊ฐ„์ด ์ œ๊ณตํ•˜๋Š” ์ž์—ฐ์–ด ๋ช…๋ น๊ณผ์˜ ๋งคํ•‘์„ ์šฉ์ดํ•˜๊ฒŒ ๋งŒ๋“ ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ CLIP์˜ ํŠน์ง•์€ ์ฃผ๋กœ ์ „์—ญ์ ์ธ ํ† ํฐ ์ž„๋ฒ 

Model
China Regional 3km Downscaling Based on Residual Corrective Diffusion Model

China Regional 3km Downscaling Based on Residual Corrective Diffusion Model

๋ณธ ์—ฐ๊ตฌ๋Š” ์ˆ˜์น˜์˜ˆ๋ณด ๋ถ„์•ผ์—์„œ ๊ณ ํ•ด์ƒ๋„ ์˜ˆ๋ณด๋ฅผ ์‹ค์‹œ๊ฐ„์œผ๋กœ ์ œ๊ณตํ•˜๊ธฐ ์œ„ํ•œ ํ•ต์‹ฌ ๊ธฐ์ˆ ์ธ ํ†ต๊ณ„์  ๋‹ค์šด์Šค์ผ€์ผ๋ง์„ ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜ ํ™•์‚ฐ ๋ชจ๋ธ์— ์ ์šฉํ•œ ์ ์—์„œ ํฐ ์˜์˜๋ฅผ ๊ฐ€์ง„๋‹ค. ๊ธฐ์กด์˜ CorrDiff ํ”„๋ ˆ์ž„์›Œํฌ๋Š” ์ฃผ๋กœ ํ‘œ๋ฉด ๋ณ€์ˆ˜์™€ ์ œํ•œ๋œ ์ง€์—ญ์— ์ดˆ์ ์„ ๋งž์ถ”์—ˆ์œผ๋‚˜, ๋ณธ ๋…ผ๋ฌธ์€ ์ ์šฉ ์˜์—ญ์„ ์•ฝ 40๋ฐฐ ํ™•๋Œ€ํ•˜์—ฌ ์ค‘๊ตญ ์ „์—ญ์„ ํฌ๊ด„ํ•˜๊ณ , 6๊ฐœ์˜ ๊ธฐ์•• ๋ ˆ๋ฒจ์— ํ•ด๋‹นํ•˜๋Š” ๊ณ ์ธต ๋ณ€์ˆ˜๊นŒ์ง€ ํฌํ•จํ•จ์œผ๋กœ์จ ๋ชจ๋ธ์˜ ์ผ๋ฐ˜ํ™” ๋Šฅ๋ ฅ์„ ํฌ๊ฒŒ ๊ฐ•ํ™”ํ•˜์˜€๋‹ค. ์ด๋Š” ๋Œ€๊ธฐ ํ˜„์ƒ์ด ์ˆ˜์ง์ ์œผ๋กœ๋„ ๋ณต์žกํ•˜๊ฒŒ ์–ฝํ˜€ ์žˆ์Œ์„ ๊ณ ๋ คํ•œ ์„ค๊ณ„๋กœ, ํŠนํžˆ ๊ฐ•์ˆ˜ยท๋Œ€๋ฅ˜ยท์ œํŠธ ์ŠคํŠธ๋ฆผ ๋“ฑ ๊ณ ์ธต ๋™์—ญํ•™์„ ์ •ํ™•ํžˆ ์žฌํ˜„

Model
Back to Basics: Motion Representation Matters for Human Motion Generation Using Diffusion Model

Back to Basics: Motion Representation Matters for Human Motion Generation Using Diffusion Model

