Computer Science

All posts under tag "Computer Science"

256 posts total
Sorted by date
Modeling Language as a Sequence of Thoughts

Modeling Language as a Sequence of Thoughts

์ด ๋…ผ๋ฌธ์€ ํ˜„์žฌ ๊ฐ€์žฅ ๋„๋ฆฌ ์‚ฌ์šฉ๋˜๋Š” ํŠธ๋žœ์Šคํฌ๋จธ ๊ธฐ๋ฐ˜ ์–ธ์–ด ๋ชจ๋ธ์ด โ€œํ‘œ๋ฉด์ โ€ ํ† ํฐ ์—ฐ๊ด€์„ฑ์— ๊ณผ๋„ํ•˜๊ฒŒ ์˜์กดํ•œ๋‹ค๋Š” ๊ทผ๋ณธ์ ์ธ ํ•œ๊ณ„๋ฅผ ์งš๊ณ  ์žˆ๋‹ค. ํ† ํฐ ์ˆ˜์ค€์—์„œ๋งŒ ํ•™์Šต์ด ์ด๋ฃจ์–ด์ง€๋ฉด ๋ชจ๋ธ์€ ๋ฌธ๋งฅ ์ „์ฒด์— ๊ฑธ์นœ ์ผ๊ด€๋œ ์—”ํ‹ฐํ‹ฐยท์‚ฌ๊ฑด ํ‘œํ˜„์„ ๊ตฌ์ถ•ํ•˜์ง€ ๋ชปํ•œ๋‹ค. ๊ฒฐ๊ณผ์ ์œผ๋กœ โ€œ์—ญ์ „ ์ €์ฃผโ€(์˜ˆ: โ€œ์•„๋ฒ„์ง€๊ฐ€ ์•„๋“ค์„ ๋‚ณ์•˜๋‹คโ€์™€ โ€œ์•„๋“ค์ด ์•„๋ฒ„์ง€๋ฅผ ๋‚ณ์•˜๋‹คโ€๋ฅผ ๊ตฌ๋ถ„ํ•˜์ง€ ๋ชปํ•จ)์™€ ๊ฐ™์€ ๊ด€๊ณ„ ์ผ๋ฐ˜ํ™” ์˜ค๋ฅ˜๊ฐ€ ๋ฐœ์ƒํ•˜๊ณ , ๋™์ผํ•œ ์˜๋ฏธ๋ฅผ ๊ฐ€์ง„ ๋‹ค์–‘ํ•œ ํ‘œํ˜„์„ ํ•™์Šตํ•˜๊ธฐ ์œ„ํ•ด ๋ถˆํ•„์š”ํ•˜๊ฒŒ ๋งŽ์€ ๋ฐ์ดํ„ฐ๊ฐ€ ์š”๊ตฌ๋œ๋‹ค. ์ธ์ง€๊ณผํ•™ ์—ฐ๊ตฌ์—์„œ๋Š” ์ธ๊ฐ„์ด ์–ธ์–ด๋ฅผ ์ฒ˜๋ฆฌํ•  ๋•Œ ์ž…๋ ฅ ์ŠคํŠธ๋ฆผ์„ ์ผ์‹œ์ ์ธ ํ‘œ

Computer Science NLP Model
No Image

More Than Bits: Multi-Envelope Double Binary Factorization for Extreme Quantization

์ด ๋…ผ๋ฌธ์€ ๋Œ€๊ทœ๋ชจ ์–ธ์–ด ๋ชจ๋ธ(LLM)์˜ ๊ทน์ €๋น„ํŠธ ์–‘์žํ™”์— ์žˆ์–ด ๊ธฐ์กด ์ด์ค‘ ์ด์ง„ ๋ถ„ํ•ด(Double Binary Factorization, DBF)์˜ ๊ตฌ์กฐ์  ํ•œ๊ณ„๋ฅผ ์ •ํ™•ํžˆ ์งš์–ด๋‚ธ๋‹ค. DBF๋Š” ๊ฐ€์ค‘์น˜๋ฅผ ๋ถ€ํ˜ธ ํ–‰๋ ฌ๊ณผ ์Šค์ผ€์ผ(์—”๋ฒจ๋กœํ”„) ํ–‰๋ ฌ์˜ ๊ณฑ์œผ๋กœ ํ‘œํ˜„ํ•˜๋Š”๋ฐ, ๋ถ€ํ˜ธ๋ฅผ 1๋น„ํŠธ๋กœ ๊ณ ์ •ํ•˜๊ณ  ์Šค์ผ€์ผ์„ ์‹ค์ˆ˜๊ฐ’์œผ๋กœ ๋‘์–ด ๋ฉ”๋ชจ๋ฆฌ ์‚ฌ์šฉ๋Ÿ‰์„ ํฌ๊ฒŒ ์ค„์ธ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์Šค์ผ€์ผ ํŒŒ๋ผ๋ฏธํ„ฐ๊ฐ€ ๋ชจ๋“  ๋žญํฌ ์„ฑ๋ถ„์— ๋™์ผํ•˜๊ฒŒ ์ ์šฉ๋˜๋ฉด์„œ, ๋ชจ๋ธ์ด ํ‘œํ˜„ํ•  ์ˆ˜ ์žˆ๋Š” ํฌ๊ธฐ ๋ณ€๋™ ํญ์ด ์ œํ•œ๋œ๋‹ค. ํŠนํžˆ, ๋žญํฌโ€‘R ๋ถ„ํ•ด์—์„œ R์ด ์ปค์งˆ์ˆ˜๋ก ๊ฐ ์„ฑ๋ถ„์ด ๋™์ผํ•œ ํฌ๊ธฐ ํ”„๋กœํŒŒ์ผ์„ ๊ณต์œ ํ•˜๊ฒŒ ๋˜๋ฏ€๋กœ

Machine Learning Computer Science
Mortar: Evolving Mechanics for Automatic Game Design

Mortar: Evolving Mechanics for Automatic Game Design

MORTAR๋Š” ์ž๋™ ๊ฒŒ์ž„ ๋””์ž์ธ ๋ถ„์•ผ์—์„œ โ€˜๋ฉ”์ปค๋‹ˆ์ฆ˜โ€™์ด๋ผ๋Š” ํ•ต์‹ฌ ์š”์†Œ๋ฅผ ์ง„ํ™”์‹œํ‚ค๋Š” ์ƒˆ๋กœ์šด ์ ‘๊ทผ๋ฒ•์„ ์ œ์‹œํ•œ๋‹ค๋Š” ์ ์—์„œ ํ•™์ˆ ์ ยท์‹ค์šฉ์  ์˜๋ฏธ๊ฐ€ ํฌ๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค์€ ์ฃผ๋กœ ๋ ˆ๋ฒจ ๋””์ž์ธ์ด๋‚˜ ์Šคํ† ๋ฆฌ ํ…”๋ง์„ ์ž๋™ํ™”ํ•˜๋Š” ๋ฐ ์ดˆ์ ์„ ๋งž์ถ”์—ˆ์œผ๋ฉฐ, ๊ฒŒ์ž„ ๊ทœ์น™ ์ž์ฒด๋ฅผ ์ƒ์„ฑยท์กฐ์ •ํ•˜๋Š” ์ž‘์—…์€ ์—ฌ์ „ํžˆ ์ธ๊ฐ„ ๋””์ž์ด๋„ˆ์˜ ์ „๋ฌธ ์˜์—ญ์œผ๋กœ ๋‚จ์•„ ์žˆ์—ˆ๋‹ค. ๋ณธ ์‹œ์Šคํ…œ์€ ํ’ˆ์งˆโ€‘๋‹ค์–‘์„ฑ(QD) ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ํ™œ์šฉํ•ด โ€˜๋‹ค์–‘์„ฑโ€™๊ณผ โ€˜ํ’ˆ์งˆโ€™์ด๋ผ๋Š” ๋‘ ์ถ•์„ ๋™์‹œ์— ์ตœ์ ํ™”ํ•œ๋‹ค. ๊ตฌ์ฒด์ ์œผ๋กœ, ๋ฉ”์ปค๋‹ˆ์ฆ˜ ํ›„๋ณด๊ตฐ์„ LLM(์˜ˆ: GPTโ€‘4)์—๊ฒŒ ํ”„๋กฌํ”„ํŠธ๋กœ ์ œ์‹œํ•ด ์ž์—ฐ์–ด ๊ธฐ๋ฐ˜ ๊ทœ์น™์„ ์ƒ์„ฑํ•˜๊ณ , ์ด๋ฅผ

Computer Science Artificial Intelligence
No Image

Multi-modal cross-domain mixed fusion model with dual disentanglement for fault diagnosis under unseen working conditions

์ด ๋…ผ๋ฌธ์€ ์‚ฐ์—… ํ˜„์žฅ์—์„œ ํ”ํžˆ ๋งˆ์ฃผ์น˜๋Š” โ€˜๋ณด์ด์ง€ ์•Š๋Š” ์ž‘์—… ์กฐ๊ฑดโ€™์ด๋ผ๋Š” ๋ฌธ์ œ๋ฅผ ํ•ต์‹ฌ์œผ๋กœ ์‚ผ์•„, ๊ธฐ์กด ๊ฒฐํ•จ ์ง„๋‹จ ๋ชจ๋ธ๋“ค์˜ ์ผ๋ฐ˜ํ™” ํ•œ๊ณ„๋ฅผ ์ฒด๊ณ„์ ์œผ๋กœ ๊ทน๋ณตํ•˜๊ณ ์ž ํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ ํ•ต์‹ฌ ๊ธฐ์—ฌ๋Š” ์ด์ค‘ ๋ถ„๋ฆฌ(disentanglement) ํ”„๋ ˆ์ž„์›Œํฌ ์ด๋‹ค. ์—ฌ๊ธฐ์„œ๋Š” ๋‘ ์ฐจ์›์˜ ๋ถ„๋ฆฌ๋ฅผ ๋™์‹œ์— ์ˆ˜ํ–‰ํ•œ๋‹ค. ํ•˜๋‚˜๋Š” ๋ชจ๋‹ฌ๋ฆฌํ‹ฐ ์ฐจ์› ์œผ๋กœ, ์„œ๋กœ ๋‹ค๋ฅธ ์„ผ์„œ(์˜ˆ: ์ „๋ฅ˜, ์ง„๋™, ์˜จ๋„)์—์„œ ์ถ”์ถœ๋œ ํŠน์ง•์„ โ€˜๋ชจ๋‹ฌ๋ฆฌํ‹ฐ ๋ถˆ๋ณ€(modalityโ€‘invariant)โ€™๊ณผ โ€˜๋ชจ๋‹ฌ๋ฆฌํ‹ฐ ํŠนํ™”(modalityโ€‘specific)โ€™๋กœ ๋‚˜๋ˆˆ๋‹ค. ์ด๋Š” ๊ฐ ์„ผ์„œ๊ฐ€ ์ œ๊ณตํ•˜๋Š” ๊ณ ์œ ํ•œ ๋ฌผ๋ฆฌ์  ์ •

