Learning

All posts under tag "Learning"

65 posts total
Sorted by date
TACK Tunnel Data (TTD): A Benchmark Dataset for Deep Learning-Based Defect Detection in Tunnels

TACK Tunnel Data (TTD): A Benchmark Dataset for Deep Learning-Based Defect Detection in Tunnels

๋ณธ ๋…ผ๋ฌธ์€ ํ„ฐ๋„ ๊ฒฐํ•จ ๊ฒ€์‚ฌ๋ฅผ ์œ„ํ•œ ์ƒˆ๋กœ์šด ๋ฐ์ดํ„ฐ์…‹์„ ์†Œ๊ฐœํ•˜๋ฉฐ, ์ด๋Š” ๋”ฅ๋Ÿฌ๋‹ ๋ชจ๋ธ์˜ ํ•™์Šต๊ณผ ์„ฑ๋Šฅ ๊ฐœ์„ ์— ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•ฉ๋‹ˆ๋‹ค. ํ„ฐ๋„์€ ๊ตํ†ต ์ธํ”„๋ผ์˜ ์ฃผ์š” ๊ตฌ์„ฑ ์š”์†Œ๋กœ, ์•ˆ์ „์„ฑ์„ ์œ ์ง€ํ•˜๊ธฐ ์œ„ํ•ด ์ •๊ธฐ์ ์ธ ์ ๊ฒ€์ด ํ•„์ˆ˜์ ์ž…๋‹ˆ๋‹ค. ํ•˜์ง€๋งŒ ์ „ํ†ต์ ์ธ ์ˆ˜๋™ ๊ฒ€์‚ฌ ๋ฐฉ๋ฒ•์€ ์‹œ๊ฐ„ ์†Œ๋ชจ๊ฐ€ ๋งŽ๊ณ  ๋น„์šฉ์ด ๋†’์œผ๋ฉฐ ์ฃผ๊ด€์ ์ด์–ด์„œ ์ œํ•œ์ ์ด ์žˆ์Šต๋‹ˆ๋‹ค. ๋ชจ๋ฐ”์ผ ๋งคํ•‘ ์‹œ์Šคํ…œ๊ณผ ๋”ฅ๋Ÿฌ๋‹์˜ ๋ฐœ์ „์œผ๋กœ ์ž๋™ํ™”๋œ ์‹œ๊ฐ ๊ฒ€์‚ฌ๊ฐ€ ๊ฐ€๋Šฅํ•ด์กŒ์ง€๋งŒ, ์ด๋ฅผ ์œ„ํ•œ ์ถฉ๋ถ„ํ•œ ๋ฐ์ดํ„ฐ์…‹์ด ๋ถ€์กฑํ•˜์—ฌ ๊ทธ ํšจ๊ณผ๊ฐ€ ์ œํ•œ๋˜์–ด ์™”์Šต๋‹ˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ ์†Œ๊ฐœํ•˜๋Š” ์ƒˆ๋กœ์šด ๋ฐ์ดํ„ฐ์…‹์€ ์„ธ ๊ฐ€์ง€ ๋‹ค๋ฅธ ์ข…๋ฅ˜์˜ ํ„ฐ๋„ ๋ผ์ด๋‹์—

Learning Data Detection
No Image

Embedding-Based Rankings of Educational Resources based on Learning Outcome Alignment: Benchmarking, Expert Validation, and Learner Performance

๋ณธ ๋…ผ๋ฌธ์€ ๊ต์œก ๊ธฐ์ˆ  ๋ถ„์•ผ์—์„œ โ€˜ํ•™์Šต ๋ชฉํ‘œ์™€ ๊ต์œก ์ž๋ฃŒ ๊ฐ„ ์ •๋ ฌ(alignment)โ€™์ด๋ผ๋Š” ํ•ต์‹ฌ ๋ฌธ์ œ๋ฅผ ์ž๋™ํ™”ํ•˜๋ ค๋Š” ์‹œ๋„๋กœ์„œ, ํ…์ŠคํŠธ ์ž„๋ฒ ๋”ฉ ๋ชจ๋ธ์„ ํ™œ์šฉํ•œ ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์‹œํ•œ๋‹ค. ์—ฐ๊ตฌ๋Š” ํฌ๊ฒŒ ์„ธ ๋‹จ๊ณ„๋กœ ๊ตฌ์„ฑ๋œ๋‹ค. ์ฒซ ๋ฒˆ์งธ ๋‹จ๊ณ„์—์„œ๋Š” ์ธ๊ฐ„์ด ์ง์ ‘ ๋งŒ๋“  ๊ต์œก ์ž๋ฃŒ๋ฅผ ๊ธฐ์ค€ ๋ฐ์ดํ„ฐ์…‹์œผ๋กœ ํ™œ์šฉํ•ด ์—ฌ๋Ÿฌ LLM ๊ธฐ๋ฐ˜ ์ž„๋ฒ ๋”ฉ ๋ชจ๋ธ(Voyage, OpenAIโ€‘Ada ๋“ฑ)์„ ๋น„๊ต ํ‰๊ฐ€ํ•˜์˜€๋‹ค. ์—ฌ๊ธฐ์„œ โ€˜์ •๋ ฌโ€™์€ ํ•™์Šต ๋ชฉํ‘œ์™€ ์ž๋ฃŒ ๋‚ด์šฉ ์‚ฌ์ด์˜ ์˜๋ฏธ์  ์œ ์‚ฌ์„ฑ์„ ์ˆ˜์น˜ํ™”ํ•œ ์ ์ˆ˜๋กœ ์ •์˜๋˜๋ฉฐ, ์ธ๊ฐ„ ํ‰๊ฐ€์ž๋“ค์˜ ๋ผ๋ฒจ๋ง์„ ์ •๋‹ต์œผ๋กœ ์‚ผ์•„ ๋ชจ๋ธ์˜ ์ •ํ™•๋„๋ฅผ ์ธก์ •ํ•˜์˜€๋‹ค.

