Learning

All posts under tag "Learning"

65 posts total
Sorted by date
Application of deep learning techniques in non-contrast computed tomography pulmonary angiogram for pulmonary embolism diagnosis

Application of deep learning techniques in non-contrast computed tomography pulmonary angiogram for pulmonary embolism diagnosis

๋ณธ ๋…ผ๋ฌธ์€ ์ž„์ƒ ํ˜„์žฅ์—์„œ ์กฐ์˜์ œ ์‚ฌ์šฉ์— ๋”ฐ๋ฅธ ๋ถ€์ž‘์šฉ๊ณผ ์‹œ๊ฐ„ ์ง€์—ฐ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ณ ์ž, ๋น„์กฐ์˜ CT ์˜์ƒ๋งŒ์„ ์ด์šฉํ•ด ํ์ƒ‰์ „์ฆ์„ ์ž๋™์œผ๋กœ ํŒ๋ณ„ํ•˜๋Š” 3D ํ•ฉ์„ฑ๊ณฑ ์‹ ๊ฒฝ๋ง(3Dโ€‘CNN) ๋ชจ๋ธ์„ ๊ฐœ๋ฐœํ•˜์˜€๋‹ค. ๋จผ์ € ๋ฐ์ดํ„ฐ์…‹ ๊ตฌ์ถ• ๋‹จ๊ณ„์—์„œ ์กฐ์˜์ œ ์‚ฌ์šฉ์ด ๊ธˆ์ง€๋œ ํ™˜์ž๊ตฐ๊ณผ ๊ธฐ์กด CTPA ์˜์ƒ์—์„œ ๋ผ๋ฒจ๋ง๋œ ํ์ƒ‰์ „์ฆ ์‚ฌ๋ก€๋ฅผ ๋งค์นญ์‹œ์ผœ, ๋น„์กฐ์˜ CT์™€ ๋ผ๋ฒจ ์ •๋ณด๋ฅผ ์ผ์น˜์‹œ์ผฐ๋‹ค. ์ด๋Š” ๋ผ๋ฒจ๋ง ๋น„์šฉ์„ ํฌ๊ฒŒ ์ ˆ๊ฐํ•˜๋ฉด์„œ๋„ ์‹ค์ œ ์ž„์ƒ ์ƒํ™ฉ์„ ๋ฐ˜์˜ํ•œ ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค๋ฅผ ํ™•๋ณดํ•˜๋Š” ์ „๋žต์ด๋‹ค. ๋ชจ๋ธ ๊ตฌ์กฐ๋Š” ์ž…๋ ฅ ๋ณผ๋ฅจ์„ 3์ฐจ์›์œผ๋กœ ์ฒ˜๋ฆฌํ•˜์—ฌ ํํ˜ˆ๊ด€ ๋ฐ ์ฃผ๋ณ€ ์กฐ์ง์˜ ๋ฏธ์„ธํ•œ ๋ฐ€๋„ ์ฐจ์ด๋ฅผ

Computer Vision Computer Science Learning
Deep Learning in Geotechnical Engineering: A Critical Assessment of PINNs and Operator Learning

Deep Learning in Geotechnical Engineering: A Critical Assessment of PINNs and Operator Learning

์ด ๋…ผ๋ฌธ์€ ์ตœ๊ทผ ์ง€๋ฐ˜๊ณตํ•™ ๋ถ„์•ผ์— ๋„์ž…๋œ ์„ธ ๊ฐ€์ง€ ๋”ฅ๋Ÿฌ๋‹ ํ”„๋ ˆ์ž„์›Œํฌโ€”๋ฌผ๋ฆฌ ๊ธฐ๋ฐ˜ ์‹ ๊ฒฝ๋ง(PINN), ๋”ฅ ์—ฐ์‚ฐ์ž ๋„คํŠธ์›Œํฌ(DeepONet), ๊ทธ๋ž˜ํ”„ ๋„คํŠธ์›Œํฌ ์‹œ๋ฎฌ๋ ˆ์ดํ„ฐ(GNS)โ€”๋ฅผ ์ „ํ†ต์ ์ธ ์ˆ˜์น˜ ํ•ด๋ฒ•๊ณผ ์ง์ ‘ ๋น„๊ตํ•จ์œผ๋กœ์จ ์‹ค์šฉ์„ฑ์„ ํ‰๊ฐ€ํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ ์‹คํ—˜์ธ ํŒŒ๋™ ์ „ํŒŒ ๋ฌธ์ œ๋Š” ๊ณ ์ฃผํŒŒ ๋™์  ์‘๋‹ต์„ ์ •ํ™•ํžˆ ํฌ์ฐฉํ•ด์•ผ ํ•˜๋Š” ์ „ํ˜•์ ์ธ ํ…Œ์ŠคํŠธ๋ฒ ๋“œ์ด๋‹ค. ์—ฌ๊ธฐ์„œ PINN์€ ๋ฌผ๋ฆฌ ๋ฐฉ์ •์‹์„ ์†์‹ค ํ•จ์ˆ˜์— ์ง์ ‘ ์‚ฝ์ž…ํ•˜๋Š” ๋ฐฉ์‹์ž„์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ , ๋ฏธ๋ถ„ ์—ฐ์‚ฐ๊ณผ ์ตœ์ ํ™” ๊ณผ์ •์—์„œ ๋ฐœ์ƒํ•˜๋Š” ์ˆ˜์น˜์  ๋ถˆ์•ˆ์ •์„ฑ์œผ๋กœ ์ธํ•ด ์œ ํ•œ์ฐจ๋ถ„(FD) ๋Œ€๋น„ 90 000๋ฐฐ ๋А๋ ค์กŒ๋‹ค. ์˜ค์ฐจ ์ธก๋ฉด์—์„œ

Learning Physics
No Image

Factorized Learning for Temporally Grounded Video-Language Models

์ด ๋…ผ๋ฌธ์€ ๊ธฐ์กด ๋น„๋””์˜คโ€‘์–ธ์–ด ๋ชจ๋ธ์ด โ€œํ•œ ๋ฒˆ์— ์ „์ฒด ๋น„๋””์˜ค๋ฅผ ์š”์•ฝํ•˜๊ณ  ์งˆ๋ฌธ์— ๋‹ตํ•œ๋‹คโ€๋Š” ์ „ํ†ต์ ์ธ ํŒจ๋Ÿฌ๋‹ค์ž„์„ ํƒˆํ”ผํ•œ๋‹ค๋Š” ์ ์—์„œ ํฐ ์˜๋ฏธ๊ฐ€ ์žˆ๋‹ค. ๊ธฐ์กด ๋ฐฉ๋ฒ•๋“ค์€ ์ข…์ข… ์‹œ๊ฐ„์  ์ •๋ณด๋ฅผ ํ๋ฆฟํ•˜๊ฒŒ ์ฒ˜๋ฆฌํ•˜๊ฑฐ๋‚˜, ๊ทผ๊ฑฐ๊ฐ€ ๋˜๋Š” ์‹œ๊ฐ์  ์ฆ๊ฑฐ๋ฅผ ๋ช…์‹œ์ ์œผ๋กœ ์ œ์‹œํ•˜์ง€ ๋ชปํ•ด ํ•ด์„ ๊ฐ€๋Šฅ์„ฑ์ด ๋‚ฎ์•˜๋‹ค. ์ €์ž๋“ค์€ ์ด๋Ÿฌํ•œ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด ๋‘ ๊ฐ€์ง€ ํ•ต์‹ฌ ์•„์ด๋””์–ด๋ฅผ ์ œ์‹œํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ๋Š” generation objective์˜ factorization ์ด๋‹ค. ๋ชจ๋ธ์ด ๋จผ์ € โ€œ์–ด๋–ค ์‹œ๊ฐ„ ๊ตฌ๊ฐ„์ด ์งˆ๋ฌธ์— ๋Œ€ํ•œ ๊ทผ๊ฑฐ๊ฐ€ ๋˜๋Š”๊ฐ€โ€๋ฅผ ํŒ๋‹จํ•˜๊ณ , ๊ทธ ๊ตฌ๊ฐ„์— ํ•ด๋‹นํ•˜๋Š” evidence

Computer Science Model Learning Computer Vision
A Formal Descriptive Language for Learning Dynamics: A Five-Layer Structural Coordinate System

A Formal Descriptive Language for Learning Dynamics: A Five-Layer Structural Coordinate System

์ด ๋…ผ๋ฌธ์ด ์ œ์‹œํ•˜๋Š” ๋‹ค์ธต ํ˜•์‹ ๊ธฐ์ˆ  ํ”„๋ ˆ์ž„์›Œํฌ๋Š” ํ•™์Šต ๊ณผ์ •์„ โ€˜๊ธฐ์ˆ โ€™ํ•œ๋‹ค๋Š” ์ ์—์„œ ๊ธฐ์กด์˜ โ€˜์˜ˆ์ธกยท์ตœ์ ํ™”โ€™ ์ค‘์‹ฌ ๋ชจ๋ธ๊ณผ ๊ทผ๋ณธ์ ์œผ๋กœ ์ฐจ๋ณ„ํ™”๋œ๋‹ค. ํ•™์Šต์€ ๋‹จ์ˆœํžˆ ์„ฑ๊ณผ๋ฅผ ๋†’์ด๋Š” ๋ชฉํ‘œ ํ•จ์ˆ˜์˜ ์ตœ์†Œํ™”๊ฐ€ ์•„๋‹ˆ๋ผ, ํ•™์Šต์ž ๋‚ด๋ถ€์˜ ์ƒํƒœ๊ฐ€ ์™ธ๋ถ€ ์ž๊ทน๊ณผ ์–ด๋–ป๊ฒŒ ์ƒํ˜ธ์ž‘์šฉํ•˜๋ฉด์„œ ๋ณ€ํ˜•๋˜๋Š”๊ฐ€์— ๋Œ€ํ•œ ์„œ์ˆ ์  ์ดํ•ด๊ฐ€ ํ•„์š”ํ•˜๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ์ €์ž๋Š” ํ•™์Šต์„ ๋„ค ๊ฐœ์˜ ๊ธฐ๋Šฅ์  ์ธตโ€”๋ถ€ํ•˜ ์ƒ์„ฑ์ธต, ๋‚ด๋ถ€ ๋ณ€ํ™˜์ธต, ๊ด€์ฐฐยท์ธก์ •์ธต, ํ‰๊ฐ€ยท์กฐ์ ˆ์ธตโ€”์œผ๋กœ ๋ถ„๋ฆฌํ•˜๊ณ , ๊ฐ ์ธต์ด ๋‹ด๋‹นํ•˜๋Š” ์ฑ…์ž„์„ ๋ช…ํ™•ํžˆ ์ •์˜ํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ ๋ถ€ํ•˜ ์ƒ์„ฑ์ธต์€ ์™ธ๋ถ€ ๊ณผ์ œยท์ž๋ฃŒ๊ฐ€ ํ•™์Šต์ž์—๊ฒŒ ์ œ๊ณต๋  ๋•Œ ๋ฐœ์ƒํ•˜๋Š” ์ธ์ง€ ๋ถ€

Learning System
High-Dimensional Data Processing: Benchmarking Machine Learning and Deep Learning Architectures in Local and Distributed Environments

High-Dimensional Data Processing: Benchmarking Machine Learning and Deep Learning Architectures in Local and Distributed Environments

์ข…ํ•ฉ ๋ถ„์„: ๋น…๋ฐ์ดํ„ฐ ๊ต์œก ์‹ค์Šต ๋ณด๊ณ ์„œ 1. ์—ฐ๊ตฌ ๊ฐœ์š”์™€ ๋ฐฉ๋ฒ•๋ก  ๋ณธ ์—ฐ๊ตฌ๋Š” ๋น…๋ฐ์ดํ„ฐ ํ”„๋กœ์ ํŠธ์˜ ํ†ตํ•ฉ์  ์ ‘๊ทผ ๋ฐฉ์‹์„ ์ทจํ•˜๋ฉฐ, ์„ธ ๊ฐ€์ง€ ์‚ฌ๋ก€๋ฅผ ํ†ตํ•ด ๋‹ค์–‘ํ•œ ๋ฐ์ดํ„ฐ ์œ ํ˜•๊ณผ ๊ทœ๋ชจ์— ๋Œ€ํ•œ ๋ถ„์„ ๊ธฐ๋ฒ•์„ ๋‹ค๋ฃน๋‹ˆ๋‹ค. Epsilon ๋ฐ์ดํ„ฐ์…‹ : ์ด์ง„ ๋ถ„๋ฅ˜ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด MLP ๋ชจ๋ธ์„ ์‚ฌ์šฉํ•˜์—ฌ 2000๊ฐœ์˜ ํŠน์ง•๊ณผ 100,000๊ฐœ์˜ ์ธ์Šคํ„ด์Šค๋กœ ํ›ˆ๋ จ๋˜์—ˆ์Šต๋‹ˆ๋‹ค. PyTorch์™€ GPU ๊ฐ€์†(CUDA)์„ ํ™œ์šฉํ•ด 88.98%์˜ ์ •ํ™•๋„๋ฅผ ๋‹ฌ์„ฑํ–ˆ์Šต๋‹ˆ๋‹ค. Rest Mex ๋ฐ์ดํ„ฐ์…‹ : ๋ฉ•์‹œ์ฝ” ๊ด€๊ด‘ ๋ฆฌ๋ทฐ ๋ฐ์ดํ„ฐ์…‹์— ๋Œ€ํ•ด ๊ฐ์ • ๋ถ„์„ ํŒŒ์ดํ”„๋ผ์ธ์„ ๊ตฌํ˜„ํ•˜์˜€์Šต๋‹ˆ๋‹ค.

Data Learning
Meta Hierarchical Reinforcement Learning for Scalable Resource Management in O-RAN

Meta Hierarchical Reinforcement Learning for Scalable Resource Management in O-RAN

๋ณธ ๋…ผ๋ฌธ์€ Oโ€‘RAN ํ™˜๊ฒฝ์—์„œ ์ž์› ํ• ๋‹น๊ณผ ๋„คํŠธ์›Œํฌ ์Šฌ๋ผ์ด์‹ฑ์„ ๋™์‹œ์— ์ตœ์ ํ™”ํ•˜๊ธฐ ์œ„ํ•œ ์ƒˆ๋กœ์šด ํ•™์Šต ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์‹œํ•œ๋‹ค๋Š” ์ ์—์„œ ํ•™์ˆ ์ ยท์‹ค๋ฌด์  ์˜์˜๊ฐ€ ํฌ๋‹ค. ์ฒซ ๋ฒˆ์งธ๋กœ, ๊ธฐ์กด ๋ฉ”ํƒ€โ€‘๊ฐ•ํ™”ํ•™์Šต(Metaโ€‘RL) ์—ฐ๊ตฌ๋“ค์€ ์ฃผ๋กœ ๋‹จ์ผ ๋ ˆ๋ฒจ ์ •์ฑ…์„ ํ•™์Šตํ•˜๋Š” ๋ฐ ๊ทธ์ณค์œผ๋ฉฐ, ๋ณต์žกํ•œ Oโ€‘RAN ์‹œ์Šคํ…œ์ฒ˜๋Ÿผ ๋‹ค์ค‘ ๊ณ„์ธต์˜ ์˜์‚ฌ๊ฒฐ์ • ๊ตฌ์กฐ๋ฅผ ๋ฐ˜์˜ํ•˜์ง€ ๋ชปํ–ˆ๋‹ค. ์ €์ž๋Š” ์ด๋ฅผ ๋ณด์™„ํ•˜๊ธฐ ์œ„ํ•ด ๊ณ ์ˆ˜์ค€ โ€˜์ž์› ํ• ๋‹น ์ปจํŠธ๋กค๋Ÿฌโ€™์™€ ์ €์ˆ˜์ค€ โ€˜์Šฌ๋ผ์ด์Šค ๋‚ด๋ถ€ ์Šค์ผ€์ค„๋Ÿฌโ€™๋ผ๋Š” ๋‘ ๊ฐœ์˜ ์—์ด์ „ํŠธ๋ฅผ ๊ณ„์ธต์ ์œผ๋กœ ๋ฐฐ์น˜ํ•˜๊ณ , ๊ฐ๊ฐ์ด ๋…๋ฆฝ์ ์ธ ๊ฐ•ํ™”ํ•™์Šต ๊ณผ์ •์„ ์ˆ˜ํ–‰ํ•˜๋„๋ก ์„ค๊ณ„ํ•˜์˜€๋‹ค. ์ด๋Ÿฌํ•œ