Computer Science Artificial Intelligence Model
No Image

Understanding and Steering the Cognitive Behaviors of Reasoning Models at Test-Time

๋ณธ ๋…ผ๋ฌธ์€ ํ˜„์žฌ LLM์ด ๋ณต์žกํ•œ ๋ฌธ์ œ ํ•ด๊ฒฐ์— ํ”ํžˆ ์‚ฌ์šฉํ•˜๋Š” CoT(Chainโ€‘ofโ€‘Thought) ๋ฐฉ์‹์ด โ€œ๊ณผ๋‹ค ํ† ํฐ ์ƒ์„ฑโ€๊ณผ โ€œ๋ถˆ์•ˆ์ •ํ•œ ์‚ฌ๊ณ  ํ๋ฆ„โ€์ด๋ผ๋Š” ๋‘ ๊ฐ€์ง€ ์ฃผ์š” ๋ณ‘๋ชฉ์„ ์•ˆ๊ณ  ์žˆ๋‹ค๋Š” ์ ์„ ์ •ํ™•ํžˆ ์งš์–ด๋‚ธ๋‹ค. ์ €์ž๋“ค์€ ๋จผ์ € ๋Œ€๊ทœ๋ชจ ๋ชจ๋ธ(์˜ˆ: GPTโ€‘NeoX, LLaMA)์—์„œ ์ถ”๋ก  ์‹œ ์ƒ์„ฑ๋˜๋Š” ํ† ํฐ ์‹œํ€€์Šค๋ฅผ ๋‹จ๊ณ„๋ณ„๋กœ ๋ถ„์„ํ•˜๊ณ , ๊ฐ ๋‹จ๊ณ„๊ฐ€ ์–ด๋–ค ์ธ์ง€์  ์—ญํ• ์„ ์ˆ˜ํ–‰ํ•˜๋Š”์ง€ ๋ฉ”ํƒ€๋ฐ์ดํ„ฐํ™”ํ•œ๋‹ค. ์ด ๊ณผ์ •์—์„œ ํŠนํžˆ โ€˜๊ฒ€์ฆ(verification)โ€™ ๋‹จ๊ณ„์™€ โ€˜์—ญ์ถ”์ (backtracking)โ€™ ๋‹จ๊ณ„๊ฐ€ ๋ณ„๋„์˜ ์–ดํ…์…˜ ํ—ค๋“œ์— ์ง‘์ค‘๋˜์–ด ์žˆ๋‹ค๋Š” ์‚ฌ์‹ค์„

Computer Science NLP Model
Comparing Approaches to Automatic Summarization in Less-Resourced Languages

Comparing Approaches to Automatic Summarization in Less-Resourced Languages

์ด ๋…ผ๋ฌธ์€ ์ž์›์ด ๋ถ€์กฑํ•œ ์–ธ์–ด(LRL, Lessโ€‘Resourced Languages)์—์„œ ์ž๋™ ์š”์•ฝ ๊ธฐ์ˆ ์˜ ํ˜„ํ™ฉ๊ณผ ํ•œ๊ณ„๋ฅผ ์ฒด๊ณ„์ ์œผ๋กœ ์กฐ๋ช…ํ•œ๋‹ค. ๋จผ์ €, ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(LLM)์˜ ์ œ๋กœ์ƒท ํ”„๋กฌํ”„ํŠธ ๋ฐฉ์‹์„ ๋‹ค์–‘ํ•œ ๋ชจ๋ธ ํฌ๊ธฐ(์˜ˆ: GPTโ€‘3.5, LLaMAโ€‘7B ๋“ฑ)์™€ ํ•จ๊ป˜ ์‹คํ—˜ํ–ˆ๋Š”๋ฐ, ํŒŒ๋ผ๋ฏธํ„ฐ ์ˆ˜๊ฐ€ ๋น„์Šทํ•˜๋”๋ผ๋„ ์‚ฌ์ „ ํ•™์Šต ๋ฐ์ดํ„ฐ์˜ ์–ธ์–ด ๋‹ค์–‘์„ฑ, ํ† ํฌ๋‚˜์ด์ € ์„ค๊ณ„, ๊ทธ๋ฆฌ๊ณ  ํ”„๋กฌํ”„ํŠธ ์—”์ง€๋‹ˆ์–ด๋ง ์ฐจ์ด์— ๋”ฐ๋ผ ์„ฑ๋Šฅ ํŽธ์ฐจ๊ฐ€ ํฌ๊ฒŒ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ์ด๋Š” LLM์ด ๊ณ ์ž์› ์–ธ์–ด์— ์ตœ์ ํ™”๋œ ๊ตฌ์กฐ๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ์–ด, LRL์— ๋Œ€ํ•œ ์ผ๋ฐ˜ํ™” ๋Šฅ๋ ฅ์ด ์ œํ•œ์ ์ž„์„ ์‹œ์‚ฌํ•œ๋‹ค.

Computer Science NLP
No Image

HOLOGRAPH: Active Causal Discovery via Sheaf-Theoretic Alignment of Large Language Model Priors

HOLOGRAPH ๋…ผ๋ฌธ์€ ์ธ๊ณผ ๊ตฌ์กฐ ํ•™์Šต์ด๋ผ๋Š” ์˜ค๋ž˜๋œ ๋ฌธ์ œ์— ์ตœ์‹  ์ธ๊ณต์ง€๋Šฅ ๊ธฐ์ˆ ์„ ์ˆ˜ํ•™์ ์œผ๋กœ ๊ฒฐํ•ฉํ•œ ์‹œ๋„๋ผ ํ•  ์ˆ˜ ์žˆ๋‹ค. ์ „ํ†ต์ ์ธ ์ธ๊ณผ ๋ฐœ๊ฒฌ ๋ฐฉ๋ฒ•์€ ์กฐ๊ฑด๋ถ€ ๋…๋ฆฝ์„ฑ ๊ฒ€์ •์ด๋‚˜ ๊ตฌ์กฐ์  ๋ฐฉ์ •์‹ ๋ชจ๋ธ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•˜์ง€๋งŒ, ๊ด€์ธก ๋ฐ์ดํ„ฐ๋งŒ์œผ๋กœ๋Š” ๋™์ผํ•œ ๋งˆ๋ฅด์ฝ”ํ”„ ๋“ฑ๊ฐ€ ํด๋ž˜์Šค ๋‚ด์˜ ์—ฌ๋Ÿฌ ๊ทธ๋ž˜ํ”„๋ฅผ ๊ตฌ๋ถ„ํ•˜๊ธฐ ์–ด๋ ต๋‹ค. ์ด ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด ์—ฐ๊ตฌ์ž๋“ค์€ ์™ธ๋ถ€ ์ง€์‹, ํŠนํžˆ ์ธ๊ฐ„์ด ๋งŒ๋“  ์ง€์‹ ๊ทธ๋ž˜ํ”„๋‚˜ ๋„๋ฉ”์ธ ์ „๋ฌธ๊ฐ€์˜ ์˜๊ฒฌ์„ ์‚ฌ์ „ํ™•๋ฅ ๋กœ ๋„์ž…ํ•ด ์™”๋‹ค. ์ตœ๊ทผ์—๋Š” LLM์ด ๋ฐฉ๋Œ€ํ•œ ํ…์ŠคํŠธ ์ฝ”ํผ์Šค๋ฅผ ํ•™์Šตํ•จ์œผ๋กœ์จ โ€œ์ธ๊ณผ์  ์ง๊ด€โ€์„ ๋‚ดํฌํ•˜๊ณ  ์žˆ๋‹ค๋Š” ์ ์— ์ฃผ๋ชฉํ•ด, LLM์„

