Computer Science

All posts under tag "Computer Science"

266 posts total
Sorted by date
Performance Measurement of the Heterogeneous Network

Performance Measurement of the Heterogeneous Network

์ด ๋…ผ๋ฌธ์€ M/M/2 ํ ์‹œ์Šคํ…œ์„ ํ™œ์šฉํ•˜์—ฌ ๋„คํŠธ์›Œํฌ ์ง€์—ฐ ๋ฌธ์ œ๋ฅผ ๋ถ„์„ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ด ๋ชจ๋ธ์€ ๋‘ ๊ฐœ์˜ ์„œ๋ฒ„๋กœ ๊ตฌ์„ฑ๋˜๋ฉฐ, ๊ฐ ์„œ๋ฒ„๋Š” ์„œ๋กœ ๋‹ค๋ฅธ ์ฒ˜๋ฆฌ ๋Šฅ๋ ฅ์„ ๊ฐ€์ง€๊ณ  ์žˆ์–ด ์ž‘์—… ์Šค์ผ€์ค„๋ง ๋ฐฉ์‹์€ FCFS(First Come First Served)์ž…๋‹ˆ๋‹ค. 1. M/M/2 ํ ์‹œ์Šคํ…œ M/M/2 ํ ์‹œ์Šคํ…œ์€ ๋„คํŠธ์›Œํฌ ์ง€์—ฐ ๋ฌธ์ œ๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ๋ชจ๋ธ๋งํ•˜๊ธฐ ์œ„ํ•œ ๋„๊ตฌ๋กœ, ์ด ์‹œ์Šคํ…œ์˜ ์ฃผ์š” ํŠน์ง• ์ค‘ ํ•˜๋‚˜๋Š” ๋‘ ๊ฐœ์˜ ์„œ๋ฒ„๊ฐ€ ์„œ๋กœ ๋‹ค๋ฅธ ์ฒ˜๋ฆฌ ๋Šฅ๋ ฅ์„ ๊ฐ€์ง€๊ณ  ์žˆ๋‹ค๋Š” ์ ์ž…๋‹ˆ๋‹ค. ์ž‘์—… ์Šค์ผ€์ค„๋ง ๋ฐฉ์‹์€ FCFS๋กœ, ์ž‘์—…์ด ๋„์ฐฉํ•œ ์ˆœ์„œ๋Œ€๋กœ ์ฒ˜๋ฆฌ๋ฉ๋‹ˆ๋‹ค. 2. ์ƒํƒœ

Networking Network Computer Science
X-ray view on a Class using Conceptual Analysis in Java Environment

X-ray view on a Class using Conceptual Analysis in Java Environment

์ด ๋…ผ๋ฌธ์€ ๊ฐœ๋… ๋ถ„์„(Conceptual Analysis, CA)์„ ํ™œ์šฉํ•˜์—ฌ ์†Œํ”„ํŠธ์›จ์–ด ์žฌ๊ณตํ•™์—์„œ์˜ ๋ชจ๋“ˆํ™”์™€ ํด๋ž˜์Šค ๋‚ด๋ถ€ ๊ตฌ์กฐ๋ฅผ ๋ถ„์„ํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์‹œํ•˜๊ณ  ์žˆ๋‹ค. ํŠนํžˆ ์ž๋ฐ” ํ™˜๊ฒฝ์—์„œ ์ด๋Ÿฌํ•œ ์ ‘๊ทผ๋ฒ•์„ ์ ์šฉํ•จ์œผ๋กœ์จ, ๊ฐœ๋ฐœ์ž๋“ค์ด ์ฝ”๋“œ์˜ ๋ณต์žก์„ฑ์„ ์ค„์ด๊ณ  ์œ ์ง€๋ณด์ˆ˜์„ฑ์„ ํ–ฅ์ƒ์‹œํ‚ค๋Š” ๋ฐ ๋„์›€์ด ๋˜๋„๋ก ์„ค๊ณ„๋˜์—ˆ๋‹ค. ๊ฐœ๋… ๋ถ„์„๊ณผ X Ray ๋ทฐ ๊ฐœ๋… ๋ถ„์„์€ ์š”์†Œ๋“ค ๊ฐ„์˜ ๊ณตํ†ต ์†์„ฑ์— ๊ธฐ๋ฐ˜ํ•˜์—ฌ ์˜๋ฏธ ์žˆ๋Š” ์ง‘๋‹จ์„ ์‹๋ณ„ํ•˜๋Š” ์ด๋ก ์  ์ ‘๊ทผ๋ฒ•์ด๋‹ค. ์ด๋Ÿฌํ•œ ์ง‘๋‹จ์€ '๊ฐœ๋…'์œผ๋กœ ๋ถˆ๋ฆฌ๋ฉฐ, ๊ฐ๊ฐ์˜ ๊ฐœ๋…์€ ํŠน์ • ์†์„ฑ์„ ๊ณต์œ ํ•œ๋‹ค. ๋…ผ๋ฌธ์—์„œ๋Š” X Ray ๋ทฐ๋ผ๋Š” ๊ธฐ๋ฒ•์„ ์†Œ๊ฐœํ•˜๋Š”๋ฐ

Analysis Software Engineering Computer Science
A Variant of Azumas Inequality for Martingales with Subgaussian Tails

A Variant of Azumas Inequality for Martingales with Subgaussian Tails

๋ณธ ๋…ผ๋ฌธ์€ Azuma ๋ถ€๋“ฑ์‹์˜ ๋ณ€ํ˜•์— ๋Œ€ํ•ด ๊นŠ์ด ์žˆ๊ฒŒ ๋ถ„์„ํ•˜๊ณ  ์žˆ๋‹ค. ๊ธฐ์กด Azuma ๋ถ€๋“ฑ์‹์€ ํ™•๋ฅ ์  ๊ณผ์ •์—์„œ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•˜๋Š”๋ฐ, ํŠนํžˆ ๋งˆ๋ฅดํŒ…์•Œ์˜ ์ˆ˜๋ ด์„ฑ์„ ๋ณด์žฅํ•˜๋Š” ๊ฐ•๋ ฅํ•œ ๋„๊ตฌ์ด๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ด ๋ถ€๋“ฑ์‹์€ ๋ชจ๋“  ์‹œ๊ฐ„ t์— ๋Œ€ํ•ด |Zt|๊ฐ€ ์ƒ์ˆ˜ b ์ด๋‚ด๋กœ ์ œํ•œ๋˜์–ด์•ผ ํ•œ๋‹ค๋Š” ์—„๊ฒฉํ•œ ๊ฐ€์ •์„ ํ•„์š”๋กœ ํ•˜๋ฉฐ, ์ด๋Š” ์‹ค์ œ ๋ฌธ์ œ์—์„œ ์ ์šฉํ•˜๊ธฐ ์–ด๋ ค์šด ๊ฒฝ์šฐ๊ฐ€ ๋งŽ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์ด๋Ÿฌํ•œ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ณ ์ž ๋งˆ๋ฅดํŒ…์•Œ์˜ ๊ฐ ํ•ญ์ด ๊ณ ํ™•๋ฅ ๋กœ ํฐ ๊ฐ’์„ ๊ฐ€์ง€๋”๋ผ๋„ Azuma ๋ถ€๋“ฑ์‹์„ ์ผ๋ฐ˜ํ™”ํ•˜๋Š” ์ƒˆ๋กœ์šด ๋ณ€ํ˜•์„ ์ œ์‹œํ•œ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด, '๊ฑฐ์˜ ๊ฒฝ๊ณ„๊ฐ€ ์žˆ๋Š”' ๋งˆ๋ฅดํŒ…์•Œ์—