Learning
Qonvolution: Towards Learning High-Frequency Signals with Queried Convolution

Qonvolution: Towards Learning High-Frequency Signals with Queried Convolution

๋ณธ ๋…ผ๋ฌธ์€ ๊ณ ์ฃผํŒŒ ์‹ ํ˜ธ ํ•™์Šต์˜ ์–ด๋ ค์›€์„ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด Qonvolutions์ด๋ผ๋Š” ์ƒˆ๋กœ์šด ์ ‘๊ทผ๋ฒ•์„ ์ œ์‹œํ•ฉ๋‹ˆ๋‹ค. ์ด ๋ฐฉ๋ฒ•์€ ๊ธฐ์กด์˜ ์‹ ๊ฒฝ๋ง์ด ๊ณ ์ฃผํŒŒ ์ •๋ณด๋ฅผ ์ฒ˜๋ฆฌํ•˜๋Š” ๋ฐ ์–ด๋ ค์›€์„ ๊ฒช๋Š” ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ณ ์ž ์ €์ฃผํŒŒ ์‹ ํ˜ธ์™€ ์ฟผ๋ฆฌ(์˜ˆ: ์ขŒํ‘œ)๋ฅผ ํ•ฉ์„ฑํ•˜์—ฌ ๊ณ ์ฃผํŒŒ ์‹ ํ˜ธ๋ฅผ ๋” ์ž˜ ํ•™์Šตํ•  ์ˆ˜ ์žˆ๊ฒŒ ํ•ฉ๋‹ˆ๋‹ค. Qonvolutions์€ ๊ฐ„๋‹จํ•œ ๋ฐฉ๋ฒ•์ž„์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ , 1D ํšŒ๊ท€, 2D ์ดˆํ•ด์ƒ๋„, 2D ์ด๋ฏธ์ง€ ํšŒ๊ท€ ๋ฐ ์ƒˆ๋กœ์šด ์‹œ์  ํ•ฉ์„ฑ(NVS)๊ณผ ๊ฐ™์€ ๋‹ค์–‘ํ•œ ์ž‘์—…์—์„œ ์šฐ์ˆ˜ํ•œ ์„ฑ๋Šฅ์„ ๋ณด์—ฌ์ค๋‹ˆ๋‹ค. ํŠนํžˆ NVS์—์„œ๋Š” ๊ฐ€์šฐ์‹œ์•ˆ ์ŠคํŒŸํŒ…๊ณผ ๊ฒฐํ•ฉํ•˜์—ฌ ์‹ค์ œ ๋ณต์žกํ•œ ์žฅ๋ฉด์—์„œ๋„ ๋ผ

Learning
A Disproof of Large Language Model Consciousness: The Necessity of Continual Learning for Consciousness

A Disproof of Large Language Model Consciousness: The Necessity of Continual Learning for Consciousness

