Data

All posts under tag "Data"

31 posts total
Sorted by date
High-Dimensional Data Processing: Benchmarking Machine Learning and Deep Learning Architectures in Local and Distributed Environments

High-Dimensional Data Processing: Benchmarking Machine Learning and Deep Learning Architectures in Local and Distributed Environments

์ข…ํ•ฉ ๋ถ„์„: ๋น…๋ฐ์ดํ„ฐ ๊ต์œก ์‹ค์Šต ๋ณด๊ณ ์„œ 1. ์—ฐ๊ตฌ ๊ฐœ์š”์™€ ๋ฐฉ๋ฒ•๋ก  ๋ณธ ์—ฐ๊ตฌ๋Š” ๋น…๋ฐ์ดํ„ฐ ํ”„๋กœ์ ํŠธ์˜ ํ†ตํ•ฉ์  ์ ‘๊ทผ ๋ฐฉ์‹์„ ์ทจํ•˜๋ฉฐ, ์„ธ ๊ฐ€์ง€ ์‚ฌ๋ก€๋ฅผ ํ†ตํ•ด ๋‹ค์–‘ํ•œ ๋ฐ์ดํ„ฐ ์œ ํ˜•๊ณผ ๊ทœ๋ชจ์— ๋Œ€ํ•œ ๋ถ„์„ ๊ธฐ๋ฒ•์„ ๋‹ค๋ฃน๋‹ˆ๋‹ค. Epsilon ๋ฐ์ดํ„ฐ์…‹ : ์ด์ง„ ๋ถ„๋ฅ˜ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด MLP ๋ชจ๋ธ์„ ์‚ฌ์šฉํ•˜์—ฌ 2000๊ฐœ์˜ ํŠน์ง•๊ณผ 100,000๊ฐœ์˜ ์ธ์Šคํ„ด์Šค๋กœ ํ›ˆ๋ จ๋˜์—ˆ์Šต๋‹ˆ๋‹ค. PyTorch์™€ GPU ๊ฐ€์†(CUDA)์„ ํ™œ์šฉํ•ด 88.98%์˜ ์ •ํ™•๋„๋ฅผ ๋‹ฌ์„ฑํ–ˆ์Šต๋‹ˆ๋‹ค. Rest Mex ๋ฐ์ดํ„ฐ์…‹ : ๋ฉ•์‹œ์ฝ” ๊ด€๊ด‘ ๋ฆฌ๋ทฐ ๋ฐ์ดํ„ฐ์…‹์— ๋Œ€ํ•ด ๊ฐ์ • ๋ถ„์„ ํŒŒ์ดํ”„๋ผ์ธ์„ ๊ตฌํ˜„ํ•˜์˜€์Šต๋‹ˆ๋‹ค.

Data Learning
CourtPressGER: A German Court Decision to Press Release Summarization Dataset

CourtPressGER: A German Court Decision to Press Release Summarization Dataset

๋ณธ ๋…ผ๋ฌธ์€ ๋ฒ•๋ฅ  ๋ถ„์•ผ์—์„œ ์ผ๋ฐ˜ ๋Œ€์ค‘์—๊ฒŒ ํŒ๊ฒฐ์„ ์ „๋‹ฌํ•˜๋Š” โ€˜๋ณด๋„์ž๋ฃŒโ€™๋ผ๋Š” ํŠน์ˆ˜ํ•œ ํ…์ŠคํŠธ ์žฅ๋ฅด์— ์ดˆ์ ์„ ๋งž์ถ˜ ์ตœ์ดˆ์˜ ๋Œ€๊ทœ๋ชจ ๋ฐ์ดํ„ฐ์…‹๊ณผ ๋ฒค์น˜๋งˆํฌ๋ฅผ ์ œ์‹œํ•œ๋‹ค๋Š” ์ ์—์„œ ํ•™์ˆ ์ ยท์‹ค์šฉ์  ์˜์˜๊ฐ€ ํฌ๋‹ค. ๊ธฐ์กด NLP ์—ฐ๊ตฌ๋Š” ์ฃผ๋กœ ํŒ๊ฒฐ๋ฌธ ์ž์ฒด์˜ ๊ตฌ์กฐ์  ์š”์•ฝ์ด๋‚˜ ๋ฒ•๋ฅ ์šฉ์–ด ์ถ”์ถœ ๋“ฑ์— ๋จธ๋ฌผ๋ €์œผ๋ฉฐ, ์‹œ๋ฏผ์ด ์ดํ•ดํ•˜๊ธฐ ์‰ฌ์šด ํ˜•ํƒœ์˜ ์ปค๋ฎค๋‹ˆ์ผ€์ด์…˜์„ ๋‹ค๋ฃจ์ง€๋Š” ์•Š์•˜๋‹ค. ๋”ฐ๋ผ์„œ CourtPressGER์€ โ€˜ํŒ๊ฒฐ๋ฌธโ€‘๋ณด๋„์ž๋ฃŒโ€‘ํ”„๋กฌํ”„ํŠธโ€™๋ผ๋Š” ์‚ผ์ค‘ ํŠธ๋ฆฌํ”Œ ๊ตฌ์กฐ๋ฅผ ํ†ตํ•ด, ์›๋ฌธ๊ณผ ์ธ๊ฐ„์ด ๋งŒ๋“  ์š”์•ฝ(๋ณด๋„์ž๋ฃŒ) ์‚ฌ์ด์˜ ์ •๋ฐ€ํ•œ ์ •๋ ฌ์„ ์ œ๊ณตํ•œ๋‹ค. ์ด๋Š” LLM์ด ๋‹จ์ˆœํžˆ ์š”์•ฝ์„ ๋„˜์–ด, ๋ฒ•์ 

Data
A Low-Cost Reliable Racetrack Cache Based on Data Compression

A Low-Cost Reliable Racetrack Cache Based on Data Compression

๋ณธ ์—ฐ๊ตฌ๋Š” ์ฐจ์„ธ๋Œ€ ๊ณ ๋ฐ€๋„ ๋น„ํœ˜๋ฐœ์„ฑ ๋ฉ”๋ชจ๋ฆฌ์ธ ๋ ˆ์ด์ŠคํŠธ๋ž™ ๋ฉ”๋ชจ๋ฆฌ(RTM)์˜ ์‹ ๋ขฐ์„ฑ ๋ฌธ์ œ๋ฅผ ๊ทผ๋ณธ์ ์œผ๋กœ ํ•ด๊ฒฐํ•˜๊ณ ์ž ํ•˜๋Š” ์‹œ๋„์ด๋‹ค. RTM์€ ์ „ํ†ต์ ์ธ SRAM์— ๋น„ํ•ด 10๋ฐฐ ์ด์ƒ ๋†’์€ ์ง‘์ ๋„๋ฅผ ์ œ๊ณตํ•˜๋ฉด์„œ๋„ ์ฝ๊ธฐยท์“ฐ๊ธฐ ์ง€์—ฐ์ด ์งง์•„ ์บ์‹œ ๋ฉ”๋ชจ๋ฆฌ ๊ต์ฒด ํ›„๋ณด๋กœ ์ ํ•ฉํ•˜์ง€๋งŒ, ์ „๋ฅ˜ ํ๋ฆ„์„ ์ œ์–ดํ•˜๊ธฐ ์œ„ํ•œ ๋„๋ฉ”์ธ ์ด๋™ ๊ณผ์ •์—์„œ ๋ฐœ์ƒํ•˜๋Š” ์Šคํ† ์บ์Šคํ‹ฑํ•œ ์˜ค๋ฅ˜์™€ ๋ฐ์ดํ„ฐ ์…”ํ”Œ๋ง ์˜ค๋ฅ˜๊ฐ€ ๋‹ค์ค‘ ๋น„ํŠธ ์˜ค๋ฅ˜๋ฅผ ์ดˆ๋ž˜ํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ์˜ค๋ฅ˜๋Š” ๊ธฐ์กด์˜ ๋‹จ์ผ ๋น„ํŠธ ECC(์˜ˆ: SEC)๋‚˜ 2๋น„ํŠธ ์ •์ • ECC(์˜ˆ: DECTED)๋กœ๋Š” ์ถฉ๋ถ„ํžˆ ๋ฐฉ์–ดํ•  ์ˆ˜ ์—†์œผ๋ฉฐ, ๋‹ค์ค‘ ๋น„ํŠธ ์ •์ •์„ ์œ„ํ•ด์„œ๋Š”

Data
The Disp Method for Analysing Large Zenith Angle Gamma-Ray Data

The Disp Method for Analysing Large Zenith Angle Gamma-Ray Data

1. ๋™๊ธฐ์™€ ๋ฐฐ๊ฒฝ Disp ๋ฐฉ๋ฒ•์€ ๋‹จ์ผ ๋ง์›๊ฒฝ ๊ด€์ธก์—์„œ ์ฃผ ๊ฐ๋งˆ์„  ๋ฐฉํ–ฅ ์žฌ๊ตฌ์„ฑ์˜ ๊ธฐ๋ณธ ์•Œ๊ณ ๋ฆฌ์ฆ˜์œผ๋กœ ๋„๋ฆฌ ์‚ฌ์šฉ๋˜์–ด ์™”์Šต๋‹ˆ๋‹ค(์˜ˆ: Lessard et al., 2001; Kranich & Stark, 2003; Domingo Santamarรญa et al., 2005). ๊ทธ๋Ÿฌ๋‚˜ ์ƒˆ๋กœ์šด ์„ธ๋Œ€์˜ ์ง€ํ‘œ ๊ธฐ๋ฐ˜ ๊ฐ๋งˆ์„  ๋ง์›๊ฒฝ์€ ๋ฐฐ์—ด ๋ชจ๋“œ๋กœ ์—ฌ๋Ÿฌ ๊ฐœ์˜ ๋ง์›๊ฒฝ์„ ์‚ฌ์šฉํ•˜์—ฌ ๋™์‹œ ๊ด€์ธก์ด ๊ฐ€๋Šฅํ•˜๊ฒŒ ๋˜๋ฉด์„œ ๋ณด๋‹ค ์ •๊ตํ•œ ๋ฐฉํ–ฅ ์žฌ๊ตฌ์„ฑ ๊ธฐ๋ฒ•์ด ํ•„์š”ํ•ด์กŒ์Šต๋‹ˆ๋‹ค. ํŠนํžˆ, ํฐ ๊ฐ๋„(LZA)์—์„œ ์ด๋Ÿฌํ•œ ๊ธฐ๋ฒ•๋“ค์€ ์„ฑ๋Šฅ ์ €ํ•˜๋ฅผ ๊ฒช๊ฒŒ ๋ฉ๋‹ˆ๋‹ค. ์ด๋Š” ๊ณต๊ธฐ ์ƒค์›Œ๊ฐ€ IACT ๋ฐฐ์—ด

