Model

All posts under tag "Model"

100 posts total
Sorted by date
Measuring Social Media Polarization Using Large Language Models and Heuristic Rules

Measuring Social Media Polarization Using Large Language Models and Heuristic Rules

์ด ๋…ผ๋ฌธ์€ ๊ธฐ์กด ๊ฐ์„ฑ ๋ถ„์„์ด๋‚˜ ์‚ฌ์ „ ํ•™์Šต๋œ ๋ถ„๋ฅ˜๊ธฐ ์ค‘์‹ฌ์˜ ์–‘๊ทนํ™” ์—ฐ๊ตฌ์™€ ์ฐจ๋ณ„ํ™”๋˜๋Š” ๋‘ ๊ฐ€์ง€ ํ•ต์‹ฌ ์š”์†Œ๋ฅผ ์ œ์‹œํ•œ๋‹ค. ์ฒซ์งธ, ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ์„ ํ™œ์šฉํ•ด ํ…์ŠคํŠธ์—์„œ โ€˜์ž…์žฅ(stance)โ€™, โ€˜๊ฐ์ •์  ์–ด์กฐ(affective tone)โ€™, โ€˜๋™์˜ยท๋ฐ˜๋Œ€ ํŒจํ„ด(agreement dynamics)โ€™์„ ๋‹ค์ธต์ ์œผ๋กœ ์ถ”์ถœํ•œ๋‹ค๋Š” ์ ์ด๋‹ค. ๊ธฐ์กด ๋ฐฉ๋ฒ•์€ ์ฃผ๋กœ ๋‹จ์ผ ์ฐจ์›์˜ ๊ฐ์„ฑ ์ ์ˆ˜(๊ธ์ •/๋ถ€์ •) ํ˜น์€ ์‚ฌ์ „ ์ •์˜๋œ ๋ ˆ์ด๋ธ”(์ฐฌ์„ฑ/๋ฐ˜๋Œ€)๋งŒ์„ ์ œ๊ณตํ–ˆ์ง€๋งŒ, LLM์€ ๋ฌธ๋งฅ์„ ๊ณ ๋ คํ•ด ๋ฏธ๋ฌ˜ํ•œ ์ž…์žฅ ๋ณ€ํ™”๋ฅผ ํฌ์ฐฉํ•˜๊ณ , ๊ฐ์ •์˜ ๊ฐ•๋„์™€ ์œ ํ˜•(๋ถ„๋…ธ, ์Šฌํ””, ํ˜์˜ค ๋“ฑ)๊นŒ์ง€ ์„ธ๋ถ„ํ™”ํ•œ๋‹ค.

Computer Science Social Networks Model
Optimizing LSTM Neural Networks for Resource-Constrained Retail Sales Forecasting: A Model Compression Study

Optimizing LSTM Neural Networks for Resource-Constrained Retail Sales Forecasting: A Model Compression Study

์ด ๋…ผ๋ฌธ์€ ์†Œ๋งค ํŒ๋งค ์˜ˆ์ธก ๋ถ„์•ผ์—์„œ LSTM ๋„คํŠธ์›Œํฌ์˜ ํšจ์œจ์„ฑ๊ณผ ์ •ํ™•์„ฑ์„ ๊ทน๋Œ€ํ™”ํ•˜๋Š” ๋ฐฉ๋ฒ•์— ๋Œ€ํ•ด ๊นŠ์ด ์žˆ๊ฒŒ ํƒ๊ตฌํ•˜๊ณ  ์žˆ๋‹ค. ํŠนํžˆ, ์ด ์—ฐ๊ตฌ๋Š” ์ž์› ์ œ์•ฝ์„ ๊ฐ€์ง„ ์†Œ๊ทœ๋ชจ ๋ฐ ์ค‘์†Œ ๊ทœ๋ชจ ๋งค์žฅ์—์„œ๋„ ํšจ๊ณผ์ ์ธ AI ๊ธฐ๋ฐ˜ ์˜ˆ์ธก ์‹œ์Šคํ…œ์„ ๊ตฌ์ถ•ํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•˜๋Š” ๋ชจ๋ธ ์••์ถ• ๊ธฐ๋ฒ•์˜ ์ค‘์š”์„ฑ์„ ๊ฐ•์กฐํ•œ๋‹ค. ๊ธฐ์ˆ ์  ํ˜์‹ ์„ฑ ์ด ๋…ผ๋ฌธ์€ LSTM ๋„คํŠธ์›Œํฌ๋ฅผ ์••์ถ•ํ•˜๋Š” ๋‹ค์–‘ํ•œ ๋ฐฉ๋ฒ•๋ก ์„ ์ฒด๊ณ„์ ์œผ๋กœ ํ‰๊ฐ€ํ•˜๊ณ , ํŠนํžˆ 64๊ฐœ ์€๋‹‰ ์œ ๋‹›์„ ๊ฐ€์ง„ ๋ชจ๋ธ์ด ๊ฐ€์žฅ ๋†’์€ ์˜ˆ์ธก ์ •ํ™•๋„๋ฅผ ๋ณด์ด๋Š” ๊ฒƒ์„ ๋ฐœ๊ฒฌํ–ˆ๋‹ค. ์ด๋Š” ํ‘œ์ค€ LSTM(128๊ฐœ ์€๋‹‰ ์œ ๋‹›)๋ณด๋‹ค ๋ฉ”๋ชจ๋ฆฌ ์‚ฌ์šฉ๋Ÿ‰์„ ์ค„์ด๊ณ  ์ถ”๋ก 

Computer Science Network Machine Learning Model
No Image

Factorized Learning for Temporally Grounded Video-Language Models

์ด ๋…ผ๋ฌธ์€ ๊ธฐ์กด ๋น„๋””์˜คโ€‘์–ธ์–ด ๋ชจ๋ธ์ด โ€œํ•œ ๋ฒˆ์— ์ „์ฒด ๋น„๋””์˜ค๋ฅผ ์š”์•ฝํ•˜๊ณ  ์งˆ๋ฌธ์— ๋‹ตํ•œ๋‹คโ€๋Š” ์ „ํ†ต์ ์ธ ํŒจ๋Ÿฌ๋‹ค์ž„์„ ํƒˆํ”ผํ•œ๋‹ค๋Š” ์ ์—์„œ ํฐ ์˜๋ฏธ๊ฐ€ ์žˆ๋‹ค. ๊ธฐ์กด ๋ฐฉ๋ฒ•๋“ค์€ ์ข…์ข… ์‹œ๊ฐ„์  ์ •๋ณด๋ฅผ ํ๋ฆฟํ•˜๊ฒŒ ์ฒ˜๋ฆฌํ•˜๊ฑฐ๋‚˜, ๊ทผ๊ฑฐ๊ฐ€ ๋˜๋Š” ์‹œ๊ฐ์  ์ฆ๊ฑฐ๋ฅผ ๋ช…์‹œ์ ์œผ๋กœ ์ œ์‹œํ•˜์ง€ ๋ชปํ•ด ํ•ด์„ ๊ฐ€๋Šฅ์„ฑ์ด ๋‚ฎ์•˜๋‹ค. ์ €์ž๋“ค์€ ์ด๋Ÿฌํ•œ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด ๋‘ ๊ฐ€์ง€ ํ•ต์‹ฌ ์•„์ด๋””์–ด๋ฅผ ์ œ์‹œํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ๋Š” generation objective์˜ factorization ์ด๋‹ค. ๋ชจ๋ธ์ด ๋จผ์ € โ€œ์–ด๋–ค ์‹œ๊ฐ„ ๊ตฌ๊ฐ„์ด ์งˆ๋ฌธ์— ๋Œ€ํ•œ ๊ทผ๊ฑฐ๊ฐ€ ๋˜๋Š”๊ฐ€โ€๋ฅผ ํŒ๋‹จํ•˜๊ณ , ๊ทธ ๊ตฌ๊ฐ„์— ํ•ด๋‹นํ•˜๋Š” evidence

Computer Science Model Learning Computer Vision
Mechanistic Interpretability of Antibody Language Models Using SAEs

Mechanistic Interpretability of Antibody Language Models Using SAEs

๋ณธ ๋…ผ๋ฌธ์€ ๋‹จ๋ฐฑ์งˆ ์–ธ์–ด ๋ชจ๋ธ, ํŠนํžˆ ํ•ญ์ฒด ์„œ์—ด์„ ์ƒ์„ฑํ•˜๋„๋ก ์„ค๊ณ„๋œ pIgGen์— ๋Œ€ํ•œ ๋ฉ”์ปค๋‹ˆ์ฆ˜์  ํ•ด์„์„ ๋ชฉํ‘œ๋กœ ํ•œ๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ๋‘ ์ข…๋ฅ˜์˜ ํฌ์†Œ ์˜คํ† ์ธ์ฝ”๋”, ์ฆ‰ TopK SAE์™€ Ordered SAE๋ฅผ ๋„์ž…ํ•˜์˜€๋‹ค. TopK SAE๋Š” ๊ฐ ๋ ˆ์ด์–ด์—์„œ ๊ฐ€์žฅ ํฐ K๊ฐœ์˜ ํ™œ์„ฑ๊ฐ’๋งŒ์„ ๋ณด์กดํ•จ์œผ๋กœ์จ ํฌ์†Œ์„ฑ์„ ๊ฐ•์ œํ•˜๊ณ , ์ด๋ฅผ ํ†ตํ•ด ์ž ์žฌ ๊ณต๊ฐ„์˜ ๊ฐœ๋ณ„ ์ฐจ์›์ด ํŠน์ • ์ƒ๋ฌผํ•™์  ํŠน์„ฑ๊ณผ ๊ฐ•ํ•˜๊ฒŒ ์—ฐ๊ด€๋˜๋Š”์ง€๋ฅผ ํƒ์ƒ‰ํ•œ๋‹ค. ์‹คํ—˜์—์„œ๋Š” ํŠน์ • ๋‰ด๋Ÿฐ(๋˜๋Š” ๋‰ด๋Ÿฐ ์ง‘ํ•ฉ)์ด ํ•ญ์ฒด์˜ CDR(Complementarity Determining Region) ๊ธธ์ด, ์นœํ™”๋„, ํ˜น์€ ํŠน

Model
The promising potential of vision language models for the generation of textual weather forecasts

The promising potential of vision language models for the generation of textual weather forecasts

๋ณธ ์—ฐ๊ตฌ๋Š” ์ตœ๊ทผ ๊ธ‰๋ถ€์ƒํ•˜๊ณ  ์žˆ๋Š” ๋ฉ€ํ‹ฐ๋ชจ๋‹ฌ ๊ธฐ์ดˆ ๋ชจ๋ธ, ํŠนํžˆ ๋น„์ „โ€‘์–ธ์–ด ๋ชจ๋ธ(Visionโ€‘Language Model, VLM)์˜ ๊ธฐ์ƒ ๋ถ„์•ผ ์ ์šฉ ๊ฐ€๋Šฅ์„ฑ์„ ์ตœ์ดˆ๋กœ ์‹œ๋„ํ•œ ์‚ฌ๋ก€๋ผ ํ•  ์ˆ˜ ์žˆ๋‹ค. ์ „ํ†ต์ ์ธ ํ•ด์ƒ์˜ˆ๋ณด๋Š” ๊ธฐ์ƒ ๊ด€์ธก๊ฐ’(์œ„์„ฑ, ๋ ˆ์ด๋”, ๊ด€์ธก์†Œ ๋“ฑ)์„ ์ธ๊ฐ„ ๊ธฐ์ƒํ•™์ž๊ฐ€ ํ•ด์„ํ•˜๊ณ , ์ •ํ˜•ํ™”๋œ ํ…์ŠคํŠธ ํ˜•์‹์œผ๋กœ ์žฌ์ž‘์„ฑํ•˜๋Š” ๋ณตํ•ฉ์ ์ธ ์›Œํฌํ”Œ๋กœ์šฐ๋ฅผ ์š”๊ตฌํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ๊ณผ์ •์€ ๋†’์€ ์ธ์  ๋น„์šฉ๊ณผ ์‹œ๊ฐ„ ์ง€์—ฐ์„ ์ดˆ๋ž˜ํ•˜๋ฉฐ, ํŠนํžˆ ๊ธ‰๋ณ€ํ•˜๋Š” ๊ธฐ์ƒ ์ƒํ™ฉ์— ๋Œ€ํ•œ ์‹ค์‹œ๊ฐ„ ๋Œ€์‘๋ ฅ์„ ์ €ํ•ดํ•œ๋‹ค. ์—ฐ๊ตฌํŒ€์€ ๋จผ์ € ๊ฒฉ์žํ˜• ๊ธฐ์ƒ ๋ฐ์ดํ„ฐ๋ฅผ ์‹œ๊ฐ„โ€‘๊ณต๊ฐ„ ์ฐจ์›์„ ํฌํ•จํ•œ ๋น„๋””์˜ค ์‹œํ€€์Šค๋กœ

Model
Exploring Depth Generalization in Large Language Models for Solving Recursive Logic Tasks

Exploring Depth Generalization in Large Language Models for Solving Recursive Logic Tasks

๋ณธ ๋…ผ๋ฌธ์€ ํ˜„์žฌ ๊ฐ€์žฅ ๋„๋ฆฌ ์‚ฌ์šฉ๋˜๋Š” ํŠธ๋žœ์Šคํฌ๋จธ ๊ธฐ๋ฐ˜ ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(Large Language Model, LLM)์ด โ€œ๊นŠ์ด ์ผ๋ฐ˜ํ™”(depth generalization)โ€๋ผ๋Š” ์ค‘์š”ํ•œ ์ฐจ์›์—์„œ ํ•œ๊ณ„๋ฅผ ๋ณด์ธ๋‹ค๋Š” ์ ์„ ๋ช…ํ™•ํžˆ ๊ทœ๋ช…ํ•œ๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋Š” ์ฃผ๋กœ ์‹œํ€€์Šค ๊ธธ์ด๊ฐ€ ํ›ˆ๋ จ ๋ฐ์ดํ„ฐ๋ณด๋‹ค ๊ธธ์–ด์งˆ ๋•Œ ๋ชจ๋ธ์ด ์–ด๋–ป๊ฒŒ ์ผ๋ฐ˜ํ™”๋˜๋Š”์ง€๋ฅผ ํƒ๊ตฌํ–ˆ์œผ๋ฉฐ, ์ด๋ฅผ โ€œ๊ธธ์ด ์ผ๋ฐ˜ํ™”โ€๋ผ๊ณ  ๋ถ€๋ฅธ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์‹ค์ œ ์ž์—ฐ์–ด์™€ ์ˆ˜ํ•™ยท๋…ผ๋ฆฌ ๋ฌธ์ œ์—์„œ๋Š” ๋‹จ์ˆœํžˆ ์‹œํ€€์Šค๊ฐ€ ๊ธธ์–ด์ง€๋Š” ๊ฒƒ์ด ์•„๋‹ˆ๋ผ, ๊ด„ํ˜ธยท์—ฐ์‚ฐ์žยท๋…ผ๋ฆฌ ์—ฐ์‚ฐ์ž์˜ ์ค‘์ฒฉ ๊ตฌ์กฐ๊ฐ€ ๊นŠ์–ด์ง€๋Š” ๊ฒฝ์šฐ๊ฐ€ ๋นˆ๋ฒˆํ•˜๋‹ค. ์ด๋Ÿฌํ•œ ์ค‘์ฒฉ ๊ตฌ์กฐ๋Š” ์Šค

Model
Fine-Tuned Large Language Models for Logical Translation: Reducing Hallucinations with Lang2Logic

Fine-Tuned Large Language Models for Logical Translation: Reducing Hallucinations with Lang2Logic