๋ณธ ๋…ผ๋ฌธ์€ ์ตœ๊ทผ ๊ธ‰๋ถ€์ƒํ•˜๊ณ  ์žˆ๋Š” ์ธ๊ฐ„ ๋™์ž‘ ํ•ฉ์„ฑ์šฉ ํ™•์‚ฐ ๋ชจ๋ธ์˜ ํ•ต์‹ฌ ์„ค๊ณ„ ์š”์†Œ์ธ โ€˜๋™์ž‘ ํ‘œํ˜„ ๋ฐฉ์‹โ€™๊ณผ โ€˜์†์‹ค ํ•จ์ˆ˜โ€™๋ฅผ ์ฒด๊ณ„์ ์œผ๋กœ ๊ฒ€์ฆํ•œ ์ ์—์„œ ํ•™์ˆ ์ ยท์‹ค์šฉ์  ์˜์˜๊ฐ€ ํฌ๋‹ค. ๋จผ์ €, ์ €์ž๋Š” ๊ธฐ์กด ์—ฐ๊ตฌ์—์„œ ์ œ์•ˆ๋œ 6๊ฐ€์ง€ ๋Œ€ํ‘œ์ ์ธ ๋™์ž‘ ํ‘œํ˜„(์˜ˆ: ๊ด€์ ˆ ๊ฐ๋„, ๊ด€์ ˆ ์œ„์น˜, ํšŒ์ „ ํ–‰๋ ฌ, ์ฟผํ„ฐ๋‹ˆ์–ธ, ์†๋„ยท๊ฐ€์†๋„ ๊ธฐ๋ฐ˜ ํ‘œํ˜„, ๊ทธ๋ฆฌ๊ณ  ํ˜ผํ•ฉํ˜• ํ‘œํ˜„)์„ ๋™์ผํ•œ MDM ๊ธฐ๋ฐ˜ ํ”„๋ ˆ์ž„์›Œํฌ์— ์ ์šฉํ•ด ๋น„๊ตํ•˜์˜€๋‹ค. ์ด๋•Œ ์‚ฌ์šฉ๋œ ํ‰๊ฐ€์ง€ํ‘œ๋Š” ํ”ํžˆ ์“ฐ์ด๋Š” Frechet Inception Distance(FID)์™€ Diversity Score ๋“ฑ์œผ๋กœ, ํ’ˆ์งˆ๊ณผ ๋‹ค์–‘์„ฑ์„

Model
Measuring the Unspoken: A Disentanglement Model and Benchmark for Psychological Analysis in the Wild

Measuring the Unspoken: A Disentanglement Model and Benchmark for Psychological Analysis in the Wild

๋ณธ ๋…ผ๋ฌธ์€ ์ธ๊ฐ„ ๋Œ€ํ™”์˜ ๋น„์–ธ์–ด์  ๋‹จ์„œ๋ฅผ ์‹œ๊ฐโ€‘์–ธ์–ด ๋ชจ๋ธ์— ํ†ตํ•ฉํ•˜๋ ค๋Š” ์‹œ๋„ ์ค‘ ๊ฐ€์žฅ ํฌ๊ด„์ ์ธ ์ ‘๊ทผ๋ฒ•์ด๋ผ ํ•  ์ˆ˜ ์žˆ๋‹ค. ์ฒซ ๋ฒˆ์งธ ๋ฌธ์ œ์ธ โ€˜๋ฐœํ™”โ€‘๊ฐ์ • ๋ชจํ˜ธ์„ฑโ€™์€ ์ž…์ˆ  ์›€์ง์ž„์ด ๊ฐ์ • ํ‘œํ˜„๊ณผ ๊ฒน์ณ ๋ณด์ด๋Š” ํ˜„์ƒ์œผ๋กœ, ๊ธฐ์กด VLM์ด ํ…์ŠคํŠธ์™€ ์ด๋ฏธ์ง€ ๊ฐ„์˜ ์—ฐ๊ด€์„ฑ์„ ํ•™์Šตํ•  ๋•Œ ์ด์ค‘ ์˜๋ฏธ๋ฅผ ๊ตฌ๋ถ„ํ•˜์ง€ ๋ชปํ•ด ์‹ฌ๋ฆฌ์  ์ถ”๋ก ์— ์˜ค๋ฅ˜๋ฅผ ์ผ์œผํ‚จ๋‹ค. MIND๋Š” ์ด๋Ÿฌํ•œ ๋ชจํ˜ธ์„ฑ์„ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ๊ณ„์ธต์  ๊ตฌ์กฐ๋ฅผ ์ฑ„ํƒํ•˜๊ณ , ๊ฐ ๋ ˆ์ด์–ด์—์„œ ์‹œ๊ฐ„์  ํŠน์ง• ๋ถ„์‚ฐ์„ ๊ณ„์‚ฐํ•ด ๋ณ€๋™์„ฑ์ด ๋‚ฎ์€(์ฆ‰, ๊ฐ์ •๊ณผ ๋ฌด๊ด€ํ•œ) ์ž…์ˆ  ํŒจํ„ด์„ ์–ต์ œํ•œ๋‹ค. ์ด โ€˜์ƒํƒœ ํŒ๋‹จโ€™ ๋ชจ๋“ˆ์€ ๊ธฐ์กด์˜ ๋‹จ์ˆœ attenti