Mathematics Machine Learning Computer Science
Maximizing the Cohesion is NP-hard

Maximizing the Cohesion is NP-hard

๋ณธ ๋…ผ๋ฌธ์˜ ์ฃผ์š” ๋ชฉํ‘œ๋Š” ์‚ฌํšŒ ๋„คํŠธ์›Œํฌ ๋ถ„์„์—์„œ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•˜๋Š” '๊ฒฐ์†์„ฑ'์ด๋ผ๋Š” ์ƒˆ๋กœ์šด ์ง€ํ‘œ๋ฅผ ๋„์ž…ํ•˜๊ณ , ์ด ์ง€ํ‘œ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๊ทธ๋ž˜ํ”„ ๋‚ด์—์„œ ์ตœ๋Œ€ ๊ฒฐ์†์„ฑ์„ ๊ฐ–๋Š” ์ง‘ํ•ฉ์„ ์ฐพ๋Š” ๋ฌธ์ œ๊ฐ€ NP ํ•˜๋“œ์ž„์„ ์ฆ๋ช…ํ•˜๋Š” ๊ฒƒ์ด๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ์‚ฌํšŒ ๋„คํŠธ์›Œํฌ ๋ถ„์„์˜ ๋ณต์žก์„ฑ์„ ์ดํ•ดํ•˜๊ณ , ํšจ์œจ์ ์ธ ์•Œ๊ณ ๋ฆฌ์ฆ˜ ๊ฐœ๋ฐœ์— ๋Œ€ํ•œ ํ•„์š”์„ฑ๊ณผ ํ•œ๊ณ„๋ฅผ ํŒŒ์•…ํ•  ์ˆ˜ ์žˆ๋‹ค. 1. ๊ฒฐ์†์„ฑ ์ง€ํ‘œ์˜ ๋„์ž… ๋ฐ ์‹คํ—˜์  ๊ฒ€์ฆ ๊ฒฐ์†์„ฑ์€ ์‚ฌํšŒ ๋„คํŠธ์›Œํฌ ๋‚ด์—์„œ ์ง‘๋‹จ์˜ ์ผ์ฒด๊ฐ์„ ์ธก์ •ํ•˜๋Š” ์ƒˆ๋กœ์šด ์ง€ํ‘œ๋กœ, ์ด๋Š” ์‚ฌ์šฉ์ž ์ฃผ๊ด€์  ์ปค๋ฎค๋‹ˆํ‹ฐ ์ธ์‹๊ณผ ๋†’์€ ์ƒ๊ด€๊ด€๊ณ„๋ฅผ ๊ฐ€์ง์„ ํŽ˜์ด์Šค๋ถ ์‹คํ—˜์„ ํ†ตํ•ด ํ™•์ธํ•˜์˜€๋‹ค. ์ด

Networking Computational Complexity Computer Science
An Approach for Message Hiding using Substitution Techniques and Audio   Hiding in Steganography

An Approach for Message Hiding using Substitution Techniques and Audio Hiding in Steganography

: ๋ณธ ๋…ผ๋ฌธ์€ ์Šคํ…Œ๊ฐ€๋…ธ๊ทธ๋ž˜ํ”ผ๋ฅผ ์ด์šฉํ•œ ์ •๋ณด ์€๋‹‰ ๊ธฐ๋ฒ•์„ ๋‹ค๋ฃจ๊ณ  ์žˆ์œผ๋ฉฐ, ํŠนํžˆ 24๋น„ํŠธ BMP ์ด๋ฏธ์ง€ ํŒŒ์ผ์— ํ…์ŠคํŠธ๋‚˜ ์˜ค๋””์˜ค ๊ฐ™์€ ๋น„๋ฐ€ ๋ฉ”์‹œ์ง€๋ฅผ ์ˆจ๊ธฐ๋Š” ๋ฐฉ๋ฒ•์— ์ง‘์ค‘ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ด๋Š” ์ •๋ณด ๋ณด์•ˆ์˜ ์ค‘์š”ํ•œ ํ•˜์œ„ ๋ถ„์•ผ๋กœ, ์Šคํ…Œ๊ฐ€๋…ธ๊ทธ๋ž˜ํ”ผ์™€ ์›Œํ„ฐ๋งˆํ‚น์„ ํ†ตํ•ด ๋ฐœ์ „ํ•ด ์™”์Šต๋‹ˆ๋‹ค. ๋…ผ๋ฌธ์€ ์•”ํ˜ธํ™” ๊ธฐ์ˆ ์—์„œ ์˜๊ฐ์„ ๋ฐ›์•„, ์ „์†ก๋œ ๋ฉ”์‹œ์ง€๋ฅผ ๋„์ฒญ์ž๋กœ๋ถ€ํ„ฐ ์•ˆ์ „ํ•˜๊ฒŒ ์ˆจ๊ธธ ์ˆ˜ ์žˆ๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ด๋Š” ๋‹จ์ˆœํžˆ ๋ฉ”์‹œ์ง€๋ฅผ ์•”ํ˜ธํ™”ํ•˜๋Š” ๊ฒƒ ์ด์ƒ์œผ๋กœ, ์‹ค์ œ ๋ฐ์ดํ„ฐ๋ฅผ ๋‹ค๋ฅธ ๋ฏธ๋””์–ด์— ์ˆจ๊ธฐ๋Š” ๋ฐฉ์‹์ž…๋‹ˆ๋‹ค. ์Šคํ…Œ๊ฐ€๋…ธ๊ทธ๋ž˜ํ”ผ ๊ธฐ๋ฒ•: ๋…ผ๋ฌธ์—์„œ ์ œ์•ˆ๋œ ์Šคํ…Œ๊ฐ€๋…ธ๊ทธ๋ž˜ํ”ผ ๊ธฐ๋ฒ•์€

Computer Science Cryptography and Security
mizar-items: Exploring fine-grained dependencies in the Mizar   Mathematical Library

mizar-items: Exploring fine-grained dependencies in the Mizar Mathematical Library