๋ณธ ๋…ผ๋ฌธ์€ ์ž์—ฐ์–ดโ€‘๋…ผ๋ฆฌ ๋ณ€ํ™˜ ์ž‘์—…์—์„œ LLM์˜ ํ™˜๊ฐ ๋ฌธ์ œ๋ฅผ ์™„ํ™”ํ•˜๊ธฐ ์œ„ํ•œ ์‹ค์šฉ์ ์ธ ์ ‘๊ทผ๋ฒ•์„ ์ œ์‹œํ•œ๋‹ค๋Š” ์ ์—์„œ ์˜๋ฏธ๊ฐ€ ํฌ๋‹ค. ์ฒซ์งธ, ์ €์ž๋Š” โ€œ์ž์—ฐ์–ด โ†’ ๋…ผ๋ฆฌ์‹ โ†’ CNFโ€๋ผ๋Š” 3๋‹จ๊ณ„ ํŒŒ์ดํ”„๋ผ์ธ์„ ๋ช…ํ™•ํžˆ ์ •์˜ํ•˜๊ณ , ๊ฐ ๋‹จ๊ณ„์—์„œ ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ๋Š” ์˜ค๋ฅ˜ ์›์ธ์„ ๋ถ„์„ํ•œ๋‹ค. ํŠนํžˆ, ๋…ผ๋ฆฌ์‹ ์ƒ์„ฑ ๋‹จ๊ณ„์—์„œ LLM์ด ๋ฌธ๋งฅ์„ ์˜คํ•ดํ•˜๊ฑฐ๋‚˜ ๋…ผ๋ฆฌ ์—ฐ์‚ฐ์ž๋ฅผ ์ž˜๋ชป ์„ ํƒํ•˜๋Š” ๊ฒฝ์šฐ๊ฐ€ ๋นˆ๋ฒˆํžˆ ๋ฐœ์ƒํ•œ๋‹ค๋Š” ์ ์„ ์ง€์ ํ•˜๊ณ , ์ด๋ฅผ ์ž์ฒด ์ •์˜ ๋ฌธ๋ฒ•์œผ๋กœ ์ œํ•œํ•จ์œผ๋กœ์จ ๋ชจ๋ธ์ด ํ—ˆ์šฉ๋œ ๊ตฌ์กฐ ๋‚ด์—์„œ๋งŒ ์ถœ๋ ฅ์„ ์ƒ์„ฑํ•˜๋„๋ก ๊ฐ•์ œํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฌธ๋ฒ• ๊ธฐ๋ฐ˜ ํ•„ํ„ฐ๋ง์€ ๊ธฐ์กด์˜ ํ›„์ฒ˜๋ฆฌ ๋ฐฉ์‹๋ณด๋‹ค ์‚ฌ์ „

Model
Accelerating Large-Scale Reasoning Model Inference with Sparse Self-Speculative Decoding

Accelerating Large-Scale Reasoning Model Inference with Sparse Self-Speculative Decoding

์ด ๋…ผ๋ฌธ์€ ์ตœ๊ทผ ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ์ด ๋ณต์žกํ•œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ์ฒด์ธโ€‘์˜ค๋ธŒโ€‘์“ฐ๋ฃจ(Chainโ€‘ofโ€‘Thought)์™€ ๊ฐ™์€ ๊ธด ์ถ”๋ก  ๊ณผ์ •์„ ๊ฑฐ์น  ๋•Œ, ๋ฉ”๋ชจ๋ฆฌ ๋Œ€์—ญํญ์ด ์ฃผ์š” ๋ณ‘๋ชฉ์œผ๋กœ ์ž‘์šฉํ•œ๋‹ค๋Š” ์ ์„ ์ •ํ™•ํžˆ ์งš์–ด๋‚ธ๋‹ค. ์ „ํ†ต์ ์ธ ๋””์ฝ”๋”ฉ ๋ฐฉ์‹์—์„œ๋Š” ๋งค ํ† ํฐ๋งˆ๋‹ค KVโ€‘Cache์— ์ €์žฅ๋œ ๋ชจ๋“  ์ด์ „ ํ† ํฐ์— ๋Œ€ํ•ด ์™„์ „ ์–ดํ…์…˜์„ ์ˆ˜ํ–‰ํ•œ๋‹ค. ํ† ํฐ ์ˆ˜๊ฐ€ ๋Š˜์–ด๋‚ ์ˆ˜๋ก KVโ€‘Cache์˜ ํฌ๊ธฐ๋„ ์„ ํ˜•์ ์œผ๋กœ ์ฆ๊ฐ€ํ•˜๊ณ , ์ด์— ๋”ฐ๋ผ ๋ฉ”๋ชจ๋ฆฌ ์ฝ๊ธฐยท์“ฐ๊ธฐ ๋น„์šฉ์ด ๊ธ‰์ฆํ•œ๋‹ค. ํŠนํžˆ GPU ๋ฉ”๋ชจ๋ฆฌ ์šฉ๋Ÿ‰์ด ์ œํ•œ์ ์ธ ์ƒํ™ฉ์—์„œ ์ด๋Ÿฌํ•œ ๋ฉ”๋ชจ๋ฆฌโ€‘๋ฐ”์šด๋“œ ํŠน์„ฑ์€ ์‹ค์‹œ๊ฐ„ ์‘์šฉ์— ํฐ ์ œ์•ฝ์ด ๋œ

Model
GrndCtrl: Grounding World Models via Self-Supervised Reward Alignment

GrndCtrl: Grounding World Models via Self-Supervised Reward Alignment

๋ณธ ๋…ผ๋ฌธ์ด ์ œ์‹œํ•˜๋Š” โ€œReinforcement Learning with World Groundingโ€(RLWG) ์ ‘๊ทผ๋ฒ•์€ ๊ธฐ์กด ๋น„๋””์˜ค ๊ธฐ๋ฐ˜ ์„ธ๊ณ„ ๋ชจ๋ธ์ด ๊ฒช๋Š” ๊ธฐํ•˜ํ•™์  ๋ถˆ์ผ์น˜ ๋ฌธ์ œ๋ฅผ ๊ทผ๋ณธ์ ์œผ๋กœ ํ•ด๊ฒฐํ•˜๋ ค๋Š” ์‹œ๋„์ด๋‹ค. ์ „ํ†ต์ ์ธ ๋น„๋””์˜ค ์„ธ๊ณ„ ๋ชจ๋ธ์€ ์ฃผ๋กœ ํ”„๋ ˆ์ž„โ€‘๊ฐ„ ์žฌ๊ตฌ์„ฑ ์†์‹ค์„ ์ตœ์†Œํ™”ํ•จ์œผ๋กœ์จ ํ•™์Šต๋˜๋Š”๋ฐ, ์ด๋Ÿฌํ•œ ์†์‹ค์€ ์‹œ๊ฐ์  ์ผ๊ด€์„ฑ์€ ํ™•๋ณดํ•˜์ง€๋งŒ ๋ฌผ๋ฆฌ์ ยท๊ธฐํ•˜ํ•™์  ์ œ์•ฝ์„ ์ถฉ๋ถ„ํžˆ ๋ฐ˜์˜ํ•˜์ง€ ๋ชปํ•œ๋‹ค. ๊ฒฐ๊ณผ์ ์œผ๋กœ ๋ชจ๋ธ์ด ์ƒ์„ฑํ•œ ๊ฐ€์ƒ ํ™˜๊ฒฝ์€ ์ธ๊ฐ„์ด ์ง๊ด€์ ์œผ๋กœ ์ธ์‹ํ•˜๋Š” ๋ฌผ๋ฆฌ ๋ฒ•์น™๊ณผ ์–ด๊ธ‹๋‚˜๋Š” ๊ฒฝ์šฐ๊ฐ€ ๋นˆ๋ฒˆํ•˜๋‹ค. RLWG๋Š” ์ด๋Ÿฌํ•œ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด ๋‘ ๊ฐ€

Model
Possible explanations of the Maunder minimum from a flux transport   dynamo model

Possible explanations of the Maunder minimum from a flux transport dynamo model

: ์„œ๋ก  ๋ถ„์„ ์„œ๋ก ์—์„œ ์ €์ž๋“ค์€ ํƒœ์–‘ ํ™œ๋™ ์ฃผ๊ธฐ ์ค‘ ๊ฐ€์žฅ ์ค‘์š”ํ•œ ํŠน์ง• ์ค‘ ํ•˜๋‚˜์ธ ๋งˆ์šด๋” ์ตœ์†Œ๊ธฐ์— ๋Œ€ํ•ด ์„ค๋ช…ํ•œ๋‹ค. ์ด ๊ธฐ๊ฐ„ ๋™์•ˆ ํƒœ์–‘ ํ‘์  ์ˆ˜๊ฐ€ ํ˜„์ €ํžˆ ๊ฐ์†Œํ–ˆ์œผ๋ฉฐ, ์ด๋Ÿฌํ•œ ์‚ฌ์‹ค์€ ์—ฌ๋Ÿฌ ์—ฐ๊ตฌ์—์„œ ํ™•์ธ๋˜์—ˆ๋‹ค(Ribes & Nesme Ribes, 1993; Hoyt & Schatten, 1996). ํŠนํžˆ, ์–‘ ๊ทน๋ฐ˜๊ตฌ ๋ชจ๋‘์—์„œ ํƒœ์–‘ ํ‘์  ์ˆ˜๊ฐ€ ๊ฑฐ์˜ ์ œ๋กœ์— ๊ฐ€๊นŒ์›Œ์กŒ์œผ๋ฉฐ ๋‚จ๋ฐ˜๊ตฌ์—์„œ๋Š” ๋งˆ์ง€๋ง‰ ๋‹จ๊ณ„์—์„œ ๋ช‡ ๊ฐœ์˜ ํ‘์ ์ด ๋‚˜ํƒ€๋‚ฌ๋‹ค(Ribes & Nesme Ribes, 1993). ์ฝ”์Šค๋ชจ์ œ๋‹‰ ๋™์œ„ ์›์†Œ ๋ฐ์ดํ„ฐ(Beer et al., 1998; Miyah

Model Astrophysics
Financial Rogue Waves Appearing in the Coupled Nonlinear Volatility and   Option Pricing Model

Financial Rogue Waves Appearing in the Coupled Nonlinear Volatility and Option Pricing Model

์ด ๋…ผ๋ฌธ์€ ๋น„์„ ํ˜• ๊ณผํ•™์—์„œ ์ค‘์š”ํ•œ ๊ฐœ๋…์ธ ํ”„๋ฆฌํฌ ํŒŒ๋„๋ฅผ ๊ธˆ์œต ์‹œ์žฅ์— ์ ์šฉํ•˜์—ฌ ์ƒˆ๋กœ์šด ๋ชจ๋ธ์„ ์ œ์‹œํ•œ๋‹ค. ํ”„๋ฆฌํฌ ํŒŒ๋„๋Š” ํ•ด์–‘ํ•™, ๊ด‘ํ•™ ๋“ฑ ๋‹ค์–‘ํ•œ ๋ถ„์•ผ์—์„œ ์—ฐ๊ตฌ๋˜์—ˆ์œผ๋ฉฐ, ์ด ํ˜„์ƒ์˜ ํŠน์ง•์€ ๊ทน๋‹จ์ ์ธ ์‚ฌ๊ฑด์ด ๋ฐœ์ƒํ•  ๋•Œ ๋‚˜ํƒ€๋‚˜๋Š” ๊ฑฐ๋Œ€ํ•œ ํŒŒ๋„์ด๋‹ค. ๋…ผ๋ฌธ์—์„œ๋Š” ์ด๋Ÿฌํ•œ ๊ฐœ๋…์„ ๊ธˆ์œต ์‹œ์žฅ์— ์ ์šฉํ•˜์—ฌ ๋ณ€๋™์„ฑ๊ณผ ์˜ต์…˜ ๊ฐ€๊ฒฉ ๊ฐ„์˜ ์ƒํ˜ธ์ž‘์šฉ์„ ๋ถ„์„ํ•˜๊ณ , ์ด๋ฅผ ํ†ตํ•ด ๊ธˆ์œต ์œ„๊ธฐ์™€ ๊ฐ™์€ ๊ทน๋‹จ์ ์ธ ์‚ฌ๊ฑด์„ ์„ค๋ช…ํ•˜๋ ค๊ณ  ํ•œ๋‹ค. 1. ํ”„๋ฆฌํฌ ํŒŒ๋„ ํ˜„์ƒ ํ”„๋ฆฌํฌ ํŒŒ๋„๋Š” ๋น„์„ ํ˜• ๊ณผํ•™์—์„œ ์ค‘์š”ํ•œ ๊ฐœ๋…์œผ๋กœ, ๋‹ค์–‘ํ•œ ๋ถ„์•ผ์—์„œ ์—ฐ๊ตฌ๋˜์—ˆ๋‹ค. ์ด ๋…ผ๋ฌธ์—์„œ๋Š” ์ด๋Ÿฌํ•œ ํ”„๋ฆฌํฌ ํŒŒ๋„์˜ ํŠน์„ฑ์„ ๊ธˆ

Nonlinear Sciences Quantitative Finance Model
Modeling SN 1996crs X-ray lines at high-resolution: Sleuthing the   ejecta/CSM geometry

Modeling SN 1996crs X-ray lines at high-resolution: Sleuthing the ejecta/CSM geometry

๋ณธ ์—ฐ๊ตฌ๋Š” SN 1996cr์˜ X์„  ์ŠคํŽ™ํŠธ๋Ÿผ ๋ถ„์„์„ ํ†ตํ•ด ์ดˆ์‹ ์„ฑ์˜ ๊ธฐํ•˜ํ•™์  ํŠน์„ฑ์„ ๋ฐํžˆ๊ณ ์ž ํ–ˆ๋‹ค. ์ด ์—ฐ๊ตฌ๋Š” ์ดˆ์‹ ์„ฑ์˜ ํญ๋ฐœ ํ›„ ๋ฐฐ์ถœ๋ฌผ๊ณผ ์ฃผ๋ณ€ ๋ฌผ์งˆ(CSM) ๊ฐ„์˜ ์ƒํ˜ธ์ž‘์šฉ์— ๋Œ€ํ•œ ๊นŠ์ด ์žˆ๋Š” ์ดํ•ด๋ฅผ ์ œ๊ณตํ•˜๋ฉฐ, ์ด๋ฅผ ํ†ตํ•ด ์ดˆ์‹ ์„ฑ์˜ ์ง„ํ™” ๊ณผ์ •์„ ์ถ”์ ํ•  ์ˆ˜ ์žˆ๋‹ค. 1. SN 1996cr์˜ ๋ฐœ๊ฒฌ ๋ฐ ํŠน์ง• SN 1996cr์€ ์ˆœํ™˜ ์€ํ•˜์—์„œ ๋ฐœ๊ฒฌ๋˜์—ˆ์œผ๋ฉฐ, ์ดˆ๊ธฐ์—๋Š” ์ผ๋ฐ˜์ ์ธ Type IIn ์ดˆ์‹ ์„ฑ์œผ๋กœ ๋ถ„๋ฅ˜๋˜์—ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์‹œ๊ฐ„์ด ์ง€๋‚˜๋ฉด์„œ X์„  ๋ฐ๊ธฐ๊ฐ€ ๊ธ‰๊ฒฉํžˆ ์ฆ๊ฐ€ํ•˜๋Š” ๋…ํŠนํ•œ ํ–‰๋™์„ ๋ณด์˜€๋‹ค. ์ด๋Š” SN 1987A์™€ ์œ ์‚ฌํ•˜๋ฉฐ, ๋‹ค๋ฅธ X์„  ๊ฒ€์ถœ ์ดˆ์‹ ์„ฑ๊ณผ ํ•ต

Model Astrophysics
An OPERA inspired classical model reproducing superluminal velocities

An OPERA inspired classical model reproducing superluminal velocities

: ๋ณธ ๋…ผ๋ฌธ์€ ์ค‘์„ฑ๋ฏธ์ž์˜ ์ดˆ๊ด‘์† ์ธก์ •์— ๋Œ€ํ•œ ํšŒ์˜์ ์ธ ๊ด€์ ์„ ์ œ์‹œํ•˜๋ฉฐ, ์ด๋ฅผ ์œ„ํ•ด ํ†ต๊ณ„์  ๋ฐฉ๋ฒ•๋ก ๊ณผ ๊ณ ์ „ ๋ฌผ๋ฆฌํ•™ ์›๋ฆฌ๋ฅผ ํ™œ์šฉํ•œ๋‹ค. ํŠนํžˆ, OPERA ์‹คํ—˜์—์„œ ๋„์ถœ๋œ ๊ฒฐ๊ณผ๋ฅผ ์žฌํ•ด์„ํ•˜๊ณ  ๊ทธ ์ด๋ฉด์— ์กด์žฌํ•˜๋Š” ์ˆ˜ํ•™์  ๊ฐœ๋…์„ ๋ช…ํ™•ํžˆ ํ•˜๊ธฐ ์œ„ํ•œ ๋ชฉ์ ์œผ๋กœ ์ž‘์„ฑ๋˜์—ˆ๋‹ค. 1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋ชฉ์  OPERA ํ˜‘์—…์€ ์ค‘์„ฑ๋ฏธ์ž๊ฐ€ ๋น›์˜ ์†๋„๋ฅผ ์ดˆ๊ณผํ•œ๋‹ค๋Š” ๋†€๋ผ์šด ๊ฒฐ๊ณผ๋ฅผ ๋ฐœํ‘œํ–ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์ด๋Ÿฌํ•œ ๊ฒฐ๊ณผ์— ๋Œ€ํ•ด ํšŒ์˜์ ์ธ ์ž…์žฅ์„ ์ทจํ•˜๋ฉฐ, ํ†ต๊ณ„์  ์˜ค๋ฅ˜ ๊ฐ€๋Šฅ์„ฑ๊ณผ ๊ณ ์ „ ๋ฌผ๋ฆฌํ•™ ์›๋ฆฌ๋ฅผ ํ†ตํ•ด ์ด๋ฅผ ์žฌํ•ด์„ํ•˜๋ ค๊ณ  ํ•œ๋‹ค. 2. ์—ฐ๊ตฌ ๋ฐฉ๋ฒ•๋ก  ๊ฐ€์ • ๋ฐ ๋ชจ๋ธ๋ง: ํ™•๋ฅ  ๋ฐ€

