Computer Vision

All posts under tag "Computer Vision"

30 posts total
Sorted by date
Application of deep learning techniques in non-contrast computed tomography pulmonary angiogram for pulmonary embolism diagnosis

Application of deep learning techniques in non-contrast computed tomography pulmonary angiogram for pulmonary embolism diagnosis

๋ณธ ๋…ผ๋ฌธ์€ ์ž„์ƒ ํ˜„์žฅ์—์„œ ์กฐ์˜์ œ ์‚ฌ์šฉ์— ๋”ฐ๋ฅธ ๋ถ€์ž‘์šฉ๊ณผ ์‹œ๊ฐ„ ์ง€์—ฐ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ณ ์ž, ๋น„์กฐ์˜ CT ์˜์ƒ๋งŒ์„ ์ด์šฉํ•ด ํ์ƒ‰์ „์ฆ์„ ์ž๋™์œผ๋กœ ํŒ๋ณ„ํ•˜๋Š” 3D ํ•ฉ์„ฑ๊ณฑ ์‹ ๊ฒฝ๋ง(3Dโ€‘CNN) ๋ชจ๋ธ์„ ๊ฐœ๋ฐœํ•˜์˜€๋‹ค. ๋จผ์ € ๋ฐ์ดํ„ฐ์…‹ ๊ตฌ์ถ• ๋‹จ๊ณ„์—์„œ ์กฐ์˜์ œ ์‚ฌ์šฉ์ด ๊ธˆ์ง€๋œ ํ™˜์ž๊ตฐ๊ณผ ๊ธฐ์กด CTPA ์˜์ƒ์—์„œ ๋ผ๋ฒจ๋ง๋œ ํ์ƒ‰์ „์ฆ ์‚ฌ๋ก€๋ฅผ ๋งค์นญ์‹œ์ผœ, ๋น„์กฐ์˜ CT์™€ ๋ผ๋ฒจ ์ •๋ณด๋ฅผ ์ผ์น˜์‹œ์ผฐ๋‹ค. ์ด๋Š” ๋ผ๋ฒจ๋ง ๋น„์šฉ์„ ํฌ๊ฒŒ ์ ˆ๊ฐํ•˜๋ฉด์„œ๋„ ์‹ค์ œ ์ž„์ƒ ์ƒํ™ฉ์„ ๋ฐ˜์˜ํ•œ ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค๋ฅผ ํ™•๋ณดํ•˜๋Š” ์ „๋žต์ด๋‹ค. ๋ชจ๋ธ ๊ตฌ์กฐ๋Š” ์ž…๋ ฅ ๋ณผ๋ฅจ์„ 3์ฐจ์›์œผ๋กœ ์ฒ˜๋ฆฌํ•˜์—ฌ ํํ˜ˆ๊ด€ ๋ฐ ์ฃผ๋ณ€ ์กฐ์ง์˜ ๋ฏธ์„ธํ•œ ๋ฐ€๋„ ์ฐจ์ด๋ฅผ

Computer Vision Computer Science Learning
No Image

Factorized Learning for Temporally Grounded Video-Language Models

์ด ๋…ผ๋ฌธ์€ ๊ธฐ์กด ๋น„๋””์˜คโ€‘์–ธ์–ด ๋ชจ๋ธ์ด โ€œํ•œ ๋ฒˆ์— ์ „์ฒด ๋น„๋””์˜ค๋ฅผ ์š”์•ฝํ•˜๊ณ  ์งˆ๋ฌธ์— ๋‹ตํ•œ๋‹คโ€๋Š” ์ „ํ†ต์ ์ธ ํŒจ๋Ÿฌ๋‹ค์ž„์„ ํƒˆํ”ผํ•œ๋‹ค๋Š” ์ ์—์„œ ํฐ ์˜๋ฏธ๊ฐ€ ์žˆ๋‹ค. ๊ธฐ์กด ๋ฐฉ๋ฒ•๋“ค์€ ์ข…์ข… ์‹œ๊ฐ„์  ์ •๋ณด๋ฅผ ํ๋ฆฟํ•˜๊ฒŒ ์ฒ˜๋ฆฌํ•˜๊ฑฐ๋‚˜, ๊ทผ๊ฑฐ๊ฐ€ ๋˜๋Š” ์‹œ๊ฐ์  ์ฆ๊ฑฐ๋ฅผ ๋ช…์‹œ์ ์œผ๋กœ ์ œ์‹œํ•˜์ง€ ๋ชปํ•ด ํ•ด์„ ๊ฐ€๋Šฅ์„ฑ์ด ๋‚ฎ์•˜๋‹ค. ์ €์ž๋“ค์€ ์ด๋Ÿฌํ•œ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด ๋‘ ๊ฐ€์ง€ ํ•ต์‹ฌ ์•„์ด๋””์–ด๋ฅผ ์ œ์‹œํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ๋Š” generation objective์˜ factorization ์ด๋‹ค. ๋ชจ๋ธ์ด ๋จผ์ € โ€œ์–ด๋–ค ์‹œ๊ฐ„ ๊ตฌ๊ฐ„์ด ์งˆ๋ฌธ์— ๋Œ€ํ•œ ๊ทผ๊ฑฐ๊ฐ€ ๋˜๋Š”๊ฐ€โ€๋ฅผ ํŒ๋‹จํ•˜๊ณ , ๊ทธ ๊ตฌ๊ฐ„์— ํ•ด๋‹นํ•˜๋Š” evidence

Computer Science Model Learning Computer Vision
Leveraging Billions of Faces to Overcome Performance Barriers in   Unconstrained Face Recognition

Leveraging Billions of Faces to Overcome Performance Barriers in Unconstrained Face Recognition

๋ณธ ๋…ผ๋ฌธ์€ face.com์—์„œ ๊ฐœ๋ฐœํ•œ ์–ผ๊ตด ์ธ์‹ ๊ธฐ์ˆ ์„ ํ†ตํ•ด ์ œ์•ฝ ์—†๋Š” ํ™˜๊ฒฝ์—์„œ์˜ ์–ผ๊ตด ์ธ์‹ ์„ฑ๋Šฅ์„ ํฌ๊ฒŒ ํ–ฅ์ƒ์‹œํ‚จ ๋‚ด์šฉ์„ ๋‹ค๋ฃน๋‹ˆ๋‹ค. ํŠนํžˆ, LFW(Labeled Faces in the Wild) ๋ฒค์น˜๋งˆํฌ๋ฅผ ์ด์šฉํ•ด ์ด์ „ ์—ฐ๊ตฌ๋ณด๋‹ค ๋†’์€ ์ •ํ™•๋„๋ฅผ ๋‹ฌ์„ฑํ•œ ์ ์ด ์ฃผ๋ชฉ๋ฐ›์Šต๋‹ˆ๋‹ค. 1. ๋ฒค์น˜๋งˆํฌ ๋ฐ ๊ฒฐ๊ณผ LFW๋Š” ์ œ์•ฝ ์—†๋Š” ์–ผ๊ตด ์ธ์‹ ๋ถ„์•ผ์˜ ํ‘œ์ค€ ํ…Œ์ŠคํŠธ ๋ฒ ๋“œ๋กœ, 3๋…„ ๋™์•ˆ 100ํšŒ ์ด์ƒ ์ธ์šฉ๋˜์—ˆ์Šต๋‹ˆ๋‹ค. ์ด ๋…ผ๋ฌธ์—์„œ๋Š” face.com์˜ r2011b1 ์—”์ง„์„ LFW์— ์ ์šฉํ•˜์—ฌ, ์‚ฌ์ „ ํŠœ๋‹ ์—†์ด๋„ ํ‰๊ท  ์ •ํ™•๋„ 91.3% ยฑ 0.3์„ ๋‹ฌ์„ฑํ–ˆ์Šต๋‹ˆ๋‹ค. ํŠนํžˆ

Computer Science Computer Vision
A self-portrait of young Leonardo

A self-portrait of young Leonardo

: ๋ณธ ๋…ผ๋ฌธ์€ ๋ ˆ์˜ค๋‚˜๋ฅด๋„ ๋‹ค๋นˆ์น˜์˜ ์ž‘ํ’ˆ ์ค‘ ํ•˜๋‚˜์ธ ์ ์ƒ‰ ์—ฐํ•„ ์žํ™”์ƒ ์™ธ์—๋„, ๊ทธ์˜ ๋…ธํŠธ๋ถ์— ์ˆจ๊ฒจ์ง„ ๋‹ค๋ฅธ ์žํ™”์ƒ์„ ์ฐพ์•„๋‚ด๋Š” ๊ณผ์ •์„ ์†Œ๊ฐœํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ํŠนํžˆ, ์ด ์—ฐ๊ตฌ์—์„œ๋Š” ์ด๋ฏธ์ง€ ์ฒ˜๋ฆฌ ๊ธฐ์ˆ ์„ ํ™œ์šฉํ•˜์—ฌ ํ•„๊ธฐ๋ฌผ๋กœ ๊ฐ€๋ ค์ ธ ์žˆ๋˜ ์Šค์ผ€์น˜๋ฅผ ๋ณต์›ํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์‹œํ•ฉ๋‹ˆ๋‹ค. ๋ ˆ์˜ค๋‚˜๋ฅด๋„ ๋‹ค๋นˆ์น˜์˜ ์ž‘ํ’ˆ์€ ๊ทธ์˜ ์ฒœ์žฌ์„ฑ๊ณผ ์˜ˆ์ˆ ์  ๋Šฅ๋ ฅ์„ ๋ณด์—ฌ์ฃผ๋Š” ์ค‘์š”ํ•œ ์ž๋ฃŒ์ž…๋‹ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ผ๋ถ€ ์ž‘ํ’ˆ๋“ค์€ ์‹œ๊ฐ„์ด ์ง€๋‚จ์— ๋”ฐ๋ผ ์†์ƒ๋˜๊ฑฐ๋‚˜, ํ•„๊ธฐ๋ฌผ๋กœ ์ธํ•ด ์›๋ž˜์˜ ์ด๋ฏธ์ง€๊ฐ€ ๊ฐ€๋ ค์ ธ ์žˆ๋Š” ๊ฒฝ์šฐ๊ฐ€ ๋งŽ์Šต๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๋””์ง€ํ„ธ ๋ณต์› ๊ธฐ์ˆ ์„ ํ™œ์šฉํ•˜์—ฌ ์ˆจ๊ฒจ์ง„ ์ž