๋ณธ ๋…ผ๋ฌธ์€ MML(Mathematical Meta Language) ๋‚ด์˜ ๋ฏธ์„ธํ•œ ์˜์กด์„ฑ์„ ๋ถ„์„ํ•˜๋Š” ์‹œ์Šคํ…œ์„ ๊ฐœ๋ฐœํ•˜๊ณ  ๊ทธ ํ™œ์šฉ ๋ฐฉ๋ฒ•์— ๋Œ€ํ•ด ์„ค๋ช…ํ•œ๋‹ค. MML์€ ์ˆ˜ํ•™์  ์ฆ๋ช…๊ณผ ์ •๋ฆฌ๊ฐ€ ๊ณต์‹ํ™”๋œ ๊ฐ€์žฅ ํฐ ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค ์ค‘ ํ•˜๋‚˜๋กœ, ์•ฝ 1,100๊ฐœ์˜ ๊ธฐ์‚ฌ์™€ 250๋งŒ ์ค„ ์ด์ƒ์˜ ํ…์ŠคํŠธ๋ฅผ ํฌํ•จํ•˜๋ฉฐ, ์ด๋Š” 5๋งŒ ๊ฐœ ์ด์ƒ์˜ ์ •๋ฆฌ์™€ 1๋งŒ ๊ฐœ ์ด์ƒ์˜ ์ •์˜๋ฅผ ์ˆ˜ํ•™์  ๊ธฐํ˜ธ๋กœ ํ‘œํ˜„ํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฐฉ๋Œ€ํ•œ ๋ฐ์ดํ„ฐ๋Š” ๋‹ค์–‘ํ•œ ์‹คํ—˜์„ ์ˆ˜ํ–‰ํ•˜๊ธฐ ์œ„ํ•œ ์ฝ”ํผ์Šค๋กœ์„œ ๊ฐ€์น˜๊ฐ€ ํฌ๋‹ค. ๋…ผ๋ฌธ์—์„œ ์ œ์‹œ๋œ Mizar items ์‹œ์Šคํ…œ์€ MML ๋‚ด์˜ ๋ฏธ์„ธ ์˜์กด์„ฑ์„ ๊ณ„์‚ฐํ•˜๋Š” ๋ฐ ์ค‘์ ์„ ๋‘๊ณ 

Digital Libraries Mathematics Computer Science
Secured color image watermarking technique in DWT-DCT domain

Secured color image watermarking technique in DWT-DCT domain

๋ณธ ๋…ผ๋ฌธ์€ ๋””์ง€ํ„ธ ์ด๋ฏธ์ง€์˜ ์ €์ž‘๊ถŒ ๋ณดํ˜ธ๋ฅผ ์œ„ํ•ด DWT DCT ๋„๋ฉ”์ธ์—์„œ ์ƒ‰์ƒ ์ด๋ฏธ์ง€ ์›Œํ„ฐ๋งˆํ‚น ๊ธฐ๋ฒ•์„ ์ œ์•ˆํ•˜๊ณ  ์žˆ๋‹ค. ์ด ๋ฐฉ๋ฒ•์€ ์ด๋ฏธ์ง€์˜ YIQ ์ƒ‰ ๊ณต๊ฐ„ ๋ณ€ํ™˜๊ณผ DWT, DCT๋ฅผ ํ™œ์šฉํ•˜์—ฌ ๊ณ ์ฃผํŒŒ ํ•˜์œ„ ๋Œ€์—ญ์— ์›Œํ„ฐ๋งˆํฌ๋ฅผ ์‚ฝ์ž…ํ•จ์œผ๋กœ์จ ๋‚ด๊ตฌ์„ฑ์„ ํ–ฅ์ƒ์‹œํ‚จ๋‹ค. 1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋””์ง€ํ„ธ ๋ฐ์ดํ„ฐ์˜ ํ™•์‚ฐ์€ ์ €์ž‘๊ถŒ ๋ณดํ˜ธ๊ฐ€ ํ•„์ˆ˜์ ์ธ ํ•„์š”๋กœ ์ด์–ด์กŒ๋‹ค. ๋””์ง€ํ„ธ ์ด๋ฏธ์ง€ ์›Œํ„ฐ๋งˆํ‚น์€ ์›๋ณธ ์ด๋ฏธ์ง€์— ์ ์ ˆํ•œ ์ •๋ณด๋ฅผ ์ˆจ๊ฒจ ์†Œ์œ ๊ถŒ์„ ๋ช…์‹œํ•จ์œผ๋กœ์จ ์ €์ž‘๊ถŒ์„ ๋ณดํ˜ธํ•œ๋‹ค. ์›Œํ„ฐ๋งˆํ‚น ์‹œ์Šคํ…œ์˜ ํ’ˆ์งˆ์€ ๊ฐ•์ธ์„ฑ, ์ง€๊ฐ ํˆฌ๋ช…๋„, ์šฉ๋Ÿ‰ ๋ฐ ๋ธ”๋ผ์ธ๋“œ ์›Œํ„ฐ๋งˆํ‚น์ด๋ผ๋Š” ๋„ค ๊ฐ€์ง€ ํ•ต์‹ฌ ์š”์†Œ์— ์˜ํ•ด

Multimedia Computer Science
An Efficient Preprocessing Methodology for Discovering Patterns and   Clustering of Web Users using a Dynamic ART1 Neural Network

An Efficient Preprocessing Methodology for Discovering Patterns and Clustering of Web Users using a Dynamic ART1 Neural Network

๋ณธ ๋…ผ๋ฌธ์€ ์›น ์‚ฌ์šฉ์ž ํŒจํ„ด ๋ถ„์„์„ ์œ„ํ•œ ์ „์ฒ˜๋ฆฌ ๋ฐ ํด๋Ÿฌ์Šคํ„ฐ๋ง ๋ฐฉ๋ฒ•๋ก ์— ์ค‘์ ์„ ๋‘๊ณ  ์žˆ๋‹ค. ์ฃผ์š” ๋‚ด์šฉ๊ณผ ๊ทธ ์ค‘์š”์„ฑ, ๊ทธ๋ฆฌ๊ณ  ์ œ์•ˆ๋œ ์ ‘๊ทผ ๋ฐฉ์‹์˜ ํšจ๊ณผ๋ฅผ ์‹ฌ๋„ ์žˆ๊ฒŒ ๋ถ„์„ํ•ด๋ณด์ž. 1. ์ „์ฒ˜๋ฆฌ์˜ ํ•„์š”์„ฑ ์›น ๋กœ๊ทธ ๋ฐ์ดํ„ฐ๋Š” ์›น์‚ฌ์ดํŠธ ๋ฐฉ๋ฌธ์ž์˜ ํ–‰๋™์„ ๊ธฐ๋กํ•œ ๋Œ€๋Ÿ‰์˜ ์ •๋ณด๋กœ ๊ตฌ์„ฑ๋˜์–ด ์žˆ์œผ๋ฉฐ, ์ด ๋ฐ์ดํ„ฐ์—์„œ ์œ ์˜๋ฏธํ•œ ํŒจํ„ด์„ ๋ฐœ๊ฒฌํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ์ •๊ตํ•œ ์ „์ฒ˜๋ฆฌ ๊ณผ์ •์ด ํ•„์ˆ˜์ ์ด๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์ „์ฒ˜๋ฆฌ๋ฅผ ํ†ตํ•ด ์ดˆ๊ธฐ ๋กœ๊ทธ ํŒŒ์ผ ํฌ๊ธฐ๋ฅผ 73 82%๊นŒ์ง€ ์ค„์ด๋Š” ๋™์‹œ์— ํ’๋ถ€ํ•˜๊ณ  ๊ตฌ์กฐํ™”๋œ ๋ฐ์ดํ„ฐ๋ฅผ ์ œ๊ณตํ•˜๋Š” ๋ฐฉ๋ฒ•๋ก ์„ ์ œ์‹œํ•œ๋‹ค. ์ „์ฒ˜๋ฆฌ์˜ ์ฃผ์š” ๋ชฉํ‘œ๋Š” ๋ถ„์„ ๋Œ€์ƒ ๋ฐ์ดํ„ฐ์˜

Neural Computing Network Computer Science
A Radio Based Intelligent Railway Grade Crossing System to Avoid   Collision