Physics Model HEP-PH HEP-EX
No Image

Chaos structures. Multicurrency adviser on the basis of NSW model and social-financial nets

๋ณธ ์—ฐ๊ตฌ๋Š” ์™ธํ™˜ ์‹œ์žฅ์„ ๋Œ€์ƒ์œผ๋กœ ํ•œ ๋‹คํ†ตํ™” ๊ฑฐ๋ž˜ ์ „๋žต์„ ์ตœ์ ํ™”ํ•˜๊ธฐ ์œ„ํ•œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ œ์•ˆํ•˜๋ฉฐ, ์ด ์•Œ๊ณ ๋ฆฌ์ฆ˜์ด ์–ด๋–ป๊ฒŒ ๋™์ž‘ํ•˜๋Š”์ง€์— ๋Œ€ํ•ด ์ƒ์„ธํžˆ ์„ค๋ช…ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ๋…ผ๋ฌธ์€ ๋น„์„ ํ˜• ํ™•๋ฅ  ํŒŒ๋™ ๋ชจ๋ธ(NSW ๋ชจ๋ธ)์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•˜๋ฉฐ, ์ด๋ฅผ ํ†ตํ•ด ๋ณต์žกํ•œ ์‹œ์Šคํ…œ์˜ ํ–‰๋™์„ ์˜ˆ์ธกํ•˜๊ณ  ์ตœ์ ํ™”ํ•  ์ˆ˜ ์žˆ๋Š” ๋ฐฉ๋ฒ•๋ก ์„ ์ œ์‹œํ•ฉ๋‹ˆ๋‹ค. 1. ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ์›์น™๊ณผ ๊ตฌ์กฐ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ๋‘ ๊ฐ€์ง€ ์ฃผ์š” ์›์น™์— ๋”ฐ๋ผ ์ž‘๋™ํ•ฉ๋‹ˆ๋‹ค: ๋™์—ญํ•™ ์ตœ์ ํ™”์™€ ์ˆ˜์ง ์ž์œจ ์กฐ๋ฆฝ์ž…๋‹ˆ๋‹ค. ๋™์—ญํ•™ ์ตœ์ ํ™”๋Š” ๋žœ๋ค ์†”๋ฃจ์…˜ ์ƒ์„ฑ์„ ํฌํ•จํ•˜๋ฉฐ, ์ด ์†”๋ฃจ์…˜๋“ค์€ ํšจ๊ณผ์„ฑ์— ๋”ฐ๋ผ '์ƒ์กด'ํ•˜๊ฑฐ๋‚˜ '์ œ๊ฑฐ'๋ฉ๋‹ˆ๋‹ค. ์ด ๊ณผ์ •์€

Quantitative Finance Model
No Image

Transition Radiation by Standard Model Neutrinos at an Interface

1. ์ด๋ก ์  ๋ฐฐ๊ฒฝ ๋ฐ ์—ฐ๊ตฌ ๋ชฉ์  ์ค‘์„ฑ๋ฏธ์ž๋Š” ๋ฌผ๋ฆฌํ•™์—์„œ ๊ฐ€์žฅ ๋ฏธ๋ฌ˜ํ•œ ์ž…์ž ์ค‘ ํ•˜๋‚˜๋กœ, ํ‘œ์ค€ ๋ชจ๋ธ์— ๋”ฐ๋ฅด๋ฉด ๋งค์šฐ ์ž‘์€ ์งˆ๋Ÿ‰์„ ๊ฐ€์ง€๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ํŠน์„ฑ์ด ์žˆ๊ธฐ ๋•Œ๋ฌธ์—, ์ค‘์„ฑ๋ฏธ์ž์˜ ์ƒํ˜ธ์ž‘์šฉ์€ ์–‘์ž์žฅ ์ด๋ก ์„ ํ†ตํ•ด ์„ค๋ช…๋˜์–ด์•ผ ํ•ฉ๋‹ˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ค‘์„ฑ๋ฏธ์ž๊ฐ€ ๋‘ ๊ฐ€์ง€ ๋‹ค๋ฅธ ๊ตด์ ˆ๋ฅ ์„ ๊ฐ€์ง„ ๋งค์งˆ์˜ ๊ฒฝ๊ณ„๋ฅผ ํ†ต๊ณผํ•  ๋•Œ ๋ฐœ์ƒํ•˜๋Š” ์ „์ด๋ณต์‚ฌ๋ฅผ ํƒ๊ตฌํ•ฉ๋‹ˆ๋‹ค. ์ „์ด๋ณต์‚ฌ๋Š” ์ž…์‚ฌ ์ค‘์„ฑ๋ฏธ์ž๊ฐ€ ์ถœ์‚ฌ ์ค‘์„ฑ๋ฏธ์ž์™€ ๊ด‘์ž๋ฅผ ๋ฐฉ์ถœํ•˜๋ฉด์„œ ๋ฐœ์ƒํ•˜๋Š” ํ˜„์ƒ์ž…๋‹ˆ๋‹ค. ์ด ๊ณผ์ •์€ ์ค‘์„ฑ๋ฏธ์ž์˜ ์šด๋™๋Ÿ‰ ๋ณด์กด์„ ์œ„๋ฐ˜ํ•˜๋ฉฐ, ๋งค์งˆ์˜ ํŠน์„ฑ์ด ์ด๋Ÿฌํ•œ ์ƒํ˜ธ์ž‘์šฉ์— ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•ฉ๋‹ˆ๋‹ค. 2. ์—ฐ๊ตฌ ๋ฐฉ

Model HEP-PH Astrophysics
Subphotospheric heating in GRBs: analysis and modeling of GRB090902B as   observed by Fermi

Subphotospheric heating in GRBs: analysis and modeling of GRB090902B as observed by Fermi

: ์„œ๋ก  ๋ฐ ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๊ฐ๋งˆ์„  ํญ๋ฐœ(GRB)์€ ์šฐ์ฃผ์—์„œ ๊ฐ€์žฅ ๊ฐ•๋ ฅํ•œ ๋ฐฉ์ถœ ํ˜„์ƒ ์ค‘ ํ•˜๋‚˜๋กœ, ๊ทธ ๋ฐœ์ƒ ๋ฉ”์ปค๋‹ˆ์ฆ˜์— ๋Œ€ํ•œ ์ดํ•ด๋Š” ์—ฌ์ „ํžˆ ๋ฏธ์™„์„ฑ ์ƒํƒœ์ž…๋‹ˆ๋‹ค. ๋ถˆ๋ณผ ๋ชจ๋ธ์€ GRB์˜ ๊ธ‰์„ฑ ๋ฐฉ์ถœ์„ ์„ค๋ช…ํ•˜๋Š” ์ฃผ์š” ์ด๋ก ์œผ๋กœ, ์ƒ๋Œ€์ ์œผ๋กœ ๋น ๋ฅด๊ฒŒ ํŒฝ์ฐฝํ•˜๋Š” ๋ถˆ๋ณผ์—์„œ ๋ฐœ์ƒํ•˜๋Š” ๊ฐ€์—ด์ด ๋ฐฉ์ถœ์„ ์ผ์œผํ‚จ๋‹ค๋Š” ๊ฐœ๋…์„ ์ œ์‹œํ•ฉ๋‹ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๋Œ€๋ถ€๋ถ„์˜ GRB ์ŠคํŽ™ํŠธ๋Ÿผ์€ ํ‘์ฒด ๋ณต์‚ฌ ํŠน์„ฑ์„ ๋ช…ํ™•ํžˆ ๋‚˜ํƒ€๋‚ด์ง€ ์•Š์œผ๋ฉฐ, ์ด๋Š” ๋น„์—ด์  ์„ฑ๋ถ„๊ณผ ํ•จ๊ป˜ ์„œ๋ธŒ๋„๋ฏธ๋‚œํŠธ ์—ด ์„ฑ๋ถ„์˜ ์กด์žฌ๋ฅผ ์‹œ์‚ฌํ•ฉ๋‹ˆ๋‹ค. ๋น„์—ด์  ์„ฑ๋ถ„ ๋ฐ ๊ฐ€์—ด ๋ฉ”์ปค๋‹ˆ์ฆ˜ GRB ์ œํŠธ ๋‚ด์—์„œ ๋ฐœ์ƒํ•˜๋Š” ๊ฐ€์—ด์€ ๊ณ ์—๋„ˆ์ง€ ๊ผฌ๋ฆฌ ๋ถ€๋ถ„์„ ํฌํ•จํ•œ

Analysis Model Astrophysics
Massive non-thermal radio emitters: new data and their modelling

Massive non-thermal radio emitters: new data and their modelling

๋ณธ ๋…ผ๋ฌธ์€ ๋Œ€์งˆ๋Ÿ‰ ๋ณ„, ํŠนํžˆ Wolf Rayet ๋ฐ OB ์œ ํ˜•์˜ ๋ณ„๋“ค์ด ๋น„์—ด์  ๋ผ๋””์˜ค ๋ฐฉ์ถœ์„ ๋‚˜ํƒ€๋‚ด๋Š” ํ˜„์ƒ์„ ๋‹ค๋ฃจ๊ณ  ์žˆ๋‹ค. ์ด ๋น„์—ด์  ๋ณต์‚ฌ๋Š” ์ถฉ๋Œ ์—†๋Š” ์ถฉ๊ฒฉ์—์„œ ์ƒ๋Œ€๋ก ์  ์ „์ž๊ฐ€ ๊ฐ€์†๋˜์–ด ์ƒ์„ฑ๋˜๋Š” ํŽ˜๋ฅด๋ฏธ ๋ฉ”์ปค๋‹ˆ์ฆ˜์— ์˜ํ•ด ๋ฐœ์ƒํ•œ๋‹ค. ์ด๋ก  ๋ชจ๋ธ(Eichler & Usov, 1993)์€ ์ด๋Ÿฌํ•œ ์ถฉ๊ฒฉ์ด ๋ฐฉ์‚ฌ๋ ฅ์ ์œผ๋กœ ์ฃผ๋„๋˜๋Š” ๋ฐ”๋žŒ์ด ์Œ์„ฑ ๋˜๋Š” ๋‹ค์ค‘ ์‹œ์Šคํ…œ์—์„œ ์ถฉ๋Œํ•˜์—ฌ ๋ฐœ์ƒํ•œ๋‹ค๋Š” ๊ฒƒ์„ ์ œ์‹œํ•˜๊ณ  ์žˆ๋‹ค. Cyg OB2 No. 9๋Š” O5 + O6 7 ์Œ์„ฑ์œผ๋กœ, Van Loo ๋“ฑ (2008)์€ ์ด ๋ณ„์˜ ๋ผ๋””์˜ค ๋ณต์‚ฌ ๋ฐ์ดํ„ฐ๊ฐ€ ์•ฝ 2.355๋…„์˜ ์ฃผ๊ธฐ๋กœ ๋ณ€

Model Astrophysics Data
On the Testing of Seismicity Models

On the Testing of Seismicity Models

: ์ง€์ง„ ์œ„ํ—˜ ํ‰๊ฐ€๋Š” ์žฅ๊ธฐ๊ฐ„ ํ”ผํ•ด ๋ฐœ์ƒ ๊ฐ€๋Šฅ์„ฑ์„ ๋‚˜ํƒ€๋‚ด๋Š” ์ง€๋„ ์ œ์ž‘์— ๊ธฐ๋ฐ˜ํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ์ง€๋„ ์ƒ์„ฑ์€ ์—ญ์‚ฌ์ ์ธ ์ง€์ง„ ๋ฐ์ดํ„ฐ, ์ €๊ฐ•๋„ ์ง€์ง„ ํ™œ๋™, ๊ตฌํ…๋ฒ ๋ฅดํฌ ๋ฆฌ์ฒ˜ ๋ฒ•์น™ ๋“ฑ ๋‹ค์–‘ํ•œ ์ ‘๊ทผ ๋ฐฉ์‹์„ ํฌํ•จํ•˜๋ฉฐ, ์ด๋“ค ๋ฐฉ๋ฒ•์˜ ์ฐจ์ด๋กœ ์ธํ•ด ๊ฐ๊ด€์ ์ธ ์ง€์ง„ ๋ชจ๋ธ ํ…Œ์ŠคํŠธ ๋ฐ ์ˆœ์œ„๋ฅผ ๋งค๊ธฐ๋Š” ํ†ต๊ณ„์  ๋ฐฉ๋ฒ•๋ก  ๊ฐœ๋ฐœ์ด ์ค‘์š”ํ•ด์กŒ๋‹ค. ๋ฏธ๊ตญ ์ง€์งˆ์กฐ์‚ฌ๊ตญ(USGS)์˜ ํ˜‘๋™ ์—ฐ๊ตฌ ๊ธฐ๊ด€์ธ CSEP(Collaboratory for the Study of Earthquake Predictability)๋Š” ์ด๋Ÿฌํ•œ ํ•„์š”์„ฑ์„ ์ถฉ์กฑํ•˜๊ธฐ ์œ„ํ•ด ์บ˜๋ฆฌํฌ๋‹ˆ์•„ ์ง€์—ญ์„ ๋Œ€์ƒ์œผ๋กœ ํ•œ RELM(Re

Model Physics
Adversary lower bounds in the Hamiltonian oracle model

Adversary lower bounds in the Hamiltonian oracle model

Catchy Title KO: ํ•˜๋ฏธํ„ด ์˜ค๋ผํด ๋ชจ๋ธ์—์„œ ์ ๋Œ€์ž ๋ฐฉ๋ฒ•์„ ํ†ตํ•œ ์–‘์ž ์ฟผ๋ฆฌ ๋ณต์žก๋„ ๋ถ„์„ Abstract KO: ์ด ๋…ผ๋ฌธ์€ ์–‘์ž ์ฟผ๋ฆฌ ๋ชจ๋ธ์—์„œ ํ•จ์ˆ˜ ๊ณ„์‚ฐ์˜ ๋ณต์žก์„ฑ์„ ๋ถ„์„ํ•˜๋Š” ๋ฐ ์‚ฌ์šฉ๋˜๋Š” ์ ๋Œ€์ž ๋ฐฉ๋ฒ•์— ์ดˆ์ ์„ ๋งž์ถ”๊ณ  ์žˆ๋‹ค. ํŠนํžˆ, ์ด ๋…ผ๋ฌธ์—์„œ๋Š” ํ•˜๋ฏธํ„ด ์˜ค๋ผํด ๋ชจ๋ธ์ด๋ผ๋Š” ์—ฐ์† ์‹œ๊ฐ„ ๋ชจ๋ธ์„ ํ†ตํ•ด ์ด๋Ÿฌํ•œ ๋ฐฉ๋ฒ•๋ก ์„ ์ ์šฉํ•˜๊ณ , ์ด๋ฅผ ํ†ตํ•ด ์–‘์ž ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ์ฟผ๋ฆฌ ๋ณต์žก๋„๋ฅผ ๋ถ„์„ํ•œ๋‹ค. ์ด๋Š” ์ด์‚ฐ ์ฟผ๋ฆฌ ๋ชจ๋ธ๊ณผ ๋ถ„์ˆ˜ ์ฟผ๋ฆฌ ๋ชจ๋ธ์—์„œ ์‚ฌ์šฉ๋˜๋Š” ์ ๋Œ€์ž ๋ฐฉ๋ฒ•๊ณผ ์œ ์‚ฌํ•˜์ง€๋งŒ, ์—ฐ์† ์‹œ๊ฐ„ ๋ชจ๋ธ์—์„œ๋Š” ํ•˜๋ฏธํ„ด ์˜ค๋ผํด์„ ํ†ตํ•ด ํ•จ์ˆ˜ ๊ณ„์‚ฐ์ด ์ˆ˜ํ–‰๋œ๋‹ค. Deep Ana