Learning
Teleportation-Based Defenses for Privacy in Approximate Machine Unlearning

Teleportation-Based Defenses for Privacy in Approximate Machine Unlearning

๊ธฐ๊ณ„ ํ•™์Šต ๋ชจ๋ธ์—์„œ ํŠน์ • ์ƒ˜ํ”Œ์„ โ€˜์‚ญ์ œโ€™ํ•˜๋Š” ์ž‘์—…์€ ์‹ค์ œ ์„œ๋น„์Šค ํ™˜๊ฒฝ์—์„œ ๊ฐœ์ธ์ •๋ณด ๋ณดํ˜ธ ๊ทœ์ •์„ ์ค€์ˆ˜ํ•˜๊ธฐ ์œ„ํ•ด ํ•„์ˆ˜์ ์ด๋‹ค. ์ „ํ†ต์ ์ธ ์™„์ „ ์žฌํ•™์Šต ๋ฐฉ์‹์€ ๋น„์šฉ์ด ๋งŽ์ด ๋“ค๊ณ  ์‹ค์‹œ๊ฐ„ ์„œ๋น„์Šค์— ์ ์šฉํ•˜๊ธฐ ์–ด๋ ต๋‹ค. ๋”ฐ๋ผ์„œ ์ตœ๊ทผ์—๋Š” ๊ทผ์‚ฌ ์‚ญ์ œ(approximate unlearning) ๊ธฐ๋ฒ•์ด ํ™œ๋ฐœํžˆ ์—ฐ๊ตฌ๋˜๊ณ  ์žˆ๋‹ค. ์ด๋“ค ๊ธฐ๋ฒ•์€ ์›๋ณธ ๋ชจ๋ธ ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ์•ฝ๊ฐ„๋งŒ ์กฐ์ •ํ•˜๊ฑฐ๋‚˜, ์†์‹ค ํ•จ์ˆ˜์— ์‚ญ์ œ ๋Œ€์ƒ ์ƒ˜ํ”Œ์„ ์ œ์™ธํ•œ ํ˜•ํƒœ๋กœ ์žฌํ•™์Šตํ•จ์œผ๋กœ์จ ๋น ๋ฅธ ์‚ญ์ œ๋ฅผ ๋ชฉํ‘œ๋กœ ํ•œ๋‹ค. ํ•˜์ง€๋งŒ ๋ณธ ๋…ผ๋ฌธ์ด ์ง€์ ํ•˜๋“ฏ, ๊ทผ์‚ฌ ์‚ญ์ œ๋Š” ๋‘ ๊ฐ€์ง€ ๊ตฌ์กฐ์  ํŠน์„ฑ ๋•Œ๋ฌธ์— ํ”„๋ผ์ด๋ฒ„์‹œ ์œ„ํ—˜์„ ๋‚ดํฌํ•œ๋‹ค

Learning
Prompted Policy Search: Reinforcement Learning through Linguistic and Numerical Reasoning in LLMs

Prompted Policy Search: Reinforcement Learning through Linguistic and Numerical Reasoning in LLMs

Prompted Policy Search(ProPS)๋Š” ๊ธฐ์กด ๊ฐ•ํ™”ํ•™์Šต ํŒจ๋Ÿฌ๋‹ค์ž„์— ๊ทผ๋ณธ์ ์ธ ๋ณ€ํ™”๋ฅผ ์‹œ๋„ํ•œ๋‹ค. ์ „ํ†ต์ ์ธ RL ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ์ฃผ๋กœ ํ™˜๊ฒฝ์œผ๋กœ๋ถ€ํ„ฐ ์–ป๋Š” ์Šค์นผ๋ผ ๋ณด์ƒ์— ๊ธฐ๋ฐ˜ํ•ด ์ •์ฑ…์„ ์—…๋ฐ์ดํŠธํ•œ๋‹ค. ์ด ์ ‘๊ทผ๋ฒ•์€ ์ˆ˜ํ•™์ ์œผ๋กœ๋Š” ๊น”๋”ํ•˜์ง€๋งŒ, ์‹ค์ œ ๋ฌธ์ œ์—์„œ๋Š” ๋ชฉํ‘œ ์„ค๋ช…, ์ œ์•ฝ ์กฐ๊ฑด, ์ธ๊ฐ„ ์ „๋ฌธ๊ฐ€์˜ ์กฐ์–ธ ๋“ฑ ํ…์ŠคํŠธ ํ˜•ํƒœ์˜ ํ’๋ถ€ํ•œ ๋ฉ”ํƒ€ ์ •๋ณด๋ฅผ ๋ฌด์‹œํ•œ๋‹ค๋Š” ํ•œ๊ณ„๊ฐ€ ์žˆ๋‹ค. ProPS๋Š” ์ด๋Ÿฌํ•œ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(LLM)์„ ์ •์ฑ… ์ตœ์ ํ™”์˜ ํ•ต์‹ฌ ์—”์ง„์œผ๋กœ ํ™œ์šฉํ•œ๋‹ค. ๊ตฌ์ฒด์ ์œผ๋กœ, ์—์ด์ „ํŠธ๊ฐ€ ํ™˜๊ฒฝ์—์„œ ์–ป์€ ๋ณด์ƒ๊ณผ ํ•จ๊ป˜ โ€œ๋ชฉํ‘œ๋Š” โ€˜๊ณต์„ ์žก์•„

Learning
Trust-Based Social Learning for Communication (TSLEC) Protocol Evolution in Multi-Agent Reinforcement Learning

Trust-Based Social Learning for Communication (TSLEC) Protocol Evolution in Multi-Agent Reinforcement Learning

TSLEC ๋…ผ๋ฌธ์€ ๊ธฐ์กด์˜ ๋‹ค์ค‘ ์—์ด์ „ํŠธ ์ปค๋ฎค๋‹ˆ์ผ€์ด์…˜ ์—ฐ๊ตฌ์—์„œ ๊ฐ„๊ณผ๋˜๋˜ โ€˜์‚ฌํšŒ์  ์ „์ดโ€™๋ฅผ ์ฒด๊ณ„์ ์œผ๋กœ ๋ชจ๋ธ๋งํ•œ ์ ์ด ๊ฐ€์žฅ ํฐ ํ˜์‹ ์ด๋‹ค. ๊ธฐ์กด ์ ‘๊ทผ๋ฒ•์€ ๊ฐ ์—์ด์ „ํŠธ๊ฐ€ ํ™˜๊ฒฝ ๋ณด์ƒ๋งŒ์„ ์ด์šฉํ•ด ๋…๋ฆฝ์ ์œผ๋กœ ์–ธ์–ด๋ฅผ ํ˜•์„ฑํ•˜๋„๋ก ์„ค๊ณ„๋ผ, ์ดˆ๊ธฐ ํƒ์ƒ‰ ๋‹จ๊ณ„์—์„œ ๋ฌด์ˆ˜ํžˆ ๋งŽ์€ ๋น„ํšจ์œจ์ ์ธ ์‹ ํ˜ธ ์กฐํ•ฉ์ด ๋ฐœ์ƒํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ๋น„ํšจ์œจ์„ฑ์€ ํ•™์Šต ๊ณก์„ ์ด ์™„๋งŒํ•˜๊ณ , ์ตœ์ข… ํ”„๋กœํ† ์ฝœ์ด ๋น„๊ตฌ์กฐ์ ์ด๋ฉฐ, ํ™˜๊ฒฝ ๋ณ€ํ™”์— ์ทจ์•ฝํ•œ ๋‹จ์ ์œผ๋กœ ์ด์–ด์ง„๋‹ค. TSLEC์€ ๋‘ ๊ฐ€์ง€ ํ•ต์‹ฌ ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ๋„์ž…ํ•œ๋‹ค. ์ฒซ์งธ, ๊ต์‚ฌโ€‘ํ•™์ƒ ๋ฉ”์ปค๋‹ˆ์ฆ˜ ์„ ํ†ตํ•ด ์—์ด์ „ํŠธ๊ฐ€ ์ž์‹ ์˜ ์„ฑ๊ณต์ ์ธ ํ–‰๋™โ€‘์‹ ํ˜ธ ๋งคํ•‘์„ ๋‹ค๋ฅธ ์—์ด์ „

Learning
No Image

Improved Object-Centric Diffusion Learning with Registers and Contrastive Alignment

๋ณธ ๋…ผ๋ฌธ์€ ๊ฐ์ฒด ์ค‘์‹ฌ ํ•™์Šต(Object centric Learning, OCL) ๋ถ„์•ผ์—์„œ ์ค‘์š”ํ•œ ๊ธฐ์ˆ ์  ํ˜์‹ ์„ ์ œ์‹œํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. CODA(Contrastive Object centric Diffusion Alignment)๋Š” ์‚ฌ์ „ ํ•™์Šต๋œ ๋””ํ“จ์ „ ๋ชจ๋ธ์„ ํ™œ์šฉํ•˜์—ฌ ์Šฌ๋กฏ ์—ฎ์ž„๊ณผ ์•ฝํ•œ ์ •๋ ฌ์ด๋ผ๋Š” ์ฃผ์š” ๋„์ „ ๊ณผ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๋Š” ์ƒˆ๋กœ์šด ์ ‘๊ทผ ๋ฐฉ์‹์ž…๋‹ˆ๋‹ค. ๊ธฐ์ˆ ์  ํ˜์‹ ์„ฑ: 1. ๋“ฑ๋ก ์Šฌ๋กฏ(Register Slots): ๋“ฑ๋ก ์Šฌ๋กฏ์€ ๋…๋ฆฝ์ ์ธ ์ž…๋ ฅ ๋ฐ์ดํ„ฐ๋กœ ์ถ”๊ฐ€๋˜์–ด ์ž”์—ฌ ์ฃผ์˜๋ฅผ ํก์ˆ˜ํ•˜๊ณ  ๊ฐ์ฒด ์Šฌ๋กฏ ๊ฐ„์˜ ๊ฐ„์„ญ์„ ์ค„์ด๋Š” ์—ญํ• ์„ ํ•ฉ๋‹ˆ๋‹ค. ์ด๋Š” ์Šฌ๋กฏ ์—ฎ์ž„ ๋ฌธ

Computer Science Learning Computer Vision
No Image

CoCo-Fed: A Unified Framework for Memory- and Communication-Efficient Federated Learning at the Wireless Edge

CoCoโ€‘Fed๊ฐ€ ์ œ์‹œํ•˜๋Š” ๋‘ ๊ฐ€์ง€ ํ•ต์‹ฌ ํ˜์‹ ์€ โ€˜์ด์ค‘ ์ฐจ์› ๋‹ค์šดํ”„๋กœ์ ์…˜โ€™๊ณผ โ€˜์ง๊ต ๋ถ€๋ถ„๊ณต๊ฐ„ ์ดˆ์ค‘์ฒฉ ์ „์†กโ€™์ด๋‹ค. ์ฒซ ๋ฒˆ์งธ ๋‹จ๊ณ„์—์„œ๋Š” ๊ธฐ์กด ์—ฐํ•ฉ ํ•™์Šต์—์„œ ๊ฐ gNB๊ฐ€ ์ „์ฒด ๋ชจ๋ธ ํŒŒ๋ผ๋ฏธํ„ฐ์— ๋Œ€ํ•œ ๊ทธ๋ž˜๋””์–ธํŠธ๋ฅผ ์ €์žฅยท์ „์†กํ•ด์•ผ ํ•˜๋Š” ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•œ๋‹ค. ์ €์ž๋“ค์€ ๊ทธ๋ž˜๋””์–ธํŠธ๋ฅผ ๋จผ์ € ์ฑ„๋„ ์ฐจ์›(์˜ˆ: ์ž…๋ ฅ ํ”ผ์ฒ˜)๊ณผ ๋ชจ๋ธ ์ฐจ์›(์˜ˆ: ์ถœ๋ ฅ ํ”ผ์ฒ˜) ๋‘ ์ถ•์—์„œ ๊ฐ๊ฐ ์ €โ€‘๋žญํฌ ํ–‰๋ ฌ๋กœ ๊ทผ์‚ฌํ•œ๋‹ค. ์ด๋•Œ ์‚ฌ์šฉ๋˜๋Š” ํˆฌ์‚ฌ ํ–‰๋ ฌ์€ ์‚ฌ์ „์— ํ•™์Šต๋œ ๊ณ ์ • ์ •๊ทœ ์ง๊ต ํ–‰๋ ฌ์ด๊ฑฐ๋‚˜, ๊ฐ ๋ผ์šด๋“œ๋งˆ๋‹ค ๋žœ๋คํ•˜๊ฒŒ ์ƒ์„ฑ๋œ ์Šค์ผ€์น˜ ํ–‰๋ ฌ์ผ ์ˆ˜ ์žˆ๋‹ค. ์ด๋ ‡๊ฒŒ ํ•˜๋ฉด ๋ฉ”๋ชจ๋ฆฌ ์š”๊ตฌ๋Ÿ‰์ด O(rankยท

Computer Science Learning Information Theory Framework
Let It Flow: Agentic Crafting on Rock and Roll, Building the ROME Model within an Open Agentic Learning Ecosystem

Let It Flow: Agentic Crafting on Rock and Roll, Building the ROME Model within an Open Agentic Learning Ecosystem

๋ณธ ๋…ผ๋ฌธ์€ โ€œ์—์ด์ „ํŠธ ์ œ์ž‘(agentic crafting)โ€์ด๋ผ๋Š” ๊ฐœ๋…์„ ๊ธฐ์กด์˜ ์ผํšŒ์„ฑ ํ…์ŠคํŠธ ์ƒ์„ฑ๊ณผ ๊ตฌ๋ณ„ํ•˜์—ฌ, ์‹ค์ œ ์„ธ๊ณ„์—์„œ ๋‹ค์ค‘ ํ„ด์„ ๊ฑฐ์ณ ํ–‰๋™ํ•˜๊ณ  ๊ทธ ๊ฒฐ๊ณผ๋ฅผ ๊ด€์ฐฐยทํ”ผ๋“œ๋ฐฑํ•˜๋Š” ๋ฐ˜๋ณต์  ํ”„๋กœ์„ธ์Šค๋กœ ์ •์˜ํ•œ๋‹ค. ์ด๋Š” ๋‹จ์ˆœํžˆ ์ฝ”๋“œ๋ฅผ ์ž๋™ ์ƒ์„ฑํ•˜๋Š” ์ˆ˜์ค€์„ ๋„˜์–ด, ๋ณตํ•ฉ์ ์ธ ํˆด ์ฒด์ธ๊ณผ ์–ธ์–ด ๊ธฐ๋ฐ˜ ์›Œํฌํ”Œ๋กœ ์ „๋ฐ˜์— ๊ฑธ์ณ ๋ชจ๋ธ์ด ๊ณ„ํšยท์‹คํ–‰ยท๋ชจ๋‹ˆํ„ฐ๋งยท์ˆ˜์ •๊นŒ์ง€ ์ „ ๊ณผ์ •์„ ๋‹ด๋‹นํ•ด์•ผ ํ•จ์„ ์˜๋ฏธํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ์š”๊ตฌ๋ฅผ ์ถฉ์กฑํ•˜๋ ค๋ฉด ๋ชจ๋ธ ์ž์ฒด๋ฟ ์•„๋‹ˆ๋ผ, ๋ชจ๋ธ์ด ์ž‘๋™ํ•  ํ™˜๊ฒฝ, ๋ฐ์ดํ„ฐ ํŒŒ์ดํ”„๋ผ์ธ, ํ•™์Šตยท๋ฐฐํฌ ์ธํ”„๋ผ๊ฐ€ ๋ชจ๋‘ ์œ ๊ธฐ์ ์œผ๋กœ ์—ฐ๊ฒฐ๋œ โ€˜์—์ด์ „ํŠธ ํ•™์Šต ์ƒํƒœ๊ณ„(AL