๋ณธ ๋…ผ๋ฌธ์€ ํ˜„๋Œ€ ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(LLMs)์˜ ์˜์‹ ๊ฐ€๋Šฅ์„ฑ์— ๋Œ€ํ•œ ์ฒ ํ•™์ ์ด๊ณ  ๊ณผํ•™์ ์ธ ์ ‘๊ทผ๋ฒ•์„ ์ œ์‹œํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ €์ž๋Š” ์ฆ๋ช… ๋ถˆ๊ฐ€๋Šฅ์„ฑ๊ณผ ๋น„์ž๋ช…์„ฑ์„ ์ถฉ์กฑํ•˜๋Š” ์ด๋ก ์ด ์žˆ์–ด์•ผ ํ•œ๋‹ค๋Š” ์š”๊ตฌ ์‚ฌํ•ญ์„ ๊ฐ•์กฐํ•˜๋ฉฐ, ์ด๋ฅผ ํ†ตํ•ด ํ˜„๋Œ€ LLMs์˜ ์˜์‹ ๊ฐ€๋Šฅ์„ฑ์„ ๊ฒ€์ฆํ•ฉ๋‹ˆ๋‹ค. ๋…ผ๋ฌธ์€ ๊ธฐ์กด์˜ ์ธ๊ณผ ๊ตฌ์กฐ์™€ ๊ธฐ๋Šฅ์— ๊ธฐ๋ฐ˜ํ•œ ์˜์‹ ์ด๋ก ๋“ค์ด ์ด๋Ÿฌํ•œ ์š”๊ตฌ ์กฐ๊ฑด์„ ๋งŒ์กฑํ•˜์ง€ ๋ชปํ•œ๋‹ค๋Š” ์ ์„ ์ง€์ ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. LLMs๋Š” ์ž…๋ ฅ/์ถœ๋ ฅ ๊ธฐ๋Šฅ ์ธก๋ฉด์—์„œ ํŠน์ • ์‹œ์Šคํ…œ๋“ค๊ณผ ๋™๋“ฑํ•˜๊ธฐ ๋•Œ๋ฌธ์—, ๊ทธ๋“ค์— ๋Œ€ํ•œ ์˜์‹ ๊ฐ€๋Šฅ์„ฑ์€ ์ฆ๋ช… ๋ถˆ๊ฐ€๋Šฅ์„ฑ๊ณผ ๋น„์ž๋ช…์„ฑ์„ ์ถฉ์กฑํ•˜๋Š” ์ด๋ก ์ด ์กด์žฌํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜

Learning Model
No Image

Federated Learning with Feedback Alignment

์ด ๋…ผ๋ฌธ์€ ์—ฐ๋ฐฉํ•™์Šต(Federated Learning, FL)์—์„œ ๋ฐœ์ƒํ•˜๋Š” ๋ฐ์ดํ„ฐ ์ด์งˆ์„ฑ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•œ ์ƒˆ๋กœ์šด ์ ‘๊ทผ๋ฒ•์ธ FLFA(Federated Learning with Feedback Alignment)์— ๋Œ€ํ•ด ์„ค๋ช…ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์—ฐ๋ฐฉํ•™์Šต์€ ํด๋ผ์ด์–ธํŠธ ๊ฐ„์˜ ๋ฐ์ดํ„ฐ ํ”„๋ผ์ด๋ฒ„์‹œ๋ฅผ ๋ณด์žฅํ•˜๋ฉด์„œ๋„ ํ˜‘์—… ํ•™์Šต์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•˜๋Š” ๊ธฐ์ˆ ์ž…๋‹ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๊ฐ ํด๋ผ์ด์–ธํŠธ์˜ ๋ฐ์ดํ„ฐ๊ฐ€ ๋…๋ฆฝ์ ์ด๊ณ  ๋™์ผํ•œ ๋ถ„ํฌ(IID)๊ฐ€ ์•„๋‹Œ ๊ฒฝ์šฐ, ์ฆ‰ ๋น„IID์ธ ๊ฒฝ์šฐ์—๋Š” ๋กœ์ปฌ ๋ชจ๋ธ๊ณผ ์ „์—ญ ๋ชจ๋ธ ๊ฐ„์— ์ˆ˜๋ ด์ด ์–ด๋ ค์›Œ์ง€๋ฉฐ ์ด๋ฅผ ๋กœ์ปฌ ๋“œ๋ฆฌํ”„ํŠธ ํ˜„์ƒ์ด๋ผ๊ณ  ํ•ฉ๋‹ˆ๋‹ค. FLFA๋Š”

Learning
Human-Inspired Learning for Large Language Models via Obvious Record and Maximum-Entropy Method Discovery

Human-Inspired Learning for Large Language Models via Obvious Record and Maximum-Entropy Method Discovery