Machine Learning Computer Science Model
iCLP: Large Language Model Reasoning with Implicit Cognition Latent Planning

iCLP: Large Language Model Reasoning with Implicit Cognition Latent Planning

iCLP๋Š” ๊ธฐ์กด โ€œ์ฒด์ธโ€‘์˜ค๋ธŒโ€‘์ƒ๊ฐโ€(CoT) ์ ‘๊ทผ๋ฒ•์˜ ๋‘ ๊ฐ€์ง€ ํ•œ๊ณ„๋ฅผ ๋™์‹œ์— ํ•ด๊ฒฐํ•˜๋ ค๋Š” ์‹œ๋„์ด๋‹ค. ์ฒซ ๋ฒˆ์งธ๋Š” ์ธ๊ฐ„์ด ๋ฌธ์ œ๋ฅผ ํ’€ ๋•Œ ํ…์ŠคํŠธ๋กœ ๋ช…์‹œ์ ์ธ ๊ณ„ํš์„ ์„ธ์šฐ์ง€ ์•Š๋”๋ผ๋„, ๊ณผ๊ฑฐ ๊ฒฝํ—˜์—์„œ ์ถ”์ถœ๋œ ์••์ถ•๋œ ํŒจํ„ด์„ ๋ฌด์˜์‹์ ์œผ๋กœ ํ™œ์šฉํ•œ๋‹ค๋Š” ์ ์ด๋‹ค. ์ด๋Ÿฌํ•œ ์•”๋ฌต์  ์ธ์ง€๋Š” LLM์ด ์ง์ ‘ ํ…์ŠคํŠธ ๊ณ„ํš์„ ์ƒ์„ฑํ•  ๋•Œ ๋ฐœ์ƒํ•˜๋Š” โ€œํ™˜๊ฐโ€(hallucination) ๋ฌธ์ œ๋ฅผ ํšŒํ”ผํ•  ์ˆ˜ ์žˆ๋Š” ๊ฐ€๋Šฅ์„ฑ์„ ์ œ๊ณตํ•œ๋‹ค. ๋‘ ๋ฒˆ์งธ๋Š” ๋‹ค์–‘ํ•œ ๋„๋ฉ”์ธ๊ณผ ์งˆ๋ฌธ ํ˜•ํƒœ์— ๋Œ€ํ•ด ์ผ๊ด€๋œ ํ…์ŠคํŠธ ๊ณ„ํš์„ ์„ค๊ณ„ํ•˜๋Š” ๊ฒƒ์ด ๋น„ํ˜„์‹ค์ ์ด๋ผ๋Š” ์ ์ด๋‹ค. iCLP๋Š” ๋ช…์‹œ์  ๊ณ„ํš์„ ๋จผ์ € ์ˆ˜์ง‘ํ•˜๊ณ , ์ด

Computer Science NLP Model
OptRot: Mitigating Weight Outliers via Data-Free Rotations for Post-Training Quantization

OptRot: Mitigating Weight Outliers via Data-Free Rotations for Post-Training Quantization

๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(LLM)์€ ์ˆ˜์–ต์—์„œ ์ˆ˜์กฐ ๊ฐœ์˜ ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ๋ณด์œ ํ•˜๊ณ  ์žˆ์–ด, ์‹ค์ œ ์„œ๋น„์Šค ํ™˜๊ฒฝ์—์„œ ๋ฉ”๋ชจ๋ฆฌ์™€ ์—ฐ์‚ฐ ๋น„์šฉ์„ ํฌ๊ฒŒ ์ ˆ๊ฐํ•˜๊ธฐ ์œ„ํ•ด ์‚ฌํ›„ ์–‘์žํ™”(postโ€‘training quantization, PTQ)๊ฐ€ ํ•„์ˆ˜์ ์ด๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ LLM์˜ ๊ฐ€์ค‘์น˜์™€ ํ™œ์„ฑ๊ฐ’์—๋Š” โ€œ์ด์ƒ์น˜(outlier)โ€๋ผ ๋ถˆ๋ฆฌ๋Š” ๊ทน๋‹จ์ ์ธ ๊ฐ’๋“ค์ด ์กด์žฌํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ์ด์ƒ์น˜๋Š” ์–‘์žํ™” ๋‹จ๊ณ„์—์„œ ์Šค์ผ€์ผ๋ง์„ ํฌ๊ฒŒ ์žก์•„์•ผ ํ•˜๋ฏ€๋กœ, ์ „์ฒด ๋ถ„ํฌ๊ฐ€ ๊ณผ๋„ํ•˜๊ฒŒ ์••์ถ•๋˜๊ณ  ๊ฒฐ๊ณผ์ ์œผ๋กœ ์ •๋ฐ€๋„๊ฐ€ ํฌ๊ฒŒ ๋–จ์–ด์ง„๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋Š” ์ด ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ํšŒ์ „(rotation) ๊ธฐ๋ฒ•์„ ๋„์ž…ํ–ˆ๋Š”๋ฐ, ํšŒ์ „์€

Computer Science Data Machine Learning
No Image

Pathology Context Recalibration Network for Ocular Disease Recognition

๋ณธ ๋…ผ๋ฌธ์€ ์•ˆ๊ณผ ์˜์ƒ ์ง„๋‹จ ๋ถ„์•ผ์—์„œ โ€˜๋ณ‘๋ฆฌํ•™์  ๋งฅ๋ฝโ€™๊ณผ โ€˜์ „๋ฌธ๊ฐ€ ๊ฒฝํ—˜โ€™์ด๋ผ๋Š” ๋‘ ๊ฐ€์ง€ ์ธ๊ฐ„ ์ค‘์‹ฌ์˜ ์‚ฌ์ „ ์ •๋ณด๋ฅผ ๋”ฅ๋Ÿฌ๋‹ ๋ชจ๋ธ์— ์ฒด๊ณ„์ ์œผ๋กœ ํ†ตํ•ฉํ•˜๋ ค๋Š” ์‹œ๋„๋ฅผ ์ œ์‹œํ•œ๋‹ค. ๋จผ์ € ์ œ์•ˆ๋œ Pathology Recalibration Module(PRM)์€ ๋‘ ๋‹จ๊ณ„๋กœ ๊ตฌ์„ฑ๋œ๋‹ค. ์ฒซ ๋ฒˆ์งธ ๋‹จ๊ณ„์ธ ํ”ฝ์…€โ€‘๋‹จ์œ„ ๋งฅ๋ฝ ์••์ถ• ์—ฐ์‚ฐ์ž๋Š” ๊ณ ํ•ด์ƒ๋„ ์•ˆ๊ตฌ ์ด๋ฏธ์ง€์—์„œ ์ง€์—ญ์  ํŠน์ง•์„ ์ €์ฐจ์› ํ‘œํ˜„์œผ๋กœ ์••์ถ•ํ•จ์œผ๋กœ์จ ์—ฐ์‚ฐ ํšจ์œจ์„ฑ์„ ๋†’์ด๊ณ , ๋™์‹œ์— ๋ณ‘๋ณ€์ด ๋‚˜ํƒ€๋‚˜๋Š” ์˜์—ญ์˜ ์ „๋ฐ˜์ ์ธ ๊ตฌ์กฐ์  ์ •๋ณด๋ฅผ ๋ณด์กดํ•œ๋‹ค. ๋‘ ๋ฒˆ์งธ ๋‹จ๊ณ„์ธ ๋ณ‘๋ฆฌํ•™์  ๋ถ„ํฌ ์ง‘์ค‘ ์—ฐ์‚ฐ์ž๋Š” ์••์ถ•๋œ ํŠน์ง• ๋งต์„ ๊ธฐ๋ฐ˜์œผ๋กœ

Computer Vision Computer Science Network
No Image

Tubular Riemannian Laplace Approximations for Bayesian Neural Networks

๋ณธ ์—ฐ๊ตฌ๋Š” ๋ฒ ์ด์ง€์•ˆ ์‹ ๊ฒฝ๋ง(BNN)์—์„œ ๋ผํ”Œ๋ผ์Šค ๊ทผ์‚ฌ์˜ ํ•œ๊ณ„๋ฅผ ์ •ํ™•ํžˆ ์งš์–ด๋‚ธ ๋’ค, ๋ฆฌ๋งŒ ๊ธฐํ•˜ํ•™์„ ๋„์ž…ํ•ด ์ด๋ฅผ ๊ทน๋ณตํ•˜๋ ค๋Š” ์‹œ๋„๋ฅผ ๋ณด์—ฌ์ค€๋‹ค. ์ „ํ†ต์ ์ธ ๋ผํ”Œ๋ผ์Šค ๊ทผ์‚ฌ๋Š” MAP(์ตœ๋Œ€ ์‚ฌํ›„ ํ™•๋ฅ ) ์ถ”์ •์  ์ฃผ๋ณ€์„ ์œ ํด๋ฆฌ๋“œ ๊ฑฐ๋ฆฌ ๊ธฐ๋ฐ˜์˜ ๋‹ค๋ณ€๋Ÿ‰ ์ •๊ทœ๋ถ„ํฌ๋กœ ๊ทผ์‚ฌํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๋”ฅ๋Ÿฌ๋‹ ๋ชจ๋ธ์€ ์ˆ˜๋ฐฑ๋งŒ ์ฐจ์›์˜ ํŒŒ๋ผ๋ฏธํ„ฐ ๊ณต๊ฐ„์— ๋ณต์žกํ•œ ๋น„์„ ํ˜• ๊ตฌ์กฐ์™€ ๋‹ค์ค‘ ๋Œ€์นญ(์˜ˆ: ๋ ˆ์ด์–ด ์ˆœ์—ด, ์Šค์ผ€์ผ ๋ณ€ํ™˜ ๋“ฑ)๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ์–ด, ์†์‹ค ํ‘œ๋ฉด์€ ๊ทน๋„๋กœ ์–‡๊ณ  ๊ธด ๊ณจ์งœ๊ธฐ ํ˜•ํƒœ๋ฅผ ๋ค๋‹ค. ์ด๋Ÿฐ ์ƒํ™ฉ์—์„œ ์œ ํด๋ฆฌ๋“œ ๋ฉ”ํŠธ๋ฆญ์€ ์‹ค์ œ ๊ณก๋ฅ ์„ ๋ฌด์‹œํ•˜๊ณ , ๊ฒฐ๊ณผ์ ์œผ๋กœ ๊ณผ๋„ํ•˜๊ฒŒ ์ถ•์†Œ๋œ ํ˜น์€ ๊ณผ๋„ํ•˜๊ฒŒ

Machine Learning Computer Science Network
State Synchronization for Homogeneous Networks of Non-introspective   Agents in Presence of Input Saturation -A Scale-free Protocol Design

State Synchronization for Homogeneous Networks of Non-introspective Agents in Presence of Input Saturation -A Scale-free Protocol Design

This paper addresses the challenge of achieving global and semi global regulated state synchronization in homogeneous networks of non introspective agents, particularly under input saturation conditions. The key contribution is a scalable protocol design that does not require detailed knowledge abou

Computer Science Systems and Control Network Electrical Engineering and Systems Science
Shenjing: A low power reconfigurable neuromorphic accelerator with   partial-sum and spike networks-on-chip