Model Artificial Intelligence System Computer Science Learning
Causify DataFlow: A Framework For High-performance Machine Learning Stream Computing

Causify DataFlow: A Framework For High-performance Machine Learning Stream Computing

๋ณธ ๋…ผ๋ฌธ์€ ๋ฐ์ดํ„ฐ ๊ณผํ•™ ์‹ค๋ฌด์—์„œ ๊ฐ€์žฅ ๋นˆ๋ฒˆํžˆ ๋งˆ์ฃผ์น˜๋Š” โ€˜๋ฐ์ดํ„ฐ๋Š” ์œ ํ•œํ•˜๊ณ  ์™„์ „ํ•˜๋‹คโ€™๋Š” ๊ฐ€์ •์„ ๊ทผ๋ณธ์ ์œผ๋กœ ๋’คํ”๋“ ๋‹ค. ์ „ํ†ต์ ์ธ ๋ฐฐ์น˜ ๊ธฐ๋ฐ˜ ์›Œํฌํ”Œ๋กœ์šฐ๋Š” ๊ณ ์ •๋œ ๋ฐ์ดํ„ฐ์…‹์„ ํ•œ ๋ฒˆ์— ๋ฉ”๋ชจ๋ฆฌ๋กœ ๋กœ๋“œํ•˜๊ฑฐ๋‚˜ ๋‹จ์ผ ํŒจ์Šค๋กœ ์ฒ˜๋ฆฌํ•œ๋‹ค๋Š” ์ „์ œํ•˜์— ์„ค๊ณ„๋˜์—ˆ์œผ๋ฉฐ, ์ด๋Š” ์„ผ์„œ ์ŠคํŠธ๋ฆผ, ๊ธˆ์œต ๊ฑฐ๋ž˜ ๋กœ๊ทธ, ์‹œ์Šคํ…œ ์ด๋ฒคํŠธ์™€ ๊ฐ™์ด ์‹œ๊ฐ„์— ๋”ฐ๋ผ ์ง€์†์ ์œผ๋กœ ์ƒ์„ฑ๋˜๋Š” ๋ฐ์ดํ„ฐ์™€๋Š” ๊ทผ๋ณธ์ ์œผ๋กœ ๋งž์ง€ ์•Š๋Š”๋‹ค. ์ €์ž๋Š” ์ด๋Ÿฌํ•œ ๋ถˆ์ผ์น˜๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด Causify DataFlow๋ผ๋Š” ํ†ตํ•ฉ ์ปดํ“จํ…Œ์ด์…”๋„ ๋ชจ๋ธ์„ ์ œ์•ˆํ•œ๋‹ค. ์ฒซ์งธ, ํ”„๋ ˆ์ž„์›Œํฌ๋Š” DAG๋ฅผ ์„ ์–ธ์ ์œผ๋กœ ์ •์˜ํ•˜๊ณ , ๋™์ผํ•œ ์ •์˜๋ฅผ

Framework Machine Learning Computer Science Learning Data
Fuzzy-Logic and Deep Learning for Environmental Condition-Aware Road Surface Classification

Fuzzy-Logic and Deep Learning for Environmental Condition-Aware Road Surface Classification

๋ณธ ์—ฐ๊ตฌ๋Š” ์‹ค์‹œ๊ฐ„ ๋„๋กœ ์ƒํƒœ ๋ชจ๋‹ˆํ„ฐ๋ง ์‹œ์Šคํ…œ์˜ ๊ฐœ๋ฐœ์„ ๋ชฉํ‘œ๋กœ ํ•˜๋ฉฐ, ์ด๋ฅผ ํ†ตํ•ด ์ฐจ๋Ÿ‰ ๊ด€๋ฆฌ ๋ฐ ํ™œ์„ฑ ์ฐจ๋Ÿ‰ ์ œ์–ด ์‹œ์Šคํ…œ์— ํ•„์š”ํ•œ ์ •๋ณด๋ฅผ ์ œ๊ณตํ•˜๊ณ ์ž ํ•ฉ๋‹ˆ๋‹ค. ์ „ํ†ต์ ์ธ ๋ฐฉ๋ฒ•๋“ค์ด ๋น„์šฉ๊ณผ ์‹œ๊ฐ„์ด ๋งŽ์ด ์†Œ์š”๋˜๋Š” ๋ฐ˜๋ฉด, ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋‚ ์”จ ์กฐ๊ฑด ๋ฐ์ดํ„ฐ์™€ ๋„๋กœ ํ‘œ๋ฉด ์ƒํƒœ ๋ฐ์ดํ„ฐ๋ฅผ ํ™œ์šฉํ•œ ์ƒˆ๋กœ์šด ์ ‘๊ทผ๋ฒ•์„ ์ œ์‹œํ•ฉ๋‹ˆ๋‹ค. ํŠนํžˆ, ์นผ์Šค๋ฃจ์— ๊ณต๊ณผ๋Œ€ํ•™๊ต ์ฃผ๋ณ€ ๋„๋กœ์—์„œ ๋ชจ๋ฐ”์ผ ํฐ ์นด๋ฉ”๋ผ๋ฅผ ์ด์šฉํ•ด ์ˆ˜์ง‘๋œ ์ด๋ฏธ์ง€ ๋ฐ์ดํ„ฐ์™€ ๊ฐ€์†๋„ ๋ฐ์ดํ„ฐ๋ฅผ ํ†ตํ•ด ๋‹ค์–‘ํ•œ ๋”ฅ๋Ÿฌ๋‹ ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ์„ฑ๋Šฅ์„ ๋น„๊ตํ•˜์˜€์Šต๋‹ˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” Alexnet, LeNet, VGG ๋ฐ Resnet ๋“ฑ ๋„ค ๊ฐ€

Learning
Benchmark Success, Clinical Failure: When Reinforcement Learning Optimizes for Benchmarks, Not Patients

Benchmark Success, Clinical Failure: When Reinforcement Learning Optimizes for Benchmarks, Not Patients

๋ณธ ๋…ผ๋ฌธ์€ ์˜๋ฃŒ ์˜์ƒ ๋ถ„์•ผ์—์„œ ์ตœ๊ทผ ๊ฐ๊ด‘๋ฐ›๊ณ  ์žˆ๋Š” ๊ฐ•ํ™”ํ•™์Šต(RL) ๊ธฐ๋ฐ˜ ํŒŒ์ธํŠœ๋‹์ด ์‹ค์ œ ์ž„์ƒ ์ ์šฉ์— ์–ด๋–ค ํ•จ์˜๋ฅผ ๊ฐ–๋Š”์ง€ ์‹ฌ๋„ ์žˆ๊ฒŒ ํƒ๊ตฌํ•œ๋‹ค. ๋จผ์ € ์ €์ž๋“ค์€ โ€œR1โ€‘styleโ€์ด๋ผ ๋ช…๋ช…ํ•œ ๋‘ ๋‹จ๊ณ„ ํ•™์Šต ํŒŒ์ดํ”„๋ผ์ธ์„ ์ œ์‹œํ•œ๋‹ค. ์ฒซ ๋‹จ๊ณ„๋Š” ๋น„๊ต์  ์ ์€ ์–‘(2,000๊ฐœ)์˜ ๋ผ๋ฒจ๋ง๋œ ์ด๋ฏธ์ง€โ€‘ํ…์ŠคํŠธ ์Œ์„ ์ด์šฉํ•œ ์ง€๋„ํ•™์Šต(Supervised Fineโ€‘Tuning, SFT)์ด๋ฉฐ, ๋‘ ๋ฒˆ์งธ ๋‹จ๊ณ„๋Š” 1,000๊ฐœ์˜ RL ์ƒ˜ํ”Œ์„ ํ™œ์šฉํ•ด GRPO(Goalโ€‘oriented Rewardโ€‘based Policy Optimization)๋ผ๋Š” ์ •์ฑ… ์ตœ์ ํ™” ๊ธฐ๋ฒ•์„

Computer Science Artificial Intelligence Learning
No Image

Flexible Multitask Learning with Factorized Diffusion Policy

๋ณธ ๋…ผ๋ฌธ์€ ๋‹ค์ค‘ ์ž‘์—… ํ•™์Šต์˜ ๋ณต์žก์„ฑ์„ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ์ƒˆ๋กœ์šด ์ ‘๊ทผ๋ฒ•์„ ์ œ์‹œํ•ฉ๋‹ˆ๋‹ค. ๋กœ๋ด‡ ํ–‰๋™ ๋ถ„ํฌ๋Š” ๋งค์šฐ ๋‹ค์–‘ํ•˜๊ณ , ์ด๋กœ ์ธํ•ด ์ผ๊ด€๋œ ๋ชจ๋ธ์ด ์ด๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ํ•™์Šตํ•˜๋Š” ๋ฐ ์–ด๋ ค์›€์„ ๊ฒช์Šต๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ๋…ผ๋ฌธ์€ ๋ชจ๋“ˆํ™”๋œ ํ™•์‚ฐ ์ •์ฑ… ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. ์ด ํ”„๋ ˆ์ž„์›Œํฌ๋Š” ๋ณต์žกํ•œ ํ–‰๋™ ๋ถ„ํฌ๋ฅผ ์—ฌ๋Ÿฌ ๊ฐœ์˜ ํŠน์ˆ˜ํ™”๋œ ํ™•์‚ฐ ๋ชจ๋ธ๋กœ ๋ถ„ํ•ดํ•˜์—ฌ ๊ฐ๊ฐ์ด ํŠน์ • ํ•˜์œ„ ๋ชจ๋“œ๋ฅผ ํฌ์ฐฉํ•˜๋„๋ก ํ•ฉ๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ์ ‘๊ทผ๋ฒ•์€ ๊ฐ ๋ชจ๋“ˆ์ด ๋…๋ฆฝ์ ์œผ๋กœ ํ•™์Šตํ•˜๊ณ , ํ•„์š”์— ๋”ฐ๋ผ ์ถ”๊ฐ€ํ•˜๊ฑฐ๋‚˜ ์กฐ์ •ํ•  ์ˆ˜ ์žˆ์–ด ์ƒˆ๋กœ์šด ์ž‘์—…์— ๋Œ€ํ•œ ์œ ์—ฐํ•œ ์ ์‘์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•ฉ๋‹ˆ๋‹ค. ๋˜ํ•œ,

Learning
No Image

LibContinual: A Comprehensive Library towards Realistic Continual Learning

์ด ๋…ผ๋ฌธ์€ ๊ณ„์†ํ•™์Šต(Continual Learning) ๋ถ„์•ผ์—์„œ ์ค‘์š”ํ•œ ๋ฌธ์ œ์ธ ์น˜๋ช…์ ์ธ ์žŠ์Œ์„ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด LibContinual์ด๋ผ๋Š” ์ƒˆ๋กœ์šด ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ๋ฅผ ์ œ์•ˆํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ด ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ๋Š” ๊ณ ๊ฒฐํ•ฉ ์ €๊ฒฐ์ฐฉ ๋ชจ๋“ˆํ˜• ์•„ํ‚คํ…์ฒ˜๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ, 5๊ฐœ์˜ ์ฃผ์š” ๋ฐฉ๋ฒ•๋ก  ์นดํ…Œ๊ณ ๋ฆฌ์— ๊ฑธ์ณ 19๊ฐœ์˜ ๋Œ€ํ‘œ์ ์ธ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ํ†ตํ•ฉํ•˜์—ฌ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ๊ตฌ์กฐ๋Š” ๋‹ค์–‘ํ•œ CL ๋ฐฉ๋ฒ•๋“ค์„ ๋น„๊ตํ•˜๊ณ  ์žฌํ˜„ ๊ฐ€๋Šฅํ•œ ์—ฐ๊ตฌ ํ™˜๊ฒฝ์„ ์ œ๊ณตํ•˜๋Š” ๋ฐ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•ฉ๋‹ˆ๋‹ค. ๋…ผ๋ฌธ์€ ๋˜ํ•œ ํ˜„์žฌ ํ‰๊ฐ€์—์„œ ์ผ๋ฐ˜์ ์œผ๋กœ ๋ฐœ๊ฒฌ๋˜๋Š” ์„ธ ๊ฐ€์ง€ ์•”๋ฌต์ ์ธ ๊ฐ€์ •(์˜คํ”„๋ผ์ธ ๋ฐ์ดํ„ฐ ์ ‘๊ทผ ๊ฐ€๋Šฅ์„ฑ, ์ œํ•œ ์—†๋Š”

Learning
No Image

BALLAST: Bandit-Assisted Learning for Latency-Aware Stable Timeouts in Raft

์ด ๋…ผ๋ฌธ์€ Raft ํ•ฉ์˜ ํ”„๋กœํ† ์ฝœ์—์„œ ๊ฐ€์žฅ ํ”ํžˆ ์‚ฌ์šฉ๋˜๋Š” ๋ฌด์ž‘์œ„ ์„ ์ถœ ํƒ€์ž„์•„์›ƒ์ด ์žฅ๊ธฐ ์ง€์—ฐ(longโ€‘tail latency)์ด๋‚˜ ๋„คํŠธ์›Œํฌ ํŒŒํ‹ฐ์…˜ ๋ณต๊ตฌ ์‹œ์— ๋ฐœ์ƒํ•˜๋Š” โ€œ๋ถ„ํ•  ํˆฌํ‘œ(split vote)โ€ ํ˜„์ƒ์œผ๋กœ ์ธํ•ด ์‹œ์Šคํ…œ ๊ฐ€์šฉ์„ฑ์ด ๊ธ‰๊ฒฉํžˆ ์ €ํ•˜๋˜๋Š” ๋ฌธ์ œ์ ์„ ์ •ํ™•ํžˆ ์งš์–ด๋‚ธ๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค์€ ํƒ€์ž„์•„์›ƒ ๊ฐ’์„ ๊ณ ์ •ํ•˜๊ฑฐ๋‚˜ ๋‹จ์ˆœํžˆ ํ‰๊ท  ์ง€์—ฐ์— ๊ธฐ๋ฐ˜ํ•œ ์กฐ์ • ๋ฐฉ์‹์„ ์ œ์•ˆํ–ˆ์ง€๋งŒ, ์ด๋Ÿฌํ•œ ์ ‘๊ทผ๋ฒ•์€ ๋„คํŠธ์›Œํฌ ์ƒํƒœ๊ฐ€ ๊ธ‰๋ณ€ํ•˜๊ฑฐ๋‚˜ ๋น„์ •์ƒ์ ์ธ ์ง€์—ฐ ๋ถ„ํฌ๊ฐ€ ๋‚˜ํƒ€๋‚  ๋•Œ ์ ์‘์„ฑ์ด ๋ถ€์กฑํ•˜๋‹ค. BALLAST๋Š” ์ด๋Ÿฌํ•œ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด โ€˜์ปจํ…์ŠคํŠธ ๋ฐด๋”ง(contextu

Learning
Prediction and Forecast of Short-Term Drought Impacts Using Machine Learning to Support Mitigation and Adaptation Efforts

Prediction and Forecast of Short-Term Drought Impacts Using Machine Learning to Support Mitigation and Adaptation Efforts

๋ณธ ๋…ผ๋ฌธ์€ ์ตœ๊ทผ ์ฆ๊ฐ€ํ•˜๋Š” ๊ฑด์กฐ์˜ ์‹ฌ๊ฐ์„ฑ๊ณผ ๋นˆ๋„์— ๋Œ€์‘ํ•˜๊ธฐ ์œ„ํ•ด ๋จธ์‹ ๋Ÿฌ๋‹ ๊ธฐ๋ฒ•์„ ํ™œ์šฉํ•œ ๊ฑด์กฐ ์˜ํ–ฅ ์˜ˆ์ธก ๋ชจ๋ธ ๊ฐœ๋ฐœ์— ์ดˆ์ ์„ ๋งž์ถ”๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ํŠนํžˆ, Drought Severity and Coverage Index (DSCI)์™€ Evaporative Stress Index (ESI)๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๊ฑด์กฐ์˜ ์˜ํ–ฅ์„ ์˜ˆ์ธกํ•˜๊ณ ์ž ํ•˜์˜€์Šต๋‹ˆ๋‹ค. ์—ฐ๊ตฌ๋Š” 2005๋…„๋ถ€ํ„ฐ 2024๋…„๊นŒ์ง€์˜ ๋ฐ์ดํ„ฐ๋ฅผ ํ™œ์šฉํ•˜์˜€์œผ๋ฉฐ, Fire์™€ Relief ์˜์—ญ์—์„œ ๊ฐ€์žฅ ๋†’์€ ์˜ˆ์ธก ์ •ํ™•๋„๋ฅผ ๋ณด์˜€๊ณ , Agriculture์™€ Water ๋ถ„์•ผ์—์„œ๋Š” ๊ทธ ๋‹ค์Œ์œผ๋กœ ๋†’์€ ์ •ํ™•๋„๊ฐ€ ๋‚˜ํƒ€๋‚ฌ์Šต๋‹ˆ