Data Astrophysics
Astro-WISE processing of wide-field images and other data

Astro-WISE processing of wide-field images and other data

Catchy Title KO: ์ฒœ๋ฌธํ•™์˜ ๋ฐ์ดํ„ฐ ์ฒ˜๋ฆฌ ํ˜์‹ , Astro WISE Abstract KO: ๋ณธ ๋…ผ๋ฌธ์€ ์œ ๋Ÿฝ ์ฒœ๋ฌธํ•™์ž๋“ค์ด ๊ฐœ๋ฐœํ•œ ๋Œ€๊ทœ๋ชจ ์ฒœ๋ฌธ ๊ด€์ธก ๋ฐ์ดํ„ฐ๋ฅผ ํšจ์œจ์ ์œผ๋กœ ์ฒ˜๋ฆฌํ•˜๊ธฐ ์œ„ํ•œ ๊ณผํ•™ ์ •๋ณด ์‹œ์Šคํ…œ์ธ Astro WISE ์— ๋Œ€ํ•ด ์†Œ๊ฐœํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. Astro WISE๋Š” ๋‹ค์–‘ํ•œ ์ฒœ๋ฌธ ๊ธฐ๊ธฐ๋กœ๋ถ€ํ„ฐ ์ƒ์„ฑ๋˜๋Š” ๋ฐฉ๋Œ€ํ•œ ์–‘์˜ ๋ฐ์ดํ„ฐ๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ๊ด€๋ฆฌํ•˜๊ณ  ๋ถ„์„ํ•  ์ˆ˜ ์žˆ๋„๋ก ์„ค๊ณ„๋˜์—ˆ์Šต๋‹ˆ๋‹ค. ์ด ์‹œ์Šคํ…œ์€ ๊ฐ์ฒด ์ง€ํ–ฅ ๋ฐ์ดํ„ฐ ๋ชจ๋ธ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•˜๋ฉฐ, ์‚ฌ์šฉ์ž๋Š” ํŒŒ์ดํ”„๋ผ์ธ์—์„œ ๋ ˆ์‹œํ”ผ(์ฒ˜๋ฆฌ ๋‹จ๊ณ„)๋ฅผ ์กฐํ•ฉํ•˜์—ฌ ์›ํ•˜๋Š” ์ตœ์ข… ๋ฐ์ดํ„ฐ ์ œํ’ˆ์„ ์–ป์„ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค

Digital Libraries Data Computer Science Astrophysics
GammaLib - A new framework for the analysis of Astronomical Gamma-Ray   Data

GammaLib - A new framework for the analysis of Astronomical Gamma-Ray Data

: GammaLib ํ”„๋ ˆ์ž„์›Œํฌ๋Š” ๊ฐ๋งˆ์„  ์ฒœ๋ฌธํ•™์˜ ๋ฐ์ดํ„ฐ ๋ถ„์„์— ํ˜์‹ ์ ์ธ ์ ‘๊ทผ๋ฒ•์„ ์ œ์‹œํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ด ๋…ผ๋ฌธ์€ GammaLib์ด ์–ด๋–ป๊ฒŒ ๋‹ค์–‘ํ•œ ๊ฐ๋งˆ์„  ๊ด€์ธก ๊ธฐ๊ธฐ์™€ ๋ฐ์ดํ„ฐ ํ˜•์‹์„ ํ†ตํ•ฉํ•˜์—ฌ ๊ณ ๊ธ‰ ๊ณผํ•™์  ๋ถ„์„์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•˜๋Š”์ง€ ์„ค๋ช…ํ•ฉ๋‹ˆ๋‹ค. 1. ๊ฐ๋งˆ์„  ์ฒœ๋ฌธํ•™์˜ ํ˜„์žฌ ์ƒํƒœ ๊ฐ๋งˆ์„  ์ฒœ๋ฌธํ•™์€ ์—๋„ˆ์ง€ ๋ฒ”์œ„๊ฐ€ ๋„“๊ณ  ๋‹ค์–‘ํ•œ ๊ฐ๋งˆ์„  ๋ง์›๊ฒฝ์œผ๋กœ ๊ตฌ์„ฑ๋˜์–ด ์žˆ์Šต๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ๋‹ค์–‘์„ฑ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ , ๋ฐ์ดํ„ฐ๋Š” ๋Œ€๋ถ€๋ถ„ ๊ฐœ๋ณ„ ์ด๋ฒคํŠธ๋กœ ๊ตฌ์„ฑ๋˜๋ฉฐ, ๋„์ฐฉ ์‹œ๊ฐ„, ๋ฐฉํ–ฅ, ๊ทธ๋ฆฌ๊ณ  ์—๋„ˆ์ง€๋ฅผ ํฌํ•จํ•ฉ๋‹ˆ๋‹ค. FITS์™€ OGIP ํ‘œ์ค€์€ ๋งŽ์€ ์šฐ์ฃผ ๊ธฐ๋ฐ˜ ๋ง์›๊ฒฝ์— ๊ตฌํ˜„๋˜์—ˆ์ง€๋งŒ, ์ง€์ƒ

Analysis Framework Astrophysics Data
Massive non-thermal radio emitters: new data and their modelling

Massive non-thermal radio emitters: new data and their modelling

๋ณธ ๋…ผ๋ฌธ์€ ๋Œ€์งˆ๋Ÿ‰ ๋ณ„, ํŠนํžˆ Wolf Rayet ๋ฐ OB ์œ ํ˜•์˜ ๋ณ„๋“ค์ด ๋น„์—ด์  ๋ผ๋””์˜ค ๋ฐฉ์ถœ์„ ๋‚˜ํƒ€๋‚ด๋Š” ํ˜„์ƒ์„ ๋‹ค๋ฃจ๊ณ  ์žˆ๋‹ค. ์ด ๋น„์—ด์  ๋ณต์‚ฌ๋Š” ์ถฉ๋Œ ์—†๋Š” ์ถฉ๊ฒฉ์—์„œ ์ƒ๋Œ€๋ก ์  ์ „์ž๊ฐ€ ๊ฐ€์†๋˜์–ด ์ƒ์„ฑ๋˜๋Š” ํŽ˜๋ฅด๋ฏธ ๋ฉ”์ปค๋‹ˆ์ฆ˜์— ์˜ํ•ด ๋ฐœ์ƒํ•œ๋‹ค. ์ด๋ก  ๋ชจ๋ธ(Eichler & Usov, 1993)์€ ์ด๋Ÿฌํ•œ ์ถฉ๊ฒฉ์ด ๋ฐฉ์‚ฌ๋ ฅ์ ์œผ๋กœ ์ฃผ๋„๋˜๋Š” ๋ฐ”๋žŒ์ด ์Œ์„ฑ ๋˜๋Š” ๋‹ค์ค‘ ์‹œ์Šคํ…œ์—์„œ ์ถฉ๋Œํ•˜์—ฌ ๋ฐœ์ƒํ•œ๋‹ค๋Š” ๊ฒƒ์„ ์ œ์‹œํ•˜๊ณ  ์žˆ๋‹ค. Cyg OB2 No. 9๋Š” O5 + O6 7 ์Œ์„ฑ์œผ๋กœ, Van Loo ๋“ฑ (2008)์€ ์ด ๋ณ„์˜ ๋ผ๋””์˜ค ๋ณต์‚ฌ ๋ฐ์ดํ„ฐ๊ฐ€ ์•ฝ 2.355๋…„์˜ ์ฃผ๊ธฐ๋กœ ๋ณ€

Model Astrophysics Data
On the average of inconsistent data

On the average of inconsistent data

์ด ๋…ผ๋ฌธ์€ ๊ฐ€์šฐ์Šค ๋งˆ์ฝ”ํ”„ ์ •๋ฆฌ(Gauss Markov Theorem)๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ, ์ผ๊ด€๋˜์ง€ ์•Š์€ ์ธก์ • ๋ฐ์ดํ„ฐ์—์„œ ์ตœ์ ์˜ ์ถ”์ •์น˜๋ฅผ ์ฐพ๋Š” ๋ฐฉ๋ฒ•์— ๋Œ€ํ•ด ๊นŠ๊ฒŒ ํƒ๊ตฌํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ด ์—ฐ๊ตฌ๋Š” ํŠนํžˆ ํ”Œ๋ž‘ํฌ ์ƒ์ˆ˜(h) ๊ฐ’์„ ์˜ˆ์‹œ๋กœ ๋“ค์–ด, ๋ถˆ์ผ์น˜ ๋ฐ์ดํ„ฐ์—์„œ ์ตœ์ ์˜ ์ธก์ •๊ฐ’์„ ์„ ํƒํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์„ค๋ช…ํ•ฉ๋‹ˆ๋‹ค. ๊ฐ€์šฐ์Šค ๋งˆ์ฝ”ํ”„ ์ •๋ฆฌ์™€ ๊ทธ ํ•œ๊ณ„ ๊ฐ€์šฐ์Šค ๋งˆ์ฝ”ํ”„ ์ •๋ฆฌ๋Š” ์ผ์ •ํ•œ ๊ฐ’์˜ ์ธก์ •๊ฐ’๊ณผ ๊ด€๋ จ๋œ ๋ถˆํ™•์‹ค์„ฑ์„ ์ฃผ์–ด์ง„ ๊ฒฝ์šฐ, ํŽธํ–ฅ์ด ์—†๋Š” ์ตœ์†Œ ๋ถ„์‚ฐ ์ถ”์ •์น˜๋Š” ๊ฐ€์ค‘ ํ‰๊ท ์ด๋ผ๋Š” ๊ฒƒ์„ ๋ช…์‹œํ•ฉ๋‹ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์‹ค์ œ ๋ฐ์ดํ„ฐ์—์„œ๋Š” ์ด ๊ฐ€์ •์ด ์ž์ฃผ ํ‹€๋ฆฌ๋ฉฐ, ฯ‡ยฒ ๋˜๋Š” ๋ฒ„์ง€ ๋น„์œจ(Bir