์ด ๋…ผ๋ฌธ์€ ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(LLMs)์˜ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด ์ธ๊ฐ„ ํ•™์Šต ๊ณผ์ •์—์„œ ์˜๊ฐ์„ ์–ป๋Š” ์ƒˆ๋กœ์šด ์ ‘๊ทผ๋ฒ•์„ ์ œ์•ˆํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. LLMs์€ ํฐ ๊ทœ๋ชจ์˜ ๋ฐ์ดํ„ฐ๋กœ๋ถ€ํ„ฐ ์ผ๋ฐ˜์ ์ธ ํŒจํ„ด์„ ์ถ”์ถœํ•˜๋Š” ๋ฐ ํƒ์›”ํ•˜์ง€๋งŒ, ํฌ๊ท€ํ•˜๊ฑฐ๋‚˜ ์ €์ž์› ์ƒํ™ฉ์—์„œ๋Š” ์ด๋Ÿฌํ•œ ํŒจํ„ด์ด ๋ฐ์ดํ„ฐ ๋‚ด์— ์ถฉ๋ถ„ํžˆ ๋‚˜ํƒ€๋‚˜์ง€ ์•Š์•„ ์˜ˆ์ธก ๋Šฅ๋ ฅ์ด ์ œํ•œ๋ฉ๋‹ˆ๋‹ค. ์ด ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ๋…ผ๋ฌธ์€ ๋‘ ๊ฐ€์ง€ ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ํ†ตํ•ฉํ•˜๋Š” ์ธ๊ฐ„ ์˜๊ฐ ํ•™์Šต ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค: ์ฒซ ๋ฒˆ์งธ๋กœ, '๋ช…์‹œ์  ๊ธฐ๋ก'์€ ์›์ธ ๊ฒฐ๊ณผ ๋˜๋Š” ์งˆ๋ฌธ ํ•ด๊ฒฐ์ฑ… ๊ด€๊ณ„๋ฅผ ์ƒ์ง•์  ๋ฉ”๋ชจ๋ฆฌ์— ์ €์žฅํ•˜์—ฌ ๋‹จ์ผ ๋˜๋Š” ๋ถˆ๊ทœ์น™ํ•œ ๊ฒฝํ—˜์—์„œ๋„ ์ง€์†์ ์ธ

Learning Model
PRIVEE: Privacy-Preserving Vertical Federated Learning Against Feature Inference Attacks

PRIVEE: Privacy-Preserving Vertical Federated Learning Against Feature Inference Attacks

์ด ๋…ผ๋ฌธ์€ ์ˆ˜์ง์—ฐ๋ฐฉํ•™์Šต(VFL)์—์„œ ๋ฐœ์ƒํ•˜๋Š” ํŠน์ง• ์ถ”๋ก  ๊ณต๊ฒฉ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•œ ์ƒˆ๋กœ์šด ๋ฐฉ์–ด ๋ฉ”์ปค๋‹ˆ์ฆ˜์ธ PRIVEE๋ฅผ ์ œ์•ˆํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. VFL์€ ์„œ๋กœ ๋‹ค๋ฅธ ๋ฐ์ดํ„ฐ์…‹์„ ๊ฐ€์ง„ ์—ฌ๋Ÿฌ ์กฐ์ง๋“ค์ด ๊ณต๋™์˜ ์‚ฌ์šฉ์ž ์ƒ˜ํ”Œ์— ๋Œ€ํ•ด ํ•™์Šตํ•  ์ˆ˜ ์žˆ๋Š” ๋ฐฉ๋ฒ•์œผ๋กœ, ํŠนํžˆ ๊ฐœ์ธ ์ •๋ณด ๋ณดํ˜ธ๊ฐ€ ์ค‘์š”ํ•œ ๋ถ„์•ผ์—์„œ ์œ ์šฉํ•˜๊ฒŒ ํ™œ์šฉ๋  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ด๋Ÿฌํ•œ ํ˜‘์—… ๊ณผ์ •์—์„œ๋Š” ๊ณต๊ฒฉ์ž๊ฐ€ ๋ชจ๋ธ์˜ ์˜ˆ์ธก ํ™•๋ฅ ์„ ์ด์šฉํ•ด ๋‹ค๋ฅธ ์ฐธ์—ฌ์ž์˜ ๋ฐ์ดํ„ฐ๋ฅผ ์žฌ๊ตฌ์„ฑํ•˜๋Š” ํŠน์ง• ์ถ”๋ก  ๊ณต๊ฒฉ์— ๋…ธ์ถœ๋  ์œ„ํ—˜์ด ์žˆ์Šต๋‹ˆ๋‹ค. PRIVEE๋Š” ์ด ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ์‹ ๋ขฐ๋„ ์ ์ˆ˜๋ฅผ ์•”ํ˜ธํ™”ํ•˜์—ฌ ๊ณต์œ ํ•จ์œผ๋กœ์จ, ๊ณต

Learning
Comparative Evaluation of Explainable Machine Learning Versus Linear Regression for Predicting County-Level Lung Cancer Mortality Rate in the United States

Comparative Evaluation of Explainable Machine Learning Versus Linear Regression for Predicting County-Level Lung Cancer Mortality Rate in the United States