Learning
No Image

MedNeXt-v2: Scaling 3D ConvNeXts for Large-Scale Supervised Representation Learning in Medical Image Segmentation

๋ณธ ๋…ผ๋ฌธ์€ ์ตœ๊ทผ ์˜๋ฃŒ ์˜์ƒ ๋ถ„์•ผ์—์„œ ๊ธ‰๋ถ€์ƒํ•˜๊ณ  ์žˆ๋Š” โ€˜๋Œ€๊ทœ๋ชจ ๊ฐ๋… ์‚ฌ์ „ํ•™์Šต(Supervised Preโ€‘training)โ€™ ํ๋ฆ„์— ์ค‘์š”ํ•œ ์งˆ๋ฌธ์„ ์ œ๊ธฐํ•œ๋‹ค. ๋Œ€๋ถ€๋ถ„์˜ ์—ฐ๊ตฌ๊ฐ€ ๋ฐ์ดํ„ฐ ์–‘์„ ๋Š˜๋ฆฌ๋Š” ๋ฐฉํ–ฅ์—๋งŒ ์ง‘์ค‘ํ•œ ๋ฐ˜๋ฉด, ์‹ค์ œ ๋ชจ๋ธ์ด ๋Œ€๊ทœ๋ชจ ๋ฐ์ดํ„ฐ์—์„œ ์–ผ๋งˆ๋‚˜ ํšจ์œจ์ ์œผ๋กœ ํŠน์ง•์„ ์ถ”์ถœํ•˜๊ณ  ์ผ๋ฐ˜ํ™”ํ•  ์ˆ˜ ์žˆ๋Š”์ง€๋Š” ์ถฉ๋ถ„ํžˆ ๊ฒ€์ฆ๋˜์ง€ ์•Š์•˜๋‹ค. ์ €์ž๋“ค์€ ์ด๋Ÿฌํ•œ ๊ณต๋ฐฑ์„ ๋ฉ”์šฐ๊ธฐ ์œ„ํ•ด ConvNeXt๋ผ๋Š” ์ตœ์‹  2D ๋น„์ „ ๋ฐฑ๋ณธ์„ 3์ฐจ์› ๋ณผ๋ฅ˜๋ฉ”ํŠธ๋ฆญ ์ž‘์—…์— ๋งž๊ฒŒ ์žฌ์„ค๊ณ„ํ•˜๊ณ , ์ด๋ฅผ โ€˜MedNeXtโ€‘v2โ€™๋ผ๋Š” ์ด๋ฆ„์œผ๋กœ ์ œ์‹œํ•œ๋‹ค. ํ•ต์‹ฌ ๊ธฐ์—ฌ๋Š” ํฌ๊ฒŒ ๋„ค ๊ฐ€์ง€๋กœ ์ •๋ฆฌํ•  ์ˆ˜

Learning
No Image

End-to-End Learning-based Video Streaming Enhancement Pipeline: A Generative AI Approach

ELVIS ์•„ํ‚คํ…์ฒ˜๋Š” ์ „ํ†ต์ ์ธ ์ฝ”๋“œํฌ์™€์˜ ์ฐจ๋ณ„ํ™”๋œ ์ ‘๊ทผ๋ฒ•์œผ๋กœ ์ฃผ๋ชฉํ•  ๋งŒํ•ฉ๋‹ˆ๋‹ค. ์ด ๋…ผ๋ฌธ์€ ์„œ๋ฒ„ ์ธก ์ธ์ฝ”๋”ฉ ์ตœ์ ํ™”์™€ ํด๋ผ์ด์–ธํŠธ ์ธก ์ƒ์„ฑํ˜• ์ธํŽ˜์ธํŒ…์„ ๊ฒฐํ•ฉํ•˜์—ฌ ์ค‘๋ณต ๋ฐ์ดํ„ฐ๋ฅผ ์ œ๊ฑฐํ•˜๊ณ  ์žฌ๊ตฌ์„ฑํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์‹œํ•ฉ๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ์ ‘๊ทผ๋ฒ•์€ ๋Œ€์—ญํญ ์‚ฌ์šฉ์„ ์ค„์ด๋ฉด์„œ๋„ ๋†’์€ ํ™”์งˆ์„ ์œ ์ง€ํ•  ์ˆ˜ ์žˆ๋Š” ์ƒˆ๋กœ์šด ๊ฐ€๋Šฅ์„ฑ์„ ์—ด์–ด์ค๋‹ˆ๋‹ค. ELVIS์˜ ๋ชจ๋“ˆ์‹ ์„ค๊ณ„๋Š” ๋‹ค์–‘ํ•œ ์ฝ”๋“œํฌ, ์ธํŽ˜์ธํŒ… ๋ชจ๋ธ, ํ’ˆ์งˆ ์ง€ํ‘œ๋ฅผ ์‰ฝ๊ฒŒ ํ†ตํ•ฉํ•  ์ˆ˜ ์žˆ๊ฒŒ ํ•˜๋ฉฐ, ์ด๋Š” ๋ฏธ๋ž˜ ๊ธฐ์ˆ  ๋ฐœ์ „์— ๋Œ€ํ•œ ์œ ์—ฐ์„ฑ๊ณผ ํ™•์žฅ์„ฑ์„ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค. ๋˜ํ•œ, ํ˜„์žฌ ๊ธฐ์ˆ ์ด ๋ฒ ์ด์Šค๋ผ์ธ๋ณด๋‹ค ์ตœ๋Œ€ 11 VMAF ์ ์„ ๊ฐœ์„ ํ•œ ๊ฒฐ๊ณผ

Learning
Explainable Preference Learning: a Decision Tree-based Surrogate Model for Preferential Bayesian Optimization

Explainable Preference Learning: a Decision Tree-based Surrogate Model for Preferential Bayesian Optimization

๋ณธ ๋…ผ๋ฌธ์€ ๋ฒ ์ด์ง€์•ˆ ์ตœ์ ํ™”์˜ ํ•œ๊ณ„์ ์„ ๊ทน๋ณตํ•˜๊ณ ์ž ๊ฒฐ์ •ํŠธ๋ฆฌ๋ฅผ ์ƒˆ๋กœ์šด ๋Œ€๋ฆฌ ๋ชจ๋ธ๋กœ ์ œ์‹œํ•œ๋‹ค. ์ด๋Š” ๊ฐ€์šฐ์‹œ์•ˆ ํ”„๋กœ์„ธ์Šค(GP)๋ฅผ ์‚ฌ์šฉํ•˜๋Š” ๊ธฐ์กด ๋ฐฉ๋ฒ•๊ณผ ๋‹ฌ๋ฆฌ ํ•ด์„์„ฑ์ด ๋›ฐ์–ด๋‚˜๋ฉฐ, ์—ฐ์†ํ˜• ๋ฐ ๋ฒ”์ฃผํ˜• ๋ฐ์ดํ„ฐ ์ฒ˜๋ฆฌ ๋Šฅ๋ ฅ์ด ๊ฐ•ํ™”๋˜์–ด ์‹ค์ œ ์ ์šฉ์— ์œ ์šฉํ•˜๋‹ค. ๊ฒฐ์ •ํŠธ๋ฆฌ๋Š” ๋ณต์žกํ•œ ๋ชจ๋ธ์„ ์ดํ•ดํ•˜๊ธฐ ์‰ฝ๊ฒŒ ์‹œ๊ฐํ™”ํ•  ์ˆ˜ ์žˆ์–ด, ์ตœ์ ํ™” ๊ณผ์ •์—์„œ ์–ป์€ ๊ฒฐ๊ณผ๋ฅผ ์ง๊ด€์ ์œผ๋กœ ํ•ด์„ํ•˜๊ณ  ํ™œ์šฉํ•˜๋Š” ๋ฐ ๋„์›€์ด ๋œ๋‹ค. ํŠนํžˆ, ๋ณธ ๋…ผ๋ฌธ์˜ ์‹คํ—˜์—์„œ๋Š” ๋‚ ์นด๋กœ์šด ํ•จ์ˆ˜์— ๋Œ€ํ•œ ์„ฑ๋Šฅ ํ–ฅ์ƒ์ด ํ™•์ธ๋˜์—ˆ์œผ๋ฉฐ, ์ด๋Š” ์‹ค์ œ ์„ธ๊ณ„์—์„œ ์ž์ฃผ ๋ฐœ์ƒํ•˜๋Š” ๋ถˆ๊ทœ์น™์ ์ธ ๋ฐ์ดํ„ฐ ๋ถ„ํฌ์— ํšจ๊ณผ์ ์ผ ์ˆ˜ ์žˆ์Œ์„ ์‹œ์‚ฌํ•œ๋‹ค.

Learning Model
No Image

TiCard: Deployable EXPLAIN-only Residual Learning for Cardinality Estimation

์ด ๋…ผ๋ฌธ์€ ์นด๋””๋„๋ฆฌํ‹ฐ ์ถ”์ • ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด TiCard๋ผ๋Š” ์ƒˆ๋กœ์šด ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์†Œ๊ฐœํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์นด๋””๋„๋ฆฌํ‹ฐ ์ถ”์ •์€ ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค ์ฟผ๋ฆฌ ์ตœ์ ํ™”์—์„œ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•˜์ง€๋งŒ, ๊ธฐ์กด์˜ ๋ฐฉ๋ฒ•๋“ค์€ ์ƒ๊ด€๊ด€๊ณ„๋ฅผ ๊ณ ๋ คํ•˜์ง€ ๋ชปํ•˜๊ฑฐ๋‚˜ ํŠน์ • ์ž‘์—… ๋ถ€ํ•˜์— ๋งž๋Š” ๋ณ„๋„์˜ ํ›ˆ๋ จ ํŒŒ์ดํ”„๋ผ์ธ๊ณผ ํ†ตํ•ฉ์ด ํ•„์š”ํ•˜๋‹ค๋Š” ๋ฌธ์ œ์ ์ด ์žˆ์Šต๋‹ˆ๋‹ค. TiCard๋Š” ์ด๋Ÿฌํ•œ ์ œ์•ฝ์„ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค์˜ ์›๋ž˜ ์ถ”์ •๊ธฐ๋ฅผ ๋ณด์™„ํ•˜๋Š” ๋ฐฉ์‹์œผ๋กœ ์„ค๊ณ„๋˜์—ˆ์Šต๋‹ˆ๋‹ค. TiCard๋Š” ๋‘ ๊ฐ€์ง€ ์ฃผ์š” ๊ตฌ์„ฑ ์š”์†Œ๋ฅผ ์‚ฌ์šฉํ•ฉ๋‹ˆ๋‹ค: ๊ทธ๋ ˆ๋””์–ธํŠธ ๋ถ€์ŠคํŒ… ํšŒ๊ท€๊ธฐ(Gradient Boosting Regressor

Learning
Understanding and Improving Hyperbolic Deep Reinforcement Learning

Understanding and Improving Hyperbolic Deep Reinforcement Learning

๋ณธ ๋…ผ๋ฌธ์€ ๊ฐ•ํ™”ํ•™์Šต(Reinforcement Learning, RL) ์—์ด์ „ํŠธ์˜ ์„ฑ๋Šฅ ํ–ฅ์ƒ์„ ์œ„ํ•ด ํ•˜์ดํผ๋ณผ๋ฆญ ํŠน์ง• ๊ณต๊ฐ„์„ ํ™œ์šฉํ•˜๋Š” ๋ฐฉ๋ฒ•์— ๋Œ€ํ•ด ๊นŠ๊ฒŒ ๋ถ„์„ํ•˜๊ณ  ์žˆ๋‹ค. ํŠนํžˆ, ํฌ์•™์นด๋ ˆ ๊ณต(Poincarรฉ Ball)๊ณผ ํ•˜์ดํผ๋ณผ๋กœ์ด๋“œ(Hyperboloid) ๋ชจ๋ธ์—์„œ ํ•ต์‹ฌ ์—ฐ์‚ฐ๋“ค์˜ ๊ทธ๋ž˜๋””์–ธํŠธ๋ฅผ ๋ถ„์„ํ•จ์œผ๋กœ์จ, ํฐ ๋…ธ๋ฆ„(embedding norm)์€ ๊ทธ๋ž˜๋””์–ธํŠธ ๊ธฐ๋ฐ˜ ํ›ˆ๋ จ์„ ๋ถˆ์•ˆ์ •ํ•˜๊ฒŒ ๋งŒ๋“ค๊ณ  ๊ทผ์ ‘ ์ •์ฑ… ์ตœ์ ํ™”(Proximal Policy Optimization, PPO)์˜ ์‹ ๋ขฐ ์˜์—ญ ์œ„๋ฐ˜(trust region violation)์„ ์ดˆ๋ž˜ํ•œ๋‹ค๋Š” ๊ฒƒ

Learning
TraPO: A Semi-Supervised Reinforcement Learning Framework for Boosting LLM Reasoning

TraPO: A Semi-Supervised Reinforcement Learning Framework for Boosting LLM Reasoning

๋ณธ ๋…ผ๋ฌธ์€ ๊ฐ•ํ™”ํ•™์Šต๊ณผ ์ค€๊ฐ๋… ํ•™์Šต์„ ๊ฒฐํ•ฉํ•˜์—ฌ ๋Œ€๊ทœ๋ชจ ์ถ”๋ก  ๋ชจ๋ธ(LRMs)์„ ํšจ์œจ์ ์œผ๋กœ ํ›ˆ๋ จํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ํŠนํžˆ, TRAPO ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ํ†ตํ•ด ์†Œ๋Ÿ‰์˜ ๋ผ๋ฒจ๋ง ๋ฐ์ดํ„ฐ์™€ ๋งŽ์€ ๋น„๋ผ๋ฒจ ๋ฐ์ดํ„ฐ๋ฅผ ํ™œ์šฉํ•ด ๋ชจ๋ธ์„ ์•ˆ์ •ํ™”์‹œํ‚ค๊ณ , ์ด๋ฅผ ํ†ตํ•ด ๋†’์€ ์ •ํ™•๋„์™€ ๊ฐ•๋ ฅํ•œ ์ผ๋ฐ˜ํ™” ์„ฑ๋Šฅ์„ ๋‹ฌ์„ฑํ•  ์ˆ˜ ์žˆ์Œ์„ ๋ณด์—ฌ์ฃผ์—ˆ์Šต๋‹ˆ๋‹ค. ์ด ์—ฐ๊ตฌ๋Š” ๊ธฐ์กด ๋ฌด๊ฐ๋… RLVR ๋ฐฉ๋ฒ•๋“ค์ด ํ›ˆ๋ จ ํ›„๊ธฐ ๋‹จ๊ณ„์—์„œ ์ผ๊ด€์„ฑ์„ ์œ ์ง€ํ•˜์ง€ ๋ชปํ•˜๊ณ  ๋ชจ๋ธ ๋ถ•๊ดด๋ฅผ ๊ฒช๋Š” ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๋Š” ๋ฐ ์ค‘์ ์„ ๋‘๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. TRAPO ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ํ•™์Šต ๊ฒฝ๋กœ ์œ ์‚ฌ์„ฑ ๋ถ„์„์„ ํ†ตํ•ด ์‹ ๋ขฐํ•  ์ˆ˜ ์žˆ๋Š” ๋น„๋ผ๋ฒจ ์ƒ˜ํ”Œ์„

Framework Learning
Condensation-Concatenation Framework for Dynamic Graph Continual Learning