Computer Science Computer Vision
ABHIVYAKTI: A Vision Based Intelligent System for Elder and Sick Persons

ABHIVYAKTI: A Vision Based Intelligent System for Elder and Sick Persons

ABHIVYA KTI๋Š” ๋งํ•˜๊ฑฐ๋‚˜ ๊ฑธ์„ ์ˆ˜ ์—†๋Š” ๋…ธ์ธ์ด๋‚˜ ํ™˜์ž๋ฅผ ์œ„ํ•œ ์† ์ œ์Šค์ฒ˜ ์ธ์‹ ์‹œ์Šคํ…œ์œผ๋กœ, ์ปดํ“จํ„ฐ ๋น„์ „ ๊ธฐ์ˆ ์„ ํ™œ์šฉํ•˜์—ฌ ์‚ฌ์šฉ์ž์˜ ์ œ์Šค์ฒ˜๋ฅผ ํ•ด์„ํ•˜๊ณ  ํ•„์š”ํ•œ ๋™์ž‘์„ ์ˆ˜ํ–‰ํ•˜๋Š” ๋ฐ ์ดˆ์ ์„ ๋งž์ถ”๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ด ์—ฐ๊ตฌ์˜ ํ•ต์‹ฌ์€ ์ธ๊ฐ„๊ณผ ๊ธฐ๊ณ„ ๊ฐ„์˜ ์ƒํ˜ธ์ž‘์šฉ์„ ํ–ฅ์ƒ์‹œํ‚ค๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค. 1. ์‹œ์Šคํ…œ ๊ตฌ์„ฑ ๋ฐ ์ž‘๋™ ๋ฐฉ์‹ ABHIVYA KTI๋Š” ์นด๋ฉ”๋ผ๋ฅผ ํ†ตํ•ด ์‚ฌ์šฉ์ž์˜ ์† ์ œ์Šค์ฒ˜๋ฅผ ์บก์ฒ˜ํ•˜๊ณ , ์ด๋ฅผ ํ•ด์„ํ•˜์—ฌ ํ•„์š”ํ•œ ๋™์ž‘์„ ์ˆ˜ํ–‰ํ•ฉ๋‹ˆ๋‹ค. ์ด ์‹œ์Šคํ…œ์€ ๋ฏธ๋ฆฌ ์ •์˜๋œ ์ œ์Šค์ฒ˜ ๋ฌธ๋ฒ•์— ๋”ฐ๋ผ ์ž‘๋™ํ•˜๋ฉฐ, ์œ ํšจํ•œ ์ œ์Šค์ฒ˜๊ฐ€ ์ž…๋ ฅ๋˜๋ฉด ํ•ด๋‹น ๋™์ž‘์„ ์‹คํ–‰ํ•˜๊ณ  ์™„๋ฃŒ ๋ฉ”์‹œ์ง€๋ฅผ ์‚ฌ์šฉ์ž

Computer Science System Computer Vision
A Novel comprehensive method for real time Video Motion Detection   Surveillance

A Novel comprehensive method for real time Video Motion Detection Surveillance

๋ณธ ๋…ผ๋ฌธ์€ ์ €๋ ดํ•˜๊ณ  ํšจ์œจ์ ์ธ ์‹ค์‹œ๊ฐ„ ๋น„๋””์˜ค ๋ชจ์…˜ ๊ฐ์ง€ ๋ณด์•ˆ ์‹œ์Šคํ…œ(VMDss)์˜ ์„ค๊ณ„์™€ ๊ตฌํ˜„์„ ๋‹ค๋ฃจ๊ณ  ์žˆ๋‹ค. ์ด ์‹œ์Šคํ…œ์€ ์‚ฌ์šฉ์ž ์นœํ™”์ ์ด๊ณ  ์›๊ฒฉ ์ œ์–ด๊ฐ€ ๊ฐ€๋Šฅํ•˜๋ฉฐ, ๋ฏธ๋ฆฌ ์ •์˜๋œ ์ƒ‰์ƒ ๊ฐ์ฒด ์ถ”์  ๊ธฐ๋Šฅ์„ ํฌํ•จํ•˜๊ณ  ์žˆ์–ด ๋‹ค์–‘ํ•œ ํ™˜๊ฒฝ์—์„œ ์œ ์šฉํ•˜๊ฒŒ ํ™œ์šฉ๋  ์ˆ˜ ์žˆ๋‹ค. 1. ์‹œ์Šคํ…œ ๊ตฌ์„ฑ ์ „์†ก ์„น์…˜ : ์ปดํ“จํ„ฐ, RS232 ์ธํ„ฐํŽ˜์ด์Šค, ๋งˆ์ดํฌ๋กœ์ปจํŠธ๋กค๋Ÿฌ, RF ์†ก์‹ ๊ธฐ, RF ๋น„๋””์˜ค ์ˆ˜์‹ ๊ธฐ๋กœ ๊ตฌ์„ฑ๋˜์–ด ์žˆ์œผ๋ฉฐ, ์ด๋“ค ์š”์†Œ๋Š” ์‹œ๊ฐ ์ •๋ณด๋ฅผ ์ˆ˜์ง‘ํ•˜๊ณ  ์ œ์–ด ์‹ ํ˜ธ๋ฅผ ์ „์†กํ•˜๋Š” ์—ญํ• ์„ ์ˆ˜ํ–‰ํ•œ๋‹ค. ์ˆ˜์‹  ์„น์…˜ : ๋ชจ๋ฐ”์ผ ํ”Œ๋žซํผ, RF ์ˆ˜์‹ ๊ธฐ, ๋งˆ์ดํฌ๋กœ์ปจํŠธ๋กค๋Ÿฌ, RF ์นด๋ฉ”

Detection Computer Science Computer Vision
Advanced phase retrieval: maximum likelihood technique with sparse   regularization of phase and amplitude

Advanced phase retrieval: maximum likelihood technique with sparse regularization of phase and amplitude

๋ณธ ๋…ผ๋ฌธ์€ ์œ„์ƒ ํšŒ์ˆ˜ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•œ ์ƒˆ๋กœ์šด ์ ‘๊ทผ๋ฒ•์„ ์ œ์•ˆํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ด๋Š” ๊ธฐ์กด ๋ฐฉ๋ฒ•๋“ค๊ณผ ๋น„๊ตํ•ด ๋ณต์› ์ •ํ™•๋„์™€ ์ด๋ฏธ์ง€ ํ’ˆ์งˆ์„ ํฌ๊ฒŒ ํ–ฅ์ƒ์‹œํ‚ค๋Š” ๊ฒƒ์œผ๋กœ ๋ณด์ž…๋‹ˆ๋‹ค. ํŠนํžˆ, ๋ณธ ์—ฐ๊ตฌ์˜ ํ•ต์‹ฌ ์•„์ด๋””์–ด๋Š” ์••์ถ• ๊ฐ์ง€ ๊ธฐ๋ฒ•๊ณผ ๋ณ€๋ถ„์  ์ด๋ฏธ์ง€ ์žฌ๊ตฌ์„ฑ ๋ฐฉ๋ฒ•์„ ๊ฒฐํ•ฉํ•œ ์ƒˆ๋กœ์šด ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ๊ฐœ๋ฐœํ•˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค. 1. ์œ„์ƒ ํšŒ์ˆ˜ ๋ฌธ์ œ์˜ ๋ฐฐ๊ฒฝ ์œ„์ƒ ํšŒ์ˆ˜๋Š” ๋น›์˜ ๊ฐ•๋„ ๊ด€์ธก ๋ฐ์ดํ„ฐ์™€ ๊ฐ์ฒด ํŒŒ๋™์žฅ์— ๋Œ€ํ•œ ์‚ฌ์ „ ์ง€์‹์„ ์ด์šฉํ•˜์—ฌ ์œ„์ƒ์„ ๋ณต์›ํ•˜๋Š” ๋ฌธ์ œ์ž…๋‹ˆ๋‹ค. ์ด๋Š” ํ˜„๋ฏธ๊ฒฝ, ์ฒœ๋ฌธํ•™ ๋“ฑ ๋‹ค์–‘ํ•œ ๋ถ„์•ผ์—์„œ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•ฉ๋‹ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ „ํ†ต์ ์ธ ์„ผ์„œ๋Š” ๋น›์˜ ๊ฐ•๋„๋งŒ ์ธก์ •ํ•˜๋ฏ€