Shenjing: A low power reconfigurable neuromorphic accelerator with partial-sum and spike networks-on-chip

This paper introduces Shenjing, a novel architecture that aims to achieve energy efficient deep neural networks (DNNs). The primary focus is on addressing the high energy consumption of DNNs, especially in on device AI applications where both computation and communication consume significant amounts

Emerging Technologies Neural Computing Network Computer Science Hardware Architecture
No Image

Indian EmoSpeech Command Dataset: A dataset for emotion based speech recognition in the wild

This paper introduces the Indian EmoSpeech Command Dataset, a new dataset for speech emotion analysis that takes into account both verbal and non verbal components of speech in real life scenarios. The research addresses the challenge faced by traditional models which often operate under controlled

Sound Multimedia Electrical Engineering and Systems Science Data Computer Science Audio Processing
Minimum settling time control design through direct search optimization

Minimum settling time control design through direct search optimization

: ๋ณธ ๋…ผ๋ฌธ์€ PID ์ œ์–ด๊ธฐ์˜ ๋งค๊ฐœ๋ณ€์ˆ˜๋ฅผ ์ตœ์ ํ™”ํ•˜์—ฌ ์‹œ์Šคํ…œ์˜ ์‘๋‹ต ์†๋„์™€ ์•ˆ์ •์„ฑ์„ ๋™์‹œ์— ํ–ฅ์ƒ์‹œํ‚ค๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์‹œํ•œ๋‹ค. ์ด ์—ฐ๊ตฌ์—์„œ๋Š” ์ƒ์Šน ์‹œ๊ฐ„๊ณผ ์ •์ฐฉ ๋ฒ”์œ„ ๋‚ด์—์„œ์˜ ์ตœ๋Œ€ ํŽธ์ฐจ๋ฅผ ์ตœ์†Œํ™”ํ•˜๋Š” ๋ชฉํ‘œ ํ•จ์ˆ˜๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ PID ๊ณ„์ˆ˜

Mathematics Computer Science Systems and Control
An Efficient Real Time Method of Fingertip Detection

An Efficient Real Time Method of Fingertip Detection

: ๋ณธ ๋…ผ๋ฌธ์€ ์„ผ์„œ๋‚˜ ๋งˆ์ปค ์—†์ด ๋™์ ์ธ ์† ์ œ์Šค์ฒ˜๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ์ธ์‹ํ•˜๋Š” ๋ฐฉ๋ฒ•์— ๋Œ€ํ•ด ๊นŠ์ด ์žˆ๊ฒŒ ๋‹ค๋ฃฌ๋‹ค. ์ด ์—ฐ๊ตฌ๋Š” ๊ธฐ์กด์˜ ์ง€๋ฌธ ๊ฐ์ง€ ๊ธฐ์ˆ ์—์„œ ๋‚˜ํƒ€๋‚œ ์—ฌ๋Ÿฌ ๋ฌธ์ œ์ ์„ ํ•ด๊ฒฐํ•˜๋ ค๊ณ  ์‹œ๋„ํ•œ๋‹ค. 1. ๊ธฐ์กด ์ ‘๊ทผ๋ฒ•์˜ ํ•œ๊ณ„ Garg

Detection Artificial Intelligence Computer Vision Multimedia Computer Science
No Image

Small Jump with Negation-UTM Trampoline

์ด ๋…ผ๋ฌธ์€ ํŠœ๋ง ๋จธ์‹ ์˜ ๊ณ ์ •์ ๊ณผ ๋ถ€์ •์— ๋Œ€ํ•œ ๊ฐœ๋…์„ ํ™œ์šฉํ•˜์—ฌ ๋ณต์žก์„ฑ ํด๋ž˜์Šค๋ฅผ ๋ถ„์„ํ•˜๊ณ , ์ด๋ฅผ ํ†ตํ•ด L โ‰  P์™€ P โ‰  NP๋ผ๋Š” ์ค‘์š”ํ•œ ๋ณต์žก์„ฑ ์ด๋ก  ๊ฒฐ๊ณผ๋“ค์„ ์ฆ๋ช…ํ•œ๋‹ค. ๋…ผ๋ฌธ์˜ ํ•ต์‹ฌ ์•„์ด๋””์–ด๋Š” ๊ฒฐ์ •์  ํŠœ๋ง ๋จธ์‹ (DTM)๊ณผ ๋ณดํŽธ์  ํŠœ๋ง ๋จธ์‹ (UTM) ์‚ฌ์ด์˜ ๊ด€๊ณ„๋ฅผ ๋ถ„์„ํ•˜๋Š” ๊ฒƒ์ด๋‹ค. 1. L โ‰  P ์ฆ๋ช… ๋…ผ๋ฌธ์€ ๋กœ๊ทธ ๊ณต๊ฐ„ DTM(LDTM) ์ง‘ํ•ฉ์ด ๋ถ€์ •์— ๋Œ€ํ•ด ๋‹ซํžˆ์ง€ ์•Š์Œ์„ ์ฆ๋ช…ํ•œ๋‹ค. ์ด๋Š” LDTM์„ ๋‹คํ•ญ ์‹œ๊ฐ„ ๋‚ด์— ์—๋ฎฌ๋ ˆ์ด์…˜ํ•  ์ˆ˜ ์žˆ๋Š” UTM์˜ ์กด์žฌ๋ฅผ ํ†ตํ•ด ๊ฐ€๋Šฅํ•˜๋‹ค. ๋…ผ๋ฌธ์—์„œ๋Š” ์ง„๋‹จํ™”(diagonalization) ๊ธฐ๋ฒ•์„ ์‚ฌ์šฉํ•˜์—ฌ ์ด๋Ÿฌํ•œ

Computational Complexity Computer Science
Superiority of exact quantum automata for promise problems

Superiority of exact quantum automata for promise problems

: ๋ณธ ๋…ผ๋ฌธ์€ ์–‘์ž ์ปดํ“จํŒ…๊ณผ ๊ณ ์ „์  ์ปดํ“จํŒ…์˜ ์„ฑ๋Šฅ ์ฐจ์ด์— ๋Œ€ํ•œ ์‹ฌ๋„ ์žˆ๋Š” ๋ถ„์„์„ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค. ํŠนํžˆ, ์–‘์ž ์˜คํ† ๋งˆํƒ€์™€ ๊ฒฐ์ •์  ์œ ํ•œ ์˜คํ† ๋งˆํƒ€(DFA)๋ฅผ ๋น„๊ตํ•˜์—ฌ ์–‘์ž์˜ ์šฐ์›”์„ฑ์„ ์ž…์ฆํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. 1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ์–‘์ž ๊ณ„์‚ฐ์€ ๋ถ€๋ถ„ ํ•จ์ˆ˜์™€ ์ „์ฒด ํ•จ์ˆ˜์— ๋Œ€ํ•œ ๊ด‘๋ฒ”์œ„ํ•œ ์—ฐ๊ตฌ๊ฐ€ ์ด๋ฃจ์–ด์ ธ ์™”์Šต๋‹ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ž๋™ํ™” ์ด๋ก ์—์„œ๋Š” ์–‘์ž ์œ ํ•œ ์˜คํ† ๋งˆํƒ€(QFA)์˜ ์„ฑ๋Šฅ์„ ๋ถ„์„ํ•˜๋Š” ๊ฒฐ๊ณผ๋Š” ๋งค์šฐ ์ œํ•œ์ ์ด์—ˆ์Šต๋‹ˆ๋‹ค. Klauck

Formal Languages Quantum Physics Computational Complexity Computer Science
Some Software Packages for Partial SVD Computation

Some Software Packages for Partial SVD Computation

1. ์ตœ์ ํ™”๋œ PROPACK PROPACK์€ ๋ถ€๋ถ„ SVD ๊ณ„์‚ฐ์„ ์ˆ˜ํ–‰ํ•˜๋Š” ๋ฐ ๋„๋ฆฌ ์‚ฌ์šฉ๋˜๋Š” ๋„๊ตฌ๋กœ, ์ฃผ๋กœ ํ•ต ๋…ธ๋ฆ„ ์ตœ์†Œํ™” ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ํ™œ์šฉ๋ฉ๋‹ˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” PROPACK์˜ ์„ฑ๋Šฅ์„ ํ–ฅ์ƒ์‹œํ‚ค๊ธฐ ์œ„ํ•ด ๊ทธ๋žŒ ์Šˆ๋ฏธํŠธ ์ง๊ตํ™” ๊ณผ์ •์„ ์žฌ๊ตฌ์„ฑํ•˜์—ฌ 15%์—์„œ 20%๊นŒ์ง€ ์†๋„๋ฅผ ๋†’์˜€์Šต๋‹ˆ๋‹ค. ์ด ์ตœ์ ํ™”๋œ ๋ฒ„์ „์€