Analysis Model
Data assimilation and discrepancy modeling with shallow recurrent decoders

Data assimilation and discrepancy modeling with shallow recurrent decoders

๋ณธ ๋…ผ๋ฌธ์€ ํ˜„๋Œ€ ์„ผ์„œ ๋„คํŠธ์›Œํฌ๊ฐ€ ์ง๋ฉดํ•œ ๋‘ ๊ฐ€์ง€ ๊ทผ๋ณธ์ ์ธ ํ•œ๊ณ„, ์ฆ‰ ์ธก์ • ํฌ์ธํŠธ์˜ ํฌ์†Œ์„ฑ ๋ฐ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๋ชจ๋ธ์˜ ๋ถˆ์™„์ „์„ฑ์„ ๋™์‹œ์— ํ•ด๊ฒฐํ•˜๋ ค๋Š” ์‹œ๋„๋กœ์„œ, ๋จธ์‹ ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜ ๋ฐ์ดํ„ฐ ๋™ํ™” ํ”„๋ ˆ์ž„์›Œํฌ DAโ€‘SHRED ๋ฅผ ์ œ์‹œํ•œ๋‹ค. ๊ธฐ์กด ๋ฐ์ดํ„ฐ ๋™ํ™” ๊ธฐ๋ฒ•์€ ์ฃผ๋กœ ์นผ๋งŒ ํ•„ํ„ฐ, ๋ณ€๋ถ„ ๋™ํ™”, ํ˜น์€ ์ตœ๊ทผ์˜ ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜ ์ ‘๊ทผ๋ฒ•์— ์˜์กดํ•ด ์™”์œผ๋ฉฐ, ์ด๋“ค์€ ๊ณ ์ฐจ์› ์ƒํƒœ ๊ณต๊ฐ„์„ ์ง์ ‘ ๋‹ค๋ฃจ๋Š” ๊ฒฝ์šฐ ๊ณ„์‚ฐ ๋น„์šฉ์ด ๊ธ‰๊ฒฉํžˆ ์ฆ๊ฐ€ํ•˜๊ฑฐ๋‚˜, ๋ฌผ๋ฆฌ์  ์ œ์•ฝ์„ ์ถฉ๋ถ„ํžˆ ๋ฐ˜์˜ํ•˜์ง€ ๋ชปํ•œ๋‹ค๋Š” ๋ฌธ์ œ์ ์„ ์•ˆ๊ณ  ์žˆ๋‹ค. DAโ€‘SHRED ๋Š” ์ด๋Ÿฌํ•œ ๋ฌธ์ œ์ ์„ ํšŒํ”ผํ•˜๊ธฐ ์œ„ํ•ด ๋จผ์ € SHRED ๋ผ๋Š” ์–•์€

Data Model
From monoliths to modules: Decomposing transducers for efficient world modelling