A Radio Based Intelligent Railway Grade Crossing System to Avoid Collision

: ๋ณธ ๋…ผ๋ฌธ์€ ์ฒ ๋„ ๋“ฑ๊ธ‰ ๊ต์ฐจ์ ์—์„œ ๋ฐœ์ƒํ•˜๋Š” ์‚ฌ๊ณ ๋ฅผ ์ค„์ด๊ธฐ ์œ„ํ•œ ์ง€๋Šฅํ˜• ์ฒ ๋„ ๊ต๋Ÿ‰ ์‹œ์Šคํ…œ์„ ์ œ์•ˆํ•˜๊ณ , ๊ทธ ๊ตฌํ˜„ ๋ฐฉ๋ฒ•๊ณผ ์ž‘๋™ ์›๋ฆฌ๋ฅผ ์ƒ์„ธํžˆ ์„ค๋ช…ํ•œ๋‹ค. ์ด ์‹œ์Šคํ…œ์˜ ํ•ต์‹ฌ์€ ๋ฌด์„  ๋งํฌ๋ฅผ ํ†ตํ•ด ์—ด์ฐจ์˜ ์ ‘๊ทผ ๋ฐ ํ‡ด์ถœ ์ •๋ณด๋ฅผ ์ˆ˜์ง‘ํ•˜๋Š” ๊ฒƒ์ด๋‹ค. 1. ๋ฌธ์ œ ์ธ์‹ ์ฒ ๋„ ๋“ฑ๊ธ‰ ๊ต์ฐจ์ ์—์„œ ๋ฐœ์ƒํ•˜๋Š” ์‚ฌ๊ณ ๋Š” ์šด์ „์ž์˜ ๊ณผ์‹ค, ์•…์ฒœํ›„, ๋ถ€์ ์ ˆํ•œ ๊ตํ†ต ๊ณ„ํš ๋“ฑ์˜ ๋‹ค์–‘ํ•œ ์š”์ธ์— ์˜ํ•ด ๋ฐœ์ƒํ•˜๋ฉฐ, ํŠนํžˆ ๊ฒŒ์ดํŠธ๊ฐ€ ์—†๋Š” ๊ฒฝ์šฐ ์ด๋Ÿฌํ•œ ์‚ฌ๊ณ ์˜ ์œ„ํ—˜์ด ๋”์šฑ ์ฆ๊ฐ€ํ•œ๋‹ค. ์ด๋กœ ์ธํ•ด ์ตœ๊ทผ 5๋…„ ๋™์•ˆ ๋งŽ์€ ์‚ฌ๋žŒ๋“ค์ด ์‚ฌ๋งํ•˜๊ฑฐ๋‚˜ ๋ถ€์ƒ์„ ์ž…์—ˆ๋‹ค๋Š” ์ ์„ ๊ฐ•์กฐํ•˜๊ณ  ์žˆ๋‹ค. 2. ๊ธฐ์กด ์‹œ์Šคํ…œ์˜

Computer Science System Systems and Control
A Rejoinder on Energy versus Impact Indicators

A Rejoinder on Energy versus Impact Indicators

: ๋ณธ ๋…ผ๋ฌธ์€ ๊ณผํ•™ ์—ฐ๊ตฌ์˜ ์˜ํ–ฅ๋ ฅ์„ ์ธก์ •ํ•˜๋Š” ์ƒˆ๋กœ์šด ์ง€ํ‘œ์ธ ํ†ตํ•ฉ ์˜ํ–ฅ ์ง€ํ‘œ(I3)๋ฅผ ์ œ์•ˆํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ด๋Š” ๊ธฐ์กด์˜ ์ €๋„ ์ธ์šฉ ์ ์ˆ˜(JCS)์™€ ๋ถ„์•ผ ์ธ์šฉ ์ ์ˆ˜(FCS)๋ฅผ ํ‰๊ท ์œผ๋กœ ์‚ฌ์šฉํ•˜๋Š” ๋ฐฉ์‹๊ณผ ๋‹ฌ๋ฆฌ, ๋‘ ํžˆํŠธ(citations)์˜ ์˜ํ–ฅ์„ ํ•ฉ์œผ๋กœ ๊ณ„์‚ฐํ•ฉ๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ์ ‘๊ทผ๋ฒ•์€ ์ถฉ๋Œ ์‹œ ๋ชจ๋ฉ˜ํ…€์˜ ๋ฒกํ„ฐ ํ•ฉ๊ณผ ์œ ์‚ฌํ•œ ๊ฐœ๋…์„ ์ ์šฉํ•˜๋ฉฐ, ์ธ์šฉ ๋ถ„์„์—์„œ ์Šค์นผ๋ผ ํ•ฉ์„ ์‚ฌ์šฉํ•˜๋Š” ๊ฒƒ์ด ํƒ€๋‹นํ•˜๋‹ค๋Š” ์ฃผ์žฅ์„ ํ•ฉ๋‹ˆ๋‹ค. ๋…ผ๋ฌธ์—์„œ๋Š” I3๋ฅผ ๊ฐœ๋ฐœํ•˜๋ฉด์„œ Prathap (2011a)์˜ ์—”ํŠธ๋กœํ”ผ ๊ฐœ๋…์ด ํ™•๋ฅ ์  ์—”ํŠธ๋กœํ”ผ๊ฐ€ ์•„๋‹Œ ์—ด์—ญํ•™์  ์—”ํŠธ๋กœํ”ผ๋ผ๋Š” ์ ์„ ์ง€์ ํ•ฉ๋‹ˆ๋‹ค. ์ด

Physics Computer Science Digital Libraries
Unsteady Hydromagnetic Flow of Viscoelastic Fluid down an Open Inclined   Channel

Unsteady Hydromagnetic Flow of Viscoelastic Fluid down an Open Inclined Channel

: ๋ณธ ๋…ผ๋ฌธ์€ ๊ฐœ๋ฐฉํ˜• ๊ฒฝ์‚ฌ ์ฑ„๋„ ๋‚ด์—์„œ ์›”ํ„ฐ ์œ ์ฒด์˜ ๋น„์ •์ƒ ์ˆ˜๋ ฅํ•™์  ํ๋ฆ„์„ ์—ฐ๊ตฌํ•˜๋ฉฐ, ํŠนํžˆ ๊ท ์ผํ•œ ์ˆ˜์ง ์ž๊ธฐ์žฅ์ด ์ด ํ๋ฆ„์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ๋ถ„์„ํ•œ๋‹ค. ์›”ํ„ฐ ์œ ์ฒด๋Š” ๋น„๋‰ดํ„ด ์œ ์ฒด ์ค‘ ํ•˜๋‚˜๋กœ, ๊ณ ์ „์ ์ธ ์‘๋ ฅ ๋ณ€ํ˜•๋ฅ  ๊ด€๊ณ„๋ฅผ ๋”ฐ๋ฅด์ง€ ์•Š๋Š” ํŠน์„ฑ์„ ๊ฐ€์ง„๋‹ค. ์ด๋Ÿฌํ•œ ๋ฌผ์งˆ์€ ํ”Œ๋ผ์Šคํ‹ฑ ์„ฑํ˜•, ์„ฌ์œ  ์ œ์กฐ ๋“ฑ ๋‹ค์–‘ํ•œ ์‚ฐ์—…์—์„œ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•˜๋Š”๋ฐ, ์ด ์—ฐ๊ตฌ๋Š” ์›”ํ„ฐ ์œ ์ฒด์˜ ํ๋ฆ„์— ๋Œ€ํ•œ ์ดํ•ด๋ฅผ ๊นŠ๊ฒŒ ํ•˜๊ธฐ ์œ„ํ•ด ์ˆ˜ํ–‰๋˜์—ˆ๋‹ค. ๋…ผ๋ฌธ์—์„œ๋Š” ๋ผํ”Œ๋ผ์Šค ๋ณ€ํ™˜๊ณผ ์œ ํ•œ ํ‘ธ๋ฆฌ์— ์‚ฌ์ธ ๋ณ€ํ™˜ ๊ธฐ๋ฒ•์„ ์‚ฌ์šฉํ•˜์—ฌ ์†๋„ ๋ถ„ํฌ๋ฅผ ํ‰๊ฐ€ํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ์ˆ˜ํ•™์  ๋ฐฉ๋ฒ•์€ ๋ณต์žกํ•œ ๋ฏธ๋ถ„ ๋ฐฉ์ •์‹์„ ํ•ด๊ฒฐํ•˜