Mathematical Software Mathematics Computer Science
No Image

Projection Operator in Adaptive Systems

์ด ๋…ผ๋ฌธ์€ ์ ์‘ ์ œ์–ด ๋ถ„์•ผ์—์„œ ํˆฌ์˜ ์—ฐ์‚ฐ์ž์˜ ์—ญํ• ๊ณผ ํŠน์„ฑ์„ ๊นŠ์ด ์žˆ๊ฒŒ ํƒ๊ตฌํ•œ๋‹ค. ํŠนํžˆ, ์ด์‚ฐ ์ง‘ํ•ฉ์˜ ์„ฑ์งˆ์„ ์ด์šฉํ•ด ํˆฌ์˜ ์—ฐ์‚ฐ์ž๋ฅผ ์ •์˜ํ•˜๊ณ , ๊ทธ ๊ธฐํ•˜ํ•™์  ํ•ด์„์„ ํ†ตํ•ด ์ดํ•ด๋ฅผ ๋•๋Š”๋‹ค. 1. ์ด๋ก ์  ๋ฐฐ๊ฒฝ ๋…ผ๋ฌธ์€ ๋จผ์ € ์ด์‚ฐ ์ง‘ํ•ฉ์˜ ์„ฑ์งˆ์— ๋Œ€ํ•ด ์„ค๋ช…ํ•œ๋‹ค. ์ด์‚ฐ ์ง‘ํ•ฉ E ๋‚ด์—์„œ ๋‘ ์  x์™€ y๊ฐ€ ์ฃผ์–ด์กŒ์„ ๋•Œ, ์ด ๋‘ ์ ์„ ์—ฐ๊ฒฐํ•˜๋Š” ์„ ๋ถ„ ์œ„์˜ ๋ชจ๋“  ์ ๋„ E์— ์†ํ•œ๋‹ค๋Š” ์„ฑ์งˆ์ด ์ค‘์š”ํ•˜๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ํˆฌ์˜ ์—ฐ์‚ฐ์ž์˜ ์ •์˜๋ฅผ ์ดํ•ดํ•  ์ˆ˜ ์žˆ๋Š” ๊ธฐ์ดˆ์ ์ธ ๊ฐœ๋…์„ ์ œ๊ณตํ•œ๋‹ค. 2. ํˆฌ์˜ ์—ฐ์‚ฐ์ž์™€ ๊ทธ ํŠน์„ฑ ํˆฌ์˜ ์—ฐ์‚ฐ์ž๋Š” R^k ๋‚ด์—์„œ ๋‘ ๋ฒกํ„ฐ ฮธ, y์— ๋Œ€ํ•ด ๋‹ค์Œ

Nonlinear Sciences Computer Science System Mathematics Systems and Control
No Image

Guaranteed successful strategies for a square achievement game on an n by n grid

์ด ๋…ผ๋ฌธ์€ ์ •์‚ฌ๊ฐํ˜• ๋‹ฌ์„ฑ ๊ฒŒ์ž„์—์„œ ์ตœ์ ์˜ ํ”Œ๋ ˆ์ด ์ „๋žต์— ๋Œ€ํ•œ ์‹ฌ๋„ ์žˆ๋Š” ๋ถ„์„์„ ์ œ๊ณตํ•œ๋‹ค. ์ด ๊ฒŒ์ž„์€ n x n ๊ทธ๋ฆฌ๋“œ ์œ„์—์„œ ๋‘ ํ”Œ๋ ˆ์ด์–ด๊ฐ€ 'O'์™€ 'X'๋ฅผ ๋ฒˆ๊ฐˆ์•„ ๋ฐฐ์น˜ํ•˜๋ฉฐ, ์ฒซ ๋ฒˆ์งธ ํ”Œ๋ ˆ์ด์–ด๋Š” ์ˆ˜ํ‰ ๋ฐ ์ˆ˜์ง ๋ณ€์˜ ๋ชจ์„œ๋ฆฌ์— 4๊ฐœ์˜ ์…€์„ ์ ์œ ํ•˜์—ฌ ์Šน๋ฆฌ๋ฅผ ๋‹ฌ์„ฑํ•ด์•ผ ํ•œ๋‹ค. ๋…ผ๋ฌธ์€ SQRGAME2๋ผ๋Š” ์ปดํ“จํ„ฐ ํ”„๋กœ๊ทธ๋žจ์„ ์‚ฌ์šฉํ•ด n์ด 3, 4, 5์ผ ๋•Œ ๊ฐ ํ”Œ๋ ˆ์ด์–ด๊ฐ€ ์ตœ์ ์˜ ์ „๋žต์œผ๋กœ ๊ฒŒ์ž„์—์„œ ์–ด๋–ป๊ฒŒ ์ด๊ธธ ์ˆ˜ ์žˆ๋Š”์ง€ ๋ถ„์„ํ•œ๋‹ค. ๊ฒŒ์ž„์˜ ๊ทœ์น™๊ณผ ์ง„ํ–‰ ๋ฐฉ์‹์— ๋Œ€ํ•œ ์ž์„ธํ•œ ์„ค๋ช…์€ ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค. G๋Š” 0๋ถ€ํ„ฐ (์ ์–ด๋„) n 1๊นŒ์ง€์˜ ์ •์ˆ˜ ์ธ๋ฑ์Šค ๋ฒ”์œ„๋ฅผ ๊ฐ€

Mathematics Computer Science Discrete Mathematics
No Image

Filtrations of Formal Languages by Arithmetic Progressions

๋ณธ ๋…ผ๋ฌธ์€ Berstel ์™ธ ์—ฐ๊ตฌ์ž๋“ค์ด ์ œ์‹œํ•œ ํ•„ํ„ฐ๋ง ๊ฐœ๋…์„ ์žฌ๊ฒ€ํ† ํ•˜๊ณ , ํŠนํžˆ ์‚ฐ์ˆ ์ง„ํ–‰๋ ฌ์„ ์ด์šฉํ•œ ํ•„ํ„ฐ๋ง ๋ฐฉ๋ฒ•์— ์ดˆ์ ์„ ๋งž์ถ”์–ด ์ •๊ทœ ์–ธ์–ด์™€ ๋ฌธ๋ฒ•์  ์ž์œ  ์–ธ์–ด์˜ ํŠน์„ฑ์„ ๋ถ„์„ํ•œ๋‹ค. ์ด ์—ฐ๊ตฌ๋Š” ์ฃผ๋กœ ๋ฌดํ•œ ํ•„ํ„ฐ ์ง‘ํ•ฉ S {s1, s2, ...} ์— ๋Œ€ํ•ด ์ฃผ์–ด์ง„ ์–ธ์–ด L ์˜ ๋ชจ๋“  ํ•„ํ„ฐ๋ง๋œ ์–ธ์–ด { L

Formal Languages Computer Science
No Image

Errors in Improved Polynomial Algorithm For 3 Sat Proposed By Narendra Chaudhari

๋ณธ ๋…ผ๋ฌธ์€ ๋‚˜๋ฅด์—”๋“œ๋ผ ์ฐจ์šฐ๋‹ค๋ฆฌ๊ฐ€ ๊ฐœ๋ฐœํ•˜๊ณ  ๊ฐœ์„ ํ•œ 3 SAT ๋ฌธ์ œ ํ•ด๊ฒฐ ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ํ•œ๊ณ„๋ฅผ ํƒ์ƒ‰ํ•œ๋‹ค. 3 SAT ๋ฌธ์ œ๋Š” ์ปดํ“จํ„ฐ ๊ณผํ•™์—์„œ ์ค‘์š”ํ•œ NP ์™„์ „ ๋ฌธ์ œ๋กœ, ์ด๋ฅผ ๋‹คํ•ญ ์‹œ๊ฐ„ ๋‚ด์— ํ•ด๊ฒฐํ•˜๋Š” ๊ฒƒ์€ P NP ๋ฌธ์ œ์™€ ๋ฐ€์ ‘ํ•˜๊ฒŒ ์—ฐ๊ด€๋˜์–ด ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ, ์ด ๋ฌธ์ œ์— ๋Œ€ํ•œ ํšจ์œจ์ ์ธ ์•Œ๊ณ ๋ฆฌ์ฆ˜์ด ์ œ์‹œ๋  ๊ฒฝ์šฐ ๊ทธ ์ค‘์š”์„ฑ์€ ์ด๋ฃจ ๋งํ•  ์ˆ˜ ์—†๋‹ค. ๋…ผ๋ฌธ์—์„œ๋Š” ์ฐจ์šฐ๋‹ค๋ฆฌ์˜ ๊ฐœ์„ ๋œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ๋‘ ๊ฐ€์ง€ ์‚ฌ๋ก€๋ฅผ ํ†ตํ•ด ๋ถ„์„ํ•œ๋‹ค. ์ด ์‚ฌ๋ก€๋“ค์€ ๋ชจ๋‘ 9๊ฐœ์˜ ๋ณ€์ˆ˜(a1๋ถ€ํ„ฐ a9๊นŒ์ง€)๋กœ ๊ตฌ์„ฑ๋˜๋ฉฐ, ๊ฐ๊ฐ์˜ ์‚ฌ๋ก€๋Š” ํŠน์ • ์กฐํ•ฉ ์ •๊ทœ ํ˜•์‹(CNF)์˜ ์ ˆ๋“ค๋กœ ํ‘œํ˜„๋œ๋‹ค. ์ด๋Ÿฌํ•œ CN

Computational Complexity Computer Science
Inclusion of Unambiguous RE#s is NP-Hard

Inclusion of Unambiguous RE#s is NP-Hard

: ๋ณธ ๋…ผ๋ฌธ์€ ์ •๊ทœํ‘œํ˜„์‹(REs)์˜ ํฌํ•จ์„ฑ ๋ฌธ์ œ์— ๋Œ€ํ•œ ์ค‘์š”ํ•œ ์ด๋ก ์  ๊ฒฐ๊ณผ๋ฅผ ์ œ์‹œํ•˜๋ฉฐ, ํŠนํžˆ ๋ช…ํ™•ํ•œ REs์˜ ๊ฒฝ์šฐ์—๋„ NP ๋‚œ์ œ์ž„์„ ์ฆ๋ช…ํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ๊ฒฐ๊ณผ๋Š” XML ์Šคํ‚ค๋งˆ ์ฝ˜ํ…์ธ  ๋ชจ๋ธ์—์„œ ์š”๊ตฌ๋˜๋Š” ๋ช…ํ™•์„ฑ์„ ๋งŒ์กฑํ•˜๋”๋ผ๋„ ๊ณ„์‚ฐ์ ์œผ๋กœ ํ•ด๊ฒฐํ•˜๊ธฐ ์–ด๋ ค์šด ๋ฌธ์ œ๋ผ๋Š” ๊ฒƒ์„ ์‹œ์‚ฌํ•œ๋‹ค. 1. ์„œ๋ก  ์„œ๋ก ์—์„œ๋Š” ์ด์ „ ์—ฐ๊ตฌ