Physics Data
Status of GDL - GNU Data Language

Status of GDL - GNU Data Language

: GDL์€ ์ฒœ๋ฌธํ•™ ๋ถ„์•ผ์—์„œ IDL์˜ ๋ฌด๋ฃŒ ๋Œ€์ฒด ์†Œํ”„ํŠธ์›จ์–ด๋กœ ๋„๋ฆฌ ์‚ฌ์šฉ๋˜๊ณ  ์žˆ์œผ๋ฉฐ, ๋‹ค์–‘ํ•œ ๋ฐ์ดํ„ฐ ๋ถ„์„๊ณผ ์‹œ๊ฐํ™” ์ž‘์—…์— ํ™œ์šฉ๋ฉ๋‹ˆ๋‹ค. GDL์˜ ์ฃผ์š” ํŠน์ง• ์ค‘ ํ•˜๋‚˜๋Š” IDL๊ณผ์˜ ์™„๋ฒฝํ•œ ๋ฌธ๋ฒ• ํ˜ธํ™˜์„ฑ์œผ๋กœ, ๊ธฐ์กด IDL ์ฝ”๋“œ๋ฅผ ์‰ฝ๊ฒŒ GDL์—์„œ ์‹คํ–‰ํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ์ ์ž…๋‹ˆ๋‹ค. ์ด๋กœ ์ธํ•ด ์ฒœ๋ฌธํ•™์ž๋“ค์€ ๋น„์šฉ ๋ถ€๋‹ด ์—†์ด ๊ณ ๊ธ‰ ๋ฐ์ดํ„ฐ ๋ถ„์„ ๋ฐ ์‹œ๊ฐํ™” ์ž‘์—…์„ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. GDL์€ ๋‹ค์–‘ํ•œ ํ”Œ๋žซํผ์—์„œ ์‹คํ–‰ ๊ฐ€๋Šฅํ•˜๋ฉฐ, Linux, BSD, Mac OSX, OpenSolaris ๋“ฑ ์ฃผ์š” ์šด์˜ ์ฒด์ œ๋ฅผ ์ง€์›ํ•ฉ๋‹ˆ๋‹ค. ๋˜ํ•œ, ์—ฌ๋Ÿฌ ์šด์˜ ์ฒด์ œ์— ๋Œ€ํ•œ ์‚ฌ์ „ ์ปดํŒŒ์ผ

Computer Science Data Computational Engineering Astrophysics
Data Complexity-aware Deep Model Performance Forecasting

Data Complexity-aware Deep Model Performance Forecasting

์ด ๋…ผ๋ฌธ์€ โ€œ๋ฐ์ดํ„ฐ ๋ณต์žก๋„ ์ธ์‹ ๋”ฅ ๋ชจ๋ธ ์„ฑ๋Šฅ ์˜ˆ์ธกโ€์ด๋ผ๋Š” ์ฃผ์ œ๋กœ, ๋ชจ๋ธ ์„ค๊ณ„ ๋‹จ๊ณ„์—์„œ ์‚ฌ์ „์ ์œผ๋กœ ์„ฑ๋Šฅ์„ ์ถ”์ •ํ•  ์ˆ˜ ์žˆ๋Š” ๊ฒฝ๋Ÿ‰ํ™”๋œ ๋‘ ๋‹จ๊ณ„ ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์‹œํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ ๋‹จ๊ณ„๋Š” ๋ฐ์ดํ„ฐ ์ž์ฒด์˜ ํ†ต๊ณ„์ ยท๊ตฌ์กฐ์  ํŠน์„ฑ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ๋ฒ ์ด์Šค๋ผ์ธ ์„ฑ๋Šฅ์„ ์˜ˆ์ธกํ•œ๋‹ค. ์—ฌ๊ธฐ์—๋Š” ๋ฐ์ดํ„ฐ ๋ถ„์‚ฐ, ํด๋ž˜์Šค ๋ถˆ๊ท ํ˜•, ์ด๋ฏธ์ง€ ํ•ด์ƒ๋„, ํ…์ŠคํŠธ ๊ธธ์ด ๋“ฑ ๋‹ค์–‘ํ•œ ๋ฉ”ํŠธ๋ฆญ์ด ํฌํ•จ๋˜๋ฉฐ, ์ด๋Ÿฌํ•œ ํŠน์„ฑ์€ ๊ธฐ์กด ์—ฐ๊ตฌ์—์„œ ๋ชจ๋ธ ๋ณต์žก๋„์™€ ์ง์ ‘์ ์ธ ์ƒ๊ด€๊ด€๊ณ„๋ฅผ ๋ณด์ธ ๋ฐ” ์žˆ๋‹ค. ๋‘ ๋ฒˆ์งธ ๋‹จ๊ณ„๋Š” ๋ชจ๋ธ ์•„ํ‚คํ…์ฒ˜(์˜ˆ: ๋ ˆ์ด์–ด ์ˆ˜, ํŒŒ๋ผ๋ฏธํ„ฐ ๊ทœ๋ชจ, ์—ฐ์‚ฐ๋Ÿ‰)์™€ ์ฃผ์š” ํ•˜์ดํผํŒŒ๋ผ๋ฏธํ„ฐ(ํ•™์Šต๋ฅ , ๋ฐฐ์น˜

Computer Science Data Machine Learning Model
EscherVerse: An Open World Benchmark and Dataset for Teleo-Spatial Intelligence with Physical-Dynamic and Intent-Driven Understanding

EscherVerse: An Open World Benchmark and Dataset for Teleo-Spatial Intelligence with Physical-Dynamic and Intent-Driven Understanding

๋ณธ ๋…ผ๋ฌธ์€ ์ธ๊ณต์ง€๋Šฅยท๋กœ๋ณดํ‹ฑ์Šค ๋ถ„์•ผ์—์„œ ์ตœ๊ทผ ์ฃผ๋ชฉ๋ฐ›๊ณ  ์žˆ๋Š” โ€œํ…”๋ ˆ์˜คโ€‘์ŠคํŽ˜์ด์…œ ์ธํ…”๋ฆฌ์ „์Šค(TSI)โ€๋ผ๋Š” ์ƒˆ๋กœ์šด ๊ฐœ๋…์„ ์ œ์‹œํ•œ๋‹ค. ๊ธฐ์กด์˜ ๋Œ€๋ถ€๋ถ„ ์—ฐ๊ตฌ๋Š” ๋ฌผ์ฒดโ€‘์ค‘์‹ฌ(objectโ€‘centric) ์ ‘๊ทผ์„ ์ทจํ•ด, ๋ฌผ๋ฆฌโ€‘๋™์—ญํ•™(Physicalโ€‘Dynamic) ๋ชจ๋ธ๋ง์— ์ง‘์ค‘ํ•œ๋‹ค. ์˜ˆ์ปจ๋Œ€, ๋ฌผ์ฒด์˜ ์งˆ๋Ÿ‰ยท๋งˆ์ฐฐยท์ถฉ๋Œ ๋ฒ•์น™์„ ์ด์šฉํ•ด ์‹œ๋ฎฌ๋ ˆ์ด์…˜ํ•˜๊ฑฐ๋‚˜, ๋น„์ „ ๊ธฐ๋ฐ˜ ํŠธ๋ž˜ํ‚น์„ ํ†ตํ•ด ์›€์ง์ž„์„ ์˜ˆ์ธกํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฐฉ๋ฒ•์€ ์ •๋Ÿ‰์  ์ •ํ™•๋„์—์„œ๋Š” ๋›ฐ์–ด๋‚˜์ง€๋งŒ, ์ธ๊ฐ„์ด ๋ฌผ์ฒด๋ฅผ ์กฐ์ž‘ํ•˜๊ฑฐ๋‚˜ ๋ฐฐ์น˜ํ•˜๋Š” ๊ทผ๋ณธ์ ์ธ โ€˜์˜๋„โ€™๋ฅผ ํŒŒ์•…ํ•˜์ง€ ๋ชปํ•œ๋‹ค๋Š” ํ•œ๊ณ„๊ฐ€ ์žˆ๋‹ค. TSI๋Š” ์ด๋Ÿฌํ•œ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ

Computer Vision Computer Science Data
Detecting Performance Degradation under Data Shift in Pathology Vision-Language Model

Detecting Performance Degradation under Data Shift in Pathology Vision-Language Model