Condensation-Concatenation Framework for Dynamic Graph Continual Learning

Analysis of the Paper '๋™์  ๊ทธ๋ž˜ํ”„ ์ง€์†ํ•™์Šต์„ ์œ„ํ•œ ์••์ถ• ์—ฐ๊ฒฐ ํ”„๋ ˆ์ž„์›Œํฌ CCC' Abstract: The paper introduces a new framework called CCC (Condensation Concatenation Framework for Dynamic Graph Continual Learning) , which aims to address the limitations of existing graph neural networks (GNNs) in handling dynamic graphs. I

Framework Learning
SUGAR: A Sweeter Spot for Generative Unlearning of Many Identities

SUGAR: A Sweeter Spot for Generative Unlearning of Many Identities

๋ณธ ๋…ผ๋ฌธ์€ ์ƒ์„ฑ ๋ชจ๋ธ์˜ โ€˜์–ธ๋Ÿฌ๋‹(unlearning)โ€™์ด๋ผ๋Š” ๋น„๊ต์  ์ƒˆ๋กœ์šด ์—ฐ๊ตฌ ์˜์—ญ์— ์‹ค์šฉ์ ์ธ ํ•ด๊ฒฐ์ฑ…์„ ์ œ์‹œํ•œ๋‹ค๋Š” ์ ์—์„œ ํฐ ์˜๋ฏธ๋ฅผ ๊ฐ€์ง„๋‹ค. ๊ธฐ์กด์˜ ์ƒ์„ฑ ๋ชจ๋ธ์€ ๋Œ€๊ทœ๋ชจ ๋ฐ์ดํ„ฐ์…‹์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•™์Šต๋˜๋ฉฐ, ํ•œ ๋ฒˆ ํ•™์Šต๋œ ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ์ˆ˜์ •ํ•˜๊ฑฐ๋‚˜ ํŠน์ • ์ƒ˜ํ”Œ์„ ์ œ๊ฑฐํ•˜๋ ค๋ฉด ์ „์ฒด ๋ชจ๋ธ์„ ์žฌํ•™์Šตํ•ด์•ผ ํ•˜๋Š” ๋น„ํšจ์œจ์ ์ธ ๊ตฌ์กฐ๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ์—ˆ๋‹ค. ํŠนํžˆ ์–ผ๊ตด ํ•ฉ์„ฑ์ฒ˜๋Ÿผ ๊ฐœ์ธ ์‹๋ณ„์ด ๊ฐ€๋Šฅํ•œ ๋ฐ์ดํ„ฐ๋ฅผ ๋‹ค๋ฃจ๋Š” ๊ฒฝ์šฐ, ๋ฒ•์ ยท์œค๋ฆฌ์  ์š”๊ตฌ์— ๋”ฐ๋ผ ํŠน์ • ์ธ๋ฌผ์˜ ๋ฐ์ดํ„ฐ๋ฅผ ์ฆ‰์‹œ ์‚ญ์ œํ•  ํ•„์š”๊ฐ€ ์žˆ๋‹ค. SUGAR๋Š” ์ด๋Ÿฌํ•œ ์š”๊ตฌ๋ฅผ ์ถฉ์กฑ์‹œํ‚ค๊ธฐ ์œ„ํ•ด ๋‘ ๊ฐ€์ง€ ํ•ต์‹ฌ ์•„์ด๋””์–ด๋ฅผ ๋„์ž…ํ•œ๋‹ค.

Learning
Quantifying Memory Use in Reinforcement Learning with Temporal Range

Quantifying Memory Use in Reinforcement Learning with Temporal Range

Temporal Range๋Š” ๊ฐ•ํ™”ํ•™์Šต ์—์ด์ „ํŠธ๊ฐ€ ๊ณผ๊ฑฐ ๊ด€์ธก์„ ์–ผ๋งˆ๋‚˜ ํ™œ์šฉํ•˜๋Š”์ง€๋ฅผ ์ •๋Ÿ‰ํ™”ํ•˜๋ ค๋Š” ์‹œ๋„์—์„œ ์ถœ๋ฐœํ•œ๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ์—์„œ๋Š” ์ •์ฑ… ๋„คํŠธ์›Œํฌ์˜ ๊ตฌ์กฐ์  ๋ฉ”๋ชจ๋ฆฌ ์šฉ๋Ÿ‰(์˜ˆ: RNN์˜ hidden size)์ด๋‚˜ ํ›ˆ๋ จ๋œ ๋ชจ๋ธ์˜ ์„ฑ๋Šฅ์„ ํ†ตํ•ด ๊ฐ„์ ‘์ ์œผ๋กœ ์ถ”์ •ํ–ˆ์ง€๋งŒ, ์‹ค์ œ ์ž…๋ ฅโ€‘์ถœ๋ ฅ ๊ด€๊ณ„๊ฐ€ ์–ด๋А ์‹œ์ ๊นŒ์ง€ ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š”์ง€๋Š” ๋ช…ํ™•ํžˆ ๋“œ๋Ÿฌ๋‚˜์ง€ ์•Š์•˜๋‹ค. ์ด ๋…ผ๋ฌธ์€ ๊ทธ๋Ÿฐ ๊ณต๋ฐฑ์„ ๋ฉ”์šฐ๊ธฐ ์œ„ํ•ด โ€œ์‹œ๊ฐ„์  ์˜ํ–ฅ ํ”„๋กœํŒŒ์ผโ€์ด๋ผ๋Š” ๊ฐœ๋…์„ ๋„์ž…ํ•œ๋‹ค. ๊ตฌ์ฒด์ ์œผ๋กœ, ์‹œ์  t ์—์„œ ์ž…๋ ฅ x t ๊ฐ€ ์ดํ›„ ์‹œ์  s ( t < s โ‰ค T )์˜ ์ถœ๋ ฅ y s ์— ๋ฏธ์น˜๋Š” 1์ฐจ ๋ฏผ๊ฐ

Learning
Learning Single-Image Super-Resolution in the JPEG Compressed Domain

Learning Single-Image Super-Resolution in the JPEG Compressed Domain

๋ณธ ๋…ผ๋ฌธ์€ ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜ ์ด๋ฏธ์ง€ ๋ณต์› ๋ถ„์•ผ์—์„œ ํ”ํžˆ ๊ฐ„๊ณผ๋˜๋Š” ๋ฐ์ดํ„ฐ ์ „์ฒ˜๋ฆฌ ๋‹จ๊ณ„, ์ฆ‰ JPEG ๋””์ฝ”๋”ฉ ๊ณผ์ •์ด ์ „์ฒด ํŒŒ์ดํ”„๋ผ์ธ์˜ ํšจ์œจ์„ฑ์„ ํฌ๊ฒŒ ์ €ํ•ดํ•œ๋‹ค๋Š” ์ ์„ ์ •ํ™•ํžˆ ์งš์–ด๋ƒˆ๋‹ค. JPEG ํฌ๋งท์€ ์ด๋ฏธ์ง€ ๋ฐ์ดํ„ฐ๋ฅผ 8ร—8 ๋ธ”๋ก ๋‹จ์œ„์˜ ์ด์‚ฐ ์ฝ”์‚ฌ์ธ ๋ณ€ํ™˜(DCT) ๊ณ„์ˆ˜์™€ ์–‘์žํ™” ํ…Œ์ด๋ธ”๋กœ ์••์ถ•ํ•˜๋Š”๋ฐ, ์ด ๊ณผ์ •์—์„œ ์›๋ณธ ํ”ฝ์…€๊ฐ’์„ ๋ณต์›ํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ์—ญ๋ณ€ํ™˜๊ณผ ์—ญ์–‘์žํ™”๊ฐ€ ํ•„์š”ํ•˜๋‹ค. ์ด๋Ÿฌํ•œ ์—ฐ์‚ฐ์€ CPU ์ค‘์‹ฌ์˜ ์ž‘์—…์œผ๋กœ, GPU ๊ฐ€์†์ด ๊ฐ€๋Šฅํ•œ ๋”ฅ๋Ÿฌ๋‹ ์—ฐ์‚ฐ๊ณผ๋Š” ๋ณ„๋„๋กœ ์ˆ˜ํ–‰๋˜๋ฉฐ ๋ฉ”๋ชจ๋ฆฌ ๋Œ€์—ญํญ๊ณผ I/O ๋ณ‘๋ชฉ์„ ์ดˆ๋ž˜ํ•œ๋‹ค. ๋…ผ๋ฌธ์€ ์ด๋Ÿฌํ•œ ๋ณ‘๋ชฉ์„ ํ•ด์†Œํ•˜๊ธฐ ์œ„ํ•ด, D

Learning
Privacy in Federated Learning with Spiking Neural Networks

Privacy in Federated Learning with Spiking Neural Networks

์ŠคํŒŒ์ดํ‚น ์‹ ๊ฒฝ๋ง(SNN)์ด ์ตœ๊ทผ ์—ฃ์ง€ ๋””๋ฐ”์ด์Šค์™€ ์ €์ „๋ ฅ AI ์†”๋ฃจ์…˜์—์„œ ๊ฐ๊ด‘๋ฐ›๋Š” ์ด์œ ๋Š”, ๋‰ด๋Ÿฐ์ด ์ŠคํŒŒ์ดํฌ(์ด์‚ฐ์ ์ธ ์ „๊ธฐ ํŽ„์Šค) ํ˜•ํƒœ๋กœ ์ •๋ณด๋ฅผ ์ „๋‹ฌํ•จ์œผ๋กœ์จ ์—ฐ์‚ฐ๋Ÿ‰๊ณผ ์—๋„ˆ์ง€ ์†Œ๋น„๋ฅผ ์ตœ์†Œํ™”ํ•  ์ˆ˜ ์žˆ๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค. ์ด๋Ÿฌํ•œ ๊ตฌ์กฐ์  ํŠน์„ฑ์€ ๊ธฐ์กด์˜ ์—ฐ์†์ ์ธ ํ™œ์„ฑ๊ฐ’์„ ์‚ฌ์šฉํ•˜๋Š” ์ธ๊ณต์‹ ๊ฒฝ๋ง(ANN)๊ณผ ๊ทผ๋ณธ์ ์œผ๋กœ ๋‹ค๋ฅด๋ฉฐ, ํŠนํžˆ ํ•™์Šต ๊ณผ์ •์—์„œ๋„ ์ฐจ๋ณ„์ ์„ ๋งŒ๋“ ๋‹ค. ANN์€ ์—ญ์ „ํŒŒ๋ฅผ ํ†ตํ•ด ์ •ํ™•ํ•œ ๋ฏธ๋ถ„๊ฐ’์„ ๊ณ„์‚ฐํ•ด ๊ฐ€์ค‘์น˜๋ฅผ ์—…๋ฐ์ดํŠธํ•˜์ง€๋งŒ, SNN์€ ์ŠคํŒŒ์ดํฌ ๋ฐœ์ƒ ์ž์ฒด๊ฐ€ ๋น„๋ฏธ๋ถ„ ๊ฐ€๋Šฅํ•˜๊ธฐ ๋•Œ๋ฌธ์— ๋Œ€๋ฆฌ ๊ทธ๋ž˜๋””์–ธํŠธ(surrogate gradient)๋ผ๋Š” ๊ทผ์‚ฌ ๋ฐฉ๋ฒ•์„ ๋„

Network Learning
Leveraging LLMs for reward function design in reinforcement learning control tasks

Leveraging LLMs for reward function design in reinforcement learning control tasks

๋ณธ ๋…ผ๋ฌธ์ด ์ œ์‹œํ•˜๋Š” LEARNโ€‘Opt ํ”„๋ ˆ์ž„์›Œํฌ๋Š” ๊ฐ•ํ™”ํ•™์Šต์—์„œ ๋ณด์ƒ ํ•จ์ˆ˜๋ฅผ ์„ค๊ณ„ํ•˜๋Š” ์ „ํ†ต์ ์ธ ์›Œํฌํ”Œ๋กœ์šฐ๋ฅผ ๊ทผ๋ณธ์ ์œผ๋กœ ์žฌ๊ตฌ์„ฑํ•œ๋‹ค๋Š” ์ ์—์„œ ํ•™์ˆ ์ ยท์‹ค์šฉ์  ์˜์˜๊ฐ€ ํฌ๋‹ค. ๊ธฐ์กด ๋ฐฉ๋ฒ•๋“ค์€ ๋ณดํ†ต ๋‘ ๋‹จ๊ณ„, ์ฆ‰(1) ์ธ๊ฐ„์ด ์ •์˜ํ•œ ๋ฉ”ํŠธ๋ฆญ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ›„๋ณด ๋ณด์ƒ ํ•จ์ˆ˜๋ฅผ ์ƒ์„ฑํ•˜๊ณ , (2) ์ธ๊ฐ„ ํ˜น์€ ์ „๋ฌธ๊ฐ€ ํ”ผ๋“œ๋ฐฑ์„ ํ†ตํ•ด ํ›„๋ณด๋ฅผ ์ •์ œํ•˜๋Š” ๊ณผ์ •์„ ๊ฑฐ์นœ๋‹ค. ์ด๋Ÿฌํ•œ ์ ‘๊ทผ์€ ์ธ๊ฐ„ ์ „๋ฌธ๊ฐ€์˜ ๊ฐ€์šฉ์„ฑ์— ํฌ๊ฒŒ ์˜์กดํ•˜๋ฉฐ, ํŠนํžˆ ๋ณต์žกํ•œ ๋„๋ฉ”์ธ์—์„œ๋Š” ๋ฉ”ํŠธ๋ฆญ ์„ค๊ณ„ ์ž์ฒด๊ฐ€ ์–ด๋ ค์šด ๋ฌธ์ œ๋‹ค. LEARNโ€‘Opt๋Š” LLM์„ ํ™œ์šฉํ•ด ์‹œ์Šคํ…œ ์„ค๋ช…๊ณผ ๊ณผ์ œ ๋ชฉํ‘œ๋งŒ์„ ์ž…๋ ฅ์œผ๋กœ ๋ฐ›์•„, ์ž๋™์œผ

Learning
QuickLAP: Quick Language-Action Preference Learning for Autonomous Driving Agents

QuickLAP: Quick Language-Action Preference Learning for Autonomous Driving Agents

๋ณธ ๋…ผ๋ฌธ์€ ์ธ๊ฐ„โ€‘๋กœ๋ด‡ ์ƒํ˜ธ์ž‘์šฉ(HRI) ๋ถ„์•ผ์—์„œ ์žฅ๊ธฐ์ ์œผ๋กœ ์ค‘์š”ํ•œ ๋ฌธ์ œ์ธ โ€˜๋‹ค์ค‘๋ชจ๋‹ฌ ํ”ผ๋“œ๋ฐฑ์„ ํ†ตํ•œ ๋ณด์ƒ ํ•™์Šตโ€™์— ๋Œ€ํ•ด ์‹ค์šฉ์ ์ธ ํ•ด๊ฒฐ์ฑ…์„ ์ œ์‹œํ•œ๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค์€ ๋ฌผ๋ฆฌ์  ๊ต์ •(์˜ˆ: ์‹œ์—ฐ, ๋ฌผ๋ฆฌ์  ๋Œ์–ด๋‹น๊น€)์ด๋‚˜ ์–ธ์–ด์  ์ง€์‹œ(์˜ˆ: ๋ช…๋ น๋ฌธ, ์„ค๋ช…) ์ค‘ ํ•˜๋‚˜์— ์ดˆ์ ์„ ๋งž์ถ”์—ˆ์œผ๋ฉฐ, ๋‘ ๋ชจ๋‹ฌ๋ฆฌํ‹ฐ๋ฅผ ๊ฒฐํ•ฉํ•˜๋ ค๋Š” ์‹œ๋„๋Š” ๋Œ€๋ถ€๋ถ„ ๊ทœ์น™ ๊ธฐ๋ฐ˜์ด๊ฑฐ๋‚˜ ์‚ฌํ›„ ํ†ตํ•ฉ ๋ฐฉ์‹์— ๋จธ๋ฌผ๋ €๋‹ค. ์ด๋Ÿฌํ•œ ์ ‘๊ทผ์€ (1) ๋ฌผ๋ฆฌ์  ๊ต์ •์ด ์˜๋„ ํ•ด์„์— ๋ถˆํ™•์‹ค์„ฑ์„ ๋‚ดํฌํ•˜๊ณ , (2) ์–ธ์–ด๊ฐ€ ๊ตฌ์ฒด์ ์ธ ํ–‰๋™ ๋งคํ•‘์„ ์ œ๊ณตํ•˜์ง€ ๋ชปํ•œ๋‹ค๋Š” ๊ทผ๋ณธ์ ์ธ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜์ง€ ๋ชปํ•œ๋‹ค. QuickLAP์€ ์ด๋Ÿฌํ•œ