Computational Complexity Computer Science
No Image

Jacobians and Hessians of Mean Value Coordinates for Closed Triangular Meshes

์ด ๋…ผ๋ฌธ์€ ํ์‡„ ์‚ผ๊ฐ๋ง์— ๋Œ€ํ•œ ํ‰๊ท ๊ฐ’ ์ขŒํ‘œ๋ฅผ ๋‹ค๋ฃจ๋Š” ๋ฐ ์ค‘์ ์„ ๋‘๊ณ  ์žˆ์œผ๋ฉฐ, ์ด๋ฅผ ํ†ตํ•ด 3์ฐจ์› ๊ณต๊ฐ„ ๋‚ด์—์„œ ๋ฉ”์‰ฌ ๋ณ€ํ˜• ๋ฐ ๋ณด๊ฐ„ ๊ณผ์ •์„ ๋ถ„์„ํ•ฉ๋‹ˆ๋‹ค. ์ฃผ์š” ๋‚ด์šฉ๊ณผ ๋ถ„์„์€ ๋‹ค์Œ๊ณผ ๊ฐ™์Šต๋‹ˆ๋‹ค. 1. ํ‰๊ท ๊ฐ’ ์ขŒํ‘œ์˜ ์ •์˜์™€ ๊ณ„์‚ฐ ๋…ผ๋ฌธ์—์„œ๋Š” ํ์‡„ ์‚ผ๊ฐ๋ง M์˜ ๊ผญ์ง“์  p i๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ 3์ฐจ์› ๊ณต๊ฐ„ ๋‚ด ์  ฮท๋ฅผ ํ‘œํ˜„ํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์‹œํ•ฉ๋‹ˆ๋‹ค. ์ด๋Š” w i๋ผ๋Š” ๊ฐ€์ค‘์น˜๋ฅผ ํ†ตํ•ด ์ด๋ฃจ์–ด์ง€๋ฉฐ, ์ด ๊ฐ€์ค‘์น˜๋“ค์€ ฮป i๋ฅผ ํ†ตํ•ด ์ •์˜๋ฉ๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ๊ฐ€์ค‘์น˜๋“ค์„ ์ด์šฉํ•ด ํ‰๊ท ๊ฐ’ ์ขŒํ‘œ๋ฅผ ๊ณ„์‚ฐํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. 2. ํ•จ์ˆ˜ ๋ณด๊ฐ„๊ณผ ์„ ํ˜• ์ •๋ฐ€๋„ ํ‰๊ท ๊ฐ’ ์ขŒํ‘œ๋Š” ์‚ผ๊ฐ๋ง ๋‚ด์—์„œ ๊ฐ ๊ผญ์ง“์ 

Computer Science Graphics
No Image

Structure of lexicographic Groebner bases in three variables of ideals of dimension zero

: ์„œ๋ก  ๋ฐ ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋…ผ๋ฌธ์€ ๋‹ค๋ณ€์ˆ˜ ๋‹คํ•ญ์‹ ๋ฐ˜ํ™˜์˜ ์ œ๋กœ ์ฐจ์› ์ด์ƒ์ ๊ณผ ๊ทธ๋กœ๋ธŒ๋„ˆ ๊ธฐ์ €์— ์ดˆ์ ์„ ๋งž์ถ”๊ณ  ์žˆ๋‹ค. ํŠนํžˆ, 3๊ฐœ ๋ณ€์ˆ˜ x , y , z ๋ฅผ ์‚ฌ์šฉํ•˜๋Š” ๋‹คํ•ญ์‹ ๋ฐ˜ํ™˜ R

Symbolic Computation Computer Science
No Image

A radial version of the Central Limit Theorem

์ด ๋…ผ๋ฌธ์˜ ํ•ต์‹ฌ ์•„์ด๋””์–ด๋Š” ์›๋ž˜์˜ ์ค‘์‹ฌ๊ทนํ•œ์ •๋ฆฌ(Central Limit Theorem, CLT)๋ฅผ ๋ฐฉ์‚ฌํ˜• ๋ฒ„์ „์œผ๋กœ ํ™•์žฅํ•˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค. ์ด ํ™•์žฅ์„ ํ†ตํ•ด ๋น„๋“ฑ๋ฐฉ์„ฑ ๊ฐ€์šฐ์Šค ํ•จ์ˆ˜๋ฅผ ๊ทผ์‚ฌํ•  ์ˆ˜ ์žˆ๋Š” ์ƒˆ๋กœ์šด ๋ฐฉ๋ฒ•๋ก ์„ ์ œ์‹œํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. 1. ๋ฐฉ์‚ฌํ˜• CLT์™€ ๋น„๋“ฑ๋ฐฉ์„ฑ ๊ฐ€์šฐ์Šค ํ•จ์ˆ˜์˜ ๊ทผ์‚ฌ ๋…ผ๋ฌธ์€ ๊ฐ ๋ฐฉ์‚ฌ ๋ฐฉํ–ฅ์— ๋”ฐ๋ผ ๋ฐ•์Šค ํ•จ์ˆ˜ ํญ์„ ์กฐ์ ˆํ•จ์œผ๋กœ์จ ๋น„๋“ฑ๋ฐฉ์„ฑ ๊ฐ€์šฐ์Šค ํ•จ์ˆ˜๋ฅผ ๊ทผ์‚ฌํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ์•„์ด๋””์–ด๋ฅผ ์ œ์‹œํ•ฉ๋‹ˆ๋‹ค. ์ด๋Š” ํŠนํžˆ 4๋ฐฉํ–ฅ ๋ฐ•์Šค ์Šคํ”Œ๋ผ์ธ์ด๋ผ๋Š” ํŠน๋ณ„ํ•œ ๊ฒฝ์šฐ์—์„œ ํšจ๊ณผ์ ์ž…๋‹ˆ๋‹ค. ๊ณต๋ถ„์‚ฐ์„ ์ œ์–ดํ•˜๊ธฐ ์œ„ํ•ด ๋‹จ์ˆœํžˆ ๋ฐ•์Šค ๋ถ„ํฌ ํญ์„ ์กฐ์ ˆํ•˜๋Š” ๊ฐ„๋‹จํ•œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์ด

Information Theory Mathematics Computer Science Computer Vision
Total coloring of pseudo-outerplanar graphs

Total coloring of pseudo-outerplanar graphs

: 1. ์ด ์ƒ‰์น  ๋ฌธ์ œ์™€ ๊ทธ ์ค‘์š”์„ฑ ์ด ์ƒ‰์น  ๋ฌธ์ œ๋Š” ๊ทธ๋ž˜ํ”„ ์ด๋ก ์—์„œ ์ค‘์š”ํ•œ ์œ„์น˜๋ฅผ ์ฐจ์ง€ํ•˜๋ฉฐ, ๊ฐ ์ •์ ๊ณผ ๊ฐ„์„ ์— ๊ณ ์œ ํ•œ ์ƒ‰์ƒ์„ ํ• ๋‹นํ•˜๋Š” ๋ฐฉ์‹์œผ๋กœ ๊ทธ๋ž˜ํ”„์˜ ๊ตฌ์กฐ์  ํŠน์„ฑ์„ ์ดํ•ดํ•˜๊ณ  ๋ถ„์„ํ•ฉ๋‹ˆ๋‹ค. ํŠนํžˆ, ์ด ์ƒ‰์น  ์ถ”์ธก์€ ๊ทธ๋ž˜ํ”„์˜ ์ตœ๋Œ€ ์ฐจ์ˆ˜ ฮ”(G)์™€ ๊ด€๋ จ๋œ ์ค‘์š”ํ•œ ๋ฌธ์ œ๋กœ, ์ด ์ถ”์ธก์ด ์ฆ๋ช…๋˜๋ฉด ๋งŽ์€ ๊ทธ๋ž˜ํ”„ ํด๋ž˜์Šค์— ๋Œ€ํ•œ ์ด ์ƒ‰์ƒ ์ˆ˜๋ฅผ ๊ฒฐ์ •ํ•˜๋Š” ๋ฐ ๋„์›€์ด ๋ฉ๋‹ˆ๋‹ค. 2. ์œ„์ƒ์  ์™ธํŒ ๊ทธ๋ž˜ํ”„์˜ ์ •์˜ ๋ฐ ํŠน์„ฑ ์œ„์ƒ์  ์™ธํŒ ๊ทธ๋ž˜ํ”„๋Š” ๊ฐ ๋ธ”๋ก์ด ๊ณ ์ •๋œ ์› ์œ„์—์„œ ์ •์ ๋“ค์„ ๋ฐฐ์น˜ํ•˜๊ณ , ๊ฐ„์„ ๋“ค์ด ์›์˜ ๋””์Šคํฌ ๋‚ด๋ถ€์—์„œ ์„œ๋กœ ๊ต์ฐจํ•˜์ง€ ์•Š๋„๋ก ๋ฐฐ์น˜๋  ์ˆ˜ ์žˆ๋Š” ๊ทธ๋ž˜

Mathematics Computer Science Discrete Mathematics
Reversibility in Massive Concurrent Systems