์ด ์—ฐ๊ตฌ๋Š” ๋ฏธ๊ตญ์—์„œ ํ์•”(LC) ์‚ฌ๋ง๋ฅ  ์˜ˆ์ธก์— ๊ธฐ๊ณ„ํ•™์Šต ๋ชจ๋ธ์˜ ์ ์šฉ์„ ํ†ตํ•ด ์–ป์€ ๊ฒฐ๊ณผ๋ฅผ ๋ณด๊ณ ํ•˜๊ณ  ์žˆ๋‹ค. ํŠนํžˆ, ๋žœ๋ค ํฌ๋ ˆ์ŠคํŠธ(RF), ๊ทธ๋ž˜๋””์–ธํŠธ ๋ถ€์ŠคํŒ… ํšŒ๊ท€(GBR), ๊ทธ๋ฆฌ๊ณ  ์„ ํ˜• ํšŒ๊ท€(LR) ์„ธ ๊ฐ€์ง€ ๋ชจ๋ธ์„ ์‚ฌ์šฉํ•˜์—ฌ LC ์‚ฌ๋ง๋ฅ  ์˜ˆ์ธก ์„ฑ๋Šฅ์„ ํ‰๊ฐ€ํ•˜์˜€๋‹ค. ์—ฐ๊ตฌ์—์„œ RF ๋ชจ๋ธ์ด GBR๊ณผ LR๋ณด๋‹ค ์šฐ์ˆ˜ํ•œ ์„ฑ๋Šฅ์„ ๋ณด์—ฌ์ฃผ์—ˆ์œผ๋ฉฐ, R squared ๊ฐ’ 41.9%, RMSE 12.8์„ ๋‹ฌ์„ฑํ–ˆ๋‹ค๋Š” ์ ์€ ์ฃผ๋ชฉํ•  ๋งŒํ•˜๋‹ค. SHAP ๋ถ„์„์„ ํ†ตํ•ด ํก์—ฐ๋ฅ ์ด ๊ฐ€์žฅ ์ค‘์š”ํ•œ ์˜ˆ์ธก ๋ณ€์ˆ˜๋กœ ๋‚˜ํƒ€๋‚ฌ๊ณ , ์ด์–ด ์ง‘๊ฐ’ ์ค‘์•™๊ฐ’๊ณผ ํžˆ์ŠคํŒจ๋‹‰ ์ธ๊ตฌ ๋น„์œจ์ด ์ค‘์š”ํ•˜๊ฒŒ ์ž‘์šฉํ•œ๋‹ค๋Š”

Learning
A Unified Theory of Sparse Dictionary Learning in Mechanistic Interpretability: Piecewise Biconvexity and Spurious Minima

A Unified Theory of Sparse Dictionary Learning in Mechanistic Interpretability: Piecewise Biconvexity and Spurious Minima

์ด ๋…ผ๋ฌธ์€ ์ตœ๊ทผ ์ธ๊ณต์ง€๋Šฅ ๋ชจ๋ธ์ด ๋ณต์žกํ•œ ๊ฐœ๋…์„ ์–ด๋–ป๊ฒŒ ๋‚ด๋ถ€ ํ‘œํ˜„์— ๋‹ด๋Š”์ง€๋ฅผ ํƒ๊ตฌํ•˜๋Š” ๊ธฐ๊ณ„์  ํ•ด์„(mechanistic interpretability) ๋ถ„์•ผ์˜ ํ•ต์‹ฌ ๋ฌธ์ œ์— ์ ‘๊ทผํ•œ๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค์€ ์‹ ๊ฒฝ๋ง์ด ์˜๋ฏธ ์žˆ๋Š” ๊ฐœ๋…์„ ๊ณ ์ฐจ์› ํ‘œํ˜„ ๊ณต๊ฐ„์˜ ์„ ํ˜• ๋ฐฉํ–ฅ์œผ๋กœ ์ €์žฅํ•˜๊ณ , ์—ฌ๋Ÿฌ ๊ฐœ๋…์ด ๋™์ผํ•œ ๋‰ด๋Ÿฐ ์ง‘ํ•ฉ์— ๊ฒน์ณ์„œ(superposition) ๋‚˜ํƒ€๋‚œ๋‹ค๊ณ  ์ฃผ์žฅํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ํ˜„์ƒ์„ ํ•ด์†Œํ•˜๊ธฐ ์œ„ํ•ด ์—ฐ๊ตฌ์ž๋“ค์€ ํฌ์†Œ ์‚ฌ์ „ํ•™์Šต(Sparse Dictionary Learning, SDL)์ด๋ผ๋Š” ๋ฐฉ๋ฒ•๋ก ์„ ๋„์ž…ํ–ˆ์œผ๋ฉฐ, ์—ฌ๊ธฐ์—๋Š” ํฌ์†Œ ์ž๋™์ธ์ฝ”๋”(sparse aut

Learning
TimesNet-Gen: Deep Learning-based Site Specific Strong Motion Generation