Learning
The Machine Learning Canvas: Empirical Findings on Why Strategy Matters More Than AI Code Generation

The Machine Learning Canvas: Empirical Findings on Why Strategy Matters More Than AI Code Generation

๋ณธ ๋…ผ๋ฌธ์€ ํ˜„์žฌ AI ๊ธฐ๋ฐ˜ ์ฝ”๋”ฉ ์–ด์‹œ์Šคํ„ดํŠธ๊ฐ€ ๊ฐœ๋ฐœ ํ˜„์žฅ์—์„œ ๋„๋ฆฌ ํ™œ์šฉ๋˜๋Š” ์ƒํ™ฉ์—์„œ, ์™œ ์—ฌ์ „ํžˆ ML ํ”„๋กœ์ ํŠธ์˜ ์„ฑ๊ณต๋ฅ ์ด ๋‚ฎ์€์ง€๋ฅผ ์ฒด๊ณ„์ ์œผ๋กœ ํƒ๊ตฌํ•œ๋‹ค. ์—ฐ๊ตฌ์ž๋Š” ๋จผ์ € ๊ธฐ์กด ๋ฌธํ—Œ์„ ๊ฒ€ํ† ํ•˜์—ฌ ์„ฑ๊ณต ์š”์ธ์„ ์ „๋žต, ํ”„๋กœ์„ธ์Šค, ์ƒํƒœ๊ณ„, ์ง€์› ๋„ค ๊ฐ€์ง€ ์ฐจ์›์œผ๋กœ ๊ตฌ๋ถ„ํ•˜๊ณ , ์ด๋ฅผ ์‹œ๊ฐํ™”ํ•œ โ€˜๋จธ์‹ ๋Ÿฌ๋‹ ์บ”๋ฒ„์Šคโ€™๋ฅผ ์ œ์•ˆํ•œ๋‹ค. ์„ค๋ฌธ ์„ค๊ณ„๋Š” ๊ฐ ์ฐจ์›์„ ์ •๋Ÿ‰ํ™”ํ•  ์ˆ˜ ์žˆ๋Š” ํ•ญ๋ชฉ๋“ค์„ ํฌํ•จํ–ˆ์œผ๋ฉฐ, 150๋ช…์˜ ๋ฐ์ดํ„ฐ ๊ณผํ•™์ž๋ฅผ ๋Œ€์ƒ์œผ๋กœ 6๊ฐœ์›”์— ๊ฑธ์ณ ๋ฐ์ดํ„ฐ๋ฅผ ์ˆ˜์ง‘ํ•˜์˜€๋‹ค. ํ†ต๊ณ„ ๋ถ„์„์—๋Š” ๊ตฌ์กฐ๋ฐฉ์ •์‹ ๋ชจ๋ธ๋ง(SEM)์„ ํ™œ์šฉํ•ด ์š”์ธ ๊ฐ„ ์ธ๊ณผ๊ด€๊ณ„๋ฅผ ๊ฒ€์ฆํ–ˆ์œผ๋ฉฐ, ฮฒ๊ฐ’๊ณผ p๊ฐ’์„

Learning
No Image

FALCON: Few-Shot Adversarial Learning for Cross-Domain Medical Image Segmentation

FALCON ๋…ผ๋ฌธ์€ ํ˜„์žฌ ์˜๋ฃŒ ์˜์ƒ ๋ถ„ํ•  ๋ถ„์•ผ๊ฐ€ ์ง๋ฉดํ•œ ์„ธ ๊ฐ€์ง€ ํ•ต์‹ฌ ๋ฌธ์ œโ€”๋ผ๋ฒจ ๋ฐ์ดํ„ฐ์˜ ํฌ์†Œ์„ฑ, ํ™˜์ž ๊ฐ„ ํ•ด๋ถ€ํ•™์  ๋ณ€์ด, ๊ทธ๋ฆฌ๊ณ  ์‹ค์‹œ๊ฐ„ ์ž„์ƒ ์ ์šฉ์„ ์œ„ํ•œ ์—ฐ์‚ฐ ํšจ์œจ์„ฑโ€”๋ฅผ ๋™์‹œ์— ํ•ด๊ฒฐํ•˜๋ ค๋Š” ์‹œ๋„๋กœ ํ‰๊ฐ€ํ•  ์ˆ˜ ์žˆ๋‹ค. ๊ฐ€์žฅ ๋ˆˆ์— ๋„๋Š” ์ ์€ โ€œ๋ฉ”ํƒ€โ€‘ํ•™์Šต โ†’ ์ ๋Œ€์  ํŒŒ์ธํŠœ๋‹ โ†’ ๊ฒฝ๊ณ„ ์ธ์‹ ํ•™์Šตโ€์ด๋ผ๋Š” 3๋‹จ๊ณ„ ์ „์ด ์ „๋žต์ด๋‹ค. ์ฒซ ๋‹จ๊ณ„์—์„œ ์ž์—ฐ ์ด๋ฏธ์ง€(์˜ˆ: PASCALโ€‘5โฑ, COCOโ€‘20โฑ)๋กœ ๋ฉ”ํƒ€โ€‘๋Ÿฌ๋‹์„ ์ˆ˜ํ–‰ํ•จ์œผ๋กœ์จ, ๋‹ค์–‘ํ•œ ํด๋ž˜์Šค์™€ ๋ณต์žกํ•œ ๋ฐฐ๊ฒฝ์„ ๊ฐ€์ง„ ์ƒํ™ฉ์—์„œ๋„ ๋น ๋ฅด๊ฒŒ ์ƒˆ๋กœ์šด ํƒœ์Šคํฌ์— ์ ์‘ํ•  ์ˆ˜ ์žˆ๋Š” โ€˜ํ•™์Šตโ€‘ํ•™์Šตโ€™ ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ๊ตฌ์ถ•ํ•œ๋‹ค.

Computer Vision Computer Science Learning
Data-Driven Assessment of Concrete Mixture Compositions on Chloride Transport via Standalone Machine Learning Algorithms

Data-Driven Assessment of Concrete Mixture Compositions on Chloride Transport via Standalone Machine Learning Algorithms

์ด ๋…ผ๋ฌธ์€ ์ฝ˜ํฌ๋ฆฌํŠธ ๊ตฌ์กฐ๋ฌผ ๋‚ด์—์„œ ์—ผํ™”๋ฌผ์˜ ์‹œ๊ฐ„ ๊ฒฝ๊ณผ ๋ณ€ํ™”์— ๋ฏธ์น˜๋Š” ํ˜ผํ•ฉ๋ฌผ ์กฐ์„ฑ์˜ ์˜ํ–ฅ์„ ๋ถ„์„ํ•˜๋Š”๋ฐ ์ดˆ์ ์„ ๋งž์ถ”๊ณ  ์žˆ๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ๋‹ค์–‘ํ•œ ๋จธ์‹ ๋Ÿฌ๋‹ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์‚ฌ์šฉํ•˜์—ฌ ๋ฐ์ดํ„ฐ ์ฃผ๋„์  ์ ‘๊ทผ๋ฒ•์„ ์ ์šฉํ•œ๋‹ค. ์—ฐ๊ตฌ ๋ฐฉ๋ฒ•๋ก ์€ ๊ฐ„๋‹จํ•œ ์„ ํ˜• ํšŒ๊ท€, k ์ตœ๊ทผ์ ‘ ์ด์›ƒ ํšŒ๊ท€, ์ปค๋„ ๋ฆฌ์ง€ ํšŒ๊ท€์™€ ๋ณต์žกํ•œ ์„œํฌํŠธ ๋ฒกํ„ฐ ํšŒ๊ท€, ๊ฐ€์šฐ์‹œ์•ˆ ํ”„๋กœ์„ธ์Šค ํšŒ๊ท€, ๋‹ค์ธต ํผ์…‰ํŠธ๋ก (MLP), ๊ฒŒ์ดํŠธ ์ˆœํ™˜ ์œ ๋‹›(GRU)์„ ํฌํ•จํ•œ๋‹ค. ๊ฐ ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ์„ฑ๋Šฅ์€ ๋‹ค์–‘ํ•œ ์ง€ํ‘œ๋ฅผ ํ†ตํ•ด ํ‰๊ฐ€๋˜๋ฉฐ, ํŠนํžˆ GPR ๋ชจ๋ธ์€ ๋ช…ํ™•ํ•˜๊ณ  ์„ค๋ช… ๊ฐ€๋Šฅํ•œ ์ถ”์„ธ๋ฅผ ์ œ๊ณตํ•˜์—ฌ ์ˆจ๊ฒจ์ง„ ์ƒ๊ด€๊ด€๊ณ„๋ฅผ ๋“œ๋Ÿฌ๋‚ด๋Š” ๋ฐ ํšจ๊ณผ

Computer Science Learning Data Machine Learning
Learning from Historical Activations in Graph Neural Networks

Learning from Historical Activations in Graph Neural Networks

HISTOGRAPH๋Š” ๊ทธ๋ž˜ํ”„ ์‹ ๊ฒฝ๋ง(GNN) ๋ถ„์•ผ์˜ ์ค‘์š”ํ•œ ๋ฐœ์ „์„ ์ด๋Œ์–ด๋‚ด๋ฉฐ, ํŠนํžˆ ๋…ธ๋“œ ์ž„๋ฒ ๋”ฉ์˜ ์ง„ํ™”์™€ ๊ณต๊ฐ„์  ์ƒํ˜ธ์ž‘์šฉ์„ ๋™์‹œ์— ๋ชจ๋ธ๋งํ•˜๋Š” ๋ฐ ์ค‘์ ์„ ๋‘๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ์ ‘๊ทผ๋ฒ•์€ ๊ธฐ์กด GNN ์•„ํ‚คํ…์ฒ˜๋ฅผ ๊ฐœ์„ ํ•˜๊ณ , ๋‹ค์–‘ํ•œ ๊ทธ๋ž˜ํ”„ ๊ด€๋ จ ์ž‘์—…์—์„œ ์šฐ์ˆ˜ํ•œ ์„ฑ๋Šฅ์„ ๋‹ฌ์„ฑํ•  ์ˆ˜ ์žˆ๋Š” ์ƒˆ๋กœ์šด ๋ฐฉํ–ฅ์„ฑ์„ ์ œ์‹œํ•ฉ๋‹ˆ๋‹ค. ๊ธฐ์ˆ ์  ํ˜์‹ ์„ฑ: HISTOGRAPH์˜ ํ•ต์‹ฌ ํ˜์‹  ์ค‘ ํ•˜๋‚˜๋Š” ์—ญ์‚ฌ์  ํ™œ์„ฑํ™” ์ถ”์  ์ž…๋‹ˆ๋‹ค. ์ด ์ ‘๊ทผ๋ฒ•์€ GNN์ด ๋ฉ”์‹œ์ง€ ์ „๋‹ฌ๊ณผ ์ง‘๊ณ„๋ฅผ ํ†ตํ•ด ๋…ธ๋“œ ์ž„๋ฒ ๋”ฉ์„ ์ƒ์„ฑํ•˜๋Š” ๊ณผ์ •์—์„œ ๋ฐœ์ƒํ•œ ์‹œ๊ฐ„์  ๊ฒฝ๋กœ๋ฅผ ๊ณ ๋ คํ•ฉ๋‹ˆ๋‹ค. ๊ฐ ๋…ธ๋“œ์˜ ์ธต๋ณ„ ํ‘œํ˜„์„ ์‹œํ€€์Šค

Computer Science Network Learning Machine Learning
VisNet: Efficient Person Re-Identification via Alpha-Divergence Loss, Feature Fusion and Dynamic Multi-Task Learning

VisNet: Efficient Person Re-Identification via Alpha-Divergence Loss, Feature Fusion and Dynamic Multi-Task Learning

VisNet์€ ํ˜„์žฌ ์‚ฌ๋žŒ ์žฌ์‹๋ณ„ ๋ถ„์•ผ์—์„œ ๊ฐ€์žฅ ํฐ ๊ณผ์ œ ์ค‘ ํ•˜๋‚˜์ธ โ€œ์ •ํ™•๋„์™€ ์—ฐ์‚ฐ ํšจ์œจ์„ฑ ์‚ฌ์ด์˜ ํŠธ๋ ˆ์ด๋“œ์˜คํ”„โ€๋ฅผ ํ•ด๊ฒฐํ•˜๋ ค๋Š” ์‹œ๋„๋กœ ๋ˆˆ์— ๋ˆ๋‹ค. ์ฒซ ๋ฒˆ์งธ ํ•ต์‹ฌ ๊ธฐ์—ฌ๋Š” ResNetโ€‘50์˜ ๋„ค ๋‹จ๊ณ„(feature map)๋“ค์„ ์ˆœ์ฐจ์ ์œผ๋กœ ๊ฒฐํ•ฉํ•˜๋ฉด์„œ๋„ ๋ณ„๋„์˜ ๋ณ‘๋ ฌ ๋ธŒ๋žœ์น˜๋ฅผ ๋„์ž…ํ•˜์ง€ ์•Š์€ ์ ์ด๋‹ค. ์ด๋Š” ๊ธฐ์กด์˜ ๋ฉ€ํ‹ฐโ€‘์Šค์ผ€์ผ ์ ‘๊ทผ๋ฒ•์ด ํ”ํžˆ ๊ฒช๋Š” ํŒŒ๋ผ๋ฏธํ„ฐ ํญ์ฆ๊ณผ ๋ฉ”๋ชจ๋ฆฌ ์‚ฌ์šฉ๋Ÿ‰ ์ฆ๊ฐ€ ๋ฌธ์ œ๋ฅผ ํฌ๊ฒŒ ์™„ํ™”ํ•œ๋‹ค. ์ž๋™ ์ฃผ์˜(attention) ๋ชจ๋“ˆ์ด ๊ฐ ์Šค์ผ€์ผ๋ณ„ ํŠน์ง•์— ๊ฐ€์ค‘์น˜๋ฅผ ๋ถ€์—ฌํ•จ์œผ๋กœ์จ, ์ €ํ•ด์ƒ๋„์—์„œ ์ถ”์ถœ๋œ ์ „์—ญ์ ์ธ ํ˜•ํƒœ ์ •๋ณด์™€ ๊ณ ํ•ด์ƒ๋„์—์„œ ์–ป์–ด์ง€๋Š” ์„ธ

Computer Vision Computer Science Learning
Reinforcement Learning-Augmented LLM Agents for Collaborative Decision Making and Performance Optimization

Reinforcement Learning-Augmented LLM Agents for Collaborative Decision Making and Performance Optimization