Physics Computational Engineering Computer Science
Biologically Inspired Process Calculi, Petri Nets and Membrane Computing

Biologically Inspired Process Calculi, Petri Nets and Membrane Computing

: ์ด ์ฑ…์€ ๋ง‰ ๊ตฌ์กฐ ์ปดํ“จํŒ…(Membrane Computing) ๋ฐ ์ƒ๋ฌผํ•™์ ์œผ๋กœ ์˜๊ฐ์„ ๋ฐ›์€ ํ”„๋กœ์„ธ์Šค ๊ณ„์‚ฐ(Biologically Inspired Process Calculus) ๋ถ„์•ผ์—์„œ ์ค‘์š”ํ•œ ์—ฐ๊ตฌ ์„ฑ๊ณผ๋“ค์„ ๋ชจ์•„๋†“์€ ๊ธฐ๋ก์ž…๋‹ˆ๋‹ค. ํŠนํžˆ, ํŽ˜ํŠธ๋ฆฌ ๋„คํŠธ(Petri Net)๋ฅผ ํ™œ์šฉํ•œ ์—ฐ๊ตฌ๊ฐ€ ๊ฐ•์กฐ๋˜์–ด ์žˆ์–ด ์ด ์„ธ ๊ฐ€์ง€ ์ฃผ์ œ ์‚ฌ์ด์˜ ์ƒํ˜ธ์ž‘์šฉ์„ ์ž˜ ๋ณด์—ฌ์ฃผ๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ๋ง‰ ๊ตฌ์กฐ ์ปดํ“จํŒ…์€ ์ƒ๋ฌผํ•™์  ์‹œ์Šคํ…œ์—์„œ ์˜๊ฐ์„ ๋ฐ›์•„ ๊ฐœ๋ฐœ๋œ ๊ณ„์‚ฐ ๋ชจ๋ธ๋กœ, ํŠนํžˆ ์„ธํฌ ๋‚ด์—์„œ ๋ฐœ์ƒํ•˜๋Š” ๋ณต์žกํ•œ ํ™”ํ•™ ๋ฐ˜์‘๊ณผ ์ •๋ณด ํ๋ฆ„์„ ๋ชจ๋ธ๋งํ•˜๋Š”๋ฐ ์‚ฌ์šฉ๋ฉ๋‹ˆ๋‹ค. ์ด ๋ถ„์•ผ๋Š” ์ž๋™ํ™”, ํ˜•

Formal Languages Distributed Computing Computer Science
Modelling of Genetic Regulatory Mechanisms with GReg

Modelling of Genetic Regulatory Mechanisms with GReg

๋ณธ ๋…ผ๋ฌธ์€ ์œ ์ „์  ์กฐ์ ˆ ๋ฉ”์ปค๋‹ˆ์ฆ˜์˜ ๋ชจ๋ธ๋ง์— ์žˆ์–ด ๊ธฐ์กด ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๋„๊ตฌ์™€ ๋ชจ๋ธ ์ฒดํฌ(model checking) ๊ธฐ๋ฒ• ์‚ฌ์ด์˜ ๊ท ํ˜•์ ์„ ์ฐพ๋Š” ๋ฐ ์ดˆ์ ์„ ๋งž์ถ”๊ณ  ์žˆ๋‹ค. ํŠนํžˆ, GReg์ด๋ผ๋Š” ๋„๋ฉ”์ธ ํŠน์ • ์–ธ์–ด(DSL)๋ฅผ ๊ฐœ๋ฐœํ•˜์—ฌ ์ƒ๋ฌผํ•™์  ๊ฐœ๋…์„ ํ˜•์‹ํ™”ํ•˜๊ณ , ์ด๋ฅผ ํ†ตํ•ด ๋น„์ „๋ฌธ๊ฐ€๋„ ์‰ฝ๊ฒŒ ์ ‘๊ทผํ•  ์ˆ˜ ์žˆ๋Š” ๋ชจ๋ธ ์ฒดํฌ ๋„๊ตฌ๋ฅผ ์ œ๊ณตํ•œ๋‹ค. 1. DSL์˜ ํ•„์š”์„ฑ ์ƒ๋ช…๊ณผํ•™ ๋ถ„์•ผ์—์„œ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๊ธฐ๋ฒ•์€ ๋„๋ฆฌ ์‚ฌ์šฉ๋˜๊ณ  ์žˆ์ง€๋งŒ, ์ด๋Š” ํŠน์ • ์กฐ๊ฑด ํ•˜์—๋งŒ ๊ฐ€๋Šฅํ•œ ํ–‰๋™์„ ํƒ์ƒ‰ํ•˜๋Š” ๋ฐ ๊ทธ์น˜๋ฉฐ, ์ „์ฒด์ ์ธ ์‹œ์Šคํ…œ ๋™์ž‘์„ ์™„์ „ํžˆ ์ดํ•ดํ•˜๊ธฐ์—๋Š” ํ•œ๊ณ„๊ฐ€ ์žˆ๋‹ค. ๋ฐ˜๋ฉด, ๋ชจ๋ธ ์ฒดํฌ๋Š”