Computer Science Computer Vision
Kunchenkos Polynomials for Template Matching

Kunchenkos Polynomials for Template Matching

: ๋ณธ ๋…ผ๋ฌธ์€ 1์ฐจ์› ๋””์ง€ํ„ธ ์‹ ํ˜ธ์—์„œ ํŠน์ • ๊ฐ์ฒด๋ฅผ ์ธ์‹ํ•˜๋Š” ๋ฌธ์ œ์— ๋Œ€ํ•œ ์ƒˆ๋กœ์šด ์ ‘๊ทผ๋ฒ•์„ ์ œ์‹œํ•˜๊ณ  ์žˆ๋‹ค. ์ด๋Š” ์ปดํ“จํ„ฐ ๋น„์ „, ํ•„๊ธฐ ๋ฌธ์ž ์ธ์‹, ๋ฐ์ดํ„ฐ ๋งˆ์ด๋‹ ๋“ฑ ๋‹ค์–‘ํ•œ ๋ถ„์•ผ์—์„œ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•˜๋Š” ํ…œํ”Œ๋ฆฟ ๋งค์นญ์˜ ํ•œ ํ˜•ํƒœ๋กœ ๋ณผ ์ˆ˜ ์žˆ๋‹ค. 1. ๊ธฐ์กด ๋ฐฉ๋ฒ•๊ณผ ์ฟจ์ฒธ์ฝ” ๋‹คํ•ญ์‹์˜ ์ฐจ๋ณ„ํ™” ๊ธฐ์กด์˜ ํ…œํ”Œ๋ฆฟ ๋งค์นญ ๋ฐฉ๋ฒ•์€ ํฌ๊ฒŒ ๋‘ ๊ฐ€์ง€๋กœ ๋‚˜๋ˆŒ ์ˆ˜ ์žˆ๋‹ค: ์ธ๊ณต ์‹ ๊ฒฝ๋ง์„ ํ™œ์šฉํ•œ ํ•™์Šต ๋ฐฉ์‹๊ณผ ํŠน์ง• ๊ธฐ๋ฐ˜ ๋˜๋Š” ์ „์ฒด ํ…œํ”Œ๋ฆฟ ๊ธฐ๋ฐ˜ ๋น„๊ต ๋ฐฉ์‹์ด๋‹ค. ์ด ์ค‘ ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ํŠนํžˆ ์ „์ฒด ํ…œํ”Œ๋ฆฟ ๊ฒ€์ƒ‰์— ์ดˆ์ ์„ ๋งž์ถ”๊ณ  ์žˆ์œผ๋ฉฐ, ์ด๋ฅผ ์œ„ํ•ด ์ฟจ์ฒธ์ฝ” ๋‹คํ•ญ์‹์ด๋ผ๋Š” ์ƒˆ๋กœ์šด ์ ‘๊ทผ๋ฒ•์„ ์ œ

Computer Science Computer Vision
No Image

DrivingGen: A Comprehensive Benchmark for Generative Video World Models in Autonomous Driving

DrivingGen ๋…ผ๋ฌธ์€ ํ˜„์žฌ ์ž์œจ์ฃผํ–‰ ๋ถ„์•ผ์—์„œ ๊ธ‰์ฆํ•˜๊ณ  ์žˆ๋Š” โ€˜์ƒ์„ฑ ๋น„๋””์˜ค ์„ธ๊ณ„ ๋ชจ๋ธโ€™ ์—ฐ๊ตฌ์˜ ํ‰๊ฐ€ ์ฒด๊ณ„๊ฐ€ ๋ถ€์žฌํ•จ์„ ์ •ํ™•ํžˆ ์งš์–ด๋‚ธ๋‹ค. ๊ธฐ์กด ๋ฒค์น˜๋งˆํฌ๊ฐ€ ์ฃผ๋กœ PSNR, SSIM, LPIPS์™€ ๊ฐ™์€ ์ „ํ†ต์ ์ธ ๋น„๋””์˜ค ํ’ˆ์งˆ ์ง€ํ‘œ์— ์˜์กดํ•˜๋Š”๋ฐ, ์ด๋Ÿฌํ•œ ์ง€ํ‘œ๋Š” ํ”ฝ์…€ ์ˆ˜์ค€์˜ ์ฐจ์ด๋ฅผ ์ •๋Ÿ‰ํ™”ํ•  ๋ฟ, ์ž์œจ์ฃผํ–‰์— ํ•„์ˆ˜์ ์ธ ๋ฌผ๋ฆฌ์  ์ผ๊ด€์„ฑ์ด๋‚˜ ์•ˆ์ „์„ฑ์„ ๋ฐ˜์˜ํ•˜์ง€ ๋ชปํ•œ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด, ์ฐจ๋Ÿ‰์ด ๊ฐ‘์ž๊ธฐ ์‚ฌ๋ผ์ง€๊ฑฐ๋‚˜ ๋ณดํ–‰์ž๊ฐ€ ๋น„ํ˜„์‹ค์ ์ธ ์†๋„๋กœ ์›€์ง์ด๋Š” ๊ฒฝ์šฐ, ์‹œ๊ฐ์ ์œผ๋กœ๋Š” ๋†’์€ SSIM์„ ๊ธฐ๋กํ•˜๋”๋ผ๋„ ์‹ค์ œ ์ฃผํ–‰ ์‹œ๋‚˜๋ฆฌ์˜ค์—์„œ๋Š” ์น˜๋ช…์ ์ธ ์˜ค๋ฅ˜๊ฐ€ ๋œ๋‹ค. ๋…ผ๋ฌธ์€ ์ด๋Ÿฌํ•œ

Computer Science Model Computer Vision
EscherVerse: An Open World Benchmark and Dataset for Teleo-Spatial Intelligence with Physical-Dynamic and Intent-Driven Understanding

EscherVerse: An Open World Benchmark and Dataset for Teleo-Spatial Intelligence with Physical-Dynamic and Intent-Driven Understanding

๋ณธ ๋…ผ๋ฌธ์€ ์ธ๊ณต์ง€๋Šฅยท๋กœ๋ณดํ‹ฑ์Šค ๋ถ„์•ผ์—์„œ ์ตœ๊ทผ ์ฃผ๋ชฉ๋ฐ›๊ณ  ์žˆ๋Š” โ€œํ…”๋ ˆ์˜คโ€‘์ŠคํŽ˜์ด์…œ ์ธํ…”๋ฆฌ์ „์Šค(TSI)โ€๋ผ๋Š” ์ƒˆ๋กœ์šด ๊ฐœ๋…์„ ์ œ์‹œํ•œ๋‹ค. ๊ธฐ์กด์˜ ๋Œ€๋ถ€๋ถ„ ์—ฐ๊ตฌ๋Š” ๋ฌผ์ฒดโ€‘์ค‘์‹ฌ(objectโ€‘centric) ์ ‘๊ทผ์„ ์ทจํ•ด, ๋ฌผ๋ฆฌโ€‘๋™์—ญํ•™(Physicalโ€‘Dynamic) ๋ชจ๋ธ๋ง์— ์ง‘์ค‘ํ•œ๋‹ค. ์˜ˆ์ปจ๋Œ€, ๋ฌผ์ฒด์˜ ์งˆ๋Ÿ‰ยท๋งˆ์ฐฐยท์ถฉ๋Œ ๋ฒ•์น™์„ ์ด์šฉํ•ด ์‹œ๋ฎฌ๋ ˆ์ด์…˜ํ•˜๊ฑฐ๋‚˜, ๋น„์ „ ๊ธฐ๋ฐ˜ ํŠธ๋ž˜ํ‚น์„ ํ†ตํ•ด ์›€์ง์ž„์„ ์˜ˆ์ธกํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฐฉ๋ฒ•์€ ์ •๋Ÿ‰์  ์ •ํ™•๋„์—์„œ๋Š” ๋›ฐ์–ด๋‚˜์ง€๋งŒ, ์ธ๊ฐ„์ด ๋ฌผ์ฒด๋ฅผ ์กฐ์ž‘ํ•˜๊ฑฐ๋‚˜ ๋ฐฐ์น˜ํ•˜๋Š” ๊ทผ๋ณธ์ ์ธ โ€˜์˜๋„โ€™๋ฅผ ํŒŒ์•…ํ•˜์ง€ ๋ชปํ•œ๋‹ค๋Š” ํ•œ๊ณ„๊ฐ€ ์žˆ๋‹ค. TSI๋Š” ์ด๋Ÿฌํ•œ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ

Computer Vision Computer Science Data
SwinIFS: Landmark Guided Swin Transformer For Identity Preserving Face Super Resolution

SwinIFS: Landmark Guided Swin Transformer For Identity Preserving Face Super Resolution

SwinIFS๋Š” ์–ผ๊ตด ์ดˆํ•ด์ƒ๋„(Face Superโ€‘Resolution, FSR) ๋ถ„์•ผ์—์„œ ๋‘ ๊ฐ€์ง€ ํ•ต์‹ฌ ๋ฌธ์ œ, ์ฆ‰ โ€˜์„ธ๋ฐ€ํ•œ ๊ตฌ์กฐ ์†์‹คโ€™๊ณผ โ€˜์•„์ด๋ดํ‹ฐํ‹ฐ ๋ณ€ํ˜•โ€™์— ๋™์‹œ์— ๋Œ€์‘ํ•˜๋ ค๋Š” ์‹œ๋„๋กœ ๋ˆˆ์— ๋ˆ๋‹ค. ๊ธฐ์กด CNN ๊ธฐ๋ฐ˜ ๋ฐฉ๋ฒ•๋“ค์€ ์ง€์—ญ์ ์ธ ํŠน์ง•์„ ์ž˜ ํฌ์ฐฉํ•˜์ง€๋งŒ, ์žฅ๊ฑฐ๋ฆฌ ์˜์กด์„ฑ์„ ๋ชจ๋ธ๋งํ•˜๊ธฐ์—” ํ•œ๊ณ„๊ฐ€ ์žˆ๋‹ค. ๋ฐ˜๋ฉด Vision Transformer(ViT) ๊ณ„์—ด์€ ์ „์—ญ ์ •๋ณด๋ฅผ ํšจ์œจ์ ์œผ๋กœ ํ•™์Šตํ•˜์ง€๋งŒ, ์–ผ๊ตด๊ณผ ๊ฐ™์ด ๊ณ ์ •๋œ ๊ตฌ์กฐ์  ํŒจํ„ด์„ ๋‹ค๋ฃฐ ๋•Œ๋Š” ์‚ฌ์ „ ์ง€์‹์ด ๋ถ€์กฑํ•ด ์„ธ๋ถ€ ๋””ํ…Œ์ผ ๋ณต์›์— ์•ฝ์ ์ด ์žˆ๋‹ค. SwinIFS๋Š” ์ด๋Ÿฌํ•œ ๋”œ๋ ˆ๋งˆ๋ฅผ โ€˜๋žœ๋“œ๋งˆํฌ ๊ฐ€์ด๋“œ