Model Computational Complexity Quantum Physics Computer Science
No Image

Model of Opinion Spreading in Social Networks

๋ณธ ๋…ผ๋ฌธ์€ ์†Œ์…œ ๋„คํŠธ์›Œํฌ์—์„œ ์ •๋ณด์™€ ์˜๊ฒฌ์ด ์–ด๋–ป๊ฒŒ ํ™•์‚ฐ๋˜๋Š”์ง€์— ๋Œ€ํ•œ ์‹ฌ๋„ ์žˆ๋Š” ๋ถ„์„์„ ์ œ๊ณตํ•œ๋‹ค. ํŠนํžˆ, ๊ธฐ์กด ๋ชจ๋ธ๋“ค์ด ๋…ผ์Ÿ ๊ฐ€๋Šฅํ•œ ์ •๋ณด์˜ ํ™•์‚ฐ ๊ณผ์ •์„ ์ •ํ™•ํžˆ ์„ค๋ช…ํ•˜์ง€ ๋ชปํ•˜๋Š” ํ•œ๊ณ„๋ฅผ ์ง€์ ํ•˜๊ณ , ์ด๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•œ ์ƒˆ๋กœ์šด ์ ‘๊ทผ๋ฒ•์„ ์ œ์‹œํ•œ๋‹ค. 1. ๊ธฐ์กด ์—ฐ๊ตฌ์™€์˜ ์ฐจ๋ณ„ํ™” ์ „์—ผ๋ณ‘ ํ™•์‚ฐ ๋ชจ๋ธ : ์ด ๋ชจ๋ธ์€ ์ •๋ณด๋‚˜ ์˜๊ฒฌ์ด ํ™•์‚ฐ๋˜๋Š” ๊ณผ์ •์„ ์งˆ๋ณ‘ ์ „์—ผ๊ณผ ์œ ์‚ฌํ•˜๊ฒŒ ์„ค๋ช…ํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜, ๋…ผ์Ÿ ๊ฐ€๋Šฅํ•œ ์ •๋ณด๋Š” ๋‹จ์ˆœํžˆ ๋…ธ์ถœ์— ์˜ํ•œ ๊ฐ์—ผ๋งŒ์œผ๋กœ ์„ค๋ช…ํ•˜๊ธฐ ์–ด๋ ต๋‹ค. ๊ธฐ์ค€ ๋ชจ๋ธ (๋ณต์žกํ•œ ์ „์—ผ) : ์ด ๋ชจ๋ธ์€ ๊ฐœ์ธ์˜ ์˜๊ฒฌ ํ˜•์„ฑ์ด ๊ทธ์˜ ์ฃผ๋ณ€ ๋„คํŠธ์›Œํฌ ๊ตฌ์„ฑ์›๋“ค์˜ ์˜ํ–ฅ์„ ๋ฐ›

Model Physics Network Social Networks Computer Science
Modelling the synchrotron emission from O-star colliding wind binaries

Modelling the synchrotron emission from O-star colliding wind binaries

: ๋ณธ ๋…ผ๋ฌธ์€ Cyg OB2 No. 9๋ผ๋Š” Oํ˜• ๋ณ„ ์ถฉ๋Œ ๋ฐ”๋žŒ ์ด์ค‘์„ฑ ์‹œ์Šคํ…œ์—์„œ ๋ฐœ์ƒํ•˜๋Š” ๋™์กฐ๋ณต์‚ฌ ๋ฐฉ์ถœ์— ๋Œ€ํ•œ ๋ชจ๋ธ๋ง ์—ฐ๊ตฌ๋ฅผ ๋‹ค๋ฃน๋‹ˆ๋‹ค. ์ด ์‹œ์Šคํ…œ์€ 1984๋…„ ๋น„์—ด์  ๋ฐฉ์ถœ์›์œผ๋กœ ์ฒ˜์Œ ๋ฐœ๊ฒฌ๋˜์—ˆ์œผ๋ฉฐ, Van Loo ์™ธ (2008)์˜ VLA ๊ด€์ธก์„ ํ†ตํ•ด 2.35๋…„ ์ฃผ๊ธฐ๋ฅผ ๊ฐ€์ง„ ๋™์กฐ๋ณต์‚ฌ ๋ฐœ์‚ฐ์„ฑ์„ ํ™•์ธํ•˜์˜€์Šต๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ์ฃผ๊ธฐ์ ์ธ ๋ณ€๋™์€ ๋ณ„ํ’ ์ถฉ๋Œ์ด ๋น„์—ด์  ๋ผ๋””์˜ค ๋ฐฉ์ถœ์˜ ์›์ธ์ž„์„ ์‹œ์‚ฌํ•˜๋ฉฐ, ์ด๋Š” Eichler & Usov (1993)์™€ Dougherty ์™ธ (2003), Pittard ์™ธ (2006) ๋“ฑ์˜ ์—ฐ๊ตฌ์—์„œ ์ œ์‹œ๋œ ๊ฐ€์„ค๊ณผ ์ผ์น˜ํ•ฉ๋‹ˆ๋‹ค.

Model Astrophysics
Data Complexity-aware Deep Model Performance Forecasting

Data Complexity-aware Deep Model Performance Forecasting

์ด ๋…ผ๋ฌธ์€ โ€œ๋ฐ์ดํ„ฐ ๋ณต์žก๋„ ์ธ์‹ ๋”ฅ ๋ชจ๋ธ ์„ฑ๋Šฅ ์˜ˆ์ธกโ€์ด๋ผ๋Š” ์ฃผ์ œ๋กœ, ๋ชจ๋ธ ์„ค๊ณ„ ๋‹จ๊ณ„์—์„œ ์‚ฌ์ „์ ์œผ๋กœ ์„ฑ๋Šฅ์„ ์ถ”์ •ํ•  ์ˆ˜ ์žˆ๋Š” ๊ฒฝ๋Ÿ‰ํ™”๋œ ๋‘ ๋‹จ๊ณ„ ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์‹œํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ ๋‹จ๊ณ„๋Š” ๋ฐ์ดํ„ฐ ์ž์ฒด์˜ ํ†ต๊ณ„์ ยท๊ตฌ์กฐ์  ํŠน์„ฑ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ๋ฒ ์ด์Šค๋ผ์ธ ์„ฑ๋Šฅ์„ ์˜ˆ์ธกํ•œ๋‹ค. ์—ฌ๊ธฐ์—๋Š” ๋ฐ์ดํ„ฐ ๋ถ„์‚ฐ, ํด๋ž˜์Šค ๋ถˆ๊ท ํ˜•, ์ด๋ฏธ์ง€ ํ•ด์ƒ๋„, ํ…์ŠคํŠธ ๊ธธ์ด ๋“ฑ ๋‹ค์–‘ํ•œ ๋ฉ”ํŠธ๋ฆญ์ด ํฌํ•จ๋˜๋ฉฐ, ์ด๋Ÿฌํ•œ ํŠน์„ฑ์€ ๊ธฐ์กด ์—ฐ๊ตฌ์—์„œ ๋ชจ๋ธ ๋ณต์žก๋„์™€ ์ง์ ‘์ ์ธ ์ƒ๊ด€๊ด€๊ณ„๋ฅผ ๋ณด์ธ ๋ฐ” ์žˆ๋‹ค. ๋‘ ๋ฒˆ์งธ ๋‹จ๊ณ„๋Š” ๋ชจ๋ธ ์•„ํ‚คํ…์ฒ˜(์˜ˆ: ๋ ˆ์ด์–ด ์ˆ˜, ํŒŒ๋ผ๋ฏธํ„ฐ ๊ทœ๋ชจ, ์—ฐ์‚ฐ๋Ÿ‰)์™€ ์ฃผ์š” ํ•˜์ดํผํŒŒ๋ผ๋ฏธํ„ฐ(ํ•™์Šต๋ฅ , ๋ฐฐ์น˜

Computer Science Data Machine Learning Model
No Image

DrivingGen: A Comprehensive Benchmark for Generative Video World Models in Autonomous Driving

DrivingGen ๋…ผ๋ฌธ์€ ํ˜„์žฌ ์ž์œจ์ฃผํ–‰ ๋ถ„์•ผ์—์„œ ๊ธ‰์ฆํ•˜๊ณ  ์žˆ๋Š” โ€˜์ƒ์„ฑ ๋น„๋””์˜ค ์„ธ๊ณ„ ๋ชจ๋ธโ€™ ์—ฐ๊ตฌ์˜ ํ‰๊ฐ€ ์ฒด๊ณ„๊ฐ€ ๋ถ€์žฌํ•จ์„ ์ •ํ™•ํžˆ ์งš์–ด๋‚ธ๋‹ค. ๊ธฐ์กด ๋ฒค์น˜๋งˆํฌ๊ฐ€ ์ฃผ๋กœ PSNR, SSIM, LPIPS์™€ ๊ฐ™์€ ์ „ํ†ต์ ์ธ ๋น„๋””์˜ค ํ’ˆ์งˆ ์ง€ํ‘œ์— ์˜์กดํ•˜๋Š”๋ฐ, ์ด๋Ÿฌํ•œ ์ง€ํ‘œ๋Š” ํ”ฝ์…€ ์ˆ˜์ค€์˜ ์ฐจ์ด๋ฅผ ์ •๋Ÿ‰ํ™”ํ•  ๋ฟ, ์ž์œจ์ฃผํ–‰์— ํ•„์ˆ˜์ ์ธ ๋ฌผ๋ฆฌ์  ์ผ๊ด€์„ฑ์ด๋‚˜ ์•ˆ์ „์„ฑ์„ ๋ฐ˜์˜ํ•˜์ง€ ๋ชปํ•œ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด, ์ฐจ๋Ÿ‰์ด ๊ฐ‘์ž๊ธฐ ์‚ฌ๋ผ์ง€๊ฑฐ๋‚˜ ๋ณดํ–‰์ž๊ฐ€ ๋น„ํ˜„์‹ค์ ์ธ ์†๋„๋กœ ์›€์ง์ด๋Š” ๊ฒฝ์šฐ, ์‹œ๊ฐ์ ์œผ๋กœ๋Š” ๋†’์€ SSIM์„ ๊ธฐ๋กํ•˜๋”๋ผ๋„ ์‹ค์ œ ์ฃผํ–‰ ์‹œ๋‚˜๋ฆฌ์˜ค์—์„œ๋Š” ์น˜๋ช…์ ์ธ ์˜ค๋ฅ˜๊ฐ€ ๋œ๋‹ค. ๋…ผ๋ฌธ์€ ์ด๋Ÿฌํ•œ

Computer Science Model Computer Vision
Detecting Performance Degradation under Data Shift in Pathology Vision-Language Model

Detecting Performance Degradation under Data Shift in Pathology Vision-Language Model

๋ณธ ๋…ผ๋ฌธ์€ ์ตœ๊ทผ ์˜๋ฃŒ ์˜์ƒ ๋ถ„์•ผ์—์„œ ๊ฐ๊ด‘๋ฐ›๊ณ  ์žˆ๋Š” ๋น„์ „โ€‘์–ธ์–ด ๋ชจ๋ธ(VLM)์˜ ์‹ค์ œ ์šด์˜ ๋‹จ๊ณ„์—์„œ ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ๋Š” โ€˜๋ฐ์ดํ„ฐ ์‹œํ”„ํŠธ(data shift)โ€™ ๋ฌธ์ œ์— ์ดˆ์ ์„ ๋งž์ถ”์—ˆ๋‹ค. ๋ฐ์ดํ„ฐ ์‹œํ”„ํŠธ๋Š” ํฌ๊ฒŒ ๋‘ ๊ฐ€์ง€ ์ฐจ์›์œผ๋กœ ๋‚˜๋‰œ๋‹ค. ์ฒซ ๋ฒˆ์งธ๋Š” ์ž…๋ ฅ ๋ฐ์ดํ„ฐ ์ž์ฒด๊ฐ€ ํ›ˆ๋ จ ์‹œ์™€ ๋‹ค๋ฅธ ๋ถ„ํฌ๋ฅผ ๋ณด์ด๋Š” ๊ฒฝ์šฐ์ด๋ฉฐ, ๋‘ ๋ฒˆ์งธ๋Š” ๋ชจ๋ธ์ด ์ถœ๋ ฅํ•˜๋Š” ์˜ˆ์ธก๊ฐ’์ด๋‚˜ ์‹ ๋ขฐ๋„(confidence)๊ฐ€ ๋ณ€ํ•˜๋Š” ๊ฒฝ์šฐ์ด๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค์€ ์ฃผ๋กœ ์ž…๋ ฅ ์ฐจ์›์˜ ํ†ต๊ณ„์  ๋ณ€ํ™”๋ฅผ ํƒ์ง€ํ•˜๋Š” ๋ฐฉ๋ฒ•์— ์˜์กดํ–ˆ์ง€๋งŒ, ์ด๋Ÿฌํ•œ ๋ณ€๋™์ด ๋ฐ˜๋“œ์‹œ ๋ชจ๋ธ ์„ฑ๋Šฅ ์ €ํ•˜์™€ ์ง๊ฒฐ๋˜์ง€ ์•Š๋Š”๋‹ค๋Š” ์ ์„ ๊ฐ„๊ณผํ•˜๊ณ  ์žˆ์—ˆ๋‹ค.

Computer Science Model Data Computer Vision
Counterfactual Self-Questioning for Stable Policy Optimization in Language Models

Counterfactual Self-Questioning for Stable Policy Optimization in Language Models

๋ณธ ๋…ผ๋ฌธ์ด ์ œ์‹œํ•˜๋Š” Counterfactual Selfโ€‘Questioning(CSQ)์€ ๊ธฐ์กด ์ž๊ธฐ ๊ฐœ์„  ๋ฉ”์ปค๋‹ˆ์ฆ˜์ด ์•ˆ๊ณ  ์žˆ๋˜ โ€œ์™ธ๋ถ€ ์˜์กด์„ฑโ€์ด๋ผ๋Š” ๊ทผ๋ณธ์ ์ธ ๋ฌธ์ œ๋ฅผ ๊ทผ๋ณธ์ ์œผ๋กœ ํ•ด๊ฒฐํ•œ๋‹ค๋Š” ์ ์—์„œ ํ•™์ˆ ์ ยท์‹ค์šฉ์  ์˜๋ฏธ๊ฐ€ ํฌ๋‹ค. ๋จผ์ €, CSQ๋Š” ํ•˜๋‚˜์˜ ์–ธ์–ด ๋ชจ๋ธ์ด ์Šค์Šค๋กœ โ€œ์™œ ์ด ์ถ”๋ก ์ด ํ‹€๋ ธ๋Š”๊ฐ€โ€๋ฅผ ํƒ์ƒ‰ํ•˜๋„๋ก ์„ค๊ณ„๋œ ์„ธ ๋‹จ๊ณ„ ํŒŒ์ดํ”„๋ผ์ธ์„ ๋„์ž…ํ•œ๋‹ค. ์ดˆ๊ธฐ ๋กค์•„์›ƒ ๋‹จ๊ณ„์—์„œ ๋ชจ๋ธ์€ ์ผ๋ฐ˜์ ์ธ chainโ€‘ofโ€‘thought ๋ฐฉ์‹์œผ๋กœ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ณ , ๊ทธ ๊ณผ์ •์—์„œ ์ƒ์„ฑ๋œ ์ค‘๊ฐ„ ๋‹จ๊ณ„์™€ ์ตœ์ข… ๋‹ต์•ˆ์„ ๊ทธ๋Œ€๋กœ ๋ณด๊ด€ํ•œ๋‹ค. ์ด์–ด์ง€๋Š” ์ž๊ธฐ์งˆ๋ฌธ ๋‹จ๊ณ„์—์„œ๋Š” ๋ชจ๋ธ์ด โ€œ

Computer Science Artificial Intelligence Model
No Image

Do Large Language Models Know What They Are Capable Of?