TimesNet-Gen: Deep Learning-based Site Specific Strong Motion Generation

๋ณธ ๋…ผ๋ฌธ์€ ์ง€์ง„๊ณตํ•™ ๋ถ„์•ผ์—์„œ ํ˜„์žฅ๋ณ„ ๊ฐ•์ง„ ๊ธฐ๋ก์„ ์ธ๊ณต์ ์œผ๋กœ ์ƒ์„ฑํ•  ์ˆ˜ ์žˆ๋Š” ์ƒˆ๋กœ์šด ๋ฐ์ดํ„ฐโ€‘๋“œ๋ฆฌ๋ธ ๋ชจ๋ธ์„ ์ œ์‹œํ•œ๋‹ค๋Š” ์ ์—์„œ ํฐ ์˜๋ฏธ๋ฅผ ๊ฐ€์ง„๋‹ค. ๊ธฐ์กด์˜ ๊ฐ•์ง„ ํ•ฉ์„ฑ ๋ฐฉ๋ฒ•์€ ์ฃผ๋กœ ์ŠคํŽ™ํŠธ๋Ÿผ ๊ธฐ๋ฐ˜ ํ˜น์€ ๋ฌผ๋ฆฌโ€‘๊ธฐ๋ฐ˜ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์— ์˜์กดํ–ˆ์œผ๋ฉฐ, ํ˜„์žฅ ํŠน์„ฑ์„ ์ถฉ๋ถ„ํžˆ ๋ฐ˜์˜ํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ๋ณต์žกํ•œ ํŒŒ๋ผ๋ฏธํ„ฐ ํŠœ๋‹์ด ํ•„์š”ํ–ˆ๋‹ค. ๋ฐ˜๋ฉด ๋ณธ ์—ฐ๊ตฌ๋Š” ์‹œ๊ฐ„ ์˜์—ญ์—์„œ ์ง์ ‘ ๊ฐ€์†๋„ ์‹ ํ˜ธ๋ฅผ ๋‹ค๋ฃจ๋Š” TimesNetโ€‘Gen์„ ๋„์ž…ํ•จ์œผ๋กœ์จ, ํ˜„์žฅ๋ณ„ ๊ณ ์œ ์˜ โ€œ์ž ์žฌ์  ๋ณ‘๋ชฉโ€(latent bottleneck)์ด๋ผ๋Š” ์ž‘์€ ์ฐจ์›์˜ ์ž„๋ฒ ๋”ฉ์„ ํ†ตํ•ด ํ˜„์žฅ ํŠน์„ฑ์„ ์••์ถ•ํ•˜๊ณ  ์žฌํ˜„ํ•œ๋‹ค. ์ด๋Š” ํ˜„์žฅ๋งˆ๋‹ค

Learning
SPARK: Stepwise Process-Aware Rewards for Reference-Free Reinforcement Learning

SPARK: Stepwise Process-Aware Rewards for Reference-Free Reinforcement Learning

๋ณธ ๋…ผ๋ฌธ์€ ๊ฐ•ํ™”ํ•™์Šต(RL)์—์„œ ํ•ต์‹ฌ์ ์ธ ๋ณด์ƒ ์„ค๊ณ„ ๋ฌธ์ œ๋ฅผ ์ƒˆ๋กœ์šด ๊ด€์ ์—์„œ ํ•ด๊ฒฐํ•œ๋‹ค. ์ „ํ†ต์ ์ธ PRM์€ ๋‹จ๊ณ„๋ณ„ ์ •๋‹ต ๋ ˆํผ๋Ÿฐ์Šค๋‚˜ ์ธ๊ฐ„ ์ฃผ์„์— ์˜์กดํ•ด ํ•™์Šต ๋ฐ์ดํ„ฐ๋ฅผ ๊ตฌ์ถ•ํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ด๋Ÿฌํ•œ ๋ฐ์ดํ„ฐ๋Š” ๋น„์šฉ์ด ๋งŽ์ด ๋“ค๊ณ , ํŠนํžˆ ์ˆ˜ํ•™ยท๊ณผํ•™ยท์ฝ”๋“œ์™€ ๊ฐ™์ด ์ •๋‹ต์ด ๋ณต์žกํ•˜๊ฑฐ๋‚˜ ์กด์žฌํ•˜์ง€ ์•Š์„ ๋•Œ๋Š” ์‹ค์šฉ์„ฑ์ด ๋–จ์–ด์ง„๋‹ค. SPARK๋Š” ์ด ํ•œ๊ณ„๋ฅผ โ€œ์ƒ์„ฑโ€‘๊ฒ€์ฆโ€ ๋ฃจํ”„๋ฅผ ํ†ตํ•ด ๊ทน๋ณตํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ ๋‹จ๊ณ„์—์„œ ์ƒ์„ฑ๊ธฐ ๋ชจ๋ธ์€ ํ”„๋กฌํ”„ํŠธ์— ๋”ฐ๋ผ ๋‹ค์ฑ„๋กœ์šด ํ’€์ด ๊ฒฝ๋กœ๋ฅผ ์ƒ์„ฑํ•œ๋‹ค. ์—ฌ๊ธฐ์„œ ์ค‘์š”ํ•œ ์ ์€ ๋‹ค์–‘์„ฑ์„ ํ™•๋ณดํ•˜๊ธฐ ์œ„ํ•ด ์˜จ๋„ ์กฐ์ ˆ, ์ƒ˜ํ”Œ๋ง ๊ธฐ๋ฒ• ๋“ฑ์„ ํ™œ์šฉํ•ด ๋‹ค์ˆ˜์˜ ํ›„๋ณด ํ’€์ด