๋ณธ ๋…ผ๋ฌธ์€ ์ตœ๊ทผ ์˜๋ฃŒ ์˜์ƒ ๋ถ„์•ผ์—์„œ ๊ฐ๊ด‘๋ฐ›๊ณ  ์žˆ๋Š” ๋น„์ „โ€‘์–ธ์–ด ๋ชจ๋ธ(VLM)์˜ ์‹ค์ œ ์šด์˜ ๋‹จ๊ณ„์—์„œ ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ๋Š” โ€˜๋ฐ์ดํ„ฐ ์‹œํ”„ํŠธ(data shift)โ€™ ๋ฌธ์ œ์— ์ดˆ์ ์„ ๋งž์ถ”์—ˆ๋‹ค. ๋ฐ์ดํ„ฐ ์‹œํ”„ํŠธ๋Š” ํฌ๊ฒŒ ๋‘ ๊ฐ€์ง€ ์ฐจ์›์œผ๋กœ ๋‚˜๋‰œ๋‹ค. ์ฒซ ๋ฒˆ์งธ๋Š” ์ž…๋ ฅ ๋ฐ์ดํ„ฐ ์ž์ฒด๊ฐ€ ํ›ˆ๋ จ ์‹œ์™€ ๋‹ค๋ฅธ ๋ถ„ํฌ๋ฅผ ๋ณด์ด๋Š” ๊ฒฝ์šฐ์ด๋ฉฐ, ๋‘ ๋ฒˆ์งธ๋Š” ๋ชจ๋ธ์ด ์ถœ๋ ฅํ•˜๋Š” ์˜ˆ์ธก๊ฐ’์ด๋‚˜ ์‹ ๋ขฐ๋„(confidence)๊ฐ€ ๋ณ€ํ•˜๋Š” ๊ฒฝ์šฐ์ด๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค์€ ์ฃผ๋กœ ์ž…๋ ฅ ์ฐจ์›์˜ ํ†ต๊ณ„์  ๋ณ€ํ™”๋ฅผ ํƒ์ง€ํ•˜๋Š” ๋ฐฉ๋ฒ•์— ์˜์กดํ–ˆ์ง€๋งŒ, ์ด๋Ÿฌํ•œ ๋ณ€๋™์ด ๋ฐ˜๋“œ์‹œ ๋ชจ๋ธ ์„ฑ๋Šฅ ์ €ํ•˜์™€ ์ง๊ฒฐ๋˜์ง€ ์•Š๋Š”๋‹ค๋Š” ์ ์„ ๊ฐ„๊ณผํ•˜๊ณ  ์žˆ์—ˆ๋‹ค.

Computer Science Model Data Computer Vision
Do LLMs Judge Distantly Supervised Named Entity Labels Well? Constructing the JudgeWEL Dataset

Do LLMs Judge Distantly Supervised Named Entity Labels Well? Constructing the JudgeWEL Dataset

judgeWEL ๋…ผ๋ฌธ์€ ์ €์ž์› ์–ธ์–ด์ธ ๋ฃฉ์…ˆ๋ถ€๋ฅดํฌ์–ด์— ๋Œ€ํ•œ NER ๋ฐ์ดํ„ฐ ๊ตฌ์ถ•์ด๋ผ๋Š” ์‹ค์งˆ์ ์ธ ๋ฌธ์ œ์— ๋Œ€ํ•ด ์ฐฝ์˜์ ์ธ ํ•ด๊ฒฐ์ฑ…์„ ์ œ์‹œํ•œ๋‹ค. ๊ฐ€์žฅ ํฐ ๊ฐ•์ ์€ ๋‘ ๊ฐ€์ง€ ์ธก๋ฉด์—์„œ ์•ฝํ•œ ๊ฐ๋…์„ ํ™œ์šฉํ•œ๋‹ค๋Š” ์ ์ด๋‹ค. ์ฒซ์งธ, ์œ„ํ‚คํ”ผ๋””์•„ ๋‚ด๋ถ€ ๋งํฌ์™€ ์œ„ํ‚ค๋ฐ์ดํ„ฐ์˜ ๊ตฌ์กฐํ™”๋œ ๋ฉ”ํƒ€๋ฐ์ดํ„ฐ๋ฅผ ์—ฐ๊ฒฐํ•จ์œผ๋กœ์จ ์—”ํ„ฐํ‹ฐ ์œ ํ˜•์„ ์ž๋™์œผ๋กœ ์ถ”๋ก ํ•œ๋‹ค๋Š” ์•„์ด๋””์–ด๋Š” ๊ธฐ์กด์˜ ๊ทœ์น™ ๊ธฐ๋ฐ˜ ํ˜น์€ ์‚ฌ์ „ ๋งคํ•‘ ๋ฐฉ์‹๋ณด๋‹ค ํ™•์žฅ์„ฑ์ด ๋›ฐ์–ด๋‚˜๋‹ค. ์œ„ํ‚คํ”ผ๋””์•„๋Š” ์ง€์†์ ์œผ๋กœ ์—…๋ฐ์ดํŠธ๋˜๋ฉฐ ๋‹ค์–‘ํ•œ ๋„๋ฉ”์ธ์„ ํฌ๊ด„ํ•˜๋ฏ€๋กœ, ์ด ์ ‘๊ทผ๋ฒ•์€ ์ƒˆ๋กœ์šด ์—”ํ„ฐํ‹ฐ๊ฐ€ ๋“ฑ์žฅํ•ด๋„ ๋น„๊ต์  ์‰ฝ๊ฒŒ ๋ฐ˜์˜๋  ์ˆ˜ ์žˆ๋‹ค. ๋‘˜์งธ, ์ž๋™ ๋ผ๋ฒจ๋ง ๋‹จ

Computer Science NLP Data
Causify DataFlow: A Framework For High-performance Machine Learning Stream Computing

Causify DataFlow: A Framework For High-performance Machine Learning Stream Computing

๋ณธ ๋…ผ๋ฌธ์€ ๋ฐ์ดํ„ฐ ๊ณผํ•™ ์‹ค๋ฌด์—์„œ ๊ฐ€์žฅ ๋นˆ๋ฒˆํžˆ ๋งˆ์ฃผ์น˜๋Š” โ€˜๋ฐ์ดํ„ฐ๋Š” ์œ ํ•œํ•˜๊ณ  ์™„์ „ํ•˜๋‹คโ€™๋Š” ๊ฐ€์ •์„ ๊ทผ๋ณธ์ ์œผ๋กœ ๋’คํ”๋“ ๋‹ค. ์ „ํ†ต์ ์ธ ๋ฐฐ์น˜ ๊ธฐ๋ฐ˜ ์›Œํฌํ”Œ๋กœ์šฐ๋Š” ๊ณ ์ •๋œ ๋ฐ์ดํ„ฐ์…‹์„ ํ•œ ๋ฒˆ์— ๋ฉ”๋ชจ๋ฆฌ๋กœ ๋กœ๋“œํ•˜๊ฑฐ๋‚˜ ๋‹จ์ผ ํŒจ์Šค๋กœ ์ฒ˜๋ฆฌํ•œ๋‹ค๋Š” ์ „์ œํ•˜์— ์„ค๊ณ„๋˜์—ˆ์œผ๋ฉฐ, ์ด๋Š” ์„ผ์„œ ์ŠคํŠธ๋ฆผ, ๊ธˆ์œต ๊ฑฐ๋ž˜ ๋กœ๊ทธ, ์‹œ์Šคํ…œ ์ด๋ฒคํŠธ์™€ ๊ฐ™์ด ์‹œ๊ฐ„์— ๋”ฐ๋ผ ์ง€์†์ ์œผ๋กœ ์ƒ์„ฑ๋˜๋Š” ๋ฐ์ดํ„ฐ์™€๋Š” ๊ทผ๋ณธ์ ์œผ๋กœ ๋งž์ง€ ์•Š๋Š”๋‹ค. ์ €์ž๋Š” ์ด๋Ÿฌํ•œ ๋ถˆ์ผ์น˜๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด Causify DataFlow๋ผ๋Š” ํ†ตํ•ฉ ์ปดํ“จํ…Œ์ด์…”๋„ ๋ชจ๋ธ์„ ์ œ์•ˆํ•œ๋‹ค. ์ฒซ์งธ, ํ”„๋ ˆ์ž„์›Œํฌ๋Š” DAG๋ฅผ ์„ ์–ธ์ ์œผ๋กœ ์ •์˜ํ•˜๊ณ , ๋™์ผํ•œ ์ •์˜๋ฅผ

Framework Machine Learning Computer Science Learning Data
A method to develop mission critical data processing systems for   satellite based instruments. The spinning mode case

A method to develop mission critical data processing systems for satellite based instruments. The spinning mode case

๋ณธ ๋…ผ๋ฌธ์€ ํ˜„๋Œ€ ์œ„์„ฑ ์‹คํ—˜์˜ ๋ณต์žก์„ฑ์„ ๊ณ ๋ คํ•œ ๋ฐ์ดํ„ฐ ์ฒ˜๋ฆฌ ์‹œ์Šคํ…œ ๊ฐœ๋ฐœ ๋ฐฉ๋ฒ•๋ก ์— ์ดˆ์ ์„ ๋งž์ถ”๊ณ  ์žˆ๋‹ค. ํŠนํžˆ, ํšŒ์ „ ๋ชจ๋“œ์—์„œ์˜ ๋ฐ์ดํ„ฐ ์ฒ˜๋ฆฌ๋ฅผ ์œ„ํ•œ SPIPI ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ œ์•ˆํ•˜๊ณ , ์ด๋ฅผ ํ†ตํ•ด ์œ„์„ฑ ๊ธฐ๋ฐ˜ ์‹คํ—˜์—์„œ ๋ฐœ์ƒํ•˜๋Š” ๋‹ค์–‘ํ•œ ์ž์› ๊ด€๋ จ ์ œ์•ฝ ์กฐ๊ฑด์„ ํ•ด๊ฒฐํ•˜๋ ค๋Š” ์˜๋„๊ฐ€ ๋ช…ํ™•ํžˆ ๋“œ๋Ÿฌ๋‚œ๋‹ค. 1. ์‹œ์Šคํ…œ ๊ฐœ์š” ๋ฐ ๋ฌธ์ œ ์ธ์‹ ํ˜„๋Œ€ ์œ„์„ฑ ์‹คํ—˜์€ ๋น„ํ–‰ ๋ฐ ์ง€์ƒ ์„ธ๊ทธ๋จผํŠธ๋กœ ๊ตฌ์„ฑ๋œ ๋ณต์žกํ•œ ์‹ค์‹œ๊ฐ„ ์‹œ์Šคํ…œ์œผ๋กœ, ํฌ๊ธฐ, ๋ฌด๊ฒŒ, ์ „๋ ฅ ์†Œ๋น„, ์‹ค์‹œ๊ฐ„ ์‘๋‹ต ์š”๊ตฌ์‚ฌํ•ญ, ๊ณ ์žฅ ๋‚ด์„ฑ ๋“ฑ์˜ ์ž์› ๊ด€๋ จ ์ œ์•ฝ ์กฐ๊ฑด์„ ๊ฐ€์ง„๋‹ค. ์ด๋Ÿฌํ•œ ์‹œ์Šคํ…œ์€ ๋†’์€ ์ˆ˜์ค€์˜ ๋ณด์ฆ์ด ํ•„์š”ํ•˜๋ฉฐ, ํ•˜