From monoliths to modules: Decomposing transducers for efficient world modelling

์ด ๋…ผ๋ฌธ์ด ์ œ์‹œํ•˜๋Š” ํ•ต์‹ฌ ์•„์ด๋””์–ด๋Š” โ€˜ํŠธ๋žœ์Šค๋“€์„œโ€™๋ฅผ ์ด์šฉํ•ด ์„ธ๊ณ„ ๋ชจ๋ธ์„ ๋ชจ๋“ˆํ™”ํ•˜๊ณ , ๊ทธ ๋ชจ๋“ˆ๋“ค์„ ์—ญ์œผ๋กœ ๋ถ„ํ•ดํ•จ์œผ๋กœ์จ ๋ณ‘๋ ฌ ์ฒ˜๋ฆฌ์™€ ํ•ด์„ ๊ฐ€๋Šฅ์„ฑ์„ ๋™์‹œ์— ํ™•๋ณดํ•œ๋‹ค๋Š” ์ ์ด๋‹ค. ํŠธ๋žœ์Šค๋“€์„œ๋Š” ๊ด€์ธกยทํ–‰๋™ยท๋ณด์ƒ ๋“ฑ ๋ณตํ•ฉ์ ์ธ ์ƒํ˜ธ์ž‘์šฉ์„ ํ•˜๋‚˜์˜ ์ž…๋ ฅโ€‘์ถœ๋ ฅ ๊ด€๊ณ„๋กœ ์ถ”์ƒํ™”ํ•œ ๊ตฌ์กฐ๋กœ, POMDP(๋ถ€๋ถ„ ๊ด€์ธก ๋งˆ์ฝ”ํ”„ ๊ฒฐ์ • ๊ณผ์ •)๋ฅผ ์ผ๋ฐ˜ํ™”ํ•œ๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ์—์„œ๋Š” ์—ฌ๋Ÿฌ ํŠธ๋žœ์Šค๋“€์„œ๋ฅผ ์ˆœ์ฐจ์ ์œผ๋กœ ์—ฐ๊ฒฐํ•ด ๋ณต์žกํ•œ ์‹œ์Šคํ…œ์„ ๊ตฌ์„ฑํ•˜๋Š” โ€˜ํ•ฉ์„ฑโ€™ ๋ฐฉ๋ฒ•์ด ์ฃผ๋กœ ๋‹ค๋ฃจ์–ด์กŒ์œผ๋ฉฐ, ์ด๋Š” ์„ค๊ณ„ ๋‹จ๊ณ„์—์„œ๋Š” ์ง๊ด€์ ์ด์ง€๋งŒ ์‹ค์ œ ์šด์šฉ ๋‹จ๊ณ„์—์„œ๋Š” ์ „์ฒด ๋ชจ๋ธ์ด ๊ฑฐ๋Œ€ํ•ด์ ธ ์—ฐ์‚ฐ ๋น„์šฉ์ด ๊ธ‰์ฆํ•˜๊ณ , ๋‚ด๋ถ€

Model
ChromouVQA: Benchmarking Vision-Language Models under Chromatic Camouflaged Images

ChromouVQA: Benchmarking Vision-Language Models under Chromatic Camouflaged Images