Learning
Space Alignment Matters: The Missing Piece for Inducing Neural Collapse in Long-Tailed Learning

Space Alignment Matters: The Missing Piece for Inducing Neural Collapse in Long-Tailed Learning

์ด ๋…ผ๋ฌธ์€ ์ตœ๊ทผ ๊ฐ๊ด‘๋ฐ›๊ณ  ์žˆ๋Š” โ€˜์‹ ๊ฒฝ ๋ถ•๊ดด(Neural Collapse, NC)โ€™ ํ˜„์ƒ์„ ๊ธด ๊ผฌ๋ฆฌ ๋ฐ์ดํ„ฐ ๋ถ„๋ฅ˜ ๋ฌธ์ œ์— ์ ์šฉํ•จ์œผ๋กœ์จ, ๊ธฐ์กด ๋ฐฉ๋ฒ•๋ก ์ด ๋†“์น˜๊ณ  ์žˆ๋˜ ํ•ต์‹ฌ์ ์ธ ์ •๋ ฌ ๋ฌธ์ œ๋ฅผ ์ƒˆ๋กญ๊ฒŒ ์กฐ๋ช…ํ•œ๋‹ค. NC๋Š” ํ•™์Šต์ด ์ง„ํ–‰๋ ์ˆ˜๋ก ํด๋ž˜์Šค๋ณ„ ํŠน์ง• ํ‰๊ท (feature means)๊ณผ ์ตœ์ข… ์„ ํ˜• ๋ถ„๋ฅ˜๊ธฐ์˜ ๊ฐ€์ค‘์น˜๊ฐ€ ์„œ๋กœ ์ •๋ ฌ๋˜๊ณ , ์ „์ฒด ํด๋ž˜์Šค๊ฐ€ ๋‹จ์ˆœ์ฒด ๋“ฑ๊ฐ ๊ธด๋ฐ€ ํ”„๋ ˆ์ž„(simplex ETF) ๊ตฌ์กฐ๋ฅผ ์ด๋ฃจ๋Š” ํ˜„์ƒ์ด๋‹ค. ์ด ๊ตฌ์กฐ๋Š” ํด๋ž˜์Šค ๊ฐ„ ๊ฐ๋„๊ฐ€ ๋™์ผํ•˜๊ณ , ๊ฐ ํด๋ž˜์Šค์˜ ํŠน์ง•์ด ์„œ๋กœ ์ •๊ทœ ์ง๊ตํ•˜๋Š” ์ตœ์ ์˜ ๊ธฐํ•˜ํ•™์  ๋ฐฐ์น˜๋ฅผ ์ œ๊ณตํ•œ๋‹ค๋Š” ์ ์—์„œ ์ด๋ก ์ ยท์‹ค์šฉ์ 

Learning
Learning Solution Operators for Partial Differential Equations via Monte Carlo-Type Approximation

Learning Solution Operators for Partial Differential Equations via Monte Carlo-Type Approximation