Software Engineering System Data Computer Science Astrophysics
No Image

More Mouldy Data: Another mycoplasma gene jumps the silicon barrier into the human genome

: ์ด ๋…ผ๋ฌธ์€ ์ƒ๋ช…์ •๋ณดํ•™ ๋ถ„์•ผ์—์„œ ์ค‘์š”ํ•œ ์ด์Šˆ ์ค‘ ํ•˜๋‚˜์ธ ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค ์˜ค์—ผ์— ๋Œ€ํ•ด ๊นŠ๊ฒŒ ๋‹ค๋ฃน๋‹ˆ๋‹ค. ํŠนํžˆ, ์ธ๊ฐ„ ์œ ์ „์ฒด ์„œ์—ด ๋ฐ์ดํ„ฐ์˜ ์ •ํ™•์„ฑ๊ณผ ์‹ ๋ขฐ์„ฑ์ด ์ค‘์š”ํ•จ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ , ์ด๋Ÿฌํ•œ ๋ฐ์ดํ„ฐ๊ฐ€ ๊ณฐํŒก์ด DNA๋กœ ์˜ค์—ผ๋˜์–ด ์žˆ๋‹ค๋Š” ์‚ฌ์‹ค์„ ๋ฐœ๊ฒฌํ•œ ์—ฐ๊ตฌ์ง„์€ ์ด ๋ฌธ์ œ๋ฅผ ์‹ฌ๊ฐํ•˜๊ฒŒ ๋ฐ›์•„๋“ค์ž…๋‹ˆ๋‹ค. 1. ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค ์˜ค์—ผ์˜ ๋ฐฐ๊ฒฝ ์ธ๊ฐ„ ์œ ์ „์ฒด ์„œ์—ด์ด ์ฒ˜์Œ ์ถœํŒ๋˜์—ˆ์„ ๋•Œ๋ถ€ํ„ฐ, ๋ฐ์ดํ„ฐ ์ •ํ™” ๋ฌธ์ œ๊ฐ€ ๋…ผ์˜๋˜์—ˆ์Šต๋‹ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ด๋Ÿฌํ•œ ๋…ผ์˜๋Š” ์ฃผ๋กœ ๊ธฐ์ˆ ์  ์ธก๋ฉด์— ์ดˆ์ ์„ ๋งž์ถ”์—ˆ์œผ๋ฉฐ, ์‹ค์ œ ๋ฐ์ดํ„ฐ ์˜ค์—ผ ๋ฌธ์ œ๋ฅผ ์™„์ „ํžˆ ํ•ด๊ฒฐํ•˜์ง€ ๋ชปํ–ˆ์Šต๋‹ˆ๋‹ค. ์ตœ๊ทผ ์—ฐ๊ตฌ์—์„œ๋Š” ์ธ๊ฐ„ ์œ ์ „์ฒด ์„œ์—ด์ด

Quantitative Biology Data
Data-Driven Assessment of Concrete Mixture Compositions on Chloride Transport via Standalone Machine Learning Algorithms

Data-Driven Assessment of Concrete Mixture Compositions on Chloride Transport via Standalone Machine Learning Algorithms

์ด ๋…ผ๋ฌธ์€ ์ฝ˜ํฌ๋ฆฌํŠธ ๊ตฌ์กฐ๋ฌผ ๋‚ด์—์„œ ์—ผํ™”๋ฌผ์˜ ์‹œ๊ฐ„ ๊ฒฝ๊ณผ ๋ณ€ํ™”์— ๋ฏธ์น˜๋Š” ํ˜ผํ•ฉ๋ฌผ ์กฐ์„ฑ์˜ ์˜ํ–ฅ์„ ๋ถ„์„ํ•˜๋Š”๋ฐ ์ดˆ์ ์„ ๋งž์ถ”๊ณ  ์žˆ๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ๋‹ค์–‘ํ•œ ๋จธ์‹ ๋Ÿฌ๋‹ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์‚ฌ์šฉํ•˜์—ฌ ๋ฐ์ดํ„ฐ ์ฃผ๋„์  ์ ‘๊ทผ๋ฒ•์„ ์ ์šฉํ•œ๋‹ค. ์—ฐ๊ตฌ ๋ฐฉ๋ฒ•๋ก ์€ ๊ฐ„๋‹จํ•œ ์„ ํ˜• ํšŒ๊ท€, k ์ตœ๊ทผ์ ‘ ์ด์›ƒ ํšŒ๊ท€, ์ปค๋„ ๋ฆฌ์ง€ ํšŒ๊ท€์™€ ๋ณต์žกํ•œ ์„œํฌํŠธ ๋ฒกํ„ฐ ํšŒ๊ท€, ๊ฐ€์šฐ์‹œ์•ˆ ํ”„๋กœ์„ธ์Šค ํšŒ๊ท€, ๋‹ค์ธต ํผ์…‰ํŠธ๋ก (MLP), ๊ฒŒ์ดํŠธ ์ˆœํ™˜ ์œ ๋‹›(GRU)์„ ํฌํ•จํ•œ๋‹ค. ๊ฐ ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ์„ฑ๋Šฅ์€ ๋‹ค์–‘ํ•œ ์ง€ํ‘œ๋ฅผ ํ†ตํ•ด ํ‰๊ฐ€๋˜๋ฉฐ, ํŠนํžˆ GPR ๋ชจ๋ธ์€ ๋ช…ํ™•ํ•˜๊ณ  ์„ค๋ช… ๊ฐ€๋Šฅํ•œ ์ถ”์„ธ๋ฅผ ์ œ๊ณตํ•˜์—ฌ ์ˆจ๊ฒจ์ง„ ์ƒ๊ด€๊ด€๊ณ„๋ฅผ ๋“œ๋Ÿฌ๋‚ด๋Š” ๋ฐ ํšจ๊ณผ

Computer Science Learning Data Machine Learning
No Image

A Comprehensive Dataset for Human vs. AI Generated Image Detection

๋ณธ ๋…ผ๋ฌธ์ด ์ œ์‹œํ•˜๋Š” MS COCOAI ๋ฐ์ดํ„ฐ์…‹์€ ํ˜„์žฌ ์ด๋ฏธ์ง€ ์ง„์œ„ ํƒ์ง€ ์—ฐ๊ตฌ์—์„œ ๊ฐ€์žฅ ์‹œ๊ธ‰ํžˆ ์š”๊ตฌ๋˜๋Š” โ€˜๋‹ค์–‘์„ฑโ€™๊ณผ โ€˜๊ทœ๋ชจโ€™๋ฅผ ๋™์‹œ์— ๋งŒ์กฑํ•œ๋‹ค๋Š” ์ ์—์„œ ํฐ ์˜๋ฏธ๋ฅผ ๊ฐ€์ง„๋‹ค. ์ฒซ์งธ, ๊ธฐ์กด ๋ฐ์ดํ„ฐ์…‹๋“ค์€ ์ฃผ๋กœ ๋‹จ์ผ ์ƒ์„ฑ ๋ชจ๋ธ์ด๋‚˜ ์ œํ•œ๋œ ํ”„๋กฌํ”„ํŠธ ์„ธํŠธ๋ฅผ ์‚ฌ์šฉํ•ด ๋งŒ๋“  ์ด๋ฏธ์ง€์— ๊ตญํ•œ๋ผ ์žˆ์—ˆ์œผ๋ฉฐ, ์ด๋Š” ์‹ค์ œ ํ˜„์žฅ์—์„œ ๋งˆ์ฃผ์น˜๋Š” ๋‹ค์–‘ํ•œ AI ํˆด๊ณผ์˜ ๊ฒฉ์ฐจ๋ฅผ ์ดˆ๋ž˜ํ•œ๋‹ค. ๋ฐ˜๋ฉด ๋ณธ ๋ฐ์ดํ„ฐ์…‹์€ Stable Diffusion 3ยท2.1ยทSDXL, DALLโ€‘E 3, MidJourney v6 ๋“ฑ ์ตœ์‹  ๋ชจ๋ธ์„ ๋ชจ๋‘ ํฌํ•จํ•จ์œผ๋กœ์จ, ํ˜„์žฌ ์‹œ์žฅ์—์„œ ๋„๋ฆฌ ์‚ฌ์šฉ๋˜๋Š” ์ฃผ์š” ์ƒ์„ฑ

Computer Science Data Detection Computer Vision
OptRot: Mitigating Weight Outliers via Data-Free Rotations for Post-Training Quantization

OptRot: Mitigating Weight Outliers via Data-Free Rotations for Post-Training Quantization

๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(LLM)์€ ์ˆ˜์–ต์—์„œ ์ˆ˜์กฐ ๊ฐœ์˜ ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ๋ณด์œ ํ•˜๊ณ  ์žˆ์–ด, ์‹ค์ œ ์„œ๋น„์Šค ํ™˜๊ฒฝ์—์„œ ๋ฉ”๋ชจ๋ฆฌ์™€ ์—ฐ์‚ฐ ๋น„์šฉ์„ ํฌ๊ฒŒ ์ ˆ๊ฐํ•˜๊ธฐ ์œ„ํ•ด ์‚ฌํ›„ ์–‘์žํ™”(postโ€‘training quantization, PTQ)๊ฐ€ ํ•„์ˆ˜์ ์ด๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ LLM์˜ ๊ฐ€์ค‘์น˜์™€ ํ™œ์„ฑ๊ฐ’์—๋Š” โ€œ์ด์ƒ์น˜(outlier)โ€๋ผ ๋ถˆ๋ฆฌ๋Š” ๊ทน๋‹จ์ ์ธ ๊ฐ’๋“ค์ด ์กด์žฌํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ์ด์ƒ์น˜๋Š” ์–‘์žํ™” ๋‹จ๊ณ„์—์„œ ์Šค์ผ€์ผ๋ง์„ ํฌ๊ฒŒ ์žก์•„์•ผ ํ•˜๋ฏ€๋กœ, ์ „์ฒด ๋ถ„ํฌ๊ฐ€ ๊ณผ๋„ํ•˜๊ฒŒ ์••์ถ•๋˜๊ณ  ๊ฒฐ๊ณผ์ ์œผ๋กœ ์ •๋ฐ€๋„๊ฐ€ ํฌ๊ฒŒ ๋–จ์–ด์ง„๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋Š” ์ด ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ํšŒ์ „(rotation) ๊ธฐ๋ฒ•์„ ๋„์ž…ํ–ˆ๋Š”๋ฐ, ํšŒ์ „์€