์ด ๋…ผ๋ฌธ์€ โ€œ๋ฉ”ํƒ€โ€‘์ธ์ง€โ€๋ผ๋Š” ๊ด€์ ์—์„œ LLM์˜ ์ž๊ธฐ ํ‰๊ฐ€ ๋Šฅ๋ ฅ์„ ์ฒด๊ณ„์ ์œผ๋กœ ๊ฒ€์ฆํ•œ๋‹ค๋Š” ์ ์—์„œ ์˜๋ฏธ๊ฐ€ ํฌ๋‹ค. ๋จผ์ € ์—ฐ๊ตฌ์ง„์€ โ€œ์„ฑ๊ณต ์˜ˆ์ธกโ€์ด๋ผ๋Š” ์ด์ง„ ํŒ๋‹จ์„ ํ†ตํ•ด ๋ชจ๋ธ์ด ์ž์‹ ์˜ ํ•œ๊ณ„๋ฅผ ์–ผ๋งˆ๋‚˜ ์ •ํ™•ํžˆ ์ธ์‹ํ•˜๋Š”์ง€๋ฅผ ์ธก์ •ํ•˜์˜€๋‹ค. ์—ฌ๊ธฐ์„œ ์‚ฌ์šฉ๋œ ํ‰๊ฐ€์ง€ํ‘œ๋Š” ๋‹จ์ˆœ ์ •ํ™•๋„๋ฟ ์•„๋‹ˆ๋ผ ROCโ€‘AUC์™€ ๊ฐ™์€ ๊ตฌ๋ณ„๋ ฅ ์ง€ํ‘œ์ด๋ฉฐ, ์ด๋Š” ๋ชจ๋ธ์ด ๊ณผ์‹ (overโ€‘confidence)๊ณผ ๊ณผ์†Œ์‹ (underโ€‘confidence) ์‚ฌ์ด์—์„œ ์–ด๋А ์ •๋„ ๊ท ํ˜•์„ ์žก๋Š”์ง€๋ฅผ ๋ณด์—ฌ์ค€๋‹ค. ๊ฒฐ๊ณผ๋Š” ๋Œ€๋ถ€๋ถ„์˜ ์ตœ์‹  LLM์ด ๋†’์€ ํ™•์‹ ์„ ๋ณด์ด์ง€๋งŒ, ๋ฌด์ž‘์œ„๋ณด๋‹ค ๋†’์€ AUC๋ฅผ ๊ธฐ๋กํ•œ๋‹ค๋Š” ์ ์ด๋‹ค

Computer Science NLP Model
Let It Flow: Agentic Crafting on Rock and Roll, Building the ROME Model within an Open Agentic Learning Ecosystem

Let It Flow: Agentic Crafting on Rock and Roll, Building the ROME Model within an Open Agentic Learning Ecosystem

๋ณธ ๋…ผ๋ฌธ์€ โ€œ์—์ด์ „ํŠธ ์ œ์ž‘(agentic crafting)โ€์ด๋ผ๋Š” ๊ฐœ๋…์„ ๊ธฐ์กด์˜ ์ผํšŒ์„ฑ ํ…์ŠคํŠธ ์ƒ์„ฑ๊ณผ ๊ตฌ๋ณ„ํ•˜์—ฌ, ์‹ค์ œ ์„ธ๊ณ„์—์„œ ๋‹ค์ค‘ ํ„ด์„ ๊ฑฐ์ณ ํ–‰๋™ํ•˜๊ณ  ๊ทธ ๊ฒฐ๊ณผ๋ฅผ ๊ด€์ฐฐยทํ”ผ๋“œ๋ฐฑํ•˜๋Š” ๋ฐ˜๋ณต์  ํ”„๋กœ์„ธ์Šค๋กœ ์ •์˜ํ•œ๋‹ค. ์ด๋Š” ๋‹จ์ˆœํžˆ ์ฝ”๋“œ๋ฅผ ์ž๋™ ์ƒ์„ฑํ•˜๋Š” ์ˆ˜์ค€์„ ๋„˜์–ด, ๋ณตํ•ฉ์ ์ธ ํˆด ์ฒด์ธ๊ณผ ์–ธ์–ด ๊ธฐ๋ฐ˜ ์›Œํฌํ”Œ๋กœ ์ „๋ฐ˜์— ๊ฑธ์ณ ๋ชจ๋ธ์ด ๊ณ„ํšยท์‹คํ–‰ยท๋ชจ๋‹ˆํ„ฐ๋งยท์ˆ˜์ •๊นŒ์ง€ ์ „ ๊ณผ์ •์„ ๋‹ด๋‹นํ•ด์•ผ ํ•จ์„ ์˜๋ฏธํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ์š”๊ตฌ๋ฅผ ์ถฉ์กฑํ•˜๋ ค๋ฉด ๋ชจ๋ธ ์ž์ฒด๋ฟ ์•„๋‹ˆ๋ผ, ๋ชจ๋ธ์ด ์ž‘๋™ํ•  ํ™˜๊ฒฝ, ๋ฐ์ดํ„ฐ ํŒŒ์ดํ”„๋ผ์ธ, ํ•™์Šตยท๋ฐฐํฌ ์ธํ”„๋ผ๊ฐ€ ๋ชจ๋‘ ์œ ๊ธฐ์ ์œผ๋กœ ์—ฐ๊ฒฐ๋œ โ€˜์—์ด์ „ํŠธ ํ•™์Šต ์ƒํƒœ๊ณ„(AL

Model Artificial Intelligence System Computer Science Learning
No Image

Improving Multi-step RAG with Hypergraph-based Memory for Long-Context Complex Relational Modeling

๋ณธ ๋…ผ๋ฌธ์€ ๋‹ค๋‹จ๊ณ„ RAG ์‹œ์Šคํ…œ์—์„œ ๋ฉ”๋ชจ๋ฆฌ์˜ ์—ญํ• ์„ ๊ทผ๋ณธ์ ์œผ๋กœ ์žฌ์ •์˜ํ•œ๋‹ค๋Š” ์ ์—์„œ ํ•™์ˆ ์ ยท์‹ค์šฉ์  ์˜์˜๊ฐ€ ํฌ๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค์€ ๋ฉ”๋ชจ๋ฆฌ๋ฅผ โ€œ์ˆ˜๋™์  ์ €์žฅ์†Œโ€๋กœ ๊ฐ„์ฃผํ•˜๊ณ , ๊ฒ€์ƒ‰๋œ ํ…์ŠคํŠธ ์กฐ๊ฐ๋“ค์„ ๋‹จ์ˆœํžˆ ์••์ถ•ํ•˜๊ฑฐ๋‚˜ ์ˆœ์ฐจ์ ์œผ๋กœ ์—ฐ๊ฒฐํ•˜๋Š” ๋ฐฉ์‹์— ๋จธ๋ฌผ๋ €๋‹ค. ์ด๋Ÿฌํ•œ ์ ‘๊ทผ์€ ๊ฐœ๋ณ„ ์‚ฌ์‹ค์„ ๋‚˜์—ดํ•˜๋Š” ์ˆ˜์ค€์— ๊ทธ์น˜๋ฉฐ, ์‚ฌ์‹ค ๊ฐ„์˜ ๋ณตํ•ฉ์  ๊ด€๊ณ„โ€”์˜ˆ๋ฅผ ๋“ค์–ด, ์ธ๊ณผ๊ด€๊ณ„, ๊ณตํ†ต ์›์ธ, ์ƒํ˜ธ ๋ณด์™„์  ์ฆ๊ฑฐ ๋“ฑโ€”๋ฅผ ํฌ์ฐฉํ•˜์ง€ ๋ชปํ•œ๋‹ค. ๊ฒฐ๊ณผ์ ์œผ๋กœ ์žฅ๊ธฐ ๋ฌธ๋งฅ์—์„œ ์—ฌ๋Ÿฌ ๋‹จ๊ณ„์— ๊ฑธ์นœ ์ถ”๋ก ์ด ๋‹จ์ ˆ๋˜๊ณ , ์ „์—ญ์  ์˜๋ฏธ๋ง์„ ํ˜•์„ฑํ•˜๋Š” ๋ฐ ํ•œ๊ณ„๊ฐ€ ๋ฐœ์ƒํ•œ๋‹ค. HGMEM์€ ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜

Computer Science NLP Model
PathFound: An Agentic Multimodal Model Activating Evidence-seeking Pathological Diagnosis

PathFound: An Agentic Multimodal Model Activating Evidence-seeking Pathological Diagnosis

PathFound ๋…ผ๋ฌธ์€ ๊ธฐ์กด ๋ณ‘๋ฆฌํ•™ ์ธ๊ณต์ง€๋Šฅ ๋ชจ๋ธ์ด ๊ฐ–๋Š” โ€˜ํ•œ ๋ฒˆ์— ์ „์ฒด ์Šฌ๋ผ์ด๋“œ ์ฒ˜๋ฆฌโ€™๋ผ๋Š” ํ•œ๊ณ„๋ฅผ ๋ช…ํ™•ํžˆ ์ง€์ ํ•˜๊ณ , ์‹ค์ œ ๋ณ‘๋ฆฌํ•™์ž์˜ ์ง„๋‹จ ๊ณผ์ •๊ณผ ์œ ์‚ฌํ•œ ์ฆ๊ฑฐโ€‘์ค‘์‹ฌ์  ์ˆœํ™˜ ํ”„๋กœ์„ธ์Šค ๋ฅผ ๋„์ž…ํ•จ์œผ๋กœ์จ ์ƒˆ๋กœ์šด ์—ฐ๊ตฌ ๋ฐฉํ–ฅ์„ ์ œ์‹œํ•œ๋‹ค. ๋จผ์ €, ๋ชจ๋ธ ์•„ํ‚คํ…์ฒ˜๋Š” ์„ธ ๊ฐ€์ง€ ํ•ต์‹ฌ ๋ชจ๋“ˆ๋กœ ๊ตฌ์„ฑ๋œ๋‹ค. โ‘  ์‹œ๊ฐ ๊ธฐ๋ฐ˜ ํŒŒ์šด๋ฐ์ด์…˜ ๋ชจ๋ธ ์€ ๋Œ€์šฉ๋Ÿ‰ ๋””์ง€ํ„ธ ์Šฌ๋ผ์ด๋“œ์—์„œ ๊ณ ํ•ด์ƒ๋„ ํŠน์ง•์„ ์ถ”์ถœํ•˜๊ณ , โ‘ก ๋น„์ „โ€‘์–ธ์–ด ๋ชจ๋ธ(VLM) ์€ ์ด๋ฏธ์ง€ ํŠน์ง•์„ ํ…์ŠคํŠธ ํ˜•ํƒœ์˜ ์ž„์ƒ ์งˆ๋ฌธ์ด๋‚˜ ์„ค๋ช…๊ณผ ์—ฐ๊ฒฐํ•œ๋‹ค. โ‘ข ๊ฐ•ํ™”ํ•™์Šต(RL) ๊ธฐ๋ฐ˜ ์ถ”๋ก  ์—์ด์ „ํŠธ ๋Š” ํ˜„์žฌ ์ง„๋‹จ ๊ฐ€์„ค์„ ํ‰๊ฐ€ํ•˜๊ณ ,

Computer Science Model Computer Vision
The Illusion of Clinical Reasoning: A Benchmark Reveals the Pervasive Gap in Vision-Language Models for Clinical Competency

The Illusion of Clinical Reasoning: A Benchmark Reveals the Pervasive Gap in Vision-Language Models for Clinical Competency

์ด ๋…ผ๋ฌธ์€ ์˜๋ฃŒ ๋ถ„์•ผ์—์„œ ์ธ๊ณต ์ง€๋Šฅ(AI)์˜ ์‹ค์ œ ์„ฑ๋Šฅ์„ ํ‰๊ฐ€ํ•˜๋Š” ์ค‘์š”ํ•œ ์—ฐ๊ตฌ๋ฅผ ์ œ๊ณตํ•œ๋‹ค. ํŠนํžˆ, ์ด ์—ฐ๊ตฌ๋Š” AI ๋ชจ๋ธ๋“ค์ด ์‹ค์ œ ์ž„์ƒ ์ƒํ™ฉ์—์„œ ์–ผ๋งˆ๋‚˜ ํšจ๊ณผ์ ์œผ๋กœ ์ž‘๋™ํ•˜๋Š”์ง€์— ๋Œ€ํ•œ ๊นŠ์ด ์žˆ๋Š” ํ†ต์ฐฐ๋ ฅ์„ ์ œ๊ณตํ•œ๋‹ค. B&J ๋ฒค์น˜๋งˆํฌ๋Š” ์˜๋ฃŒ ๋ถ„์•ผ์—์„œ AI์˜ ์„ฑ๋Šฅ์„ ์ข…ํ•ฉ์ ์œผ๋กœ ํ‰๊ฐ€ํ•˜๊ธฐ ์œ„ํ•œ ์ฒด๊ณ„์ ์ธ ์ ‘๊ทผ๋ฒ•์„ ์ œ์‹œํ•˜๋ฉฐ, ์ด๋Š” ๊ธฐ์กด์˜ ๋‹จ์ˆœํ•œ ์„ ํƒ์ง€ ๋ฌธ์ œ๋ฅผ ๋„˜์–ด ์‹ค์ œ ํ™˜์ž ์น˜๋ฃŒ์— ํ•„์š”ํ•œ ๋‹ค์–‘ํ•œ ์ถ”๋ก  ๋Šฅ๋ ฅ์„ ํ‰๊ฐ€ํ•œ๋‹ค. ์—ฐ๊ตฌ ๊ฒฐ๊ณผ๋Š” AI ๋ชจ๋ธ๋“ค์ด ๊ตฌ์กฐํ™”๋œ ์งˆ๋ฌธ์—์„œ๋Š” ๋†’์€ ์„ฑ๋Šฅ์„ ๋ณด์ด์ง€๋งŒ, ์‹ค์ œ ์ž„์ƒ ์ƒํ™ฉ์—์„œ ์š”๊ตฌ๋˜๋Š” ๋ณต์žกํ•˜๊ณ  ๋‹ค์ค‘๋ชจ๋‹ฌ์ ์ธ ์ถ”๋ก ์—๋Š” ์•„์ง

Model
ChronoDreamer: Action-Conditioned World Model as an Online Simulator for Robotic Planning

ChronoDreamer: Action-Conditioned World Model as an Online Simulator for Robotic Planning

ChronoDreamer๋Š” ๋กœ๋ด‡ ๋งค๋‹ˆํ“ฐ๋ ˆ์ด์…˜ ๋ถ„์•ผ์—์„œ ๊ฐ€์žฅ ๋‚œํ•ดํ•œ ๋ฌธ์ œ ์ค‘ ํ•˜๋‚˜์ธ โ€˜์ ‘์ด‰ ์˜ˆ์ธกโ€™์„ ์‹œ๊ฐโ€‘์–ธ์–ดโ€‘๋ฌผ๋ฆฌ ํ†ตํ•ฉ ํ”„๋ ˆ์ž„์›Œํฌ๋กœ ํ’€์–ด๋‚ธ ์ ์ด ํ˜์‹ ์ ์ด๋‹ค. ๊ธฐ์กด ์„ธ๊ณ„ ๋ชจ๋ธ์€ ์ฃผ๋กœ ์ด๋ฏธ์ง€์™€ ๊ด€์ ˆ ์ƒํƒœ๋งŒ์„ ์ด์šฉํ•ด ๋ฏธ๋ž˜ ํ”„๋ ˆ์ž„์„ ์˜ˆ์ธกํ–ˆ์ง€๋งŒ, ์ ‘์ด‰ ์ •๋ณด๊ฐ€ ๊ฒฐ์—ฌ๋ผ ์‹ค์ œ ๋ฌผ๋ฆฌ์  ์ƒํ˜ธ์ž‘์šฉ์„ ์•ˆ์ „ํ•˜๊ฒŒ ๊ณ„ํšํ•˜๊ธฐ ์–ด๋ ค์› ๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ์ ‘์ด‰์„ โ€˜๊นŠ์ด ๊ฐ€์ค‘ ๊ฐ€์šฐ์‹œ์•ˆ ์Šคํ”Œ๋žซโ€™์ด๋ผ๋Š” 2D ์ด๋ฏธ์ง€ ํ˜•ํƒœ๋กœ ๋ณ€ํ™˜ํ•จ์œผ๋กœ์จ, ๊ธฐ์กด ๋น„์ „ ๋ฐฑ๋ณธ(ViT ๋“ฑ)๊ณผ ์ž์—ฐ์Šค๋Ÿฝ๊ฒŒ ๊ฒฐํ•ฉํ•œ๋‹ค. ์ด ๋ฐฉ์‹์€ 3D ํž˜ ๋ฒกํ„ฐ๋ฅผ ์นด๋ฉ”๋ผ ์ขŒํ‘œ๊ณ„์— ํˆฌ์‚ฌํ•ด ์‹œ๊ฐ์  ํŠน์ง•๊ณผ ๋™์‹œ ํ•™์Šต์ด ๊ฐ€๋Šฅํ•˜๋„๋ก