Reversibility in Massive Concurrent Systems

: ๋ณธ ๋…ผ๋ฌธ์€ ๋Œ€๊ทœ๋ชจ ๋ณ‘๋ ฌ ์‹œ์Šคํ…œ์—์„œ ์—ญ์ „ ๊ฐ€๋Šฅ์„ฑ์˜ ๊ฐœ๋…๊ณผ ๊ทธ ์ ์šฉ ๋ฒ”์œ„๋ฅผ ํƒ๊ตฌํ•˜๊ณ  ์žˆ๋‹ค. ์—ญ์ „ ๊ฐ€๋Šฅ์„ฑ์€ ์ž…๋ ฅ ๋ฐ์ดํ„ฐ๊ฐ€ ์ˆœ์ฐจ์ ์œผ๋กœ ์ฒ˜๋ฆฌ๋˜๋ฉด์„œ, ์ฒซ ๋ฒˆ์งธ ์ž…๋ ฅ์ด ๋‘ ๋ฒˆ์งธ ์ž…๋ ฅ ์—†์ด๋„ ๋ฐฉ์ถœ๋˜์–ด ๋‹ค๋ฅธ ์—ฐ์‚ฐ์ž์— ์˜ํ•ด ์‚ฌ์šฉ๋  ์ˆ˜ ์žˆ๋Š” ๋Šฅ๋ ฅ์„ ์˜๋ฏธํ•œ๋‹ค. ์ด๋Š” ๋ณ‘๋ ฌ ์‹œ์Šคํ…œ์—์„œ ํšจ์œจ์ ์ธ ๋ฐ์ดํ„ฐ ์ฒ˜๋ฆฌ์™€ ํ”„๋กœ์„ธ์‹ฑ์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•˜๋Š” ์ค‘์š”ํ•œ ํŠน์„ฑ์ด๋‹ค. ๋…ผ๋ฌธ์€ ์—ญ์ „ ๊ฐ€๋Šฅ์„ฑ์˜ ๊ตฌ์กฐ๋ฅผ ๋ถ„์„ํ•˜๋ฉด์„œ, ํŠนํžˆ ์ผ๊ด€์„ฑ ์ œ์•ฝ ์กฐ๊ฑด ํ•˜์—์„œ ๋‹ค์ค‘์„ฑ์ด ์ œ๊ฑฐ๋œ ์—ญ์ „ ๊ฐ€๋Šฅํ•œ ๊ตฌ์กฐ์— ์ดˆ์ ์„ ๋งž์ถ”๊ณ  ์žˆ๋‹ค. ์ด๋Š” ๋ณ‘๋ ฌ ์‹œ์Šคํ…œ ๋‚ด์—์„œ ๋ฐ์ดํ„ฐ ์ฒ˜๋ฆฌ ๊ณผ์ •์ด ์ผ๊ด€์„ฑ์„ ์œ ์ง€ํ•˜๋„๋ก ํ•˜๋Š” ์ค‘์š”ํ•œ

Formal Languages Distributed Computing Computer Science System
No Image

Greedy Set Cover Estimations

๋ณธ ๋…ผ๋ฌธ์€ ์ง‘ํ•ฉ ๋ฎ๊ธฐ ๋ฌธ์ œ(Set Cover Problem)์— ๋Œ€ํ•œ ์ƒˆ๋กœ์šด ์ ‘๊ทผ ๋ฐฉ์‹์„ ์ œ์•ˆํ•˜๋ฉฐ, ํŠนํžˆ ์ด์ง„ ํƒ์ƒ‰ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ด์šฉํ•œ ๊ทผ์‚ฌ ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ๊ฐœ์„ ์ ์„ ๋‹ค๋ฃฌ๋‹ค. ์ง‘ํ•ฉ ๋ฎ๊ธฐ ๋ฌธ์ œ๋Š” NP ์™„์ „ ๋ฌธ์ œ๋กœ ์•Œ๋ ค์ ธ ์žˆ์–ด ์ •ํ™•ํ•œ ํ•ด๊ฒฐ์ฑ…์„ ์ฐพ๋Š” ๊ฒƒ์ด ๋งค์šฐ ์–ด๋ ต๋‹ค๋Š” ์ ์—์„œ ์ค‘์š”ํ•˜๋‹ค. ๋”ฐ๋ผ์„œ, ๋ณธ ๋…ผ๋ฌธ์€ ์ด ๋ฌธ์ œ๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ๊ทผ์‚ฌํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์‹œํ•จ์œผ๋กœ์จ ์‹ค์šฉ์ ์ธ ํ•ด๊ฒฐ์ฑ…์„ ์ œ๊ณตํ•œ๋‹ค. ๊ธฐ์กด ์ ‘๊ทผ ๋ฐฉ์‹์˜ ํ•œ๊ณ„ ๊ธฐ์กด์˜ ์ ‘๊ทผ ๋ฐฉ์‹์—์„œ๋Š” ๊ฐ ์—ด์— ์ตœ์†Œ m๊ฐœ์˜ 1์ด ์žˆ๋Š” (0,1) ํ–‰๋ ฌ๋กœ ์ง‘ํ•ฉ ๋ฎ๊ธฐ ๋ฌธ์ œ๋ฅผ ํ‘œํ˜„ํ•˜๊ณ , ์ด์ง„ ํƒ์ƒ‰์„ ํ†ตํ•ด ๊ฐ€์žฅ ๋งŽ์€ 1์„ ํฌํ•จํ•˜

Computer Science Discrete Mathematics
No Image

The M/M/Infinity Service System with Ranked Servers in Heavy Traffic

: ๋ณธ ๋…ผ๋ฌธ์€ ๋ฌดํ•œ ์„œ๋ฒ„ ์‹œ์Šคํ…œ์—์„œ ๊ณ ๊ฐ ์ฒ˜๋ฆฌ ๊ณผ์ •์„ ์ˆ˜ํ•™์ ์œผ๋กœ ํƒ๊ตฌํ•˜๋ฉฐ, ํŠนํžˆ Newell์ด ์ œ๊ธฐํ•œ ๊ท ํ˜• ์ƒํƒœ์—์„œ ์ƒˆ๋กœ์šด ๊ณ ๊ฐ์„ ์ฒ˜๋ฆฌํ•˜๋Š” ์„œ๋ฒ„์˜ ์ธ๋ฑ์Šค ๋ถ„ํฌ์— ๋Œ€ํ•œ ๋ฌธ์ œ๋ฅผ ๋‹ค๋ฃฌ๋‹ค. ์ด ์—ฐ๊ตฌ๋Š” ๊ธฐ์กด์˜ ๊ทผ์‚ฌ์‹๋“ค์— ๋Œ€ํ•œ ์—„๋ฐ€ํ•œ ์ฆ๋ช…๊ณผ ๋” ๋†’์€ ์ฐจ์ˆ˜์˜ ๋ถ„ํฌ๋ฅผ ํ™•๋ฆฝํ•˜๋Š”๋ฐ ์ดˆ์ ์„ ๋งž์ถ˜๋‹ค. ๋…ผ๋ฌธ์—์„œ ์ฃผ์š” ๊ด€์‹ฌ์‚ฌ๋Š” ๊ณ ๊ฐ์ด ๋„์ฐฉํ•  ๋•Œ ๊ฐ€์žฅ ๋‚ฎ์€ ์ธ๋ฑ์Šค๋ฅผ ๊ฐ€์ง„ ๋น„์–ด์žˆ๋Š” ์„œ๋ฒ„์— ํ• ๋‹น๋˜๋Š” ๊ณผ์ •์ด๋‹ค. ์ด๋Š” M/M/โˆž ์„œ๋น„์Šค ์‹œ์Šคํ…œ์ด๋ผ๊ณ  ์•Œ๋ ค์ ธ ์žˆ์œผ๋ฉฐ, ฮป โ†’ โˆž์˜ ํ•œ๊ณ„ ์ƒํ™ฉ์—์„œ ๊ด‘๋ฒ”์œ„ํ•˜๊ฒŒ ์—ฐ๊ตฌ๋˜์—ˆ๋‹ค. Newell์€ L์ด '

Performance Mathematics Computer Science System
No Image

A Novel Attack against Android Phones

๋ณธ ๋…ผ๋ฌธ์€ ์•ˆ๋“œ๋กœ์ด๋“œ ์Šค๋งˆํŠธํฐ์˜ ๋ณด์•ˆ ์ทจ์•ฝ์ ์„ ์ง‘์ค‘์ ์œผ๋กœ ๋ถ„์„ํ•˜๊ณ , ์ด๋ฅผ ์•…์šฉํ•  ์ˆ˜ ์žˆ๋Š” ์ƒˆ๋กœ์šด ๊ณต๊ฒฉ ๊ธฐ๋ฒ•์„ ์ œ์‹œํ•ฉ๋‹ˆ๋‹ค. ์ด ์—ฐ๊ตฌ๋Š” 2011๋…„ 1๋ถ„๊ธฐ์— ๊ฐ€์žฅ ๋งŽ์ด ํŒ๋งค๋œ ์šด์˜์ฒด์ œ์ธ ์•ˆ๋“œ๋กœ์ด๋“œ๋ฅผ ๋Œ€์ƒ์œผ๋กœ ํ•˜๋ฉฐ, ํŠนํžˆ ์Šค๋งˆํŠธํฐ ์‚ฌ์šฉ์ž๋“ค์ด ์ง๋ฉดํ•˜๊ฒŒ ๋  ์ž ์žฌ์ ์ธ ์œ„ํ˜‘์— ๋Œ€ํ•ด ๊ฒฝ๊ฐ์‹ฌ์„ ๋ถˆ๋Ÿฌ์ผ์œผํ‚ค๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ทจ์•ฝ์ ์˜ ์‹ฌ๊ฐ์„ฑ ๋ณธ ๋…ผ๋ฌธ์—์„œ ์ œ์‹œ๋œ ๊ณต๊ฒฉ ๊ธฐ๋ฒ•์€ ๋งค์šฐ ์น˜๋ช…์ ์ž…๋‹ˆ๋‹ค. ์ด๋Š” ๋‹จ์ˆœํžˆ ์•…์„ฑ ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜์„ ์„ค์น˜ํ•˜๋Š” ๋ฐ ๊ทธ์น˜์ง€ ์•Š๊ณ , ์‚ฌ์šฉ์ž์˜ ์ธ์‹ ์—†์ด ์ด๋ฃจ์–ด์ง‘๋‹ˆ๋‹ค. ์ฆ‰, ์‚ฌ์šฉ์ž๊ฐ€ ์–ด๋– ํ•œ ๊ถŒํ•œ๋„ ๋ถ€์—ฌํ•˜์ง€ ์•Š์•„๋„ ์•…์„ฑ ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜์ด ์ž๋™์œผ๋กœ ์„ค