Computer Science Computer Vision
No Image

Improved Object-Centric Diffusion Learning with Registers and Contrastive Alignment

๋ณธ ๋…ผ๋ฌธ์€ ๊ฐ์ฒด ์ค‘์‹ฌ ํ•™์Šต(Object centric Learning, OCL) ๋ถ„์•ผ์—์„œ ์ค‘์š”ํ•œ ๊ธฐ์ˆ ์  ํ˜์‹ ์„ ์ œ์‹œํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. CODA(Contrastive Object centric Diffusion Alignment)๋Š” ์‚ฌ์ „ ํ•™์Šต๋œ ๋””ํ“จ์ „ ๋ชจ๋ธ์„ ํ™œ์šฉํ•˜์—ฌ ์Šฌ๋กฏ ์—ฎ์ž„๊ณผ ์•ฝํ•œ ์ •๋ ฌ์ด๋ผ๋Š” ์ฃผ์š” ๋„์ „ ๊ณผ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๋Š” ์ƒˆ๋กœ์šด ์ ‘๊ทผ ๋ฐฉ์‹์ž…๋‹ˆ๋‹ค. ๊ธฐ์ˆ ์  ํ˜์‹ ์„ฑ: 1. ๋“ฑ๋ก ์Šฌ๋กฏ(Register Slots): ๋“ฑ๋ก ์Šฌ๋กฏ์€ ๋…๋ฆฝ์ ์ธ ์ž…๋ ฅ ๋ฐ์ดํ„ฐ๋กœ ์ถ”๊ฐ€๋˜์–ด ์ž”์—ฌ ์ฃผ์˜๋ฅผ ํก์ˆ˜ํ•˜๊ณ  ๊ฐ์ฒด ์Šฌ๋กฏ ๊ฐ„์˜ ๊ฐ„์„ญ์„ ์ค„์ด๋Š” ์—ญํ• ์„ ํ•ฉ๋‹ˆ๋‹ค. ์ด๋Š” ์Šฌ๋กฏ ์—ฎ์ž„ ๋ฌธ

Computer Science Learning Computer Vision
Detecting Performance Degradation under Data Shift in Pathology Vision-Language Model

Detecting Performance Degradation under Data Shift in Pathology Vision-Language Model

๋ณธ ๋…ผ๋ฌธ์€ ์ตœ๊ทผ ์˜๋ฃŒ ์˜์ƒ ๋ถ„์•ผ์—์„œ ๊ฐ๊ด‘๋ฐ›๊ณ  ์žˆ๋Š” ๋น„์ „โ€‘์–ธ์–ด ๋ชจ๋ธ(VLM)์˜ ์‹ค์ œ ์šด์˜ ๋‹จ๊ณ„์—์„œ ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ๋Š” โ€˜๋ฐ์ดํ„ฐ ์‹œํ”„ํŠธ(data shift)โ€™ ๋ฌธ์ œ์— ์ดˆ์ ์„ ๋งž์ถ”์—ˆ๋‹ค. ๋ฐ์ดํ„ฐ ์‹œํ”„ํŠธ๋Š” ํฌ๊ฒŒ ๋‘ ๊ฐ€์ง€ ์ฐจ์›์œผ๋กœ ๋‚˜๋‰œ๋‹ค. ์ฒซ ๋ฒˆ์งธ๋Š” ์ž…๋ ฅ ๋ฐ์ดํ„ฐ ์ž์ฒด๊ฐ€ ํ›ˆ๋ จ ์‹œ์™€ ๋‹ค๋ฅธ ๋ถ„ํฌ๋ฅผ ๋ณด์ด๋Š” ๊ฒฝ์šฐ์ด๋ฉฐ, ๋‘ ๋ฒˆ์งธ๋Š” ๋ชจ๋ธ์ด ์ถœ๋ ฅํ•˜๋Š” ์˜ˆ์ธก๊ฐ’์ด๋‚˜ ์‹ ๋ขฐ๋„(confidence)๊ฐ€ ๋ณ€ํ•˜๋Š” ๊ฒฝ์šฐ์ด๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค์€ ์ฃผ๋กœ ์ž…๋ ฅ ์ฐจ์›์˜ ํ†ต๊ณ„์  ๋ณ€ํ™”๋ฅผ ํƒ์ง€ํ•˜๋Š” ๋ฐฉ๋ฒ•์— ์˜์กดํ–ˆ์ง€๋งŒ, ์ด๋Ÿฌํ•œ ๋ณ€๋™์ด ๋ฐ˜๋“œ์‹œ ๋ชจ๋ธ ์„ฑ๋Šฅ ์ €ํ•˜์™€ ์ง๊ฒฐ๋˜์ง€ ์•Š๋Š”๋‹ค๋Š” ์ ์„ ๊ฐ„๊ณผํ•˜๊ณ  ์žˆ์—ˆ๋‹ค.

Computer Science Model Data Computer Vision
Evaluating Contextual Intelligence in Recyclability: A Comprehensive Study of Image-Based Reasoning Systems

Evaluating Contextual Intelligence in Recyclability: A Comprehensive Study of Image-Based Reasoning Systems

๋ณธ ๋…ผ๋ฌธ์€ ์žฌํ™œ์šฉ ์‹ค์ฒœ์„ ์ง€์›ํ•˜๊ธฐ ์œ„ํ•œ ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๋„๊ตฌ์˜ ๊ฐ€๋Šฅ์„ฑ์„ ํƒ์ƒ‰ํ•œ๋‹ค๋Š” ์ ์—์„œ ์‚ฌํšŒ์ ยทํ™˜๊ฒฝ์  ์˜๋ฏธ๊ฐ€ ํฌ๋‹ค. ์—ฐ๊ตฌ์ง„์€ ๋จผ์ € ์žฌํ™œ์šฉ ๋Œ€์ƒ ๋ฌผํ’ˆ์„ ๋‹ค์–‘ํ•œ ๊ฐ๋„์™€ ์กฐ๋ช… ์กฐ๊ฑด์—์„œ ์ดฌ์˜ํ•œ ์ด๋ฏธ์ง€์™€, ๊ฐ ๋ฌผํ’ˆ์ด ์†ํ•ด์•ผ ํ•  ์žฌํ™œ์šฉํ†ต(ํ”Œ๋ผ์Šคํ‹ฑ, ๊ธˆ์†, ์ข…์ด ๋“ฑ) ๋ฐ ๋ฌผ๋ฆฌ์  ์น˜์ˆ˜ ์ •๋ณด๋ฅผ ํฌํ•จํ•œ ๋ฉ”ํƒ€๋ฐ์ดํ„ฐ๋ฅผ ๊ฒฐํ•ฉํ•œ ๋ฐ์ดํ„ฐ์…‹์„ ๊ตฌ์ถ•ํ•˜์˜€๋‹ค. ๋ฐ์ดํ„ฐ์…‹์€ 5,000์—ฌ ์žฅ์˜ ์ด๋ฏธ์ง€์™€ 1,200๊ฐœ์˜ ๋‹ค์ค‘ ์žฌ์งˆ ์‚ฌ๋ก€๋ฅผ ํฌํ•จํ•ด, ์‹ค์ œ ๊ฐ€์ •์—์„œ ๋งˆ์ฃผ์น˜๋Š” ๋ณตํ•ฉ ์ƒํ™ฉ์„ ์ถฉ๋ถ„ํžˆ ๋ฐ˜์˜ํ•œ๋‹ค. ๋ชจ๋ธ ํ‰๊ฐ€์—์„œ๋Š” ๋‘ ๋‹จ๊ณ„์˜ ์งˆ๋ฌธ์„ ์ œ์‹œํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ๋Š” โ€œ์ด ๋ฌผ๊ฑด์€ ์–ด๋А ์žฌ

System Computer Vision Computer Science
Evaluating the Impact of Compression Techniques on the Robustness of CNNs under Natural Corruptions

Evaluating the Impact of Compression Techniques on the Robustness of CNNs under Natural Corruptions