๋ณธ ๋…ผ๋ฌธ์€ ํ˜„์žฌ Visionโ€‘Language Model(VLM)์ด ์ง๋ฉดํ•œ ํ•ต์‹ฌ ํ•œ๊ณ„์ธ โ€˜ํ”ผ๊ฒจโ€‘๊ทธ๋ผ์šด๋“œ ๊ตฌ๋ถ„โ€™ ๋ฌธ์ œ๋ฅผ ์ •๋Ÿ‰์ ์œผ๋กœ ํ‰๊ฐ€ํ•˜๊ธฐ ์œ„ํ•ด ๋งค์šฐ ์ฒด๊ณ„์ ์ธ ๋ฒค์น˜๋งˆํฌ๋ฅผ ์„ค๊ณ„ํ–ˆ๋‹ค๋Š” ์ ์—์„œ ์˜๋ฏธ๊ฐ€ ํฌ๋‹ค. ๊ธฐ์กด VLM ํ‰๊ฐ€ ๋ฐ์ดํ„ฐ์…‹์€ ์ฃผ๋กœ ๋ช…ํ™•ํ•œ ๊ฐ์ฒด์™€ ๋ฐฐ๊ฒฝ์„ ๊ตฌ๋ถ„ํ•  ์ˆ˜ ์žˆ๋Š” ์ด๋ฏธ์ง€์— ์ดˆ์ ์„ ๋งž์ถ”์—ˆ์œผ๋ฉฐ, ์ƒ‰์ฑ„ ์œ„์žฅ(camouflage)๊ณผ ๊ฐ™์ด ์ธ๊ฐ„์˜ ์‹œ๊ฐ ์‹œ์Šคํ…œ์กฐ์ฐจ๋„ ์ธ์ง€ํ•˜๊ธฐ ์–ด๋ ค์šด ์ƒํ™ฉ์„ ์ถฉ๋ถ„ํžˆ ๋ฐ˜์˜ํ•˜์ง€ ๋ชปํ–ˆ๋‹ค. ChromouVQA๋Š” ์ด๋Ÿฌํ•œ ๊ณต๋ฐฑ์„ ๋ฉ”์šฐ๊ธฐ ์œ„ํ•ด ์ด์‹œํ•˜๋ผ ์  ํ”Œ๋ ˆ์ดํŠธ(Ishihara plates)๋ฅผ ๋ณ€ํ˜•ํ•œ ์ƒ‰์ฑ„ ์œ„์žฅ ์ด๋ฏธ์ง€

Model
Integrating Causal Foundation Model in Prescriptive Maintenance Framework for Optimizing Production Line OEE

Integrating Causal Foundation Model in Prescriptive Maintenance Framework for Optimizing Production Line OEE

๋ณธ ๋…ผ๋ฌธ์€ ์ œ์กฐ ํ˜„์žฅ์—์„œ ์˜ˆ์ธก ์ค‘์‹ฌ์˜ ์œ ์ง€๋ณด์ˆ˜์—์„œ ํ•œ ๋‹จ๊ณ„ ๋‚˜์•„๊ฐ€ ์ธ๊ณผ๊ด€๊ณ„๋ฅผ ๋ช…์‹œ์ ์œผ๋กœ ๋ชจ๋ธ๋งํ•จ์œผ๋กœ์จ โ€˜์ฒ˜๋ฐฉํ˜• ์œ ์ง€๋ณด์ˆ˜(prescriptive maintenance)โ€™๋ฅผ ๊ตฌํ˜„ํ•˜๋ ค๋Š” ์‹œ๋„๋ฅผ ์ƒ์„ธํžˆ ์ œ์‹œํ•œ๋‹ค. ๋จผ์ € ๊ธฐ์กด ์˜ˆ์ธก ๋ชจ๋ธ์ด โ€œ์Šคํ‘ธ๋ฆฌ์–ด์Šค(correlational) ํŒจํ„ดโ€์— ์˜์กดํ•œ๋‹ค๋Š” ๋น„ํŒ์€ ์‹ค์ œ ํ˜„์žฅ ์‚ฌ๋ก€์™€ ์ผ์น˜ํ•œ๋‹ค. ์„ผ์„œ ๋ฐ์ดํ„ฐ๊ฐ€ ํ’๋ถ€ํ•˜์ง€๋งŒ, ๊ณ ์žฅ ์›์ธ์— ๋Œ€ํ•œ ๋„๋ฉ”์ธ ์ง€์‹์ด ๋ถ€์กฑํ•œ ๊ฒฝ์šฐ ๋ชจ๋ธ์ด ์žก์•„๋‚ด๋Š” ์‹ ํ˜ธ๋Š” ์ข…์ข… ์šฐ์—ฐํžˆ ๋ฐœ์ƒํ•œ ์ƒ๊ด€๊ด€๊ณ„์— ๋ถˆ๊ณผํ•˜๋‹ค. ์ด๋Ÿฌํ•œ ์ƒํ™ฉ์—์„œ ๋‹จ์ˆœํžˆ ๊ณ ์žฅ ํ™•๋ฅ ๋งŒ์„ ์ œ๊ณต๋ฐ›์•„๋„, ํ˜„์žฅ ์—”์ง€๋‹ˆ์–ด๋Š” โ€œ์–ด๋””๋ฅผ ๊ณ 