Computational Engineering Model Logic Computer Science
No Image

Multiscale Modelling: A Mobile Membrane Approach

: ๋ณธ ๋…ผ๋ฌธ์€ ์ƒ๋ฌผํ•™์  ๊ณผ์ • ์—ฐ๊ตฌ์— ์žˆ์–ด ๋‹ค์ค‘ ๊ทœ๋ชจ ๋ชจ๋ธ๋ง์˜ ์ค‘์š”์„ฑ๊ณผ ๊ทธ ๊ตฌํ˜„ ๋ฐฉ๋ฒ•์„ ํƒ๊ตฌํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ํŠนํžˆ, ์ด๋™์„ฑ ๋ง‰ ์‹œ์Šคํ…œ์ด ์ด๋Ÿฌํ•œ ๋ชจ๋ธ๋ง ์ ‘๊ทผ๋ฒ•์—์„œ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•˜๋Š”๋ฐ ์ดˆ์ ์„ ๋งž์ถ”๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. 1. ๋‹ค์ค‘ ๊ทœ๋ชจ ๋ชจ๋ธ๋ง์˜ ํ•„์š”์„ฑ ์ž์—ฐ ํ˜„์ƒ์€ ๋‹ค์–‘ํ•œ ๊ณต๊ฐ„์  ๋ฐ ์‹œ๊ฐ„์  ๊ทœ๋ชจ์—์„œ ์ƒํ˜ธ์ž‘์šฉํ•˜๋ฉฐ ๋ฐœ์ƒํ•ฉ๋‹ˆ๋‹ค. ๋”ฐ๋ผ์„œ, ์ด๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ์—ฐ๊ตฌํ•˜๋ ค๋ฉด ๋‹ค์ค‘ ๊ทœ๋ชจ ๋ชจ๋ธ๋ง์ด ํ•„์ˆ˜์ ์ž…๋‹ˆ๋‹ค. ๋ณต์žก ์ž๋™๋ฌธ(CxA)์€ ์ด๋Ÿฌํ•œ ๋‹ค์ค‘ ๊ทœ๋ชจ ์ ‘๊ทผ๋ฒ•์„ ๊ตฌํ˜„ํ•˜๋Š” ๋ฐ ๊ฐ€์žฅ ์ ํ•ฉํ•œ ์‹œ์Šคํ…œ์œผ๋กœ ๊ฐ„์ฃผ๋ฉ๋‹ˆ๋‹ค. 2. ์ด๋™์„ฑ ๋ง‰ ์‹œ์Šคํ…œ์˜ ํ™œ์šฉ ์ด๋™์„ฑ ๋ง‰ ์‹œ์Šคํ…œ์€ ์ƒ๋ฌผํ•™์  ์›€

Formal Languages Quantitative Biology Model Computer Science Emerging Technologies
Petri Nets and Bio-Modelling - and how to benefit from their synergy

Petri Nets and Bio-Modelling - and how to benefit from their synergy

: ๋ณธ ๋…ผ๋ฌธ์€ ํŽ˜ํŠธ๋ฆฌ๋„ท๊ณผ ์ƒ๋ฌผํ•™์  ์‹œ์Šคํ…œ ๊ฐ„์˜ ์ƒํ˜ธ์ž‘์šฉ์„ ํ†ตํ•ด ์–ป์„ ์ˆ˜ ์žˆ๋Š” ์ด์ ์„ ํƒ๊ตฌํ•ฉ๋‹ˆ๋‹ค. ํŽ˜ํŠธ๋ฆฌ๋„ท์€ ๋™์‹œ์„ฑ๊ณผ ๋ถ„์‚ฐ ๊ณ„์‚ฐ์„ ์œ„ํ•œ ๊ฐ•๋ ฅํ•œ ๋„๊ตฌ๋กœ, ํ–‰๋™ ํŠน์„ฑ์„ ๋ถ„์„ํ•˜๊ณ  ๊ฒ€์ฆํ•˜๋Š” ๋ฐ ์‚ฌ์šฉ๋ฉ๋‹ˆ๋‹ค. ์ƒ๋ฌผํ•™์  ๊ณผ์ •์„ ์ดํ•ดํ•˜๊ธฐ ์œ„ํ•ด ์ œ์•ˆ๋œ ๋ง‰ ์‹œ์Šคํ…œ๊ณผ ๋ฐ˜์‘ ์‹œ์Šคํ…œ์€ ์„ธํฌ ๋‚ด ํ™”ํ•™ ๋ฐ˜์‘์„ ์ถ”์ƒํ™”ํ•œ ๋ชจ๋ธ์ž…๋‹ˆ๋‹ค. ํŽ˜ํŠธ๋ฆฌ๋„ท์˜ ์›์ธ๊ณผ ๋™์‹œ์„ฑ ์˜๋ฏธ๋ก ์— ๋Œ€ํ•œ ์ดํ•ด๋Š” ํŽ˜ํŠธ๋ฆฌ๋„ท์ด ์–ด๋–ป๊ฒŒ ์ƒ๋ฌผํ•™์  ๊ณผ์ •์„ ์ •ํ™•ํžˆ ๋ชจ๋ธ๋งํ•  ์ˆ˜ ์žˆ๋Š”์ง€ ์„ค๋ช…ํ•˜๋Š” ๋ฐ ์ค‘์š”ํ•ฉ๋‹ˆ๋‹ค. ๋ง‰ ์‹œ์Šคํ…œ์€ ์„ธํฌ ๋‚ด ํ™”ํ•™ ๋ฐ˜์‘์—์„œ ์˜๊ฐ์„ ๋ฐ›์•„ ๊ฐœ๋ฐœ๋˜์—ˆ์œผ๋ฉฐ, ์ด๋Š” ํŽ˜ํŠธ๋ฆฌ๋„ท๊ณผ ์œ ์‚ฌํ•œ ๋‹ค์ค‘ ์ง‘ํ•ฉ ์žฌ๊ตฌ

Formal Languages Distributed Computing Model Computer Science
Development and Modelling of High-Efficiency Computing Structure for   Digital Signal Processing

Development and Modelling of High-Efficiency Computing Structure for Digital Signal Processing

๋ณธ ๋…ผ๋ฌธ์˜ ํ•ต์‹ฌ ๋‚ด์šฉ์€ ์Šคํ”Œ๋ผ์ธ(spline) ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ํ™œ์šฉํ•œ ๊ณ ์† ์‹ ํ˜ธ ๋ณต์› ์ปดํ“จํŒ… ๊ตฌ์กฐ ๊ฐœ๋ฐœ์— ๋Œ€ํ•œ ๊ฒƒ์ž…๋‹ˆ๋‹ค. ์ด ์—ฐ๊ตฌ๋Š” ๋””์ง€ํ„ธ ์‹ ํ˜ธ ์ฒ˜๋ฆฌ ๋ถ„์•ผ์—์„œ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•˜๋Š” ์Šคํ”Œ๋ผ์ธ ๋ชจ๋ธ์˜ ๋ฐœ์ „๊ณผ ์ ์šฉ์— ์ค‘์ ์„ ๋‘๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. 1. ์Šคํ”Œ๋ผ์ธ ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ์ค‘์š”์„ฑ ์Šคํ”Œ๋ผ์ธ์€ ๋‹ค์–‘ํ•œ ์ฝ๊ธฐ ์ฒ˜๋ฆฌ ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ๋ณดํŽธ์„ฑ์„ ์ œ๊ณตํ•˜๋ฉฐ, ์šฐ์ˆ˜ํ•œ ๋ฏธ๋ถ„ ๋ฐ ๊ทนํ•œ ํŠน์„ฑ, ๋†’์€ ์ถ”์ • ์ˆ˜๋ ด๋„๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ์–ด ์‹ ํ˜ธ ๋ถ„์„๊ณผ ๋ณต์›์— ๋„๋ฆฌ ์‚ฌ์šฉ๋˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ํŠนํžˆ ์Šคํ”Œ๋ผ์ธ์€ ๋‹จ์ˆœํ•œ ํ˜•ํƒœ์™€ ํŒŒ๋ผ๋ฏธํ„ฐ ๊ณ„์‚ฐ, ๊ทธ๋ฆฌ๊ณ  ๋ผ์šด๋“œ ์˜ค๋ฅ˜์— ๋Œ€ํ•œ ์•ฝํ•œ ์˜ํ–ฅ์œผ๋กœ ์ธํ•ด 1์ฐจ์› ๋ฐ ๋‹ค๋ณ€์ˆ˜ ์‹ 