Computer Science Data Machine Learning
Unleashing Foundation Vision Models: Adaptive Transfer for Diverse Data-Limited Scientific Domains

Unleashing Foundation Vision Models: Adaptive Transfer for Diverse Data-Limited Scientific Domains

๋ณธ ์—ฐ๊ตฌ๋Š” ํ˜„์žฌ ์ปดํ“จํ„ฐ ๋น„์ „ ๋ถ„์•ผ์—์„œ ๊ฐ€์žฅ ํฐ ๋„์ „ ๊ณผ์ œ ์ค‘ ํ•˜๋‚˜์ธ โ€œ๋Œ€๊ทœ๋ชจ ์‚ฌ์ „ ํ•™์Šต ๋ชจ๋ธ์„ ๋ฐ์ดํ„ฐ๊ฐ€ ๋ถ€์กฑํ•œ ํŠน์ˆ˜ ๋„๋ฉ”์ธ์— ํšจ๊ณผ์ ์œผ๋กœ ์ „์ด์‹œํ‚ค๋Š” ๋ฐฉ๋ฒ•โ€์„ ํ•ด๊ฒฐํ•˜๊ณ ์ž ํ•œ๋‹ค. ๊ธฐ์กด์˜ ํŒŒ์ธํŠœ๋‹ ๋ฐฉ์‹์€ ์‚ฌ์ „ ํ•™์Šต๋œ ๊ฐ€์ค‘์น˜๋ฅผ ๊ทธ๋Œ€๋กœ ์‚ฌ์šฉํ•˜๊ฑฐ๋‚˜, ์ „์ฒด ๋„คํŠธ์›Œํฌ๋ฅผ ๋ฏธ์„ธ์กฐ์ •ํ•˜๋Š” ๋ฐฉ์‹์— ๋จธ๋ฌผ๋Ÿฌ ์žˆ์–ด, ๋„๋ฉ”์ธ ๊ฐ„ ๋ถ„ํฌ ์ฐจ์ด๊ฐ€ ํด ๊ฒฝ์šฐ ๊ณผ์ ํ•ฉ์ด๋‚˜ ํ‘œํ˜„ ์†์‹ค์ด ๋ฐœ์ƒํ•œ๋‹ค. CLAdapter๋Š” ์ด๋Ÿฌํ•œ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด ๋‘ ๊ฐ€์ง€ ํ•ต์‹ฌ ์•„์ด๋””์–ด๋ฅผ ๊ฒฐํ•ฉํ•œ๋‹ค. ์ฒซ์งธ, ํด๋Ÿฌ์Šคํ„ฐ ์ค‘์‹ฌ์„ ํ™œ์šฉํ•ด ์ž…๋ ฅ ํŠน์ง• ๊ณต๊ฐ„์„ ์—ฌ๋Ÿฌ ๊ฐœ์˜ ์˜๋ฏธ๋ก ์  ๊ทธ๋ฃน์œผ๋กœ ๋‚˜๋ˆ„๊ณ , ๊ฐ ํด๋Ÿฌ์Šคํ„ฐ์—

Data Model
Human-like visual computing advances explainability and few-shot learning in deep neural networks for complex physiological data

Human-like visual computing advances explainability and few-shot learning in deep neural networks for complex physiological data

์ด ๋…ผ๋ฌธ์€ ํ˜„๋Œ€ ์˜๋ฃŒ ์ธ๊ณต์ง€๋Šฅ์ด ์ง๋ฉดํ•œ ๋‘ ๊ฐ€์ง€ ํ•ต์‹ฌ ๋ฌธ์ œโ€”๋ฐ์ดํ„ฐ ๋ถ€์กฑ๊ณผ ๋ธ”๋ž™๋ฐ•์Šค ํ˜„์ƒโ€”์— ๋Œ€ํ•œ ํ˜์‹ ์ ์ธ ํ•ด๊ฒฐ์ฑ…์„ ์ œ์‹œํ•œ๋‹ค. ๋จผ์ €, โ€˜๊ฐ€์งœ ์ƒ‰์ฑ„(pseudoโ€‘colouring)โ€™๋ผ๋Š” ๊ฐœ๋…์€ ์›๋ž˜ ์ธ๊ฐ„ ์ „๋ฌธ๊ฐ€๊ฐ€ ECG๋ฅผ ์‹œ๊ฐ์ ์œผ๋กœ ํ•ด์„ํ•  ๋•Œ ์ค‘์š”ํ•œ ์‹œ๊ฐ„์  ํŠน์ง•, ์˜ˆ์ปจ๋Œ€ QT ๊ฐ„๊ฒฉ์„ ์ƒ‰์ƒ์œผ๋กœ ๊ฐ•์กฐํ•จ์œผ๋กœ์จ ์ธ์ง€ ๋ถ€ํ•˜๋ฅผ ๋‚ฎ์ถ”๋Š” ๋ฐฉ๋ฒ•์œผ๋กœ ์•Œ๋ ค์ ธ ์žˆ๋‹ค. ์ด๋ฅผ ๋””์ง€ํ„ธ ์ด๋ฏธ์ง€์— ๊ทธ๋Œ€๋กœ ์ ์šฉํ•˜๋ฉด, ์‹ ๊ฒฝ๋ง์ด ์›์‹œ ์ „์•• ํŒŒํ˜• ๋Œ€์‹  ์ƒ‰์ƒ ์ฑ„๋„์„ ํ†ตํ•ด ์˜๋ฏธ ์žˆ๋Š” ์ •๋ณด๋ฅผ ์ง์ ‘ ๋ฐ›์•„๋“ค์ผ ์ˆ˜ ์žˆ๋‹ค. ์ƒ‰์ƒ์€ 3์ฐจ์›(RGB) ๊ณต๊ฐ„์—์„œ ์„œ๋กœ ๋‹ค๋ฅธ ์‹œ๊ฐ„ ๊ตฌ๊ฐ„์„ ๊ตฌ๋ถ„ํ•˜

Network Data Learning
Assessing Coronary Microvascular Dysfunction using Angiography-based Data-driven Methods

Assessing Coronary Microvascular Dysfunction using Angiography-based Data-driven Methods

๊ด€์ƒ๋™๋งฅ ๋ฏธ์„ธํ˜ˆ๊ด€ ๊ธฐ๋Šฅ์žฅ์• (CMD)๋Š” ์ „ํ†ต์ ์ธ ๊ด€์ƒ๋™๋งฅ ์งˆํ™˜ ์ง„๋‹จ์—์„œ ๊ฐ„๊ณผ๋˜๊ธฐ ์‰ฌ์šด ์ค‘์š”ํ•œ ๋ณ‘๋ฆฌํ•™์  ํ˜„์ƒ์ด๋‹ค. ๊ธฐ์กด์— CMD๋ฅผ ํ‰๊ฐ€ํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ์••๋ ฅ ์™€์ด์–ด๋ฅผ ์ด์šฉํ•ด ๋ฏธ์„ธ๊ด€ ์ €ํ•ญ ์ง€์ˆ˜(IMR)์™€ ๊ด€์ƒ๋™๋งฅ ํ˜ˆ๋ฅ˜ ์˜ˆ๋น„์œจ(CFR)์„ ์ง์ ‘ ์ธก์ •ํ•ด์•ผ ํ•˜๋Š”๋ฐ, ์ด๋Ÿฌํ•œ ์นจ์Šต์  ๋ฐฉ๋ฒ•์€ ๋น„์šฉ์ด ๋†’๊ณ  ์‹œ์ˆ  ์‹œ๊ฐ„์ด ๊ธธ๋ฉฐ, ํ™˜์ž์—๊ฒŒ ์ถœํ˜ˆยทํ˜ˆ๊ด€ ์†์ƒ ๋“ฑ ๋ถ€์ž‘์šฉ ์œ„ํ—˜์„ ๋™๋ฐ˜ํ•œ๋‹ค. ๋”ฐ๋ผ์„œ ์ž„์ƒ ํ˜„์žฅ์—์„œ CMD๋ฅผ ์ฒด๊ณ„์ ์œผ๋กœ ํŒŒ์•…ํ•˜๊ธฐ๋Š” ํ˜„์‹ค์ ์œผ๋กœ ์–ด๋ ค์šด ์ ์ด ์žˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ์ด๋Ÿฌํ•œ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ณ ์ž, ์ด๋ฏธ ์ž„์ƒ์—์„œ ๋„๋ฆฌ ์‚ฌ์šฉ๋˜๋Š” ๊ด€์ƒ๋™๋งฅ ์กฐ์˜์ˆ  ์˜์ƒ์„ ํ™œ์šฉํ•ด

Data
HARMON-E: Hierarchical Agentic Reasoning for Multimodal Oncology Notes to Extract Structured Data

HARMON-E: Hierarchical Agentic Reasoning for Multimodal Oncology Notes to Extract Structured Data