๋ณธ ์—ฐ๊ตฌ๋Š” ๋ชจ๋ธ ์••์ถ•์ด CNN์˜ ๊ฒฌ๊ณ ์„ฑ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ์ฒด๊ณ„์ ์œผ๋กœ ๊ทœ๋ช…ํ•˜๊ธฐ ์œ„ํ•ด ์„ธ ๊ฐ€์ง€ ๋Œ€ํ‘œ์ ์ธ ์••์ถ• ๊ธฐ๋ฒ•โ€”์–‘์žํ™”(Quantization), ํ”„๋ฃจ๋‹(Pruning), ๊ฐ€์ค‘์น˜ ํด๋Ÿฌ์Šคํ„ฐ๋ง(Weight Clustering)โ€”์„ ์„ ํƒํ•˜์˜€๋‹ค. ๊ฐ๊ฐ์˜ ๊ธฐ๋ฒ•์€ ๋ฉ”๋ชจ๋ฆฌ ์‚ฌ์šฉ๋Ÿ‰๊ณผ ์—ฐ์‚ฐ๋Ÿ‰์„ ๊ฐ์†Œ์‹œํ‚ค๋Š” ๋ฉ”์ปค๋‹ˆ์ฆ˜์€ ์œ ์‚ฌํ•˜์ง€๋งŒ, ํŒŒ๋ผ๋ฏธํ„ฐ ๋ถ„ํฌ์™€ ํ™œ์„ฑํ™” ํŒจํ„ด์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์ด ๋‹ค๋ฅด๋‹ค. ์–‘์žํ™”๋Š” ๊ฐ€์ค‘์น˜๋ฅผ ๋‚ฎ์€ ๋น„ํŠธ ํญ์œผ๋กœ ํ‘œํ˜„ํ•จ์œผ๋กœ์จ ์—ฐ์‚ฐ ์ •๋ฐ€๋„๋ฅผ ๋‚ฎ์ถ”์ง€๋งŒ, ์ •๊ทœํ™”๋œ ๋ ˆ์ด์–ด์—์„œ๋Š” ์˜ค์ฐจ๊ฐ€ ๋ถ€๋ถ„์ ์œผ๋กœ ์ƒ์‡„๋˜๋Š” ๊ฒฝํ–ฅ์ด ์žˆ๋‹ค. ํ”„๋ฃจ๋‹์€ ์ค‘์š”๋„๊ฐ€ ๋‚ฎ์€ ์ฑ„๋„์ด๋‚˜ ํ•„ํ„ฐ๋ฅผ

Computer Science Computer Vision
PathFound: An Agentic Multimodal Model Activating Evidence-seeking Pathological Diagnosis

PathFound: An Agentic Multimodal Model Activating Evidence-seeking Pathological Diagnosis

PathFound ๋…ผ๋ฌธ์€ ๊ธฐ์กด ๋ณ‘๋ฆฌํ•™ ์ธ๊ณต์ง€๋Šฅ ๋ชจ๋ธ์ด ๊ฐ–๋Š” โ€˜ํ•œ ๋ฒˆ์— ์ „์ฒด ์Šฌ๋ผ์ด๋“œ ์ฒ˜๋ฆฌโ€™๋ผ๋Š” ํ•œ๊ณ„๋ฅผ ๋ช…ํ™•ํžˆ ์ง€์ ํ•˜๊ณ , ์‹ค์ œ ๋ณ‘๋ฆฌํ•™์ž์˜ ์ง„๋‹จ ๊ณผ์ •๊ณผ ์œ ์‚ฌํ•œ ์ฆ๊ฑฐโ€‘์ค‘์‹ฌ์  ์ˆœํ™˜ ํ”„๋กœ์„ธ์Šค ๋ฅผ ๋„์ž…ํ•จ์œผ๋กœ์จ ์ƒˆ๋กœ์šด ์—ฐ๊ตฌ ๋ฐฉํ–ฅ์„ ์ œ์‹œํ•œ๋‹ค. ๋จผ์ €, ๋ชจ๋ธ ์•„ํ‚คํ…์ฒ˜๋Š” ์„ธ ๊ฐ€์ง€ ํ•ต์‹ฌ ๋ชจ๋“ˆ๋กœ ๊ตฌ์„ฑ๋œ๋‹ค. โ‘  ์‹œ๊ฐ ๊ธฐ๋ฐ˜ ํŒŒ์šด๋ฐ์ด์…˜ ๋ชจ๋ธ ์€ ๋Œ€์šฉ๋Ÿ‰ ๋””์ง€ํ„ธ ์Šฌ๋ผ์ด๋“œ์—์„œ ๊ณ ํ•ด์ƒ๋„ ํŠน์ง•์„ ์ถ”์ถœํ•˜๊ณ , โ‘ก ๋น„์ „โ€‘์–ธ์–ด ๋ชจ๋ธ(VLM) ์€ ์ด๋ฏธ์ง€ ํŠน์ง•์„ ํ…์ŠคํŠธ ํ˜•ํƒœ์˜ ์ž„์ƒ ์งˆ๋ฌธ์ด๋‚˜ ์„ค๋ช…๊ณผ ์—ฐ๊ฒฐํ•œ๋‹ค. โ‘ข ๊ฐ•ํ™”ํ•™์Šต(RL) ๊ธฐ๋ฐ˜ ์ถ”๋ก  ์—์ด์ „ํŠธ ๋Š” ํ˜„์žฌ ์ง„๋‹จ ๊ฐ€์„ค์„ ํ‰๊ฐ€ํ•˜๊ณ ,

Computer Science Model Computer Vision
PathoSyn: Imaging-Pathology MRI Synthesis via Disentangled Deviation Diffusion

PathoSyn: Imaging-Pathology MRI Synthesis via Disentangled Deviation Diffusion

PathoSyn ๋…ผ๋ฌธ์€ MRI ํ•ฉ์„ฑ ๋ถ„์•ผ์—์„œ ๊ธฐ์กด ์ ‘๊ทผ๋ฒ•์ด ์•ˆ๊ณ  ์žˆ๋˜ ๋‘ ๊ฐ€์ง€ ํ•ต์‹ฌ ํ•œ๊ณ„๋ฅผ ์ฒด๊ณ„์ ์œผ๋กœ ํ•ด๊ฒฐํ•œ๋‹ค๋Š” ์ ์—์„œ ํ•™์ˆ ์ ยท์‹ค์šฉ์  ์˜์˜๋ฅผ ๊ฐ€์ง„๋‹ค. ์ฒซ ๋ฒˆ์งธ ํ•œ๊ณ„๋Š” โ€œ์ „์—ญ ํ”ฝ์…€โ€‘๋ ˆ๋ฒจโ€ ์ƒ์„ฑ ๋ชจ๋ธ์ด ํ•ด๋ถ€ํ•™์  ๊ตฌ์กฐ๋ฅผ ์ถฉ๋ถ„ํžˆ ๋ณด์กดํ•˜์ง€ ๋ชปํ•œ๋‹ค๋Š” ์ ์ด๋‹ค. GANโ€‘๊ธฐ๋ฐ˜ ํ˜น์€ ์ „์ฒด ํ™•์‚ฐ ๋ชจ๋ธ์€ ์ด๋ฏธ์ง€ ์ „์ฒด๋ฅผ ํ•œ ๋ฒˆ์— ์ƒ˜ํ”Œ๋งํ•˜๊ธฐ ๋•Œ๋ฌธ์—, ๋ณ‘๋ณ€๊ณผ ์ •์ƒ ์กฐ์ง ์‚ฌ์ด์˜ ๋ฏธ์„ธํ•œ ๊ฒฝ๊ณ„๊ฐ€ ํ๋ ค์ง€๊ฑฐ๋‚˜ ๋น„ํ˜„์‹ค์ ์ธ ํ˜•ํƒœ๋กœ ๋ณ€ํ˜•๋  ์œ„ํ—˜์ด ์žˆ๋‹ค. ๋‘ ๋ฒˆ์งธ ํ•œ๊ณ„๋Š” โ€œ์ด์ง„ ๋งˆ์Šคํฌ ๊ธฐ๋ฐ˜โ€ ์กฐ๊ฑด๋ถ€ ์ƒ์„ฑ์ด ๋ณ‘๋ณ€ ์˜์—ญ์„ ์ง€๋‚˜์น˜๊ฒŒ ๋‹จ์ˆœํ™”ํ•œ๋‹ค๋Š” ์ ์ด๋‹ค. ๋งˆ์Šคํฌ๋Š” ๋ณ‘๋ณ€์˜ ์œ„์น˜์™€ ๋Œ€

Computer Science Computer Vision
No Image

Real-time face swapping as a tool for understanding infant self-recognition

๋ณธ ๋…ผ๋ฌธ์€ ์‹ ์ƒ์•„์˜ ์ž๊ธฐ์ธ์‹ ๋ฐœ๋‹ฌ์— ๋Œ€ํ•œ ์‹ฌ๋„ ์žˆ๋Š” ๋ถ„์„๊ณผ ํ•จ๊ป˜, ์ด๋ฅผ ์œ„ํ•œ ๊ธฐ์ˆ ์  ์ ‘๊ทผ ๋ฐฉ์•ˆ์„ ์ œ์‹œํ•œ๋‹ค. ์—ฐ๊ตฌ๋Š” ์•„๊ธฐ์˜ ์ž๊ธฐ์ธ์‹์ด ์›€์ง์ž„์˜ ์—ฐ์†์„ฑ๊ณผ ์–ผ๊ตด ์นœ์ˆ™์„ฑ์„ ํ†ตํ•ด ์–ด๋–ป๊ฒŒ ํ˜•์„ฑ๋˜๋Š”์ง€ ํƒ๊ตฌํ•˜๊ณ  ์žˆ๋‹ค. 1. ์ž๊ธฐ์ธ์‹ ๋ฐœ๋‹ฌ ์ด๋ก  ์‹ ์ƒ์•„๋Š” ์ž์‹ ์˜ ์›€์ง์ž„๊ณผ ์‹œ๊ฐ์  ์ž๊ทน ์‚ฌ์ด์˜ ์—ฐ๊ฒฐ์„ ์ธ์‹ํ•˜์ง€๋งŒ, ๋‹ค๋ฅธ ์•„๊ธฐ์˜ ์ด๋ฏธ์ง€๋ฅผ ๊ตฌ๋ณ„ํ•˜๋Š” ๋Šฅ๋ ฅ์€ 5๊ฐœ์›”์ด ์ง€๋‚˜์•ผ ๋ฐœ๋‹ฌํ•œ๋‹ค(Sanefuji et al., 2006). ์ด ์—ฐ๊ตฌ์—์„œ๋Š” ์ด๋Ÿฌํ•œ ์ž๊ธฐ์ธ์‹์˜ ๋ฐœ๋‹ฌ ๋‹จ๊ณ„๋ฅผ ์ดํ•ดํ•˜๊ธฐ ์œ„ํ•ด ์›€์ง์ž„๊ณผ ์–ผ๊ตด ์นœ์ˆ™์„ฑ ์š”์†Œ๋ฅผ ํ†ตํ•ฉํ•œ ์‹คํ—˜์„ ์ œ์•ˆํ•˜๊ณ  ์žˆ๋‹ค. ํŠนํžˆ, ์•„๊ธฐ๋“ค์€ ์ž์‹ 