Model
Foundation Models in Biomedical Imaging: Turning Hype into Reality

Foundation Models in Biomedical Imaging: Turning Hype into Reality

๋ณธ ๋…ผ๋ฌธ์€ ๊ธฐ๋ฐ˜๋ชจ๋ธ(Foundation Models)์ด ์˜๋ฃŒ ์˜์ƒ ๋ถ„์•ผ์—์„œ ์–ด๋–ป๊ฒŒ ํ™œ์šฉ๋˜๊ณ  ์žˆ๋Š”์ง€์— ๋Œ€ํ•ด ๊นŠ์ด ์žˆ๊ฒŒ ๋ถ„์„ํ•ฉ๋‹ˆ๋‹ค. FMs๋Š” ๋‹จ์ˆœํžˆ ํŒจํ„ด์„ ์ธ์‹ํ•˜๋Š” ๋ฐ ๊ทธ์น˜์ง€ ์•Š๊ณ , ๋ณต์žกํ•œ ์ž„์ƒ ์‚ฌ๊ณ ๋ฅผ ๋ชจ๋ฐฉํ•˜๊ณ  ๊ณต๊ฐ„ ๊ด€๊ณ„๋ฅผ ์ดํ•ดํ•˜๋ฉฐ ๋‹ค์ค‘๋ชจ๋‹ฌ ๋ฐ์ดํ„ฐ๋ฅผ ํ†ตํ•ฉํ•˜๋Š” ๋Šฅ๋ ฅ์„ ๊ฐ–์ถ”๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ด๋Ÿฌํ•œ ๊ฐ€๋Šฅ์„ฑ๊ณผ ์‹ค์ œ ํ™œ์šฉ ์‚ฌ์ด์—๋Š” ํฐ ๊ฐ„๊ทน์ด ์กด์žฌํ•ฉ๋‹ˆ๋‹ค. ๋…ผ๋ฌธ์€ FMs์˜ ํ•ต์‹ฌ ๊ธฐ๋Šฅ๊ณผ ํ•œ๊ณ„๋ฅผ ํ‰๊ฐ€ํ•˜๋ฉด์„œ, ์ด๋“ค ๋ชจ๋ธ๋“ค์ด ์ง„์ •ํ•œ ์ธ์ง€๋ ฅ์„ ๋ณด์—ฌ์ฃผ๊ณ  ์žˆ๋Š”์ง€ ์•„๋‹ˆ๋ฉด ํ‘œ๋ฉด์ ์ธ ํŒจํ„ด์„ ๋‹จ์ˆœํžˆ ํ‰๋‚ด ๋‚ด๋Š” ๊ฒƒ์ธ์ง€์— ๋Œ€ํ•ด ๊ฒ€ํ† ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ๋˜ํ•œ ๋…ผ๋ฌธ์€ ํ†ต๊ณ„์ 

Model
Explainable Preference Learning: a Decision Tree-based Surrogate Model for Preferential Bayesian Optimization

Explainable Preference Learning: a Decision Tree-based Surrogate Model for Preferential Bayesian Optimization

๋ณธ ๋…ผ๋ฌธ์€ ๋ฒ ์ด์ง€์•ˆ ์ตœ์ ํ™”์˜ ํ•œ๊ณ„์ ์„ ๊ทน๋ณตํ•˜๊ณ ์ž ๊ฒฐ์ •ํŠธ๋ฆฌ๋ฅผ ์ƒˆ๋กœ์šด ๋Œ€๋ฆฌ ๋ชจ๋ธ๋กœ ์ œ์‹œํ•œ๋‹ค. ์ด๋Š” ๊ฐ€์šฐ์‹œ์•ˆ ํ”„๋กœ์„ธ์Šค(GP)๋ฅผ ์‚ฌ์šฉํ•˜๋Š” ๊ธฐ์กด ๋ฐฉ๋ฒ•๊ณผ ๋‹ฌ๋ฆฌ ํ•ด์„์„ฑ์ด ๋›ฐ์–ด๋‚˜๋ฉฐ, ์—ฐ์†ํ˜• ๋ฐ ๋ฒ”์ฃผํ˜• ๋ฐ์ดํ„ฐ ์ฒ˜๋ฆฌ ๋Šฅ๋ ฅ์ด ๊ฐ•ํ™”๋˜์–ด ์‹ค์ œ ์ ์šฉ์— ์œ ์šฉํ•˜๋‹ค. ๊ฒฐ์ •ํŠธ๋ฆฌ๋Š” ๋ณต์žกํ•œ ๋ชจ๋ธ์„ ์ดํ•ดํ•˜๊ธฐ ์‰ฝ๊ฒŒ ์‹œ๊ฐํ™”ํ•  ์ˆ˜ ์žˆ์–ด, ์ตœ์ ํ™” ๊ณผ์ •์—์„œ ์–ป์€ ๊ฒฐ๊ณผ๋ฅผ ์ง๊ด€์ ์œผ๋กœ ํ•ด์„ํ•˜๊ณ  ํ™œ์šฉํ•˜๋Š” ๋ฐ ๋„์›€์ด ๋œ๋‹ค. ํŠนํžˆ, ๋ณธ ๋…ผ๋ฌธ์˜ ์‹คํ—˜์—์„œ๋Š” ๋‚ ์นด๋กœ์šด ํ•จ์ˆ˜์— ๋Œ€ํ•œ ์„ฑ๋Šฅ ํ–ฅ์ƒ์ด ํ™•์ธ๋˜์—ˆ์œผ๋ฉฐ, ์ด๋Š” ์‹ค์ œ ์„ธ๊ณ„์—์„œ ์ž์ฃผ ๋ฐœ์ƒํ•˜๋Š” ๋ถˆ๊ทœ์น™์ ์ธ ๋ฐ์ดํ„ฐ ๋ถ„ํฌ์— ํšจ๊ณผ์ ์ผ ์ˆ˜ ์žˆ์Œ์„ ์‹œ์‚ฌํ•œ๋‹ค.

Learning Model
Reasoning Relay: Evaluating Stability and Interchangeability of Large Language Models in Mathematical Reasoning

Reasoning Relay: Evaluating Stability and Interchangeability of Large Language Models in Mathematical Reasoning

๋ณธ ๋…ผ๋ฌธ์€ ์ถ”๋ก  ์—ฐ์‡„์˜ ์ค‘๊ฐ„ ์‚ฐ์ถœ๋ฌผ์„ ๋‹ค๋ฅธ ๋ชจ๋ธ์ด ์ด์–ด๋ฐ›์„ ์ˆ˜ ์žˆ๋Š”์ง€๋ฅผ ์‹คํ—˜์ ์œผ๋กœ ๊ฒ€์ฆํ•จ์œผ๋กœ์จ, LLM ์—ฐ๊ตฌ ๋ถ„์•ผ์— ์ƒˆ๋กœ์šด ์‹œ๊ฐ์„ ์ œ๊ณตํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ ํ•ต์‹ฌ ๊ธฐ์—ฌ๋Š” โ€˜์ถ”๋ก  ๊ตํ™˜ ๊ฐ€๋Šฅ์„ฑโ€™์ด๋ผ๋Š” ๊ฐœ๋…์„ ์ •์˜ํ•˜๊ณ , ์ด๋ฅผ ์ •๋Ÿ‰ํ™”ํ•˜๊ธฐ ์œ„ํ•œ ํ‰๊ฐ€ ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ๊ตฌ์ถ•ํ•œ ์ ์ด๋‹ค. ์ €์ž๋“ค์€ ํ† ํฐโ€‘๋ ˆ๋ฒจ ๋กœ๊ทธโ€‘ํ™•๋ฅ ์„ ๊ธฐ์ค€์œผ๋กœ ์ถ”๋ก ์„ ์„ธ ๋‹จ๊ณ„(์ดˆ๊ธฐ, ์ค‘๊ฐ„, ํ›„๊ธฐ)๋กœ ํŠธ๋ ์ผ€์ดํŠธํ•˜๊ณ , ๊ฐ ๋‹จ๊ณ„๋งˆ๋‹ค ํ”„๋กœ์„ธ์Šค ๋ณด์ƒ ๋ชจ๋ธ(PRM)์„ ์ ์šฉํ•ด ๋…ผ๋ฆฌ์  ์ผ๊ด€์„ฑ๊ณผ ์ •๋‹ต ์ •ํ™•๋„๋ฅผ ์ธก์ •ํ•œ๋‹ค. ์ด๋•Œ ์‚ฌ์šฉ๋œ ๋‘ ๋ฒ ์ด์Šค ๋ชจ๋ธ์ธ Gemmaโ€‘3โ€‘4Bโ€‘IT์™€ LLaMAโ€‘3.1โ€‘70Bโ€‘In

Model
Socratic Students: Teaching Language Models to Learn by Asking Questions

Socratic Students: Teaching Language Models to Learn by Asking Questions

๋ณธ ๋…ผ๋ฌธ์€ โ€œ์งˆ๋ฌธโ€์ด๋ผ๋Š” ํ–‰๋™์„ LLM์˜ ํ•ต์‹ฌ ๋Šฅ๋ ฅ์œผ๋กœ ์žฌ์ •์˜ํ•˜๊ณ , ์ด๋ฅผ ํ•™์Šต ๊ฐ€๋Šฅํ•œ ์ •์ฑ…์œผ๋กœ ์ „ํ™˜ํ•˜๋Š” ํ˜์‹ ์ ์ธ ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์‹œํ•œ๋‹ค. ์ „ํ†ต์ ์ธ LLM ํ™œ์šฉ ๋ฐฉ์‹์€ ์ฃผ์–ด์ง„ ํ”„๋กฌํ”„ํŠธ์— ๋Œ€ํ•ด ๊ฐ€๋Šฅํ•œ ํ•œ ์ •ํ™•ํ•œ ๋‹ต์„ ์ƒ์„ฑํ•˜๋Š” ๋ฐ ์ดˆ์ ์„ ๋งž์ถ”์ง€๋งŒ, ์‹ค์ œ ๊ณ ์œ„ํ—˜ ์‘์šฉ์—์„œ๋Š” ์‚ฌ์šฉ์ž๊ฐ€ ์ œ๊ณตํ•œ ์ •๋ณด๊ฐ€ ๋ถˆ์™„์ „ํ•˜๊ฑฐ๋‚˜ ๋ชจํ˜ธํ•  ๋•Œ ์ถ”๊ฐ€์ ์ธ ์งˆ์˜๊ฐ€ ํ•„์š”ํ•˜๋‹ค. ์ด๋Ÿฌํ•œ ์ƒํ™ฉ์„ ๋ชจ๋ธ์ด ์Šค์Šค๋กœ ์ธ์‹ํ•˜๊ณ , ๊ต์‚ฌ ๋ชจ๋ธ(๋ณด๋‹ค ๊ฐ•๋ ฅํ•œ LLM)์—๊ฒŒ ๋ณด์™„ ์ •๋ณด๋ฅผ ์š”์ฒญํ•˜๋„๋ก ํ•™์Šต์‹œํ‚ค๋Š” ๊ฒƒ์ด ํ•ต์‹ฌ ์•„์ด๋””์–ด์ด๋‹ค. ODQS๋Š” ๋‘ ๋‹จ๊ณ„ ํ•™์Šต ํŒŒ์ดํ”„๋ผ์ธ์„ ์‚ฌ์šฉํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ ๋‹จ๊ณ„๋Š”

Model
Diffusion Model-Based Posterior Sampling in Full Waveform Inversion

Diffusion Model-Based Posterior Sampling in Full Waveform Inversion

์ด ๋…ผ๋ฌธ์€ ๋ฒ ์ด์ง€์•ˆ ์ „ํŒŒํ˜• ์—ญ์‚ฐ(FWI) ๊ธฐ๋ฒ•์„ ์ด์šฉํ•ด ์ง€ํ•˜ ๋ชจ๋ธ์˜ ๋ถˆํ™•์‹ค์„ฑ์„ ํšจ๊ณผ์ ์œผ๋กœ ์ฒ˜๋ฆฌํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์‹œํ•˜๊ณ  ์žˆ๋‹ค. ํŠนํžˆ, ๋Œ€๊ทœ๋ชจ ํ˜„์žฅ ์กฐ์‚ฌ์—์„œ ์‹ค์šฉ์ ์ด์ง€ ์•Š๋‹ค๋Š” ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ํ™•์‚ฐ ๊ธฐ๋ฐ˜ ์‚ฌํ›„ ํ‘œ๋ณธ ์ถ”์ถœ๊ณผ ๋™์‹œ ์†Œ์Šค FWI ๋ฐ์ดํ„ฐ๋ฅผ ๊ฒฐํ•ฉํ•œ ์ƒˆ๋กœ์šด ์ ‘๊ทผ ๋ฐฉ์‹์„ ์ œ์•ˆํ•œ๋‹ค. ์ด ๋ฐฉ๋ฒ•์€ ๊ฐ ๋‹จ๊ณ„์—์„œ ํŒŒ ๋ฐฉ์ •์‹ ํ•ด์˜ ์ˆ˜๋ฅผ ์ค„์ด๊ณ , ๋ชจ๋ธ ๊ณต๊ฐ„์—์„œ ์Šคํ† ์บ์Šคํ‹ฑ ์ •๊ตํ™” ๋‹จ๊ณ„๋ฅผ ์ ์šฉํ•˜์—ฌ ๊ณ„์‚ฐ ๋น„์šฉ์„ ํฌ๊ฒŒ ๊ฐ์†Œ์‹œํ‚ค๋ฉด์„œ๋„ ๋†’์€ ์ •ํ™•์„ฑ์„ ์œ ์ง€ํ•  ์ˆ˜ ์žˆ๋‹ค. ๋˜ํ•œ, ์†๋„ ํŒจ์น˜์™€ ๋ณผ๋ฅจ์— ๋Œ€ํ•œ ์กฐ๊ฑด ์—†๋Š” ํ™•์‚ฐ ์‚ฌ์ „ ํ›ˆ๋ จ์„ ํ†ตํ•ด ์†Œ์Šค ๊ด€๋ จ ์ˆ˜์น˜์  ์˜ค๋ฅ˜

Model
Information-Consistent Language Model Recommendations through Group Relative Policy Optimization

Information-Consistent Language Model Recommendations through Group Relative Policy Optimization

๋ณธ ๋…ผ๋ฌธ์€ ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(LLMs)์˜ ์ผ๊ด€์„ฑ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•œ ์ƒˆ๋กœ์šด ์ ‘๊ทผ ๋ฐฉ์‹์„ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. LLMs๋Š” ๋‹ค์–‘ํ•œ ๋น„์ฆˆ๋‹ˆ์Šค ๋ถ„์•ผ์—์„œ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•˜์ง€๋งŒ, ์‚ฌ์šฉ์ž์—๊ฒŒ ์ผ๊ด€๋œ ์ •๋ณด๋ฅผ ์ œ๊ณตํ•˜๋Š” ๋ฐ ์–ด๋ ค์›€์ด ์žˆ์Šต๋‹ˆ๋‹ค. ์ด๋Š” ํŠนํžˆ ๊ธฐ์—… ํ™˜๊ฒฝ์—์„œ ์ค‘์š”ํ•˜๋ฉฐ, HR ์ž…๋ฌธ, ๊ณ ๊ฐ ์ง€์›, ์ •์ฑ… ๊ณต๊ฐœ ๋“ฑ๊ณผ ๊ฐ™์€ ์‹œ๋‚˜๋ฆฌ์˜ค์—์„œ๋Š” ์ •๋ณด์˜ ์•ˆ์ •์„ฑ์ด ํ•„์ˆ˜์ ์ž…๋‹ˆ๋‹ค. ๊ธฐ์กด ์ ‘๊ทผ ๋ฐฉ์‹์€ ์‚ฌ์‹ค์„ฑ ํ–ฅ์ƒ์ด๋‚˜ ํ™•๋ฅ ์„ฑ์„ ์ค„์ด๋Š” ๋ฐ ์ค‘์ ์„ ๋‘์ง€๋งŒ, ์˜๋ฏธ์ ์œผ๋กœ ๋™๋“ฑํ•œ ํ”„๋กฌํ”„ํŠธ ๊ฐ„์˜ ์ผ๊ด€์„ฑ์„ ๋ณด์žฅํ•˜์ง€๋Š” ๋ชปํ•ฉ๋‹ˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ ์ œ์•ˆํ•˜๋Š” ๋ฐฉ๋ฒ•์€ ๊ทธ๋ฃน ์ƒ๋Œ€ ์ •์ฑ… ์ตœ์ ํ™”(GRPO)