์ด ๋…ผ๋ฌธ์€ ๋Œ€๊ทœ๋ชจ ์–ธ์–ด ๋ชจ๋ธ(LLMs)์˜ ํ˜‘์—… ๋Šฅ๋ ฅ์„ ํ–ฅ์ƒ์‹œํ‚ค๊ธฐ ์œ„ํ•ด ๊ฐ•ํ™” ํ•™์Šต์„ ํ†ตํ•ฉํ•œ ์ƒˆ๋กœ์šด ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์‹œํ•ฉ๋‹ˆ๋‹ค. ์ด ํ”„๋ ˆ์ž„์›Œํฌ๋Š” ๋‹ค์ค‘ ์—์ด์ „ํŠธ ํ™˜๊ฒฝ์—์„œ ์ „์—ญ์ ์ธ ์„ฑ๋Šฅ ์ตœ์ ํ™”์— ์–ด๋ ค์›€์„ ๊ฒช๋Š” LLMs์˜ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๋ ค๊ณ  ํ•ฉ๋‹ˆ๋‹ค. ๋…ผ๋ฌธ์€ ํ˜‘์—…์„ ๋ถ„์‚ฐ ๋ถ€๋ถ„ๅฏ่ง‚ๆต‹้ฉฌๅฐ”ๅฏๅคซๅ†ณ็ญ–่ฟ‡็จ‹๏ผˆDec POMDP๏ผ‰็š„ๅฝขๅผๅŒ–๏ผŒๅนถ้‡‡็”จ้›†ไธญ่ฎญ็ปƒไธŽๅˆ†ๆ•ฃๆ‰ง่กŒ๏ผˆCTDE๏ผ‰ใ€‚่ฟ™็งๆ–นๆณ•้€š่ฟ‡ๅผ•ๅ…ฅ็ป„็›ธๅฏน็ญ–็•ฅไผ˜ๅŒ–๏ผˆGRPO๏ผ‰๏ผŒๅœจ่ฎญ็ปƒ่ฟ‡็จ‹ไธญๅˆฉ็”จๅ…จๅฑ€ไฟกๅทๆฅๅ…ฑๅŒไผ˜ๅŒ–ไปฃ็†็ญ–็•ฅ๏ผŒๅŒๆ—ถ็ฎ€ๅŒ–่”ๅˆๅฅ–ๅŠฑไปฅๅนณ่กกไปปๅŠก่ดจ้‡ใ€้€Ÿๅบฆๅ’Œๅ่ฐƒๆˆๆœฌใ€‚ๅฎž้ชŒ็ป“ๆžœ่กจๆ˜Ž๏ผŒๅœจๅไฝœๅ†™ไฝœๅ’Œ็ผ–็ ๅŸบๅ‡†ๆต‹่ฏ•ไธญ๏ผŒ่ฏฅๆก†ๆžถๆฏ”ๅ•ไปฃ็†ๅŸบ็บฟๆ้ซ˜ไบ†3ๅ€็š„ไปปๅŠกๅค„็†้€Ÿ

Learning
Investigating Deep Learning Models for Ejection Fraction Estimation from Echocardiography Videos

Investigating Deep Learning Models for Ejection Fraction Estimation from Echocardiography Videos

๋ณธ ๋…ผ๋ฌธ์€ ์‹ฌ์žฅ๊ธฐ๋Šฅ ์ง„๋‹จ์— ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•˜๋Š” LVEF๋ฅผ ์ถ”์ •ํ•˜๊ธฐ ์œ„ํ•ด ๋‹ค์–‘ํ•œ ๋”ฅ๋Ÿฌ๋‹ ์•„ํ‚คํ…์ฒ˜์˜ ์„ฑ๋Šฅ์„ ํ‰๊ฐ€ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ดˆ์ŒํŒŒๅฟƒๅŠจๅ›พไฝœไธบไธ€็งๅธธ็”จ็š„ไธดๅบŠๅทฅๅ…ท๏ผŒ็”จไบŽ่ฏ„ไผฐๅฟƒ่„ๅŠŸ่ƒฝ๏ผŒไฝ†ๆ‰‹ๅŠจๅˆ†ๆžๅญ˜ๅœจๆ—ถ้—ดๆˆๆœฌ้ซ˜ๅ’Œ่ง‚ๅฏŸ่€…้—ดๅ˜ๅผ‚ๆ€งๅคง็š„้—ฎ้ข˜ใ€‚ๆทฑๅบฆๅญฆไน ๆ–นๆณ•็š„ๅผ•ๅ…ฅไธบ่ฟ™ไธช้—ฎ้ข˜ๆไพ›ไบ†ไธ€ไธชๆœ‰ๆฝœๅŠ›็š„่งฃๅ†ณๆ–นๆกˆใ€‚ๆœฌ็ ”็ฉถไธญ๏ผŒไฝœ่€…ๆŽข่ฎจไบ†ไธ‰็งไธๅŒ็š„ๆทฑๅบฆๅญฆไน ๆžถๆž„๏ผš3D Inceptionใ€ๅŒๆตๆจกๅž‹ไปฅๅŠCNN RNNๆจกๅž‹๏ผŒๅนถๅฏน่ฟ™ไบ›ๆจกๅž‹่ฟ›่กŒไบ†็ณป็ปŸๆ€ง็š„่ฏ„ไผฐไปฅ็กฎๅฎšๆœ€ไฝณ้…็ฝฎใ€‚ๅฎž้ชŒ็ป“ๆžœ่กจๆ˜Ž๏ผŒ็ป่ฟ‡ไฟฎๆ”นๅŽ็š„3D Inceptionๆžถๆž„่กจ็Žฐๆœ€ไผ˜๏ผŒๅ…ถๅ‡ๆ–นๆ น่ฏฏๅทฎ๏ผˆRMSE๏ผ‰ไธบ6.79%ใ€‚ๆญคๅค–๏ผŒ็ ”็ฉถ่ฟ˜ๅ‘็Žฐ่พƒๅฐไธ”็ฎ€ๅ•็š„ๆจกๅž‹ๅœจๆณ›ๅŒ–่ƒฝๅŠ›ไธŠไผ˜ไบŽๅคๆ‚

Model Learning
Learning Multi-Modal Mobility Dynamics for Generalized Next Location Recommendation

Learning Multi-Modal Mobility Dynamics for Generalized Next Location Recommendation

๋ณธ ๋…ผ๋ฌธ์€ ์ธ๊ฐ„ ์ด๋™์„ฑ ์˜ˆ์ธก์„ ์œ„ํ•œ ์œ„์น˜ ์ถ”์ฒœ ์‹œ์Šคํ…œ์— ๋‹ค์ค‘๋ชจ๋‹ฌ ์ •๋ณด๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ํ†ตํ•ฉํ•˜๋ ค๋Š” ์‹œ๋„๋กœ, ๊ธฐ์กด ์—ฐ๊ตฌ๊ฐ€ ์•ˆ๊ณ  ์žˆ๋˜ ๋‘ ๊ฐ€์ง€ ์ฃผ์š” ํ•œ๊ณ„๋ฅผ ๋ช…ํ™•ํžˆ ์งš๊ณ  ์žˆ๋‹ค. ์ฒซ ๋ฒˆ์งธ๋Š” ๋‹จ์ผ ๋ชจ๋‹ฌ(์˜ˆ: GPS ๋กœ๊ทธ, ์†Œ์…œ ๋ฏธ๋””์–ด ํ…์ŠคํŠธ ๋“ฑ)๋งŒ์„ ์ด์šฉํ•  ๊ฒฝ์šฐ ๋ฐ์ดํ„ฐ ํฌ์†Œ์„ฑ ๋ฐ ํŽธํ–ฅ ๋ฌธ์ œ์— ์ง๋ฉดํ•œ๋‹ค๋Š” ์ ์ด๋‹ค. ๋‘ ๋ฒˆ์งธ๋Š” ๋‹ค์ค‘ ๋ชจ๋‹ฌ์„ ํ™œ์šฉํ•˜๋”๋ผ๋„ ์ •์  ์ด๋ฏธ์ง€๋‚˜ ํ…์ŠคํŠธ์™€ ๊ฐ™์€ ํ‘œํ˜„์ด ๊ณต๊ฐ„โ€‘์‹œ๊ฐ„์ ์ธ ๋ณ€ํ™”๋ฅผ ์ถฉ๋ถ„ํžˆ ๋ฐ˜์˜ํ•˜์ง€ ๋ชปํ•ด, ์‹ค์ œ ์ด๋™ ํŒจํ„ด์„ ์ •ํ™•ํžˆ ๋ชจ๋ธ๋งํ•˜์ง€ ๋ชปํ•œ๋‹ค๋Š” ์ ์ด๋‹ค. ์ด๋Ÿฌํ•œ ๋ฌธ์ œ์ ์„ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ์ €์ž๋“ค์€ ์„ธ ๊ฐ€์ง€ ํ•ต์‹ฌ ๊ธฐ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค

Learning
Human-like visual computing advances explainability and few-shot learning in deep neural networks for complex physiological data

Human-like visual computing advances explainability and few-shot learning in deep neural networks for complex physiological data

์ด ๋…ผ๋ฌธ์€ ํ˜„๋Œ€ ์˜๋ฃŒ ์ธ๊ณต์ง€๋Šฅ์ด ์ง๋ฉดํ•œ ๋‘ ๊ฐ€์ง€ ํ•ต์‹ฌ ๋ฌธ์ œโ€”๋ฐ์ดํ„ฐ ๋ถ€์กฑ๊ณผ ๋ธ”๋ž™๋ฐ•์Šค ํ˜„์ƒโ€”์— ๋Œ€ํ•œ ํ˜์‹ ์ ์ธ ํ•ด๊ฒฐ์ฑ…์„ ์ œ์‹œํ•œ๋‹ค. ๋จผ์ €, โ€˜๊ฐ€์งœ ์ƒ‰์ฑ„(pseudoโ€‘colouring)โ€™๋ผ๋Š” ๊ฐœ๋…์€ ์›๋ž˜ ์ธ๊ฐ„ ์ „๋ฌธ๊ฐ€๊ฐ€ ECG๋ฅผ ์‹œ๊ฐ์ ์œผ๋กœ ํ•ด์„ํ•  ๋•Œ ์ค‘์š”ํ•œ ์‹œ๊ฐ„์  ํŠน์ง•, ์˜ˆ์ปจ๋Œ€ QT ๊ฐ„๊ฒฉ์„ ์ƒ‰์ƒ์œผ๋กœ ๊ฐ•์กฐํ•จ์œผ๋กœ์จ ์ธ์ง€ ๋ถ€ํ•˜๋ฅผ ๋‚ฎ์ถ”๋Š” ๋ฐฉ๋ฒ•์œผ๋กœ ์•Œ๋ ค์ ธ ์žˆ๋‹ค. ์ด๋ฅผ ๋””์ง€ํ„ธ ์ด๋ฏธ์ง€์— ๊ทธ๋Œ€๋กœ ์ ์šฉํ•˜๋ฉด, ์‹ ๊ฒฝ๋ง์ด ์›์‹œ ์ „์•• ํŒŒํ˜• ๋Œ€์‹  ์ƒ‰์ƒ ์ฑ„๋„์„ ํ†ตํ•ด ์˜๋ฏธ ์žˆ๋Š” ์ •๋ณด๋ฅผ ์ง์ ‘ ๋ฐ›์•„๋“ค์ผ ์ˆ˜ ์žˆ๋‹ค. ์ƒ‰์ƒ์€ 3์ฐจ์›(RGB) ๊ณต๊ฐ„์—์„œ ์„œ๋กœ ๋‹ค๋ฅธ ์‹œ๊ฐ„ ๊ตฌ๊ฐ„์„ ๊ตฌ๋ถ„ํ•˜

Network Data Learning
Bidirectional Human-AI Alignment in Education for Trustworthy Learning Environments

Bidirectional Human-AI Alignment in Education for Trustworthy Learning Environments

๋ณธ ๋…ผ๋ฌธ์€ ์ธ๊ณต์ง€๋Šฅ์ด ๊ต์œก ํ˜„์žฅ์— ๋ฏธ์น˜๋Š” ๋ณ€ํ™”๋ฅผ ๋‹จ์ˆœํ•œ ๊ธฐ์ˆ  ๋„์ž… ์ˆ˜์ค€์„ ๋„˜์–ด โ€˜์–‘๋ฐฉํ–ฅ ์ •๋ ฌ(bidirectional alignment)โ€™์ด๋ผ๋Š” ์ƒˆ๋กœ์šด ํ”„๋ ˆ์ž„์›Œํฌ๋กœ ์žฌ๊ตฌ์„ฑํ•œ๋‹ค. ์ „ํ†ต์ ์ธ AI ์œค๋ฆฌ ๋…ผ์˜๋Š” ์ฃผ๋กœ ์ธ๊ฐ„ ๊ฐ€์น˜์™€ ๋ชฉํ‘œ๋ฅผ ์•Œ๊ณ ๋ฆฌ์ฆ˜์— ๋‚ด์žฌ์‹œํ‚ค๋Š” ์ผ๋ฐฉํ–ฅ์  ์ ‘๊ทผ์— ๋จธ๋ฌผ๋ €๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๊ต์œก์€ ํ•™์Šต์ž์™€ ๊ต์‚ฌ, ์ œ๋„ ์ „์ฒด๊ฐ€ ์ง€์†์ ์œผ๋กœ ์ƒํ˜ธ์ž‘์šฉํ•˜๊ณ  ํ”ผ๋“œ๋ฐฑ์„ ์ฃผ๊ณ ๋ฐ›๋Š” ๋ณตํ•ฉ ์‹œ์Šคํ…œ์ด๋‹ค. ๋”ฐ๋ผ์„œ AI๊ฐ€ ์ œ๊ณตํ•˜๋Š” ๋งž์ถคํ˜• ํ•™์Šต ๊ฒฝ๋กœ, ์ž๋™ ์ฑ„์ , ํ•™์Šต ๋ถ„์„ ๋„๊ตฌ๋Š” ๊ต์‚ฌ์˜ ์ „๋ฌธ์„ฑยทํŒ๋‹จ์„ ๋ณด์™„ํ•˜๋Š” ๋™์‹œ์— ๊ต์‚ฌ์™€ ํ•™์ƒ์ด AI์˜ ์ž‘๋™ ์›๋ฆฌ์™€ ํ•œ๊ณ„๋ฅผ ์ดํ•ดํ•˜

Learning
DETACH : Decomposed Spatio-Temporal Alignment for Exocentric Video and Ambient Sensors with Staged Learning

DETACH : Decomposed Spatio-Temporal Alignment for Exocentric Video and Ambient Sensors with Staged Learning

์ด ๋…ผ๋ฌธ์€ ์ธ๊ฐ„ ํ–‰๋™ ์ธ์‹์„ ์œ„ํ•œ ๋ฉ€ํ‹ฐ๋ชจ๋‹ฌ ์ •๋ ฌ ์—ฐ๊ตฌ์—์„œ ์ƒˆ๋กœ์šด ํŒจ๋Ÿฌ๋‹ค์ž„์„ ์ œ์‹œํ•œ๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค์€ ์ฃผ๋กœ ์ฐฉ์šฉํ˜• ์„ผ์„œ์™€ ์ž๊ธฐ์‹œ์ (egocentric) ์˜์ƒ ์‚ฌ์ด์˜ ์ „์—ญ ์ •๋ ฌ(Global Alignment)์— ์˜์กดํ•ด ์™”์œผ๋ฉฐ, ์ด๋Š” ์ „์ฒด ์‹œํ€€์Šค๋ฅผ ํ•˜๋‚˜์˜ ๊ณ ์ฐจ์› ๋ฒกํ„ฐ๋กœ ์••์ถ•ํ•ด ๋‘ ๋ชจ๋‹ฌ๋ฆฌํ‹ฐ๋ฅผ ๋งค์นญํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ด๋Ÿฌํ•œ ์ ‘๊ทผ์€ ๋‘ ๊ฐ€์ง€ ๊ทผ๋ณธ์ ์ธ ํ•œ๊ณ„์— ๋ด‰์ฐฉํ•œ๋‹ค. ์ฒซ์งธ, ํ–‰๋™์˜ ๋ฏธ์„ธํ•œ ์›€์ง์ž„์ด๋‚˜ ๋ถ€๋ถ„์ ์ธ ๋ณ€ํ™”๋ฅผ ํฌ์ฐฉํ•˜๊ธฐ ์œ„ํ•œ ์ง€์—ญ์  ๋””ํ…Œ์ผ์ด ์†์‹ค๋œ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด, ์†๋ชฉ์˜ ๋ฏธ์„ธํ•œ ํšŒ์ „์ด๋‚˜ ๋ฌผ์ฒด์™€์˜ ์ ‘์ด‰ ์ˆœ๊ฐ„์€ ์ „์ฒด ์‹œํ€€์Šค ํ‰๊ท ํ™” ๊ณผ์ •์—์„œ ํฌ์„๋œ๋‹ค