Computer Science Artificial Intelligence Computer Vision
Fingerprint recognition using standardized fingerprint model

Fingerprint recognition using standardized fingerprint model

์ง€๋ฌธ ์ธ์‹์€ ์ƒ์ฒด ์ธ์‹ ๊ธฐ์ˆ  ์ค‘ ํ•˜๋‚˜๋กœ, ๊ณ ์œ ํ•œ ํŠน์ง•๊ณผ ์ง€์†์„ฑ ๋•๋ถ„์— ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•ฉ๋‹ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ €ํ’ˆ์งˆ ์ด๋ฏธ์ง€๋‚˜ ์†Œํ˜• ์˜์—ญ์—์„œ ํš๋“๋œ ๋ฐ์ดํ„ฐ๋ฅผ ์ฒ˜๋ฆฌํ•˜๋Š” ๋ฐ ์–ด๋ ค์›€์ด ์žˆ์Šต๋‹ˆ๋‹ค. ์ด ๋…ผ๋ฌธ์—์„œ๋Š” ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ํ‘œ์ค€ํ™”๋œ ์ง€๋ฌธ ํ…œํ”Œ๋ฆฟ ๋ชจ๋ธ์„ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. 1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ์ง€๋ฌธ ์ธ์‹์˜ ํ•ต์‹ฌ์€ ํ…œํ”Œ๋ฆฟ๊ณผ ์ฟผ๋ฆฌ ์ง€๋ฌธ ๊ฐ„์˜ ๋งค์นญ์ž…๋‹ˆ๋‹ค. ์ด ๊ณผ์ •์—์„œ ๋‹ค์–‘ํ•œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์ด ๊ฐœ๋ฐœ๋˜์—ˆ์ง€๋งŒ, ํŠนํžˆ ์ง€๋ฌธ์ด ํšŒ์ „๋˜๊ฑฐ๋‚˜ ๊ต์ฐจ ๋ถ€๋ถ„์ด ์ž‘์€ ๊ฒฝ์šฐ ์ •ํ™•๋„๊ฐ€ ๋–จ์–ด์ง‘๋‹ˆ๋‹ค. ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ํ‘œ์ค€ํ™”๋œ ์ง€๋ฌธ ํ…œํ”Œ๋ฆฟ ๋ชจ๋ธ์„ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. 2. ์—ฐ๊ตฌ ๋ฐฉ๋ฒ•

Model Computer Vision Computer Science
No Image

Visual Secret Sharing Scheme using Grayscale Images

: ๋ณธ ๋…ผ๋ฌธ์€ ํšŒ์ƒ‰์กฐ ์ด๋ฏธ์ง€์— ๋Œ€ํ•œ ์‹œ๊ฐ ๋น„๋ฐ€ ๋ถ„๋ฐฐ(VSS) ๋ฐฉ์‹์˜ ๊ฐœ์„ ์ ์„ ์ œ์‹œํ•˜๋ฉฐ, ํŠนํžˆ ํ”ฝ์…€ ํ™•์žฅ ๋ฌธ์ œ์™€ ์žฌ๊ตฌ์„ฑ๋œ ์ด๋ฏธ์ง€์˜ ํ’ˆ์งˆ ์ €ํ•˜๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•œ ์ƒˆ๋กœ์šด ์ ‘๊ทผ๋ฒ•์„ ์†Œ๊ฐœํ•œ๋‹ค. ์ด ์—ฐ๊ตฌ๋Š” ๊ธฐ์กด VSS ๋ฐฉ์‹์—์„œ ๋ฐœ์ƒํ•˜๋Š” ์ฃผ์š” ๋ฌธ์ œ์ ๋“ค์„ ๊ทน๋ณตํ•˜๊ณ ์ž ํ•˜๋ฉฐ, ์ด๋ฅผ ํ†ตํ•ด ๋ณด๋‹ค ์•ˆ์ •์ ์ด๊ณ  ํšจ๊ณผ์ ์ธ ๋น„๋ฐ€ ์ •๋ณด ๊ณต์œ  ๋ฐฉ๋ฒ•์„ ์ œ์‹œํ•œ๋‹ค. 1. ๋ฐฐ๊ฒฝ ๋ฐ ๋ฌธ์ œ ์ธ์‹ ๋น„๋ฐ€ ๋ถ„๋ฐฐ ๊ธฐ๋ฒ•์€ ๋‹ค์–‘ํ•œ ์‘์šฉ ๋ถ„์•ผ์—์„œ ํ™œ์šฉ๋˜๋ฉฐ, ํŠนํžˆ ์›Œํ„ฐ๋งˆํ‚น๊ณผ ๊ฐ™์€ ์ •๋ณด ์€๋‹‰ ๊ธฐ์ˆ ์— ๋„๋ฆฌ ์‚ฌ์šฉ๋œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ด๋“ค ๋ฐฉ์‹ ์ค‘ ์ผ๋ถ€๋Š” ์žฌ๊ตฌ์„ฑ๋œ ์ด๋ฏธ์ง€์˜ ํ’ˆ์งˆ ์ €ํ•˜์™€ ํ”ฝ์…€ ํ™•์žฅ ๋ฌธ์ œ๋ฅผ ์•ผ

Computer Vision Computer Science Cryptography and Security
No Image

Pose Estimation from a Single Depth Image for Arbitrary Kinematic Skeletons

๋ณธ ๋…ผ๋ฌธ์€ ๊นŠ์ด ์ด๋ฏธ์ง€๋กœ๋ถ€ํ„ฐ ์ž„์˜์˜ ๊ด€์ ˆ ๊ตฌ์กฐ๋ฅผ ๊ฐ€์ง„ ๋ฌผ์ฒด์˜ 3D ์ž์„ธ๋ฅผ ์ถ”์ •ํ•˜๋Š” ๋ฌธ์ œ์— ๋Œ€ํ•ด ์ง„ํ™” ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ํ™œ์šฉํ•œ ์ƒˆ๋กœ์šด ์ ‘๊ทผ๋ฒ•์„ ์ œ์‹œํ•œ๋‹ค. ์ด ์—ฐ๊ตฌ๋Š” ๊ธฐ์กด์˜ ๋ฐฉ๋ฒ•๋“ค์ด ์‚ฌ์ „ ํ›ˆ๋ จ์ด๋‚˜ ๋„๋ฉ”์ธ ํŠน์ • ์ง€์‹์— ํฌ๊ฒŒ ์˜์กดํ•˜๊ณ , ์ด๋ฅผ ์ผ๋ฐ˜ํ™”ํ•˜๊ธฐ ์œ„ํ•œ ์ถ”๊ฐ€์ ์ธ ๋…ธ๋ ฅ์ด ํ•„์š”ํ•˜๋‹ค๋Š” ํ•œ๊ณ„์ ์„ ๊ทน๋ณตํ•˜๋ ค๊ณ  ์‹œ๋„ํ•œ๋‹ค. 1. ๋ฌธ์ œ ์ •์˜์™€ ์ ‘๊ทผ ๋ฐฉ์‹ ์ž์„ธ ์ถ”์ •์€ ๋ฌผ์ฒด์˜ ๊ด€์ ˆ ๊ตฌ์กฐ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ๊นŠ์ด ์ด๋ฏธ์ง€์—์„œ ๋ฌผ์ฒด์˜ ์œ„์น˜์™€ ์ž์„ธ๋ฅผ ๊ฒฐ์ •ํ•˜๋Š” ๊ณผ์ •์ด๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์ด ๋ฌธ์ œ๋ฅผ ๋ชจ๋ธ ๊ธฐ๋ฐ˜ ์ถ”์ • ๋ฌธ์ œ๋กœ ์ •์˜ํ•˜๊ณ , ์ง„ํ™” ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ํ™œ์šฉํ•˜์—ฌ ์ตœ์ ์˜ ์ž์„ธ ๋งค๊ฐœ๋ณ€์ˆ˜๋ฅผ ์ฐพ

Computer Science Artificial Intelligence Machine Learning Computer Vision
No Image

FALCON: Few-Shot Adversarial Learning for Cross-Domain Medical Image Segmentation

FALCON ๋…ผ๋ฌธ์€ ํ˜„์žฌ ์˜๋ฃŒ ์˜์ƒ ๋ถ„ํ•  ๋ถ„์•ผ๊ฐ€ ์ง๋ฉดํ•œ ์„ธ ๊ฐ€์ง€ ํ•ต์‹ฌ ๋ฌธ์ œโ€”๋ผ๋ฒจ ๋ฐ์ดํ„ฐ์˜ ํฌ์†Œ์„ฑ, ํ™˜์ž ๊ฐ„ ํ•ด๋ถ€ํ•™์  ๋ณ€์ด, ๊ทธ๋ฆฌ๊ณ  ์‹ค์‹œ๊ฐ„ ์ž„์ƒ ์ ์šฉ์„ ์œ„ํ•œ ์—ฐ์‚ฐ ํšจ์œจ์„ฑโ€”๋ฅผ ๋™์‹œ์— ํ•ด๊ฒฐํ•˜๋ ค๋Š” ์‹œ๋„๋กœ ํ‰๊ฐ€ํ•  ์ˆ˜ ์žˆ๋‹ค. ๊ฐ€์žฅ ๋ˆˆ์— ๋„๋Š” ์ ์€ โ€œ๋ฉ”ํƒ€โ€‘ํ•™์Šต โ†’ ์ ๋Œ€์  ํŒŒ์ธํŠœ๋‹ โ†’ ๊ฒฝ๊ณ„ ์ธ์‹ ํ•™์Šตโ€์ด๋ผ๋Š” 3๋‹จ๊ณ„ ์ „์ด ์ „๋žต์ด๋‹ค. ์ฒซ ๋‹จ๊ณ„์—์„œ ์ž์—ฐ ์ด๋ฏธ์ง€(์˜ˆ: PASCALโ€‘5โฑ, COCOโ€‘20โฑ)๋กœ ๋ฉ”ํƒ€โ€‘๋Ÿฌ๋‹์„ ์ˆ˜ํ–‰ํ•จ์œผ๋กœ์จ, ๋‹ค์–‘ํ•œ ํด๋ž˜์Šค์™€ ๋ณต์žกํ•œ ๋ฐฐ๊ฒฝ์„ ๊ฐ€์ง„ ์ƒํ™ฉ์—์„œ๋„ ๋น ๋ฅด๊ฒŒ ์ƒˆ๋กœ์šด ํƒœ์Šคํฌ์— ์ ์‘ํ•  ์ˆ˜ ์žˆ๋Š” โ€˜ํ•™์Šตโ€‘ํ•™์Šตโ€™ ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ๊ตฌ์ถ•ํ•œ๋‹ค.