Model
Educational Cone Model in Embedding Vector Spaces

Educational Cone Model in Embedding Vector Spaces

๋ณธ ๋…ผ๋ฌธ์€ ๊ต์œก์šฉ ํ…์ŠคํŠธ์˜ ๋‚œ์ด๋„ ํ‰๊ฐ€์— ์žˆ์–ด ๊ธฐ์กด์˜ ๋‹จ์ˆœ ํ†ต๊ณ„ ๊ธฐ๋ฐ˜ ์ ‘๊ทผ๋ฒ•์ด ๊ฐ–๋Š” ํ•œ๊ณ„๋ฅผ ์ง€์ ํ•˜๊ณ , ์˜๋ฏธ๋ก ์  ์ž„๋ฒ ๋”ฉ ๊ณต๊ฐ„์„ ํ™œ์šฉํ•œ ์ƒˆ๋กœ์šด ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์‹œํ•œ๋‹ค. ํ˜„์žฌ ์ž์—ฐ์–ด ์ฒ˜๋ฆฌ ๋ถ„์•ผ์—์„œ๋Š” Word2Vec, GloVe, FastText, BERT, RoBERTa ๋“ฑ ์ˆ˜์‹ญ ๊ฐ€์ง€ ์ž„๋ฒ ๋”ฉ ๊ธฐ๋ฒ•์ด ์กด์žฌํ•˜๋ฉฐ, ๊ฐ๊ฐ์ด ํ…์ŠคํŠธ์˜ ์˜๋ฏธ์  ์œ ์‚ฌ์„ฑ์„ ๋‹ค๋ฅธ ๋ฐฉ์‹์œผ๋กœ ํฌ์ฐฉํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๊ต์œก ํ˜„์žฅ์—์„œ ์š”๊ตฌ๋˜๋Š” โ€œ๋‚œ์ด๋„โ€๋ผ๋Š” ์ถ”์ƒ์  ํŠน์„ฑ์€ ๋‹จ์ˆœํ•œ ์˜๋ฏธ ์œ ์‚ฌ๋„์™€๋Š” ๋ณ„๊ฐœ์˜ ์ฐจ์›์„ ๊ฐ€์ง„๋‹ค. ๋”ฐ๋ผ์„œ ์–ด๋–ค ์ž„๋ฒ ๋”ฉ์ด ๋‚œ์ด๋„ ๊ตฌ๋ถ„์— ๊ฐ€์žฅ ์ ํ•ฉํ•œ์ง€๋ฅผ ์‚ฌ์ „์— ์•Œ๊ธฐ ์–ด๋ ต๋‹ค

Model
Text-Printed Image: Bridging the Image-Text Modality Gap for Text-centric Training of Large Vision-Language Models

Text-Printed Image: Bridging the Image-Text Modality Gap for Text-centric Training of Large Vision-Language Models

๋ณธ ๋…ผ๋ฌธ์€ ๋Œ€ํ˜• ๋น„์ „โ€‘์–ธ์–ด ๋ชจ๋ธ(LVLM)์˜ ํ•™์Šต ๋น„์šฉ์„ ํฌ๊ฒŒ ๋‚ฎ์ถœ ์ˆ˜ ์žˆ๋Š” ์ƒˆ๋กœ์šด ๋ฐ์ดํ„ฐ ์ƒ์„ฑ ๋ฐฉ์‹์„ ์ œ์‹œํ•œ๋‹ค๋Š” ์ ์—์„œ ์˜๋ฏธ๊ฐ€ ํฌ๋‹ค. ๊ธฐ์กด LVLM์€ ์ด๋ฏธ์ง€โ€‘ํ…์ŠคํŠธ ์Œ์„ ๋Œ€๊ทœ๋ชจ๋กœ ์ˆ˜์ง‘ํ•ด์•ผ ํ•˜๋Š”๋ฐ, ์ด๋Š” ์ดฌ์˜ยท์ €์ž‘๊ถŒยทํ”„๋ผ์ด๋ฒ„์‹œ ๋“ฑ ์—ฌ๋Ÿฌ ์ œ์•ฝ์œผ๋กœ ์ธํ•ด ํŠนํžˆ ์˜๋ฃŒยท๋ฒ•๋ฅ ยท์‚ฐ์—… ํ˜„์žฅ ๋“ฑ ํŠน์ˆ˜ ๋„๋ฉ”์ธ์—์„œ ์–ด๋ ค์›€์„ ๊ฒช๋Š”๋‹ค. ๋ฐ˜๋ฉด ํ…์ŠคํŠธ๋Š” ์›นยท๋…ผ๋ฌธยท๋ณด๊ณ ์„œ ๋“ฑ์—์„œ ์†์‰ฝ๊ฒŒ ํ™•๋ณดํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ, ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(LLM)์„ ์ด์šฉํ•ด ์ž๋™์œผ๋กœ ๋ณ€ํ˜•ยทํ™•์žฅํ•  ์ˆ˜ ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ํ…์ŠคํŠธ๋งŒ์œผ๋กœ LVLM์„ ํ•™์Šตํ•˜๋ฉด โ€˜๋ชจ๋‹ฌ๋ฆฌํ‹ฐ ๊ฒฉ์ฐจ(modality gap)โ€™๊ฐ€ ๋ฐœ์ƒํ•œ๋‹ค

Model
Re-Key-Free, Risky-Free: Adaptable Model Usage Control

Re-Key-Free, Risky-Free: Adaptable Model Usage Control

ADALOC์ด ์ œ์‹œํ•˜๋Š” ํ•ต์‹ฌ ์•„์ด๋””์–ด๋Š” โ€œํ‚ค ์˜์—ญ(Access Key Region)โ€์„ ๋ชจ๋ธ ํŒŒ๋ผ๋ฏธํ„ฐ์˜ ์ผ๋ถ€๋กœ ๊ณ ์ •ํ•˜๊ณ , ์ดํ›„ ๋ฐœ์ƒํ•˜๋Š” ๋ชจ๋“  ํŒŒ์ธํŠœ๋‹ยท์ „์ดํ•™์Šตยท๋„๋ฉ”์ธ ์ ์‘ ๋“ฑ์„ ์ด ์˜์—ญ์—๋งŒ ์ œํ•œํ•œ๋‹ค๋Š” ์ ์ด๋‹ค. ๊ธฐ์กด์˜ ํ‚ค ๊ธฐ๋ฐ˜ ๋ณดํ˜ธ ๋ฐฉ์‹์€ ์ „์ฒด ํŒŒ๋ผ๋ฏธํ„ฐ์— ์•”ํ˜ธํ™”๋œ ๋งˆ์Šคํฌ๋ฅผ ์ ์šฉํ•˜๊ฑฐ๋‚˜, ํŠน์ • ๋ ˆ์ด์–ด์— ๋น„๋ฐ€๊ฐ’์„ ์‚ฝ์ž…ํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฐฉ๋ฒ•์€ ๋ชจ๋ธ์ด ์—…๋ฐ์ดํŠธ๋  ๋•Œ ๋งˆ์Šคํฌ๊ฐ€ ์†์ƒ๋˜๊ฑฐ๋‚˜, ์ƒˆ๋กœ์šด ํŒŒ๋ผ๋ฏธํ„ฐ๊ฐ€ ํ‚ค์™€ ๋…๋ฆฝ์ ์œผ๋กœ ๋ณ€ํ˜•๋ผ ๋ณดํ˜ธ๊ฐ€ ๋ฌดํšจํ™”๋˜๋Š” ๋ฌธ์ œ๊ฐ€ ์žˆ๋‹ค. ADALOC์€ ์ฒ˜์Œ ํ‚ค๋ฅผ ์„ ์ •ํ•  ๋•Œ, ๋ชจ๋ธ์˜ ์†์‹ค ๊ณก๋ฉด๊ณผ ํŒŒ๋ผ๋ฏธํ„ฐ ๋ฏผ๊ฐ๋„๋ฅผ ๋ถ„์„ํ•ด โ€œ์—…๋ฐ

Model
Polarity-Aware Probing for Quantifying Latent Alignment in Language Models

Polarity-Aware Probing for Quantifying Latent Alignment in Language Models

๋ณธ ๋…ผ๋ฌธ์€ ์ตœ๊ทผ ๊ธ‰๋ถ€์ƒํ•˜๊ณ  ์žˆ๋Š” ๋น„์ง€๋„ํ˜• ํƒ์ง€ ๊ธฐ๋ฒ•์ธ Contrastโ€‘Consistent Search(CCS)์˜ ์ •๋ ฌ ํ‰๊ฐ€ ๊ฐ€๋Šฅ์„ฑ์„ ์‹ฌ๋„ ์žˆ๊ฒŒ ํƒ๊ตฌํ•œ๋‹ค. ๊ธฐ์กด CCS๋Š” ๋ชจ๋ธ์ด ํŠน์ • ์ž…๋ ฅ์— ๋Œ€ํ•ด ์ผ๊ด€๋œ ๋‚ด๋ถ€ ํ‘œํ˜„์„ ์ƒ์„ฑํ•˜๋Š”์ง€๋ฅผ ํ™•์ธํ•จ์œผ๋กœ์จ, ํ† ํฐ ์ˆ˜์ค€์˜ ์ถœ๋ ฅ ์—†์ด๋„ ๋ชจ๋ธ์ด ์–ด๋–ค โ€˜์‹ ๋…โ€™์„ ๊ฐ€์ง€๊ณ  ์žˆ๋Š”์ง€๋ฅผ ์ถ”๋ก ํ•œ๋‹ค๋Š” ์žฅ์ ์ด ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ด๋Ÿฌํ•œ ์ ‘๊ทผ์ด ์‹ค์ œ๋กœ ๋ชจ๋ธ์ด ํ•ด๋กœ์šด ๋‚ด์šฉ๊ณผ ์•ˆ์ „ํ•œ ๋‚ด์šฉ์„ ์–ด๋–ป๊ฒŒ ๊ตฌ๋ถ„ํ•˜๊ณ , ๊ทธ ๊ตฌ๋ถ„์ด ์ •๋ ฌ(Alignment)๊ณผ ์–ผ๋งˆ๋‚˜ ์—ฐ๊ด€๋˜๋Š”์ง€๋Š” ์•„์ง ๋ช…ํ™•ํžˆ ๊ทœ๋ช…๋˜์ง€ ์•Š์•˜๋‹ค. ์—ฐ๊ตฌ์ง„์€ ๋จผ์ € CCS๊ฐ€ ํ•ด๋กœ์šด ์ง„์ˆ ๊ณผ

Model
Damage spreading in the sandpile model of SOC

Damage spreading in the sandpile model of SOC

๋ณธ ๋…ผ๋ฌธ์€ ๋ชจ๋ž˜๋”๋ฏธ ๋ชจ๋ธ์—์„œ ์ž‘์€ ๊ต๋ž€์ด ์–ด๋–ป๊ฒŒ ํ™•์‚ฐ๋˜๋Š”์ง€๋ฅผ ์—ฐ๊ตฌํ•˜๋Š” ๊ฒƒ์œผ๋กœ, ์ด๋Š” ์ž์œจ ์‹œ์Šคํ…œ์˜ ๋™์  ํ–‰๋™์— ๋Œ€ํ•œ ์ค‘์š”ํ•œ ์ดํ•ด๋ฅผ ์ œ๊ณตํ•œ๋‹ค. ํŠนํžˆ, ์ด ์—ฐ๊ตฌ๋Š” ์†์ƒ(damage)์˜ ํ™•์‚ฐ์„ ํ†ตํ•ด SOC ์ƒํƒœ์—์„œ์˜ ์—ญ๋™์„ฑ์„ ํƒ๊ตฌํ•˜๋ฉฐ, ์ด๋ฅผ ํ†ตํ•ด ๋ชจ๋ž˜๋”๋ฏธ ๋ชจ๋ธ์ด ์–ด๋–ป๊ฒŒ ์ž๊ธฐ ์กฐ์งํ™”๋˜๊ณ  ๋น„ํŒ์ ์ธ ์ƒํƒœ๋ฅผ ์œ ์ง€ํ•˜๋Š”์ง€์— ๋Œ€ํ•œ ๊นŠ์€ ํ†ต์ฐฐ๋ ฅ์„ ์ œ๊ณตํ•œ๋‹ค. 1. ๋ชจ๋ธ ๋ฐ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๋ชจ๋ž˜๋”๋ฏธ ๋ชจ๋ธ์€ ๊ฒฉ์ž ์ž๋™์ž ๋ชจ๋ธ๋กœ, ๊ฐ ์‚ฌ์ดํŠธ๋Š” ์ •์ˆ˜ ๊ฐ’์„ ๊ฐ€์งˆ ์ˆ˜ ์žˆ๋Š” ๋ณ€์ˆ˜ z(i, j)๋ฅผ ๊ฐ–๋Š”๋‹ค. ์ด ๊ฐ’์€ ๋ชจ๋ž˜ ์ž…์ž๊ฐ€ ์ถ”๊ฐ€๋  ๋•Œ๋งˆ๋‹ค ์ฆ๊ฐ€ํ•˜๊ณ , ํŠน์ • ์ž„๊ณ„๊ฐ’ zm์—

Condensed Matter Nonlinear Sciences Model
Turbulent viscosity variability in self-propelled body wake model

Turbulent viscosity variability in self-propelled body wake model

: ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ž๊ฐ€ ์ถ”์ง„์ฒด์˜ ๋‚œ๋ฅ˜ ํ›„๋ฅ˜์—์„œ ์ผ์ •ํ•œ ๋‚œ๋ฅ˜ ์ ๋„ ๊ฐ€์ •์„ ํ๊ธฐํ•˜๊ณ , ์ขŒํ‘œ์— ๋”ฐ๋ฅธ ๋ณ€๋™์„ ๊ณ ๋ คํ•˜๋Š” ์ƒˆ๋กœ์šด ์ ‘๊ทผ ๋ฐฉ์‹์„ ์ œ์‹œํ•œ๋‹ค. ์ด๋Š” ์‹ค์ œ ํ๋ฆ„ ํ˜„์ƒ๊ณผ ๋” ์ž˜ ๋ถ€ํ•ฉํ•˜๋ฉฐ, ๊ธฐ์กด ๋ชจ๋ธ์˜ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๋ ค๋Š” ์‹œ๋„์ด๋‹ค. 1. ๋‚œ๋ฅ˜ ํ›„๋ฅ˜์˜ ์ค‘์š”์„ฑ ๋‚œ๋ฅ˜ ํ›„๋ฅ˜์˜ ์—ฐ๊ตฌ๋Š” ๊ณผํ•™์  ์ดํ•ด๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ์‹ค์šฉ์ ์ธ ์ธก๋ฉด์—์„œ๋„ ๋งค์šฐ ์ค‘์š”ํ•˜๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด, ๊ณตํ•ญ ์šด์˜์—์„œ๋Š” ๋‚œ๋ฅ˜ ํ›„๋ฅ˜๊ฐ€ ๋น„ํ–‰๊ธฐ์˜ ์ด์ฐฉ๋ฅ™์— ์˜ํ–ฅ์„ ๋ฏธ์น˜๋ฉฐ, ํ•ด์–‘ ํ‘œ์ธต์—์„œ์˜ ํ˜ผํ•ฉ ๊ณผ์ •์€ ์„ ๋ฐ•์˜ ์šดํ•ญ๊ณผ ์ง์ ‘์ ์œผ๋กœ ์—ฐ๊ด€๋˜์–ด ์žˆ๋‹ค. ํŠนํžˆ, ์„ ๋ฐ•์˜ ๋‚œ๋ฅ˜ ํ›„๋ฅ˜๋Š” ๋ ˆ์ด๋” ๊ด€์ธก ํ•ด์„์—์„œ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•˜

Physics Model
No Image

A 3D Multiscale Modelling of Cortical Bone Structure, Using the Inverse Identification Method: Microfibril Scale Study

: ๋ณธ ๋…ผ๋ฌธ์€ ์••์ถ•์„ฑ ๋ผˆ์˜ ๋ฏธ์„ธ๊ตฌ์กฐ๋ฅผ ๋‹ค์ค‘ ๊ทœ๋ชจ ๋ชจ๋ธ๋ง์„ ํ†ตํ•ด ๋ถ„์„ํ•˜๊ณ ์ž ํ•˜๋Š” ์—ฐ๊ตฌ๋กœ, ํŠนํžˆ ๋ฏธ์„ธ์„ฌ์œ (microfibril) ์ˆ˜์ค€์—์„œ์˜ ๊ตฌ์กฐ์™€ ๊ธฐ๊ณ„์  ํŠน์„ฑ์„ ํƒ๊ตฌํ•ฉ๋‹ˆ๋‹ค. ์ด๋Š” ๊ณจ์งˆ(cortical bone) ๋‚ด์—์„œ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•˜๋Š” ์ฝœ๋ผ๊ฒ ์„ฌ์œ ์™€ ๊ทธ์— ํฌํ•จ๋œ ํŠธ๋กœํฌ์ฝœ๋ผ๊ฒ ๋ถ„์ž๋“ค์˜ ๋ฐฐ์—ด ๋ฐ ๋ฏธ๋„ค๋ž„ํ™” ๊ณผ์ •์— ๋Œ€ํ•œ ์‹ฌ๋„ ์žˆ๋Š” ์ดํ•ด๋ฅผ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค. 1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ๊ณผ ๋ชฉ์  ๋ณธ ์—ฐ๊ตฌ๋Š” ์••์ถ•์„ฑ ๋ผˆ์˜ ๋ณต์žกํ•œ ๊ตฌ์กฐ๋ฅผ ์ดํ•ดํ•˜๊ณ , ์ด๋ฅผ ํ†ตํ•ด ๋ผˆ์˜ ๊ธฐ๊ณ„์  ํŠน์„ฑ์„ ๋ถ„์„ํ•˜๋ ค๋Š” ๋ชฉ์ ์œผ๋กœ ์ˆ˜ํ–‰๋˜์—ˆ์Šต๋‹ˆ๋‹ค. ์ด์ „ ์—ฐ๊ตฌ๋“ค์€ ์ฃผ๋กœ ๋ฏธ์„ธ์„ฌ์œ ์˜ ๊ธฐํ•˜ํ•™์  ํŠน์„ฑ ๋ฐ ๋ถ„์ž ๋ฐฐ