Numerical Analysis Model Computer Science
Sorting Algorithms with Restrictions

Sorting Algorithms with Restrictions

์ด ๋…ผ๋ฌธ์€ ์ •๋ ฌ ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ์ œํ•œ ์กฐ๊ฑด๊ณผ ๊ทธ์— ๋”ฐ๋ฅธ ๋ณต์žก๋„๋ฅผ ๊นŠ๊ฒŒ ํƒ๊ตฌํ•˜๋ฉฐ, ํŠนํžˆ $k$ ์ •๋ ฌ ๋ฐฉ์‹๊ณผ ๋ณ‘๋ ฌ ์ •๋ ฌ ๋ฐฉ์‹์„ ์ค‘์ ์ ์œผ๋กœ ๋‹ค๋ฃฌ๋‹ค. ์ด ์—ฐ๊ตฌ๋Š” ์ „ํ†ต์ ์ธ ์ •๋ ฌ ์•Œ๊ณ ๋ฆฌ์ฆ˜์—์„œ ๋ฒ—์–ด๋‚˜ ์ƒˆ๋กœ์šด ํ™˜๊ฒฝ๊ณผ ์š”๊ตฌ ์‚ฌํ•ญ์— ๋งž์ถ˜ ์ •๋ ฌ ๋ฐฉ๋ฒ•๋ก ์„ ์ œ์‹œํ•œ๋‹ค. 1. ์„œ๋ก  ์„œ๋ก ์—์„œ๋Š” ์ •๋ ฌ์ด ๊ฐ€์žฅ ๋„๋ฆฌ ์‚ฌ์šฉ๋˜๊ณ  ์‹ฌ๋„ ์žˆ๊ฒŒ ์—ฐ๊ตฌ๋œ ๋ฌธ์ œ ์ค‘ ํ•˜๋‚˜๋ผ๋Š” ์ ์„ ๊ฐ•์กฐํ•˜๋ฉฐ, ์ „ํ†ต์ ์ธ ๊ฐ€์ •์—์„œ ๋ฒ—์–ด๋‚˜ ์ƒˆ๋กœ์šด ํ”„๋กœ์„ธ์„œ์™€ ๋ฐ์ดํ„ฐ ์ŠคํŠธ๋ฆผ์˜ ๋“ฑ์žฅ์œผ๋กœ ์ธํ•ด ๋ณ€ํ™”ํ•˜๋Š” ์ •๋ ฌ ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ๋ชจ์Šต์— ๋Œ€ํ•ด ๋…ผํ•œ๋‹ค. ์ด๋Š” ๊ธฐ์กด์˜ ์ •๋ ฌ ์•Œ๊ณ ๋ฆฌ์ฆ˜์ด ๋‹จ์ˆœํžˆ ๋‘ ์ˆซ์ž๋ฅผ ๋น„๊ตํ•˜์—ฌ ์ •๋ ฌํ•˜๋Š” ๋ฐฉ์‹์—์„œ ๋ฒ—์–ด

Computer Science Data Structures
Fingerprint recognition using standardized fingerprint model

Fingerprint recognition using standardized fingerprint model

์ง€๋ฌธ ์ธ์‹์€ ์ƒ์ฒด ์ธ์‹ ๊ธฐ์ˆ  ์ค‘ ํ•˜๋‚˜๋กœ, ๊ณ ์œ ํ•œ ํŠน์ง•๊ณผ ์ง€์†์„ฑ ๋•๋ถ„์— ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•ฉ๋‹ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ €ํ’ˆ์งˆ ์ด๋ฏธ์ง€๋‚˜ ์†Œํ˜• ์˜์—ญ์—์„œ ํš๋“๋œ ๋ฐ์ดํ„ฐ๋ฅผ ์ฒ˜๋ฆฌํ•˜๋Š” ๋ฐ ์–ด๋ ค์›€์ด ์žˆ์Šต๋‹ˆ๋‹ค. ์ด ๋…ผ๋ฌธ์—์„œ๋Š” ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ํ‘œ์ค€ํ™”๋œ ์ง€๋ฌธ ํ…œํ”Œ๋ฆฟ ๋ชจ๋ธ์„ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. 1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ ์ง€๋ฌธ ์ธ์‹์˜ ํ•ต์‹ฌ์€ ํ…œํ”Œ๋ฆฟ๊ณผ ์ฟผ๋ฆฌ ์ง€๋ฌธ ๊ฐ„์˜ ๋งค์นญ์ž…๋‹ˆ๋‹ค. ์ด ๊ณผ์ •์—์„œ ๋‹ค์–‘ํ•œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์ด ๊ฐœ๋ฐœ๋˜์—ˆ์ง€๋งŒ, ํŠนํžˆ ์ง€๋ฌธ์ด ํšŒ์ „๋˜๊ฑฐ๋‚˜ ๊ต์ฐจ ๋ถ€๋ถ„์ด ์ž‘์€ ๊ฒฝ์šฐ ์ •ํ™•๋„๊ฐ€ ๋–จ์–ด์ง‘๋‹ˆ๋‹ค. ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ํ‘œ์ค€ํ™”๋œ ์ง€๋ฌธ ํ…œํ”Œ๋ฆฟ ๋ชจ๋ธ์„ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. 2. ์—ฐ๊ตฌ ๋ฐฉ๋ฒ•

Model Computer Vision Computer Science
No Image

Visual Secret Sharing Scheme using Grayscale Images

: ๋ณธ ๋…ผ๋ฌธ์€ ํšŒ์ƒ‰์กฐ ์ด๋ฏธ์ง€์— ๋Œ€ํ•œ ์‹œ๊ฐ ๋น„๋ฐ€ ๋ถ„๋ฐฐ(VSS) ๋ฐฉ์‹์˜ ๊ฐœ์„ ์ ์„ ์ œ์‹œํ•˜๋ฉฐ, ํŠนํžˆ ํ”ฝ์…€ ํ™•์žฅ ๋ฌธ์ œ์™€ ์žฌ๊ตฌ์„ฑ๋œ ์ด๋ฏธ์ง€์˜ ํ’ˆ์งˆ ์ €ํ•˜๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•œ ์ƒˆ๋กœ์šด ์ ‘๊ทผ๋ฒ•์„ ์†Œ๊ฐœํ•œ๋‹ค. ์ด ์—ฐ๊ตฌ๋Š” ๊ธฐ์กด VSS ๋ฐฉ์‹์—์„œ ๋ฐœ์ƒํ•˜๋Š” ์ฃผ์š” ๋ฌธ์ œ์ ๋“ค์„ ๊ทน๋ณตํ•˜๊ณ ์ž ํ•˜๋ฉฐ, ์ด๋ฅผ ํ†ตํ•ด ๋ณด๋‹ค ์•ˆ์ •์ ์ด๊ณ  ํšจ๊ณผ์ ์ธ ๋น„๋ฐ€ ์ •๋ณด ๊ณต์œ  ๋ฐฉ๋ฒ•์„ ์ œ์‹œํ•œ๋‹ค. 1. ๋ฐฐ๊ฒฝ ๋ฐ ๋ฌธ์ œ ์ธ์‹ ๋น„๋ฐ€ ๋ถ„๋ฐฐ ๊ธฐ๋ฒ•์€ ๋‹ค์–‘ํ•œ ์‘์šฉ ๋ถ„์•ผ์—์„œ ํ™œ์šฉ๋˜๋ฉฐ, ํŠนํžˆ ์›Œํ„ฐ๋งˆํ‚น๊ณผ ๊ฐ™์€ ์ •๋ณด ์€๋‹‰ ๊ธฐ์ˆ ์— ๋„๋ฆฌ ์‚ฌ์šฉ๋œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ด๋“ค ๋ฐฉ์‹ ์ค‘ ์ผ๋ถ€๋Š” ์žฌ๊ตฌ์„ฑ๋œ ์ด๋ฏธ์ง€์˜ ํ’ˆ์งˆ ์ €ํ•˜์™€ ํ”ฝ์…€ ํ™•์žฅ ๋ฌธ์ œ๋ฅผ ์•ผ