Computer Vision Computer Science Learning
No Image

EgoGrasp: World-Space Hand-Object Interaction Estimation from Egocentric Videos

EgoGrasp ๋…ผ๋ฌธ์€ ์ด๋จธ์‹œ๋ธŒ(egocentric) ์˜์ƒ์—์„œ ์„ธ๊ณ„ ์ขŒํ‘œ๊ณ„์˜ ์†โ€‘๋ฌผ์ฒด ์ƒํ˜ธ์ž‘์šฉ์„ ๋ณต์›ํ•œ๋‹ค๋Š” ๋งค์šฐ ์•ผ์‹ฌ์ฐฌ ๋ชฉํ‘œ๋ฅผ ์„ค์ •ํ•œ๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋Š” ํฌ๊ฒŒ ๋‘ ๊ฐ€์ง€ ํ•œ๊ณ„์— ๋ด‰์ฐฉํ•œ๋‹ค. ์ฒซ์งธ, ์ •์  ์ด๋ฏธ์ง€ ๊ธฐ๋ฐ˜ ๋ฐฉ๋ฒ•์€ ์‹œ๊ฐ„์  ์—ฐ์†์„ฑ์„ ํ™œ์šฉํ•˜์ง€ ๋ชปํ•ด ๋™์ ์ธ ์†๋™์ž‘๊ณผ ๋ฌผ์ฒด ๋ณ€ํ™”๋ฅผ ์ •ํ™•ํžˆ ํฌ์ฐฉํ•˜์ง€ ๋ชปํ•œ๋‹ค. ๋‘˜์งธ, ์นด๋ฉ”๋ผ ์ขŒํ‘œ๊ณ„์— ๊ตญํ•œ๋œ ์ ‘๊ทผ๋ฒ•์€ ์ „์—ญ์ ์ธ ์œ„์น˜์™€ ์ž์„ธ ์ •๋ณด๋ฅผ ์ œ๊ณตํ•˜์ง€ ๋ชปํ•œ๋‹ค. ํŠนํžˆ ์ผ์ƒ ์ƒํ™œ์—์„œ ์ดฌ์˜๋˜๋Š” ์ด๋จธ์‹œ๋ธŒ ์˜์ƒ์€ ๊ธ‰๊ฒฉํ•œ ์นด๋ฉ”๋ผ ์›€์ง์ž„, ์กฐ๋ช… ๋ณ€ํ™”, ๊ทธ๋ฆฌ๊ณ  ์†๊ณผ ๋ฌผ์ฒด์˜ ๋นˆ๋ฒˆํ•œ ๊ฐ€๋ฆผ ํ˜„์ƒ์ด ํŠน์ง•์ด๋‹ค. ์ด๋Ÿฌํ•œ ํ™˜๊ฒฝ์—์„œ๋Š” 2D

Computer Science Computer Vision
No Image

A Comprehensive Dataset for Human vs. AI Generated Image Detection

๋ณธ ๋…ผ๋ฌธ์ด ์ œ์‹œํ•˜๋Š” MS COCOAI ๋ฐ์ดํ„ฐ์…‹์€ ํ˜„์žฌ ์ด๋ฏธ์ง€ ์ง„์œ„ ํƒ์ง€ ์—ฐ๊ตฌ์—์„œ ๊ฐ€์žฅ ์‹œ๊ธ‰ํžˆ ์š”๊ตฌ๋˜๋Š” โ€˜๋‹ค์–‘์„ฑโ€™๊ณผ โ€˜๊ทœ๋ชจโ€™๋ฅผ ๋™์‹œ์— ๋งŒ์กฑํ•œ๋‹ค๋Š” ์ ์—์„œ ํฐ ์˜๋ฏธ๋ฅผ ๊ฐ€์ง„๋‹ค. ์ฒซ์งธ, ๊ธฐ์กด ๋ฐ์ดํ„ฐ์…‹๋“ค์€ ์ฃผ๋กœ ๋‹จ์ผ ์ƒ์„ฑ ๋ชจ๋ธ์ด๋‚˜ ์ œํ•œ๋œ ํ”„๋กฌํ”„ํŠธ ์„ธํŠธ๋ฅผ ์‚ฌ์šฉํ•ด ๋งŒ๋“  ์ด๋ฏธ์ง€์— ๊ตญํ•œ๋ผ ์žˆ์—ˆ์œผ๋ฉฐ, ์ด๋Š” ์‹ค์ œ ํ˜„์žฅ์—์„œ ๋งˆ์ฃผ์น˜๋Š” ๋‹ค์–‘ํ•œ AI ํˆด๊ณผ์˜ ๊ฒฉ์ฐจ๋ฅผ ์ดˆ๋ž˜ํ•œ๋‹ค. ๋ฐ˜๋ฉด ๋ณธ ๋ฐ์ดํ„ฐ์…‹์€ Stable Diffusion 3ยท2.1ยทSDXL, DALLโ€‘E 3, MidJourney v6 ๋“ฑ ์ตœ์‹  ๋ชจ๋ธ์„ ๋ชจ๋‘ ํฌํ•จํ•จ์œผ๋กœ์จ, ํ˜„์žฌ ์‹œ์žฅ์—์„œ ๋„๋ฆฌ ์‚ฌ์šฉ๋˜๋Š” ์ฃผ์š” ์ƒ์„ฑ

Computer Science Data Detection Computer Vision
VisNet: Efficient Person Re-Identification via Alpha-Divergence Loss, Feature Fusion and Dynamic Multi-Task Learning

VisNet: Efficient Person Re-Identification via Alpha-Divergence Loss, Feature Fusion and Dynamic Multi-Task Learning

VisNet์€ ํ˜„์žฌ ์‚ฌ๋žŒ ์žฌ์‹๋ณ„ ๋ถ„์•ผ์—์„œ ๊ฐ€์žฅ ํฐ ๊ณผ์ œ ์ค‘ ํ•˜๋‚˜์ธ โ€œ์ •ํ™•๋„์™€ ์—ฐ์‚ฐ ํšจ์œจ์„ฑ ์‚ฌ์ด์˜ ํŠธ๋ ˆ์ด๋“œ์˜คํ”„โ€๋ฅผ ํ•ด๊ฒฐํ•˜๋ ค๋Š” ์‹œ๋„๋กœ ๋ˆˆ์— ๋ˆ๋‹ค. ์ฒซ ๋ฒˆ์งธ ํ•ต์‹ฌ ๊ธฐ์—ฌ๋Š” ResNetโ€‘50์˜ ๋„ค ๋‹จ๊ณ„(feature map)๋“ค์„ ์ˆœ์ฐจ์ ์œผ๋กœ ๊ฒฐํ•ฉํ•˜๋ฉด์„œ๋„ ๋ณ„๋„์˜ ๋ณ‘๋ ฌ ๋ธŒ๋žœ์น˜๋ฅผ ๋„์ž…ํ•˜์ง€ ์•Š์€ ์ ์ด๋‹ค. ์ด๋Š” ๊ธฐ์กด์˜ ๋ฉ€ํ‹ฐโ€‘์Šค์ผ€์ผ ์ ‘๊ทผ๋ฒ•์ด ํ”ํžˆ ๊ฒช๋Š” ํŒŒ๋ผ๋ฏธํ„ฐ ํญ์ฆ๊ณผ ๋ฉ”๋ชจ๋ฆฌ ์‚ฌ์šฉ๋Ÿ‰ ์ฆ๊ฐ€ ๋ฌธ์ œ๋ฅผ ํฌ๊ฒŒ ์™„ํ™”ํ•œ๋‹ค. ์ž๋™ ์ฃผ์˜(attention) ๋ชจ๋“ˆ์ด ๊ฐ ์Šค์ผ€์ผ๋ณ„ ํŠน์ง•์— ๊ฐ€์ค‘์น˜๋ฅผ ๋ถ€์—ฌํ•จ์œผ๋กœ์จ, ์ €ํ•ด์ƒ๋„์—์„œ ์ถ”์ถœ๋œ ์ „์—ญ์ ์ธ ํ˜•ํƒœ ์ •๋ณด์™€ ๊ณ ํ•ด์ƒ๋„์—์„œ ์–ป์–ด์ง€๋Š” ์„ธ