Physics Model
A Non-Equilibrium Ionization Model of the Local and Loop I Bubbles -   Tracing the Ovi Distribution

A Non-Equilibrium Ionization Model of the Local and Loop I Bubbles - Tracing the Ovi Distribution

: ๋ณธ ๋…ผ๋ฌธ์€ ํ˜„์ง€ ๊ฑฐํ’ˆ(Local Bubble)๊ณผ Loop I ๊ฑฐํ’ˆ์˜ ๋น„ํ‰ํ˜• ์ด์˜จํ™” ๊ตฌ์กฐ์— ๋Œ€ํ•œ ์‹ฌ์ธต์ ์ธ ๋ถ„์„์„ ์ œ๊ณตํ•˜๋ฉฐ, ํŠนํžˆ OVI(Oxygen VI) ํก์ˆ˜ ๊ธฐ์กฐ ๋ฐ€๋„์™€ ๊ด€๋ จ๋œ ๊ด€์ธก ๋ฐ์ดํ„ฐ๋ฅผ ์žฌํ˜„ํ•˜๋Š” ๋ฐ ์ดˆ์ ์„ ๋งž์ถ”๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์—ฐ๊ตฌ๋Š” ๊ณ ํ•ด์ƒ๋„ 3์ฐจ์› ์œ ์ฒด์—ญํ•™ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ํ†ตํ•ด ์ด์˜จํ™” ๊ตฌ์กฐ์˜ ์ง„ํ™”๋ฅผ ์ถ”์ ํ•˜๊ณ , ์ด๋ฅผ ์‹ค์ œ ๊ด€์ธก ๊ฒฐ๊ณผ์™€ ๋น„๊ตํ•˜์—ฌ LB ๋ฐ Loop I ๊ฑฐํ’ˆ์˜ ๋ฌผ๋ฆฌ์  ํŠน์„ฑ์„ ์ดํ•ดํ•˜๋Š”๋ฐ ์ค‘์ ์„ ๋‘์—ˆ์Šต๋‹ˆ๋‹ค. ์„œ๋ก : ํ˜„์ง€ ๊ฑฐํ’ˆ์€ ํƒœ์–‘๊ณ„ ์ฃผ๋ณ€์— ์œ„์น˜ํ•œ X์„  ๋ฐฉ์ถœ ์ง€์—ญ์œผ๋กœ, ๊ทธ ํฌ๊ธฐ์™€ ์„ฑ์งˆ์ด ์—ฌ์ „ํžˆ ์™„๋ฒฝํ•˜๊ฒŒ ์ดํ•ด๋˜์ง€ ์•Š์€ ์ƒํƒœ

Model Astrophysics
Modelling of Genetic Regulatory Mechanisms with GReg

Modelling of Genetic Regulatory Mechanisms with GReg

๋ณธ ๋…ผ๋ฌธ์€ ์œ ์ „์  ์กฐ์ ˆ ๋ฉ”์ปค๋‹ˆ์ฆ˜์˜ ๋ชจ๋ธ๋ง์— ์žˆ์–ด ๊ธฐ์กด ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๋„๊ตฌ์™€ ๋ชจ๋ธ ์ฒดํฌ(model checking) ๊ธฐ๋ฒ• ์‚ฌ์ด์˜ ๊ท ํ˜•์ ์„ ์ฐพ๋Š” ๋ฐ ์ดˆ์ ์„ ๋งž์ถ”๊ณ  ์žˆ๋‹ค. ํŠนํžˆ, GReg์ด๋ผ๋Š” ๋„๋ฉ”์ธ ํŠน์ • ์–ธ์–ด(DSL)๋ฅผ ๊ฐœ๋ฐœํ•˜์—ฌ ์ƒ๋ฌผํ•™์  ๊ฐœ๋…์„ ํ˜•์‹ํ™”ํ•˜๊ณ , ์ด๋ฅผ ํ†ตํ•ด ๋น„์ „๋ฌธ๊ฐ€๋„ ์‰ฝ๊ฒŒ ์ ‘๊ทผํ•  ์ˆ˜ ์žˆ๋Š” ๋ชจ๋ธ ์ฒดํฌ ๋„๊ตฌ๋ฅผ ์ œ๊ณตํ•œ๋‹ค. 1. DSL์˜ ํ•„์š”์„ฑ ์ƒ๋ช…๊ณผํ•™ ๋ถ„์•ผ์—์„œ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๊ธฐ๋ฒ•์€ ๋„๋ฆฌ ์‚ฌ์šฉ๋˜๊ณ  ์žˆ์ง€๋งŒ, ์ด๋Š” ํŠน์ • ์กฐ๊ฑด ํ•˜์—๋งŒ ๊ฐ€๋Šฅํ•œ ํ–‰๋™์„ ํƒ์ƒ‰ํ•˜๋Š” ๋ฐ ๊ทธ์น˜๋ฉฐ, ์ „์ฒด์ ์ธ ์‹œ์Šคํ…œ ๋™์ž‘์„ ์™„์ „ํžˆ ์ดํ•ดํ•˜๊ธฐ์—๋Š” ํ•œ๊ณ„๊ฐ€ ์žˆ๋‹ค. ๋ฐ˜๋ฉด, ๋ชจ๋ธ ์ฒดํฌ๋Š”

Computational Engineering Model Logic Computer Science
No Image

Multiscale Modelling: A Mobile Membrane Approach

: ๋ณธ ๋…ผ๋ฌธ์€ ์ƒ๋ฌผํ•™์  ๊ณผ์ • ์—ฐ๊ตฌ์— ์žˆ์–ด ๋‹ค์ค‘ ๊ทœ๋ชจ ๋ชจ๋ธ๋ง์˜ ์ค‘์š”์„ฑ๊ณผ ๊ทธ ๊ตฌํ˜„ ๋ฐฉ๋ฒ•์„ ํƒ๊ตฌํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ํŠนํžˆ, ์ด๋™์„ฑ ๋ง‰ ์‹œ์Šคํ…œ์ด ์ด๋Ÿฌํ•œ ๋ชจ๋ธ๋ง ์ ‘๊ทผ๋ฒ•์—์„œ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•˜๋Š”๋ฐ ์ดˆ์ ์„ ๋งž์ถ”๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. 1. ๋‹ค์ค‘ ๊ทœ๋ชจ ๋ชจ๋ธ๋ง์˜ ํ•„์š”์„ฑ ์ž์—ฐ ํ˜„์ƒ์€ ๋‹ค์–‘ํ•œ ๊ณต๊ฐ„์  ๋ฐ ์‹œ๊ฐ„์  ๊ทœ๋ชจ์—์„œ ์ƒํ˜ธ์ž‘์šฉํ•˜๋ฉฐ ๋ฐœ์ƒํ•ฉ๋‹ˆ๋‹ค. ๋”ฐ๋ผ์„œ, ์ด๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ์—ฐ๊ตฌํ•˜๋ ค๋ฉด ๋‹ค์ค‘ ๊ทœ๋ชจ ๋ชจ๋ธ๋ง์ด ํ•„์ˆ˜์ ์ž…๋‹ˆ๋‹ค. ๋ณต์žก ์ž๋™๋ฌธ(CxA)์€ ์ด๋Ÿฌํ•œ ๋‹ค์ค‘ ๊ทœ๋ชจ ์ ‘๊ทผ๋ฒ•์„ ๊ตฌํ˜„ํ•˜๋Š” ๋ฐ ๊ฐ€์žฅ ์ ํ•ฉํ•œ ์‹œ์Šคํ…œ์œผ๋กœ ๊ฐ„์ฃผ๋ฉ๋‹ˆ๋‹ค. 2. ์ด๋™์„ฑ ๋ง‰ ์‹œ์Šคํ…œ์˜ ํ™œ์šฉ ์ด๋™์„ฑ ๋ง‰ ์‹œ์Šคํ…œ์€ ์ƒ๋ฌผํ•™์  ์›€

Formal Languages Quantitative Biology Model Computer Science Emerging Technologies
Petri Nets and Bio-Modelling - and how to benefit from their synergy

Petri Nets and Bio-Modelling - and how to benefit from their synergy

: ๋ณธ ๋…ผ๋ฌธ์€ ํŽ˜ํŠธ๋ฆฌ๋„ท๊ณผ ์ƒ๋ฌผํ•™์  ์‹œ์Šคํ…œ ๊ฐ„์˜ ์ƒํ˜ธ์ž‘์šฉ์„ ํ†ตํ•ด ์–ป์„ ์ˆ˜ ์žˆ๋Š” ์ด์ ์„ ํƒ๊ตฌํ•ฉ๋‹ˆ๋‹ค. ํŽ˜ํŠธ๋ฆฌ๋„ท์€ ๋™์‹œ์„ฑ๊ณผ ๋ถ„์‚ฐ ๊ณ„์‚ฐ์„ ์œ„ํ•œ ๊ฐ•๋ ฅํ•œ ๋„๊ตฌ๋กœ, ํ–‰๋™ ํŠน์„ฑ์„ ๋ถ„์„ํ•˜๊ณ  ๊ฒ€์ฆํ•˜๋Š” ๋ฐ ์‚ฌ์šฉ๋ฉ๋‹ˆ๋‹ค. ์ƒ๋ฌผํ•™์  ๊ณผ์ •์„ ์ดํ•ดํ•˜๊ธฐ ์œ„ํ•ด ์ œ์•ˆ๋œ ๋ง‰ ์‹œ์Šคํ…œ๊ณผ ๋ฐ˜์‘ ์‹œ์Šคํ…œ์€ ์„ธํฌ ๋‚ด ํ™”ํ•™ ๋ฐ˜์‘์„ ์ถ”์ƒํ™”ํ•œ ๋ชจ๋ธ์ž…๋‹ˆ๋‹ค. ํŽ˜ํŠธ๋ฆฌ๋„ท์˜ ์›์ธ๊ณผ ๋™์‹œ์„ฑ ์˜๋ฏธ๋ก ์— ๋Œ€ํ•œ ์ดํ•ด๋Š” ํŽ˜ํŠธ๋ฆฌ๋„ท์ด ์–ด๋–ป๊ฒŒ ์ƒ๋ฌผํ•™์  ๊ณผ์ •์„ ์ •ํ™•ํžˆ ๋ชจ๋ธ๋งํ•  ์ˆ˜ ์žˆ๋Š”์ง€ ์„ค๋ช…ํ•˜๋Š” ๋ฐ ์ค‘์š”ํ•ฉ๋‹ˆ๋‹ค. ๋ง‰ ์‹œ์Šคํ…œ์€ ์„ธํฌ ๋‚ด ํ™”ํ•™ ๋ฐ˜์‘์—์„œ ์˜๊ฐ์„ ๋ฐ›์•„ ๊ฐœ๋ฐœ๋˜์—ˆ์œผ๋ฉฐ, ์ด๋Š” ํŽ˜ํŠธ๋ฆฌ๋„ท๊ณผ ์œ ์‚ฌํ•œ ๋‹ค์ค‘ ์ง‘ํ•ฉ ์žฌ๊ตฌ

Formal Languages Distributed Computing Model Computer Science
Development and Modelling of High-Efficiency Computing Structure for   Digital Signal Processing

Development and Modelling of High-Efficiency Computing Structure for Digital Signal Processing

๋ณธ ๋…ผ๋ฌธ์˜ ํ•ต์‹ฌ ๋‚ด์šฉ์€ ์Šคํ”Œ๋ผ์ธ(spline) ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ํ™œ์šฉํ•œ ๊ณ ์† ์‹ ํ˜ธ ๋ณต์› ์ปดํ“จํŒ… ๊ตฌ์กฐ ๊ฐœ๋ฐœ์— ๋Œ€ํ•œ ๊ฒƒ์ž…๋‹ˆ๋‹ค. ์ด ์—ฐ๊ตฌ๋Š” ๋””์ง€ํ„ธ ์‹ ํ˜ธ ์ฒ˜๋ฆฌ ๋ถ„์•ผ์—์„œ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•˜๋Š” ์Šคํ”Œ๋ผ์ธ ๋ชจ๋ธ์˜ ๋ฐœ์ „๊ณผ ์ ์šฉ์— ์ค‘์ ์„ ๋‘๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. 1. ์Šคํ”Œ๋ผ์ธ ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ์ค‘์š”์„ฑ ์Šคํ”Œ๋ผ์ธ์€ ๋‹ค์–‘ํ•œ ์ฝ๊ธฐ ์ฒ˜๋ฆฌ ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ๋ณดํŽธ์„ฑ์„ ์ œ๊ณตํ•˜๋ฉฐ, ์šฐ์ˆ˜ํ•œ ๋ฏธ๋ถ„ ๋ฐ ๊ทนํ•œ ํŠน์„ฑ, ๋†’์€ ์ถ”์ • ์ˆ˜๋ ด๋„๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ์–ด ์‹ ํ˜ธ ๋ถ„์„๊ณผ ๋ณต์›์— ๋„๋ฆฌ ์‚ฌ์šฉ๋˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ํŠนํžˆ ์Šคํ”Œ๋ผ์ธ์€ ๋‹จ์ˆœํ•œ ํ˜•ํƒœ์™€ ํŒŒ๋ผ๋ฏธํ„ฐ ๊ณ„์‚ฐ, ๊ทธ๋ฆฌ๊ณ  ๋ผ์šด๋“œ ์˜ค๋ฅ˜์— ๋Œ€ํ•œ ์•ฝํ•œ ์˜ํ–ฅ์œผ๋กœ ์ธํ•ด 1์ฐจ์› ๋ฐ ๋‹ค๋ณ€์ˆ˜ ์‹ 

Numerical Analysis Model Computer Science
Multiscale approach for bone remodeling simulation based on finite   element and neural network computation

Multiscale approach for bone remodeling simulation based on finite element and neural network computation

: ๋ณธ ๋…ผ๋ฌธ์€ ๊ณจ ์žฌ๊ตฌ์„ฑ ๊ณผ์ •์„ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ํ•˜๊ธฐ ์œ„ํ•œ ์ƒˆ๋กœ์šด ๋‹ค์ค‘ ๊ทœ๋ชจ ์ ‘๊ทผ ๋ฐฉ์‹, ์ฆ‰ ํ•˜์ด๋ธŒ๋ฆฌ๋“œ FENN(Finite Element and Neural Network) ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ์ด ๋ฐฉ๋ฒ•์˜ ํ•ต์‹ฌ์€ ์œ ํ•œ ์š”์†Œ ๋ถ„์„๊ณผ ์ธ๊ณต ์‹ ๊ฒฝ๋ง ๊ณ„์‚ฐ์„ ๊ฒฐํ•ฉํ•˜์—ฌ ๊ณจ ์žฌ๊ตฌ์„ฑ ๊ณผ์ •์—์„œ ๋ฐœ์ƒํ•˜๋Š” ๋ณต์žกํ•œ ํ˜„์ƒ์„ ํšจ๊ณผ์ ์œผ๋กœ ๋ชจ๋ธ๋งํ•˜๊ณ  ์‹œ๋ฎฌ๋ ˆ์ด์…˜ํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•˜๋Š” ๊ฒƒ์ด๋‹ค. 1. ๋‹ค์ค‘ ๊ทœ๋ชจ ์ ‘๊ทผ ๋ฐฉ์‹์˜ ํ•„์š”์„ฑ ๊ณจ ์žฌ๊ตฌ์„ฑ์€ ๋ผˆ์˜ ๋ฏธ์„ธ ๊ตฌ์กฐ๋ถ€ํ„ฐ ๊ฑฐ์‹œ์  ํ–‰๋™๊นŒ์ง€ ๋‹ค์–‘ํ•œ ๊ทœ๋ชจ์—์„œ ๋ฐœ์ƒํ•˜๋Š” ๋ณต์žกํ•œ ๊ณผ์ •์ด๋‹ค. ์ด ๊ณผ์ •์„ ์ •ํ™•ํ•˜๊ฒŒ ๋ชจ๋ธ๋งํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ๊ฐ ์ˆ˜์ค€์—์„œ์˜ ์ƒํ˜ธ

Quantitative Biology Model Network Physics

< Category Statistics (Total: 743) >

Electrical Engineering and Systems Science
7
General
272
General Relativity
7
HEP-EX
5
HEP-PH
12
HEP-TH
5
MATH-PH
3
NUCL-TH
1
Quantum Physics
10

Start searching

Enter keywords to search articles

โ†‘โ†“
โ†ต
ESC
โŒ˜K Shortcut