Learning
Retrieval-augmented Prompt Learning for Pre-trained Foundation Models

Retrieval-augmented Prompt Learning for Pre-trained Foundation Models

๋ณธ ๋…ผ๋ฌธ์€ ์‚ฌ์ „ ํ•™์Šต๋œ ๋Œ€ํ˜• ๋ชจ๋ธ(Preโ€‘trained Foundation Models, ์ดํ•˜ PFM)์ด ๋ฉ€ํ‹ฐ๋ชจ๋‹ฌ ํ•™์Šต์—์„œ ์ฐจ์ง€ํ•˜๋Š” ์ „๋žต์  ์œ„์น˜๋ฅผ ์žฌ์กฐ๋ช…ํ•œ๋‹ค. ๊ธฐ์กด์˜ โ€œpreโ€‘train, prompt, predictโ€ ํ๋ฆ„์€ ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ์ง์ ‘ ์—…๋ฐ์ดํŠธํ•˜๋Š” ์ „ํ†ต์ ์ธ ๋ฏธ์„ธ์กฐ์ • ๋ฐฉ์‹๊ณผ ๋‹ฌ๋ฆฌ, ํ”„๋กฌํ”„ํŠธ ํ† ํฐ์„ ์‚ฝ์ž…ํ•˜๊ฑฐ๋‚˜ ํ…œํ”Œ๋ฆฟ์„ ์„ค๊ณ„ํ•จ์œผ๋กœ์จ ๋ชจ๋ธ ์ž์ฒด๋Š” ๊ณ ์ •๋œ ์ฑ„ ์™ธ๋ถ€ ์ž…๋ ฅ๋งŒ์œผ๋กœ ์ž‘์—…์„ ์ˆ˜ํ–‰ํ•˜๋„๋ก ๋งŒ๋“ ๋‹ค. ์ด๋Ÿฌํ•œ ์ ‘๊ทผ์€ ํŒŒ๋ผ๋ฏธํ„ฐ ํšจ์œจ์„ฑ์„ ํฌ๊ฒŒ ๋†’์˜€์ง€๋งŒ, ์—ฌ์ „ํžˆ โ€œ๊ธฐ์–ต ์ค‘์‹ฌโ€์˜ ์ผ๋ฐ˜ํ™” ํ•œ๊ณ„์— ์ง๋ฉดํ•œ๋‹ค. ๊ตฌ์ฒด์ ์œผ๋กœ, ์ œํ•œ๋œ ๋ผ๋ฒจ ๋ฐ์ดํ„ฐ๋งŒ์œผ๋กœ ํ”„

Model Learning
Revisiting the Learning Objectives of Vision-Language Reward Models

Revisiting the Learning Objectives of Vision-Language Reward Models

์ด ๋…ผ๋ฌธ์€ ์ตœ๊ทผ ๊ธ‰๋ถ€์ƒํ•˜๊ณ  ์žˆ๋Š” ๋Œ€์กฐ์  ๋น„์ „โ€‘์–ธ์–ด ๋ชจ๋ธ(VLM)์„ ๋ณด์ƒ ํ•จ์ˆ˜ ํ•™์Šต์— ์ ์šฉํ•˜๋Š” ์—ฐ๊ตฌ ํ๋ฆ„์„ ๋น„ํŒ์ ์œผ๋กœ ์žฌ์กฐ๋ช…ํ•œ๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค์€ VLM์„ ํ™œ์šฉํ•ด ์ธ๊ฐ„ ๋ผ๋ฒจ๋ง ์—†์ด๋„ ๋กœ๋ด‡ ์ œ์–ด๋‚˜ ๊ฐ•ํ™”ํ•™์Šต ํ™˜๊ฒฝ์—์„œ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ๋Š” ํ’๋ถ€ํ•œ ๋ณด์ƒ ์‹ ํ˜ธ๋ฅผ ์ƒ์„ฑํ•œ๋‹ค๋Š” ์ ์—์„œ ํฐ ๊ธฐ๋Œ€๋ฅผ ๋ชจ์•˜๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ด๋Ÿฌํ•œ ์—ฐ๊ตฌ๋“ค์€ ์„œ๋กœ ๋‹ค๋ฅธ ์‚ฌ์ „ํ•™์Šต ๋ฐ์ดํ„ฐ์…‹(์˜ˆ: CLIP, ALIGN), ์„œ๋กœ ๋‹ค๋ฅธ ๋„คํŠธ์›Œํฌ ์•„ํ‚คํ…์ฒ˜(ResNet, ViT), ๊ทธ๋ฆฌ๊ณ  ์„œ๋กœ ๋‹ค๋ฅธ ํŒŒ์ธํŠœ๋‹ ํ”„๋กœํ† ์ฝœ์„ ์‚ฌ์šฉํ–ˆ๊ธฐ ๋•Œ๋ฌธ์—, ์‹ค์ œ๋กœ ์–ด๋А ํ•™์Šต ๋ชฉํ‘œ๊ฐ€ ์„ฑ๋Šฅ ํ–ฅ์ƒ์— ๊ธฐ์—ฌํ–ˆ๋Š”์ง€๋ฅผ ๋ช…ํ™•ํžˆ ํŒŒ์•…ํ•˜

Learning Model
When Does Learning Renormalize? Sufficient Conditions for Power Law Spectral Dynamics

When Does Learning Renormalize? Sufficient Conditions for Power Law Spectral Dynamics

์ด ๋…ผ๋ฌธ์€ ์ตœ๊ทผ ๋”ฅ๋Ÿฌ๋‹ ์ปค๋ฎค๋‹ˆํ‹ฐ์—์„œ ํ™”๋‘๊ฐ€ ๋˜๊ณ  ์žˆ๋Š” โ€œํŒŒ์›Œโ€‘๋ฒ•์น™ ์Šค์ผ€์ผ๋งโ€ ํ˜„์ƒ์„ ๊ทผ๋ณธ์ ์œผ๋กœ ์„ค๋ช…ํ•˜๋ ค๋Š” ์‹œ๋„๋ฅผ ๋‹ด๊ณ  ์žˆ๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค์€ ์‹คํ—˜์ ์œผ๋กœ ํŒŒ์›Œโ€‘๋ฒ•์น™์ด ๋‚˜ํƒ€๋‚˜๋Š” ๊ฒƒ์„ ๊ด€์ฐฐํ–ˆ์ง€๋งŒ, ์™œ ๊ทธ๋Ÿฐ ํ˜„์ƒ์ด ๋ฐœ์ƒํ•˜๋Š”์ง€์— ๋Œ€ํ•œ ์ด๋ก ์  ํ‹€์€ ๋ถ€์กฑํ–ˆ๋‹ค. ์—ฌ๊ธฐ์„œ ์ œ์‹œ๋œ Generalized Resolutionโ€‘Shell Dynamics(GRSD) ํ”„๋ ˆ์ž„์›Œํฌ๋Š” ํ•™์Šต์„ ๊ณ ์ฐจ์› ํŒŒ๋ผ๋ฏธํ„ฐ ๊ณต๊ฐ„์˜ ์ŠคํŽ™ํŠธ๋Ÿผ ์—๋„ˆ์ง€ ํ๋ฆ„์œผ๋กœ ๋ฐ”๋ผ๋ณด๋Š” ์ƒˆ๋กœ์šด ๊ด€์ ์„ ์ œ๊ณตํ•œ๋‹ค. ํŠนํžˆ ๋กœ๊ทธ ์Šค์ผ€์ผ์˜ ํ•ด์ƒ๋„ ์‰˜์ด๋ผ๋Š” ๊ฐœ๋…์„ ๋„์ž…ํ•ด, ์„œ๋กœ ๋‹ค๋ฅธ ์ฃผํŒŒ์ˆ˜ ๋Œ€์—ญ ์‚ฌ์ด์˜ ์—๋„ˆ์ง€ ์ „๋‹ฌ์„

Learning
Decoding Fake Narratives in Spreading Hateful Stories: A Dual-Head RoBERTa Model with Multi-Task Learning

Decoding Fake Narratives in Spreading Hateful Stories: A Dual-Head RoBERTa Model with Multi-Task Learning

์ด ๋…ผ๋ฌธ์€ ์‚ฌํšŒ ๋ฏธ๋””์–ด ํ”Œ๋žซํผ์—์„œ ํ˜์˜ค ๋ฐœ์–ธ๊ณผ ๊ฑฐ์ง“ ์ •๋ณด์˜ ํ™•์‚ฐ ๋ฌธ์ œ๋ฅผ ๋‹ค๋ฃจ๋ฉฐ, ํŠนํžˆ ์ฝ”๋“œ๋ฏน์Šค ํžŒ๋”” ์˜์–ด ํ…์ŠคํŠธ์—์„œ ๊ฐ€์งœ ์ด์•ผ๊ธฐ์— ์˜ํ•ด ์œ ๋ฐœ๋œ ํ˜์˜ค ๋ฐœ์–ธ์„ ๊ฐ์ง€ํ•˜๋Š” Faux Hate ๊ณต๋™ ์ž‘์—…์„ ํƒ๊ตฌํ•ฉ๋‹ˆ๋‹ค. ์ด ์—ฐ๊ตฌ๋Š” ๋‘ ๊ฐ€์ง€ ์ฃผ์š” ํ•˜์œ„ ์ž‘์—…์„ ์ˆ˜ํ–‰ํ•˜๋Š”๋ฐ, ์ฒซ์งธ๋กœ ์ด์ง„ Faux Hate ๊ฐ์ง€๋Š” ๊ฑฐ์ง“๊ณผ ํ˜์˜ค ๋ฐœ์–ธ์„ ๋ถ„๋ฅ˜ํ•˜๊ณ , ๋‘˜์งธ๋กœ ๋Œ€์ƒ ๋ฐ ์‹ฌ๊ฐ์„ฑ ์˜ˆ์ธก์€ ํ˜์˜ค ๋ฐœ์–ธ์˜ ๋ชฉํ‘œ์™€ ๊ทธ ์ •๋„๋ฅผ ๋ฒ”์ฃผํ™”ํ•ฉ๋‹ˆ๋‹ค. ์—ฐ๊ตฌํŒ€์ด ๊ฐœ๋ฐœํ•œ ์‹œ์Šคํ…œ์€ ๊ณ ๊ธ‰ ์ž์—ฐ์–ด ์ฒ˜๋ฆฌ ๊ธฐ์ˆ ๊ณผ ๋„๋ฉ”์ธ ํŠนๅผ‚ๆ€ง้ข„่ฎญ็ปƒ็›ธ็ป“ๅˆ๏ผŒๆ—จๅœจๆ้ซ˜่ฟ™ไธค้กนไปปๅŠก็š„ๆ€ง่ƒฝใ€‚่ฏฅ็ณป็ปŸๅœจๆฏ”่ต›ไธญๅ–ๅพ—ไบ†ๆœ‰็ซžไบ‰ๅŠ›็š„็ป“ๆžœ๏ผŒ่ฏๆ˜Žไบ†

Model Learning
Seeing Beyond Words: Self-Supervised Visual Learning for Multimodal Large Language Models

Seeing Beyond Words: Self-Supervised Visual Learning for Multimodal Large Language Models

์ด ๋…ผ๋ฌธ์€ MLLMs์˜ ์‹œ๊ฐ์  ์ดํ•ด๋ ฅ ํ–ฅ์ƒ์„ ์œ„ํ•ด JARVIS๋ผ๋Š” ์ƒˆ๋กœ์šด ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์•ˆํ•œ๋‹ค. ๊ธฐ์กด MLLMs๋Š” ์ฃผ๋กœ ์–ธ์–ด์ ์ธ ์„ค๋ช…์„ ํ†ตํ•ด ํ•™์Šตํ•˜๋ฏ€๋กœ, ์ด์— ๋”ฐ๋ฅธ ํ•œ๊ณ„์ ์ด ์กด์žฌํ•œ๋‹ค. ํŠนํžˆ, ์–ธ์–ด ๊ธฐ๋ฐ˜ ๊ฐ๋… ์‹ ํ˜ธ์˜ ์ฃผ๊ด€์„ฑ๊ณผ ๋ถˆ์™„์ „ํ•จ์œผ๋กœ ์ธํ•ด ์‹œ๊ฐ์  ์ถ”๋ก  ๋Šฅ๋ ฅ์ด ์ œํ•œ์ ์ด๋ฉฐ, ๋‹ค์ค‘๋ชจ๋‹ฌ ์ง€์‹œ์–ด ํŠœ๋‹์˜ ๊ทœ๋ชจ๊ฐ€ ์ž‘์•„ ์‹œ๊ฐ์  ์„ธ๋ถ€ ์‚ฌํ•ญ์„ ๋ฌด์‹œํ•˜๋Š” ๊ฒฝํ–ฅ์ด ์žˆ๋‹ค. JARVIS๋Š” ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด JEPA ํ•™์Šต ํŒจ๋Ÿฌ๋‹ค์ž„์„ MLLMs ํ›ˆ๋ จ ํŒŒ์ดํ”„๋ผ์ธ์— ํ†ตํ•ฉํ•œ๋‹ค. ์ด ํ”„๋ ˆ์ž„์›Œํฌ๋Š” ๋™๊ฒฐ๋œ ์‹œ๊ฐ ๊ธฐ๋ฐ˜ ๋ชจ๋ธ์„ ํ™œ์šฉํ•˜์—ฌ ์˜ˆ์ธก๊ธฐ๋ฅผ ํ›ˆ๋ จ์‹œํ‚ค๊ณ , ์–ธ์–ด

Model Learning
Towards Fine-Tuning-Based Site Calibration for Knowledge-Guided Machine Learning: A Summary of Results

Towards Fine-Tuning-Based Site Calibration for Knowledge-Guided Machine Learning: A Summary of Results

FTBSC KGML์€ ๋†์ƒํƒœ๊ณ„ ํƒ„์†Œ ์ˆœํ™˜๋Ÿ‰์„ ์ •ํ™•ํ•˜๊ณ  ๋น„์šฉ ํšจ์œจ์ ์œผ๋กœ ์ธก์ •ํ•˜๊ธฐ ์œ„ํ•œ ํ˜์‹ ์ ์ธ ๋จธ์‹ ๋Ÿฌ๋‹ ํ”„๋ ˆ์ž„์›Œํฌ์ž…๋‹ˆ๋‹ค. ๊ธฐ์กด ์ ‘๊ทผ๋ฒ•์˜ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด, ์ด ์—ฐ๊ตฌ๋Š” ์ „์ด ํ•™์Šต๊ณผ ๊ณต๊ฐ„์  ๋ณ€์ด์„ฑ์„ ํ™œ์šฉํ•˜๋Š” ๋ฐฉ๋ฒ•๋ก ์„ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. ํŠนํžˆ, FTBSC KGML์€ ์‚ฌ์ „ ํ›ˆ๋ จ ๋ฐ ๋ฏธ์„ธ ์กฐ์ • ๊ณผ์ •์„ ํ†ตํ•ด ๊ฐ ์ง€์—ญ์˜ ํŠน์„ฑ์— ๋งž์ถฐ ๋ชจ๋ธ์„ ๊ฐœ์„ ํ•˜๊ณ , ์ด๋ฅผ ํ†ตํ•ด ๋ฐ์ดํ„ฐ๊ฐ€ ๋ถ€์กฑํ•œ ์ง€์—ญ์—์„œ๋„ ๋†’์€ ์ •ํ™•๋„๋ฅผ ์œ ์ง€ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์ด ํ”„๋ ˆ์ž„์›Œํฌ๋Š” ์›๊ฒฉ ์ธก์ • GPP, ๊ธฐํ›„ ๋ฐ ํ† ์–‘ ๊ณต๋ณ€๋Ÿ‰๊ณผ ๊ฐ™์€ ๋‹ค์–‘ํ•œ ๋ฐ์ดํ„ฐ ์†Œ์Šค๋ฅผ ํ™œ์šฉํ•˜์—ฌ ๋†์ƒํƒœ๊ณ„์˜ ํƒ„์†Œ ์ˆœํ™˜์„ ํšจ๊ณผ์ ์œผ๋กœ

Learning

< Category Statistics (Total: 743) >

Electrical Engineering and Systems Science
7
General
272
General Relativity
7
HEP-EX
5
HEP-PH
12
HEP-TH
5
MATH-PH
3
NUCL-TH
1
Quantum Physics
10

Start searching

Enter keywords to search articles

โ†‘โ†“
โ†ต
ESC
โŒ˜K Shortcut