Computer Vision Computer Science Learning
No Image

Pathology Context Recalibration Network for Ocular Disease Recognition

๋ณธ ๋…ผ๋ฌธ์€ ์•ˆ๊ณผ ์˜์ƒ ์ง„๋‹จ ๋ถ„์•ผ์—์„œ โ€˜๋ณ‘๋ฆฌํ•™์  ๋งฅ๋ฝโ€™๊ณผ โ€˜์ „๋ฌธ๊ฐ€ ๊ฒฝํ—˜โ€™์ด๋ผ๋Š” ๋‘ ๊ฐ€์ง€ ์ธ๊ฐ„ ์ค‘์‹ฌ์˜ ์‚ฌ์ „ ์ •๋ณด๋ฅผ ๋”ฅ๋Ÿฌ๋‹ ๋ชจ๋ธ์— ์ฒด๊ณ„์ ์œผ๋กœ ํ†ตํ•ฉํ•˜๋ ค๋Š” ์‹œ๋„๋ฅผ ์ œ์‹œํ•œ๋‹ค. ๋จผ์ € ์ œ์•ˆ๋œ Pathology Recalibration Module(PRM)์€ ๋‘ ๋‹จ๊ณ„๋กœ ๊ตฌ์„ฑ๋œ๋‹ค. ์ฒซ ๋ฒˆ์งธ ๋‹จ๊ณ„์ธ ํ”ฝ์…€โ€‘๋‹จ์œ„ ๋งฅ๋ฝ ์••์ถ• ์—ฐ์‚ฐ์ž๋Š” ๊ณ ํ•ด์ƒ๋„ ์•ˆ๊ตฌ ์ด๋ฏธ์ง€์—์„œ ์ง€์—ญ์  ํŠน์ง•์„ ์ €์ฐจ์› ํ‘œํ˜„์œผ๋กœ ์••์ถ•ํ•จ์œผ๋กœ์จ ์—ฐ์‚ฐ ํšจ์œจ์„ฑ์„ ๋†’์ด๊ณ , ๋™์‹œ์— ๋ณ‘๋ณ€์ด ๋‚˜ํƒ€๋‚˜๋Š” ์˜์—ญ์˜ ์ „๋ฐ˜์ ์ธ ๊ตฌ์กฐ์  ์ •๋ณด๋ฅผ ๋ณด์กดํ•œ๋‹ค. ๋‘ ๋ฒˆ์งธ ๋‹จ๊ณ„์ธ ๋ณ‘๋ฆฌํ•™์  ๋ถ„ํฌ ์ง‘์ค‘ ์—ฐ์‚ฐ์ž๋Š” ์••์ถ•๋œ ํŠน์ง• ๋งต์„ ๊ธฐ๋ฐ˜์œผ๋กœ

Computer Vision Computer Science Network
An Efficient Real Time Method of Fingertip Detection

An Efficient Real Time Method of Fingertip Detection

: ๋ณธ ๋…ผ๋ฌธ์€ ์„ผ์„œ๋‚˜ ๋งˆ์ปค ์—†์ด ๋™์ ์ธ ์† ์ œ์Šค์ฒ˜๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ์ธ์‹ํ•˜๋Š” ๋ฐฉ๋ฒ•์— ๋Œ€ํ•ด ๊นŠ์ด ์žˆ๊ฒŒ ๋‹ค๋ฃฌ๋‹ค. ์ด ์—ฐ๊ตฌ๋Š” ๊ธฐ์กด์˜ ์ง€๋ฌธ ๊ฐ์ง€ ๊ธฐ์ˆ ์—์„œ ๋‚˜ํƒ€๋‚œ ์—ฌ๋Ÿฌ ๋ฌธ์ œ์ ์„ ํ•ด๊ฒฐํ•˜๋ ค๊ณ  ์‹œ๋„ํ•œ๋‹ค. 1. ๊ธฐ์กด ์ ‘๊ทผ๋ฒ•์˜ ํ•œ๊ณ„ Garg

Detection Artificial Intelligence Computer Vision Multimedia Computer Science
No Image

A radial version of the Central Limit Theorem

์ด ๋…ผ๋ฌธ์˜ ํ•ต์‹ฌ ์•„์ด๋””์–ด๋Š” ์›๋ž˜์˜ ์ค‘์‹ฌ๊ทนํ•œ์ •๋ฆฌ(Central Limit Theorem, CLT)๋ฅผ ๋ฐฉ์‚ฌํ˜• ๋ฒ„์ „์œผ๋กœ ํ™•์žฅํ•˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค. ์ด ํ™•์žฅ์„ ํ†ตํ•ด ๋น„๋“ฑ๋ฐฉ์„ฑ ๊ฐ€์šฐ์Šค ํ•จ์ˆ˜๋ฅผ ๊ทผ์‚ฌํ•  ์ˆ˜ ์žˆ๋Š” ์ƒˆ๋กœ์šด ๋ฐฉ๋ฒ•๋ก ์„ ์ œ์‹œํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. 1. ๋ฐฉ์‚ฌํ˜• CLT์™€ ๋น„๋“ฑ๋ฐฉ์„ฑ ๊ฐ€์šฐ์Šค ํ•จ์ˆ˜์˜ ๊ทผ์‚ฌ ๋…ผ๋ฌธ์€ ๊ฐ ๋ฐฉ์‚ฌ ๋ฐฉํ–ฅ์— ๋”ฐ๋ผ ๋ฐ•์Šค ํ•จ์ˆ˜ ํญ์„ ์กฐ์ ˆํ•จ์œผ๋กœ์จ ๋น„๋“ฑ๋ฐฉ์„ฑ ๊ฐ€์šฐ์Šค ํ•จ์ˆ˜๋ฅผ ๊ทผ์‚ฌํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ์•„์ด๋””์–ด๋ฅผ ์ œ์‹œํ•ฉ๋‹ˆ๋‹ค. ์ด๋Š” ํŠนํžˆ 4๋ฐฉํ–ฅ ๋ฐ•์Šค ์Šคํ”Œ๋ผ์ธ์ด๋ผ๋Š” ํŠน๋ณ„ํ•œ ๊ฒฝ์šฐ์—์„œ ํšจ๊ณผ์ ์ž…๋‹ˆ๋‹ค. ๊ณต๋ถ„์‚ฐ์„ ์ œ์–ดํ•˜๊ธฐ ์œ„ํ•ด ๋‹จ์ˆœํžˆ ๋ฐ•์Šค ๋ถ„ํฌ ํญ์„ ์กฐ์ ˆํ•˜๋Š” ๊ฐ„๋‹จํ•œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์ด

Information Theory Mathematics Computer Science Computer Vision
Weighted Radial Variation for Node Feature Classification

Weighted Radial Variation for Node Feature Classification

๋ณธ ๋…ผ๋ฌธ์€ ๋ณต์žกํ•œ ๋„คํŠธ์›Œํฌ์—์„œ ๋…ธ๋“œ ํŠน์„ฑ ๋ถ„๋ฅ˜์˜ ์ƒˆ๋กœ์šด ์ ‘๊ทผ๋ฒ•์ธ ๊ฐ€์ค‘ ๋ฐฉ์‚ฌ ๋ณ€์ด(WRV) ๊ธฐ๋ฒ•์„ ์ œ์•ˆํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. WRV๋Š” ๊ฐ ๋…ธ๋“œ์— ๋Œ€ํ•œ ๋ฒกํ„ฐ ํ๋ฆ„ ๊ตฌ์„ฑ์— ๊ธฐ๋ฐ˜ํ•˜์—ฌ, ์นด๋ฅด๋””๋‚˜๋ฆฌํ‹ฐ(๋…ธ๋“œ ๊ฐ„ ์—ฐ๊ฒฐ ์ˆ˜), ๋ฐฉํ–ฅ, ๊ธธ์ด, ๊ทธ๋ฆฌ๊ณ  ํ๋ฆ„ ํฌ๊ธฐ์˜ ์ธก๋ฉด์—์„œ ๋™๊ธฐํ™”๋œ ๊ฐ ์—”ํ‹ฐํ‹ฐ์˜ ๋ฒกํ„ฐ๋ฅผ ์‚ฌ์šฉํ•ฉ๋‹ˆ๋‹ค. ์ด๋Š” ๋ณต์žกํ•œ ๋„คํŠธ์›Œํฌ ๋ถ„์„์—์„œ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•˜๋Š”๋ฐ, ํŠนํžˆ ๋น„์ธ์ ‘ ๊ณต๊ฐ„์— ์—ฐ๊ฒฐ๋˜๋Š” ์ธ๊ฐ„๊ณผ ์ •๋ณด ํ๋ฆ„์˜ ๋ณต์žกํ•œ ์—ญํ•™์„ ์ดํ•ดํ•˜๋Š” ๋ฐ ์œ ์šฉํ•ฉ๋‹ˆ๋‹ค. WRV ๊ณผ์ •์€ ๋ณ„ ๋ชจ์–‘ ์—”ํ‹ฐํ‹ฐ์˜ ๊ฐœ๋ณ„ ํ๋ฆ„ ๋ฒกํ„ฐ๋ฅผ 0 360ยฐ ์ŠคํŽ™ํŠธ๋Ÿผ์— ํŽผ์ณ ๋…ํŠนํ•œ ์‹ ํ˜ธ๋ฅผ ํ˜•์„ฑํ•˜๋ฉฐ, ์ด

Computer Science Computer Vision Physics

< Category Statistics (Total: 743) >

Electrical Engineering and Systems Science
7
General
272
General Relativity
7
HEP-EX
5
HEP-PH
12
HEP-TH
5
MATH-PH
3
NUCL-TH
1
Quantum Physics
10

Start searching

Enter keywords to search articles

โ†‘โ†“
โ†ต
ESC
โŒ˜K Shortcut