๋ณธ ๋…ผ๋ฌธ์€ ์ „์ž ๊ฑด๊ฐ• ๊ธฐ๋ก(EHR) ๋‚ด์— ์‚ฐ์žฌํ•ด ์žˆ๋Š” ๋น„๊ตฌ์กฐํ™” ํ…์ŠคํŠธ๋ฅผ ํ™œ์šฉํ•ด ์•” ํ™˜์ž์— ๋Œ€ํ•œ ์ •๋ฐ€ํ•œ ์ž„์ƒ ์ •๋ณด๋ฅผ ์ž๋™์œผ๋กœ ๊ตฌ์กฐํ™”ํ•˜๋Š” ๋ฌธ์ œ์— ์ ‘๊ทผํ•œ๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค์€ ํฌ๊ฒŒ ๋‘ ๊ฐ€์ง€ ํ•œ๊ณ„์— ๋ด‰์ฐฉํ•œ๋‹ค. ์ฒซ์งธ, ํ•ฉ์„ฑ ๋ฐ์ดํ„ฐ์…‹์„ ์ด์šฉํ•˜๊ฑฐ๋‚˜ ์ œํ•œ๋œ ์‹ค์ œ ๋ฐ์ดํ„ฐ์—๋งŒ ์˜์กดํ•จ์œผ๋กœ์จ ์‹ค์ œ ์ž„์ƒ ํ˜„์žฅ์˜ ๋ณต์žก์„ฑ์„ ์ถฉ๋ถ„ํžˆ ๋ฐ˜์˜ํ•˜์ง€ ๋ชปํ•œ๋‹ค๋Š” ์ ์ด๋‹ค. ํ•ฉ์„ฑ ๋ฐ์ดํ„ฐ๋Š” ์šฉ์–ด ๋‹ค์–‘์„ฑ, ๋ฌธ์„œ ํ˜•์‹ ๋ณ€์ด, ๊ทธ๋ฆฌ๊ณ  ํ™˜์ž ๊ฐ„ ์ •๋ณด ์ถฉ๋Œ์„ ์žฌํ˜„ํ•˜๊ธฐ ์–ด๋ ต๋‹ค. ๋‘˜์งธ, ๋Œ€๋ถ€๋ถ„์˜ ์ž๋™ํ™” ๋ฐฉ๋ฒ•์ด ๋ฌธ์„œ ์ˆ˜์ค€์—์„œ ํŠน์ • ๋ณ€์ˆ˜๋งŒ์„ ์ถ”์ถœํ•˜๋„๋ก ์„ค๊ณ„๋ผ, ํ™˜์ž ์ „์ฒด ๊ธฐ๋ก์„ ํ†ตํ•ฉํ•ด ์ผ๊ด€๋œ ํ”„๋กœ

Data
TACK Tunnel Data (TTD): A Benchmark Dataset for Deep Learning-Based Defect Detection in Tunnels

TACK Tunnel Data (TTD): A Benchmark Dataset for Deep Learning-Based Defect Detection in Tunnels

๋ณธ ๋…ผ๋ฌธ์€ ํ„ฐ๋„ ๊ฒฐํ•จ ๊ฒ€์‚ฌ๋ฅผ ์œ„ํ•œ ์ƒˆ๋กœ์šด ๋ฐ์ดํ„ฐ์…‹์„ ์†Œ๊ฐœํ•˜๋ฉฐ, ์ด๋Š” ๋”ฅ๋Ÿฌ๋‹ ๋ชจ๋ธ์˜ ํ•™์Šต๊ณผ ์„ฑ๋Šฅ ๊ฐœ์„ ์— ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•ฉ๋‹ˆ๋‹ค. ํ„ฐ๋„์€ ๊ตํ†ต ์ธํ”„๋ผ์˜ ์ฃผ์š” ๊ตฌ์„ฑ ์š”์†Œ๋กœ, ์•ˆ์ „์„ฑ์„ ์œ ์ง€ํ•˜๊ธฐ ์œ„ํ•ด ์ •๊ธฐ์ ์ธ ์ ๊ฒ€์ด ํ•„์ˆ˜์ ์ž…๋‹ˆ๋‹ค. ํ•˜์ง€๋งŒ ์ „ํ†ต์ ์ธ ์ˆ˜๋™ ๊ฒ€์‚ฌ ๋ฐฉ๋ฒ•์€ ์‹œ๊ฐ„ ์†Œ๋ชจ๊ฐ€ ๋งŽ๊ณ  ๋น„์šฉ์ด ๋†’์œผ๋ฉฐ ์ฃผ๊ด€์ ์ด์–ด์„œ ์ œํ•œ์ ์ด ์žˆ์Šต๋‹ˆ๋‹ค. ๋ชจ๋ฐ”์ผ ๋งคํ•‘ ์‹œ์Šคํ…œ๊ณผ ๋”ฅ๋Ÿฌ๋‹์˜ ๋ฐœ์ „์œผ๋กœ ์ž๋™ํ™”๋œ ์‹œ๊ฐ ๊ฒ€์‚ฌ๊ฐ€ ๊ฐ€๋Šฅํ•ด์กŒ์ง€๋งŒ, ์ด๋ฅผ ์œ„ํ•œ ์ถฉ๋ถ„ํ•œ ๋ฐ์ดํ„ฐ์…‹์ด ๋ถ€์กฑํ•˜์—ฌ ๊ทธ ํšจ๊ณผ๊ฐ€ ์ œํ•œ๋˜์–ด ์™”์Šต๋‹ˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ ์†Œ๊ฐœํ•˜๋Š” ์ƒˆ๋กœ์šด ๋ฐ์ดํ„ฐ์…‹์€ ์„ธ ๊ฐ€์ง€ ๋‹ค๋ฅธ ์ข…๋ฅ˜์˜ ํ„ฐ๋„ ๋ผ์ด๋‹์—

Learning Data Detection
No Image

Source mechanism and rupture directivity of small earthquakes in the Changning region, China, using a dense array data

์ด ๋…ผ๋ฌธ์€ ์ค‘๊ตญ ์‹œ์ดจ ๋ถ„์ง€ changning ์ง€์—ญ์—์„œ ์ˆ˜์ง‘๋œ ๊ณ ๋ฐ€๋„ ๋…ธ๋“œ ์ง€์ง„๊ณ„ ๋ฐฐ์—ด ๋ฐ์ดํ„ฐ๋ฅผ ํ™œ์šฉํ•˜์—ฌ, ์†Œ๊ทœ๋ชจ ์ง€์ง„์˜ ํŒŒ์—ด ๊ณผ์ •์„ ์ •๊ตํ•˜๊ฒŒ ๋ถ„์„ํ•˜๋Š” ๋ฐ ์ดˆ์ ์„ ๋งž์ถ”๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์—ฐ๊ตฌํŒ€์€ PhaseNet+์™€ SKHASH๋ผ๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์‚ฌ์šฉํ•ด 1<M<4 ๋ฒ”์œ„์˜ ์—ฌ์ง„๋“ค์˜ ํฌ์ปค์Šค ๋ฉ”์ปค๋‹ˆ์ฆ˜ ์นดํƒˆ๋กœ๊ทธ๋ฅผ ํ–ฅ์ƒ์‹œ์ผฐ์Šต๋‹ˆ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด, ๋‘ ๊ฐœ์˜ M3 ์—ฌ์ง„์—์„œ ๋ฐฉํ–ฅ์„ฑ์— ๋”ฐ๋ฅธ ์ฝ”๋„ˆ ์ฃผํŒŒ์ˆ˜๋ฅผ ๊ด€์ฐฐํ•˜๊ณ  Brune ๋ชจ๋ธ์„ ์‚ฌ์šฉํ•œ ์ŠคํŽ™ํŠธ๋Ÿผ ํ”ผํŒ…์œผ๋กœ ์ผ๋ฐฉ์  ํŒŒ์—ด์ด ํ™•์ธ๋˜์—ˆ์Šต๋‹ˆ๋‹ค. ํŠนํžˆ, ์ด ์—ฐ๊ตฌ๋Š” changning ์ง€์—ญ์˜ ๋ณต์žกํ•œ ๋‹จ๋ฉด ๊ตฌ์กฐ์™€ ์ง€ํ•˜ ์œ ์ฒด ์ฃผ์ž…๊ณผ

Data
A Systematic Framework for Enterprise Knowledge Retrieval: Leveraging LLM-Generated Metadata to Enhance RAG Systems

A Systematic Framework for Enterprise Knowledge Retrieval: Leveraging LLM-Generated Metadata to Enhance RAG Systems

๋ณธ ๋…ผ๋ฌธ์€ ๊ธฐ์—…์šฉ ์ง€์‹ ๊ด€๋ฆฌ ์‹œ์Šคํ…œ์—์„œ ํ”ํžˆ ๊ฒช๋Š” โ€œ์ •๋ณด ๊ฒ€์ƒ‰ ๋ณ‘๋ชฉโ€ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ๋ฉ”ํƒ€๋ฐ์ดํ„ฐ๋ฅผ ์ž๋™์œผ๋กœ ์ƒ์„ฑยทํ™œ์šฉํ•˜๋Š” ์ƒˆ๋กœ์šด ํŒŒ์ดํ”„๋ผ์ธ์„ ์ œ์•ˆํ•œ๋‹ค. ๋จผ์ €, ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ์„ ์ด์šฉํ•ด ๊ฐ ๋ฌธ์„œ ์กฐ๊ฐ์— ๋Œ€ํ•ด ์ฃผ์ œ, ํ‚ค์›Œ๋“œ, ์š”์•ฝ, ๊ด€๊ณ„ ๋“ฑ ๋‹ค์ฐจ์› ๋ฉ”ํƒ€๋ฐ์ดํ„ฐ๋ฅผ ์ถ”์ถœํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฉ”ํƒ€๋ฐ์ดํ„ฐ๋Š” ๊ธฐ์กด ํ…์ŠคํŠธ ์ž„๋ฒ ๋”ฉ์— ์ถ”๊ฐ€์ ์ธ ์‹œ๊ทธ๋„์„ ์ œ๊ณตํ•จ์œผ๋กœ์จ, ๋™์ผํ•œ ์˜๋ฏธ๋ฅผ ๊ณต์œ ํ•˜๋Š” ๋ฌธ์„œ ๊ฐ„์˜ ๊ฑฐ๋ฆฌ ๊ณ„์‚ฐ์„ ๋ณด๋‹ค ์ •๊ตํ•˜๊ฒŒ ๋งŒ๋“ ๋‹ค. ์ฒญํ‚น ์ „๋žต์€ ์„ธ ๊ฐ€์ง€๋กœ ๊ตฌ๋ถ„๋œ๋‹ค. โ‘  ์˜๋ฏธ ๊ธฐ๋ฐ˜ ์ฒญํ‚น์€ ๋ฌธ๋งฅ์  ์œ ์‚ฌ์„ฑ์„ ๊ธฐ์ค€์œผ๋กœ ๋ฌธ์„œ๋ฅผ ๋™์ ์œผ๋กœ ๋ถ„ํ• ํ•ด ์˜๋ฏธ ๋‹จ์œ„๊ฐ€ ๋ณด์กด