Monte Carloํ˜• ์‹ ๊ฒฝ ์—ฐ์‚ฐ์ž(MCNO)๋Š” ๊ธฐ์กด ์‹ ๊ฒฝ ์—ฐ์‚ฐ์ž ์—ฐ๊ตฌ์—์„œ ๋‘๋“œ๋Ÿฌ์ง„ ๋‘ ๊ฐ€์ง€ ํ•œ๊ณ„๋ฅผ ๋™์‹œ์— ํ•ด๊ฒฐํ•˜๋ ค๋Š” ์‹œ๋„๋กœ ๋ณผ ์ˆ˜ ์žˆ๋‹ค. ์ฒซ ๋ฒˆ์งธ๋Š” Fourier Neural Operator(FNO)์™€ ๊ฐ™์€ ์ŠคํŽ™ํŠธ๋Ÿผ ๊ธฐ๋ฐ˜ ๋ฐฉ๋ฒ•์ด ์ „์ œํ•˜๋Š” ์ฃผ๊ธฐ์„ฑยทํ‰ํ–‰์ด๋™ ๋ถˆ๋ณ€์„ฑ ๊ฐ€์ •์ด๋‹ค. ์ด๋Ÿฌํ•œ ๊ฐ€์ •์€ ์ •๊ทœ ๊ฒฉ์ž๋‚˜ ์ฃผ๊ธฐ์  ๊ฒฝ๊ณ„์กฐ๊ฑด์„ ๊ฐ–๋Š” ๋ฌธ์ œ์—์„  ํšจ์œจ์ ์ด์ง€๋งŒ, ๋ณต์žกํ•œ ์ง€์˜ค๋ฉ”ํŠธ๋ฆฌยท๋น„์ฃผ๊ธฐ์  ๊ฒฝ๊ณ„ยท๋น„๊ท ์ผ ๊ฒฉ์ž์—์„œ๋Š” ์ ์šฉ์ด ์–ด๋ ค์›Œ์ง„๋‹ค. MCNO๋Š” ์ปค๋„์„ ์ž„์˜์˜ ์  ์ง‘ํ•ฉ ์œ„์— ์ •์˜ํ•˜๊ณ , ์ด ์ ๋“ค์„ Monte Carlo ์ƒ˜ํ”Œ๋ง์œผ๋กœ ์„ ํƒํ•จ์œผ๋กœ์จ ์ŠคํŽ™ํŠธ๋Ÿผ ๊ฐ€์ •์„

Learning
A Novel Template-Based Learning Model

A Novel Template-Based Learning Model

: ๋ณธ ๋…ผ๋ฌธ์€ ํ…œํ”Œ๋ฆฟ ๊ธฐ๋ฐ˜ ํ•™์Šต ๋ชจ๋ธ์„ ํ†ตํ•ด ์ƒˆ๋กœ์šด ๊ด€์ฐฐ ๋ฐ์ดํ„ฐ๋ฅผ ์ดํ•ดํ•˜๋Š” ๋ฐฉ๋ฒ•์— ๋Œ€ํ•ด ์„ค๋ช…ํ•˜๊ณ  ์žˆ๋‹ค. ์ด ๋ชจ๋ธ์€ ์ฃผ๋กœ ๊ด€์ฐฐ ๋ฐ์ดํ„ฐ ๊ฐ„์˜ ์œ ์‚ฌ์„ฑ ํƒ์ƒ‰๊ณผ ๋น„๊ต๋ฅผ ํ†ตํ•ด ์ƒˆ๋กœ์šด ๊ฐœ๋…์„ ํ•™์Šตํ•˜๊ณ  ์ถ”์ƒํ™”ํ•˜๋Š”๋ฐ ์ดˆ์ ์„ ๋งž์ถ”๊ณ  ์žˆ๋‹ค. 1. ํ…œํ”Œ๋ฆฟ ๊ธฐ๋ฐ˜ ํ•™์Šต ๋ชจ๋ธ์˜ ๊ตฌ์„ฑ ์š”์†Œ ๊ธฐํ•˜ํ•™์  ๋ฌ˜์‚ฌ : ์ด ๋ชจ๋ธ์€ ๊ด€์ฐฐ ๋ฐ์ดํ„ฐ๋ฅผ ๊ธฐํ•˜ํ•™์ ์œผ๋กœ ๋ฌ˜์‚ฌํ•˜๋Š” ๋ฐฉ์‹์„ ์‚ฌ์šฉํ•œ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ๊ฐ์ฒด์˜ ๊ฒฝ๊ณ„์™€ ํ˜•ํƒœ๋ฅผ ์ •ํ™•ํ•˜๊ฒŒ ํŒŒ์•…ํ•  ์ˆ˜ ์žˆ๋‹ค. ์ธ๊ฐ„ ์‹œ๊ฐ ์‹ ๊ฒฝ ์‹œ์Šคํ…œ์— ์˜๊ฐ ๋ฐ›์€ ์„ค๋ช…์ž : ์ธ๊ฐ„์˜ ์‹œ๊ฐ ์ธ์ง€ ๊ณผ์ •์—์„œ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•˜๋Š” ์š”์†Œ๋“ค์„ ๋ชจ๋ธ๋งํ•˜์—ฌ, ๋” ์ •๊ตํ•œ ๋ฐ์ดํ„ฐ

Model Machine Learning Computer Science Learning

< Category Statistics (Total: 769) >

Electrical Engineering and Systems Science
7
General
272
General Relativity
9
HEP-EX
7
HEP-PH
12
HEP-TH
7
MATH-PH
4
NUCL-TH
1
Quantum Physics
10

Start searching

Enter keywords to search articles

โ†‘โ†“
โ†ต
ESC
โŒ˜K Shortcut