Framework Model
No Image

Extrapolation of Urn Models via Poissonization: Accurate Measurements of the Microbial Unknown

๋ณธ ๋…ผ๋ฌธ์€ ๋ฏธ์ƒ๋ฌผ ๊ณต๋™์ฒด ๋‚ด์˜ ๋‹ค์–‘์„ฑ์„ ์ธก์ •ํ•˜๋Š” ๊ธฐ์กด ๋ฐฉ๋ฒ•๋ก ์˜ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ณ ์ž, ์ƒ˜ํ”Œ๋ง๋˜์ง€ ์•Š์€ ํด๋ž˜์Šค์˜ ๋น„์œจ์„ ์˜ˆ์ธกํ•˜๋Š” ์ƒˆ๋กœ์šด ์ ‘๊ทผ ๋ฐฉ์‹์„ ์ œ์•ˆํ•œ๋‹ค. ์ด๋Š” ๋ฏธ์ƒ๋ฌผ ์—ฐ๊ตฌ์—์„œ ์ค‘์š”ํ•œ ๋ฌธ์ œ ์ค‘ ํ•˜๋‚˜์ธ '๋ฏธ์ง€์˜ ์–‘'์— ๋Œ€ํ•œ ์ •ํ™•ํ•œ ์ธก์ •์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•œ๋‹ค. ๋…ผ๋ฌธ์€ ์šฐ๋ฅธ ๋ชจ๋ธ๊ณผ ํฌ์ƒํ™” ๋…ผ์ฆ์„ ํ™œ์šฉํ•˜์—ฌ, ์•„์ง ๋ฐœ๊ฒฌ๋˜์ง€ ์•Š์€ ์ข…์˜ ์กด์žฌ๋ฅผ ๊ฐ€์ •ํ•˜๊ณ  ์ด๋ฅผ ์˜ˆ์ธกํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์‹œํ•œ๋‹ค. ์ด๋Š” ์ƒ˜ํ”Œ๋ง๋œ ๋ฐ์ดํ„ฐ์—์„œ ๋ฏธ์ง€์˜ ์–‘์„ ์ถ”๋ก ํ•˜๋Š”๋ฐ ์žˆ์–ด ์ค‘์š”ํ•œ ๋ฐœ์ „์ด๋‹ค. ํŠนํžˆ, ๊ณ ์ •๋œ ์ƒ˜ํ”Œ ํฌ๊ธฐ์—์„œ๋„ ์›๋ณธ ์ƒ˜ํ”Œ์˜ ํ•˜์œ„ ์ง‘ํ•ฉ์— ๋Œ€ํ•ด ๋งค์šฐ ์ •ํ™•ํ•œ ์˜ˆ์ธก ๊ฒฐ๊ณผ๋ฅผ ์ œ๊ณตํ•จ์œผ๋กœ์จ

Quantitative Biology Statistics Mathematics Model

< Category Statistics (Total: 769) >

Electrical Engineering and Systems Science
7
General
272
General Relativity
9
HEP-EX
7
HEP-PH
12
HEP-TH
7
MATH-PH
4
NUCL-TH
1
Quantum Physics
10

Start searching

Enter keywords to search articles

โ†‘โ†“
โ†ต
ESC
โŒ˜K Shortcut