Framework Data System
AI-Enabled grading with near-domain data for scaling feedback with human-level accuracy

AI-Enabled grading with near-domain data for scaling feedback with human-level accuracy

๋ณธ ์—ฐ๊ตฌ๊ฐ€ ๋‹ค๋ฃจ๋Š” ํ•ต์‹ฌ ๋ฌธ์ œ๋Š” โ€˜๊ตฌ์„ฑํ˜• ์งง์€ ๋‹ต๋ณ€ ์ฑ„์ โ€™์ด๋ผ๋Š” ๊ต์œก ํ˜„์žฅ์˜ ๋‚œ์ œ์ด๋‹ค. ์ „ํ†ต์ ์ธ ์ž๋™ ์ฑ„์  ์‹œ์Šคํ…œ์€ ๊ฐ๊ด€์‹์ฒ˜๋Ÿผ ์ •๋‹ต์ด ๋ช…ํ™•ํžˆ ์ •์˜๋œ ๊ฒฝ์šฐ์—๋งŒ ๋†’์€ ์ •ํ™•๋„๋ฅผ ๋ณด์ด๋ฉฐ, ์ž์œ  ์„œ์ˆ ํ˜• ๋‹ต๋ณ€์€ ํ‘œํ˜„ ๋‹ค์–‘์„ฑ, ์–ดํœ˜ ์„ ํƒ, ๋ฌธ๋งฅ์  ์˜๋ฏธ ๋“ฑ ๋ณตํ•ฉ์ ์ธ ๋ณ€์ˆ˜๋ฅผ ํฌํ•จํ•œ๋‹ค. ๋”ฐ๋ผ์„œ ์‚ฌ์ „ ์ •์˜๋œ ๋ฃจ๋ธŒ๋ฆญ ์—†์ด๋„ ์ •ํ™•ํžˆ ์ฑ„์ ํ•˜๋ ค๋ฉด ๋ฐฉ๋Œ€ํ•œ ํ•™์Šต ๋ฐ์ดํ„ฐ์™€ ์ •๊ตํ•œ ์˜๋ฏธ ์ดํ•ด๊ฐ€ ํ•„์š”ํ•˜๋‹ค. ์ €์ž๋“ค์€ ์ด๋Ÿฌํ•œ ๋‚œ์ ์„ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด โ€˜๊ทผ์ ‘ ๋ฐ์ดํ„ฐ(nearโ€‘domain data)โ€™๋ผ๋Š” ๊ฐœ๋…์„ ๋„์ž…ํ•œ๋‹ค. ์ด๋Š” ๋™์ผํ•˜๊ฑฐ๋‚˜ ์œ ์‚ฌํ•œ ์ฃผ์ œยท๋‚œ์ด๋„์˜ ๊ณผ๊ฑฐ ์‹œํ—˜ ๋ฌธํ•ญ๊ณผ ํ•™

Data
Data assimilation and discrepancy modeling with shallow recurrent decoders

Data assimilation and discrepancy modeling with shallow recurrent decoders

๋ณธ ๋…ผ๋ฌธ์€ ํ˜„๋Œ€ ์„ผ์„œ ๋„คํŠธ์›Œํฌ๊ฐ€ ์ง๋ฉดํ•œ ๋‘ ๊ฐ€์ง€ ๊ทผ๋ณธ์ ์ธ ํ•œ๊ณ„, ์ฆ‰ ์ธก์ • ํฌ์ธํŠธ์˜ ํฌ์†Œ์„ฑ ๋ฐ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๋ชจ๋ธ์˜ ๋ถˆ์™„์ „์„ฑ์„ ๋™์‹œ์— ํ•ด๊ฒฐํ•˜๋ ค๋Š” ์‹œ๋„๋กœ์„œ, ๋จธ์‹ ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜ ๋ฐ์ดํ„ฐ ๋™ํ™” ํ”„๋ ˆ์ž„์›Œํฌ DAโ€‘SHRED ๋ฅผ ์ œ์‹œํ•œ๋‹ค. ๊ธฐ์กด ๋ฐ์ดํ„ฐ ๋™ํ™” ๊ธฐ๋ฒ•์€ ์ฃผ๋กœ ์นผ๋งŒ ํ•„ํ„ฐ, ๋ณ€๋ถ„ ๋™ํ™”, ํ˜น์€ ์ตœ๊ทผ์˜ ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜ ์ ‘๊ทผ๋ฒ•์— ์˜์กดํ•ด ์™”์œผ๋ฉฐ, ์ด๋“ค์€ ๊ณ ์ฐจ์› ์ƒํƒœ ๊ณต๊ฐ„์„ ์ง์ ‘ ๋‹ค๋ฃจ๋Š” ๊ฒฝ์šฐ ๊ณ„์‚ฐ ๋น„์šฉ์ด ๊ธ‰๊ฒฉํžˆ ์ฆ๊ฐ€ํ•˜๊ฑฐ๋‚˜, ๋ฌผ๋ฆฌ์  ์ œ์•ฝ์„ ์ถฉ๋ถ„ํžˆ ๋ฐ˜์˜ํ•˜์ง€ ๋ชปํ•œ๋‹ค๋Š” ๋ฌธ์ œ์ ์„ ์•ˆ๊ณ  ์žˆ๋‹ค. DAโ€‘SHRED ๋Š” ์ด๋Ÿฌํ•œ ๋ฌธ์ œ์ ์„ ํšŒํ”ผํ•˜๊ธฐ ์œ„ํ•ด ๋จผ์ € SHRED ๋ผ๋Š” ์–•์€

Data Model
No Image

Indian EmoSpeech Command Dataset: A dataset for emotion based speech recognition in the wild

This paper introduces the Indian EmoSpeech Command Dataset, a new dataset for speech emotion analysis that takes into account both verbal and non verbal components of speech in real life scenarios. The research addresses the challenge faced by traditional models which often operate under controlled

Multimedia Electrical Engineering and Systems Science Computer Science Sound Audio Processing Data
Interaction of neutralino dark matter with cosmic rays and PAMELA/ATIC   data

Interaction of neutralino dark matter with cosmic rays and PAMELA/ATIC data

: 1. ์„œ๋ก  ๋ถ„์„ ์•”ํ‘๋ฌผ์งˆ์€ ์ฃผ๋กœ ์ค‘๋ ฅ์— ์˜ํ•ด๋งŒ ๋“œ๋Ÿฌ๋‚˜๋Š” ๊ฒƒ์œผ๋กœ ์•Œ๋ ค์ ธ ์žˆ์ง€๋งŒ, ๋น›๋‚˜๋Š” ์ค‘์„ฑ๋ฏธ์ž ์•”ํ‘๋ฌผ์งˆ์˜ ๊ฒฝ์šฐ, ๊ฐ€๋ฒผ์šด ์ค‘์„ฑ๋ฏธ์ž(mโ‚™ โ‰ค 10โปยณ GeV)๋กœ ๊ตฌ์„ฑ๋  ๋•Œ์—๋Š” ์•ฝํ•œ ์ƒํ˜ธ์ž‘์šฉ์—๋„ ์ฐธ์—ฌํ•  ์ˆ˜ ์žˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์šฐ์ฃผ์„  ์–‘์„ฑ์ž์™€ ์ค‘์„ฑ๋ฏธ์ž ์•”ํ‘๋ฌผ์งˆ ๊ฐ„์˜ ์ถฉ๋Œ์„ ๋ถ„์„ํ•œ๋‹ค. ์ด ๊ณผ์ •์€ ์ฐจ๊ธฐ(chargino) ์ƒ์„ฑ๊ณผ ๋ ˆํ”„ํ†ค ๋ถ•๊ดด๋ฅผ ๋™๋ฐ˜ํ•˜๋ฉฐ, ์ตœ์ข…์ ์œผ๋กœ ์ „์ž ๋ฐ˜์ค‘์„ฑ๋ฏธ์ž ์Œ์ด ์ƒ์„ฑ๋œ๋‹ค. 2. ๊ณผ์ • ๋ถ„์„ ๋…ผ๋ฌธ์—์„œ๋Š” ์—๋„ˆ์ง€ ๋ฐ ์šด๋™๋Ÿ‰ ๋ณด์กด ๋ฒ•์น™์„ ์‚ฌ์šฉํ•˜์—ฌ ์ค‘์„ฑ๋ฏธ์ž์™€ ์ฐจ๊ธฐ์˜ ์—๋„ˆ์ง€๋ฅผ ๊ณ„์‚ฐํ•œ๋‹ค. ์ด๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์€ ๋ฐฉ์ •์‹์œผ๋กœ ํ‘œํ˜„๋œ๋‹ค: ์ค‘

Astrophysics Data

< Category Statistics (Total: 743) >

Electrical Engineering and Systems Science
7
General
272
General Relativity
7
HEP-EX
5
HEP-PH
12
HEP-TH
5
MATH-PH
3
NUCL-TH
1
Quantum Physics
10

Start searching

Enter keywords to search articles

โ†‘โ†“
โ†ต
ESC
โŒ˜K Shortcut