Computer Science Cryptography and Security
No Image

The Degree Sequence of Random Apollonian Networks

๋ณธ ๋…ผ๋ฌธ์€ ๋žœ๋ค ์•„ํด๋กœ๋‹ˆ ๋„คํŠธ์›Œํฌ(RANs)์˜ ์ •๋„ ๋ถ„ํฌ์— ๋Œ€ํ•œ ๊นŠ์ด ์žˆ๋Š” ๋ถ„์„์„ ์ œ๊ณตํ•˜๋ฉฐ, ์ด๋Š” ๊ทธ๋ž˜ํ”„ ์ด๋ก ์—์„œ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•˜๋Š” ๋ชจ๋ธ ์ค‘ ํ•˜๋‚˜์ด๋‹ค. RANs๋Š” ํ‰๋ฉด ๊ทธ๋ž˜ํ”„๋กœ์„œ, ๊ฐ ๋‹จ๊ณ„์—์„œ ๋ฌด์ž‘์œ„๋กœ ์‚ผ๊ฐํ˜•์„ ์„ ํƒํ•˜๊ณ  ๊ทธ ๋‚ด๋ถ€์— ์ƒˆ๋กœ์šด ์ •์ ์„ ์ถ”๊ฐ€ํ•˜์—ฌ ๋„คํŠธ์›Œํฌ๋ฅผ ํ™•์žฅํ•œ๋‹ค. 1. ์„œ๋ก  ์„œ๋ก ์—์„œ๋Š” ๋ณธ ๋…ผ๋ฌธ์˜ ์ฃผ์š” ๋ชฉํ‘œ์™€ ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ์ด ์„ค๋ช…๋œ๋‹ค. RANs๋Š”

Physics Network Mathematics Social Networks Computer Science
Weighted Radial Variation for Node Feature Classification

Weighted Radial Variation for Node Feature Classification

๋ณธ ๋…ผ๋ฌธ์€ ๋ณต์žกํ•œ ๋„คํŠธ์›Œํฌ์—์„œ ๋…ธ๋“œ ํŠน์„ฑ ๋ถ„๋ฅ˜์˜ ์ƒˆ๋กœ์šด ์ ‘๊ทผ๋ฒ•์ธ ๊ฐ€์ค‘ ๋ฐฉ์‚ฌ ๋ณ€์ด(WRV) ๊ธฐ๋ฒ•์„ ์ œ์•ˆํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. WRV๋Š” ๊ฐ ๋…ธ๋“œ์— ๋Œ€ํ•œ ๋ฒกํ„ฐ ํ๋ฆ„ ๊ตฌ์„ฑ์— ๊ธฐ๋ฐ˜ํ•˜์—ฌ, ์นด๋ฅด๋””๋‚˜๋ฆฌํ‹ฐ(๋…ธ๋“œ ๊ฐ„ ์—ฐ๊ฒฐ ์ˆ˜), ๋ฐฉํ–ฅ, ๊ธธ์ด, ๊ทธ๋ฆฌ๊ณ  ํ๋ฆ„ ํฌ๊ธฐ์˜ ์ธก๋ฉด์—์„œ ๋™๊ธฐํ™”๋œ ๊ฐ ์—”ํ‹ฐํ‹ฐ์˜ ๋ฒกํ„ฐ๋ฅผ ์‚ฌ์šฉํ•ฉ๋‹ˆ๋‹ค. ์ด๋Š” ๋ณต์žกํ•œ ๋„คํŠธ์›Œํฌ ๋ถ„์„์—์„œ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•˜๋Š”๋ฐ, ํŠนํžˆ ๋น„์ธ์ ‘ ๊ณต๊ฐ„์— ์—ฐ๊ฒฐ๋˜๋Š” ์ธ๊ฐ„๊ณผ ์ •๋ณด ํ๋ฆ„์˜ ๋ณต์žกํ•œ ์—ญํ•™์„ ์ดํ•ดํ•˜๋Š” ๋ฐ ์œ ์šฉํ•ฉ๋‹ˆ๋‹ค. WRV ๊ณผ์ •์€ ๋ณ„ ๋ชจ์–‘ ์—”ํ‹ฐํ‹ฐ์˜ ๊ฐœ๋ณ„ ํ๋ฆ„ ๋ฒกํ„ฐ๋ฅผ 0 360ยฐ ์ŠคํŽ™ํŠธ๋Ÿผ์— ํŽผ์ณ ๋…ํŠนํ•œ ์‹ ํ˜ธ๋ฅผ ํ˜•์„ฑํ•˜๋ฉฐ, ์ด

Computer Science Computer Vision Physics
A Novel Template-Based Learning Model

A Novel Template-Based Learning Model

: ๋ณธ ๋…ผ๋ฌธ์€ ํ…œํ”Œ๋ฆฟ ๊ธฐ๋ฐ˜ ํ•™์Šต ๋ชจ๋ธ์„ ํ†ตํ•ด ์ƒˆ๋กœ์šด ๊ด€์ฐฐ ๋ฐ์ดํ„ฐ๋ฅผ ์ดํ•ดํ•˜๋Š” ๋ฐฉ๋ฒ•์— ๋Œ€ํ•ด ์„ค๋ช…ํ•˜๊ณ  ์žˆ๋‹ค. ์ด ๋ชจ๋ธ์€ ์ฃผ๋กœ ๊ด€์ฐฐ ๋ฐ์ดํ„ฐ ๊ฐ„์˜ ์œ ์‚ฌ์„ฑ ํƒ์ƒ‰๊ณผ ๋น„๊ต๋ฅผ ํ†ตํ•ด ์ƒˆ๋กœ์šด ๊ฐœ๋…์„ ํ•™์Šตํ•˜๊ณ  ์ถ”์ƒํ™”ํ•˜๋Š”๋ฐ ์ดˆ์ ์„ ๋งž์ถ”๊ณ  ์žˆ๋‹ค. 1. ํ…œํ”Œ๋ฆฟ ๊ธฐ๋ฐ˜ ํ•™์Šต ๋ชจ๋ธ์˜ ๊ตฌ์„ฑ ์š”์†Œ ๊ธฐํ•˜ํ•™์  ๋ฌ˜์‚ฌ : ์ด ๋ชจ๋ธ์€ ๊ด€์ฐฐ ๋ฐ์ดํ„ฐ๋ฅผ ๊ธฐํ•˜ํ•™์ ์œผ๋กœ ๋ฌ˜์‚ฌํ•˜๋Š” ๋ฐฉ์‹์„ ์‚ฌ์šฉํ•œ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ๊ฐ์ฒด์˜ ๊ฒฝ๊ณ„์™€ ํ˜•ํƒœ๋ฅผ ์ •ํ™•ํ•˜๊ฒŒ ํŒŒ์•…ํ•  ์ˆ˜ ์žˆ๋‹ค. ์ธ๊ฐ„ ์‹œ๊ฐ ์‹ ๊ฒฝ ์‹œ์Šคํ…œ์— ์˜๊ฐ ๋ฐ›์€ ์„ค๋ช…์ž : ์ธ๊ฐ„์˜ ์‹œ๊ฐ ์ธ์ง€ ๊ณผ์ •์—์„œ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•˜๋Š” ์š”์†Œ๋“ค์„ ๋ชจ๋ธ๋งํ•˜์—ฌ, ๋” ์ •๊ตํ•œ ๋ฐ์ดํ„ฐ

Model Machine Learning Computer Science Learning
Jancars formal system for deciding bisimulation of first-order grammars   and its non-soundness

Jancars formal system for deciding bisimulation of first-order grammars and its non-soundness

: 1. ์ฒซ ๋ฒˆ์งธ ์ˆœ์„œ ๋ฌธ๋ฒ•๊ณผ ํ–‰๋™ ์•ŒํŒŒ๋ฒณ์˜ ์ •์˜ ๋…ผ๋ฌธ์€ ์ฒซ ๋ฒˆ์งธ ์ˆœ์„œ ๋ฌธ๋ฒ•์— ๋Œ€ํ•œ ๋น„์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด Jancar์˜ ํ˜•์‹ ์‹œ์Šคํ…œ์„ ๊ฒ€ํ† ํ•œ๋‹ค. ์ด ๊ณผ์ •์—์„œ ํ–‰๋™ ์•ŒํŒŒ๋ฒณ A์™€ ์ค‘๊ฐ„ ๋ผ๋ฒจ ์•ŒํŒŒ๋ฒณ T, ๊ทธ๋ฆฌ๊ณ  ๋งต LAB A: T โ†’ A๋ฅผ ์ •์˜ํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ์ •์˜๋Š” ์ฒซ ๋ฒˆ์งธ ์ˆœ์„œ ๋ฌธ๋ฒ• G (N, A, R)์„ ๊ตฌ์„ฑํ•˜๋Š” ๋ฐ ํ•„์š”ํ•œ ๊ธฐ๋ณธ ์š”์†Œ๋ฅผ ์ œ๊ณตํ•˜๋ฉฐ, ์—ฌ๊ธฐ์„œ N์€ ๋น„ํ„ฐ๋ฏธ๋„ ์ง‘ํ•ฉ, A๋Š” ํ–‰๋™ ์•ŒํŒŒ๋ฒณ, ๊ทธ๋ฆฌ๊ณ  R์€ ๊ทœ์น™ ์ง‘ํ•ฉ์ด๋‹ค. 2. Jancar ํ˜•์‹ ์‹œ์Šคํ…œ์˜ ๊ฐœ์š” Jancar์˜ ํ˜•์‹ ์‹œ์Šคํ…œ์€

Computer Science Formal Languages Logic System

< Category Statistics (Total: 769) >

Electrical Engineering and Systems Science
7
General
272
General Relativity
9
HEP-EX
7
HEP-PH
12
HEP-TH
7
MATH-PH
4
NUCL-TH
1
Quantum Physics
10

Start searching

Enter keywords to search articles

โ†‘โ†“
โ†ต
ESC
โŒ˜K Shortcut