Computer Vision Computer Science Cryptography and Security
No Image

Pose Estimation from a Single Depth Image for Arbitrary Kinematic Skeletons

๋ณธ ๋…ผ๋ฌธ์€ ๊นŠ์ด ์ด๋ฏธ์ง€๋กœ๋ถ€ํ„ฐ ์ž„์˜์˜ ๊ด€์ ˆ ๊ตฌ์กฐ๋ฅผ ๊ฐ€์ง„ ๋ฌผ์ฒด์˜ 3D ์ž์„ธ๋ฅผ ์ถ”์ •ํ•˜๋Š” ๋ฌธ์ œ์— ๋Œ€ํ•ด ์ง„ํ™” ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ํ™œ์šฉํ•œ ์ƒˆ๋กœ์šด ์ ‘๊ทผ๋ฒ•์„ ์ œ์‹œํ•œ๋‹ค. ์ด ์—ฐ๊ตฌ๋Š” ๊ธฐ์กด์˜ ๋ฐฉ๋ฒ•๋“ค์ด ์‚ฌ์ „ ํ›ˆ๋ จ์ด๋‚˜ ๋„๋ฉ”์ธ ํŠน์ • ์ง€์‹์— ํฌ๊ฒŒ ์˜์กดํ•˜๊ณ , ์ด๋ฅผ ์ผ๋ฐ˜ํ™”ํ•˜๊ธฐ ์œ„ํ•œ ์ถ”๊ฐ€์ ์ธ ๋…ธ๋ ฅ์ด ํ•„์š”ํ•˜๋‹ค๋Š” ํ•œ๊ณ„์ ์„ ๊ทน๋ณตํ•˜๋ ค๊ณ  ์‹œ๋„ํ•œ๋‹ค. 1. ๋ฌธ์ œ ์ •์˜์™€ ์ ‘๊ทผ ๋ฐฉ์‹ ์ž์„ธ ์ถ”์ •์€ ๋ฌผ์ฒด์˜ ๊ด€์ ˆ ๊ตฌ์กฐ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ๊นŠ์ด ์ด๋ฏธ์ง€์—์„œ ๋ฌผ์ฒด์˜ ์œ„์น˜์™€ ์ž์„ธ๋ฅผ ๊ฒฐ์ •ํ•˜๋Š” ๊ณผ์ •์ด๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์ด ๋ฌธ์ œ๋ฅผ ๋ชจ๋ธ ๊ธฐ๋ฐ˜ ์ถ”์ • ๋ฌธ์ œ๋กœ ์ •์˜ํ•˜๊ณ , ์ง„ํ™” ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ํ™œ์šฉํ•˜์—ฌ ์ตœ์ ์˜ ์ž์„ธ ๋งค๊ฐœ๋ณ€์ˆ˜๋ฅผ ์ฐพ

Computer Science Artificial Intelligence Machine Learning Computer Vision
No Image

Cryptographic Hardening of d-Sequences

๋ณธ ๋…ผ๋ฌธ์€ d ์‹œํ€€์Šค๋ฅผ ์ด์šฉํ•˜์—ฌ ๋žœ๋ค ์ˆซ์ž ์ƒ์„ฑ๊ธฐ(RNG)์˜ ๋ฌด์ž‘์œ„์„ฑ์„ ๊ฐ•ํ™”ํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ด ์—ฐ๊ตฌ๋Š” RNG์˜ ์ถœ๋ ฅ์— ๋‹ค๋Œ€์ผ ๋งคํ•‘์„ ์ ์šฉํ•จ์œผ๋กœ์จ ์—ญ ๊ณผ์ •์˜ ๋ณต์žก์„ฑ์„ ์ฆ๊ฐ€์‹œํ‚ค๊ณ , ์ด๋ฅผ ํ†ตํ•ด ์‹œํ€€์Šค์˜ ๋ฌด์ž‘์œ„์„ฑ์„ ํ–ฅ์ƒ์‹œํ‚ค๋Š” ์•„์ด๋””์–ด๋ฅผ ์ค‘์‹ฌ์œผ๋กœ ์ง„ํ–‰๋˜์—ˆ์Šต๋‹ˆ๋‹ค. 1. ๋ฌด์ž‘์œ„์„ฑ ์ธก์ • ๊ธฐ์ค€ ๋ฌด์ž‘์œ„์„ฑ์€ ํ™•๋ฅ ์  ๊ด€์ ๊ณผ ๋ณต์žก์„ฑ ๊ด€์ ์—์„œ ์ธก์ •๋  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์ž์ƒ๊ด€ ํ•จ์ˆ˜๋ฅผ ์ฃผ์š”ํ•œ ๋ฌด์ž‘์œ„์„ฑ ์ธก์ • ๊ธฐ์ค€์œผ๋กœ ์‚ฌ์šฉํ•˜์˜€์Šต๋‹ˆ๋‹ค. ์ด๋Š” ์‹œํ€€์Šค์˜ ์ž๊ธฐ ์œ ์‚ฌ์„ฑ์„ ๋‚˜ํƒ€๋‚ด๋ฉฐ, ์ข‹์€ ๋ฌด์ž‘์œ„ ์‹œํ€€์Šค๋Š” ๋Œ€๋žต ์ด์ง„ ๊ฐ’์„ ๊ฐ€์ง€๋Š” ์ž์ƒ๊ด€ ํ•จ์ˆ˜๋ฅผ ๊ฐ€์ง‘๋‹ˆ

Computer Science Cryptography and Security
No Image

Zen Puzzle Garden is NP-complete

๋ณธ ๋…ผ๋ฌธ์€ '์   ํผ์ฆ ๊ฐ€๋“ (ZPG)' ๊ฒŒ์ž„์˜ ๋ณต์žก์„ฑ ๋ถ„์„์„ ํ†ตํ•ด, ์ด ๊ฒŒ์ž„์ด NP ์™„์ „ํ•œ ๋ฌธ์ œ๋ผ๋Š” ๊ฒƒ์„ ์ฆ๋ช…ํ•˜๊ณ  ์žˆ๋‹ค. ZPG๋Š” 2์ฐจ์› ๊ฒฉ์ž ์ƒ์—์„œ ์ง„ํ–‰๋˜๋Š” ๋‹จ์ถ• ํ”Œ๋ ˆ์ด์–ด ํผ์ฆ ๊ฒŒ์ž„์œผ๋กœ, ๋ชจ๋ž˜, ๋ฐ”์œ„ ๋˜๋Š” ํ†ตํ–‰ ๊ฐ€๋Šฅํ•œ ์‚ฌ๊ฐํ˜•๋“ค๋กœ ๊ตฌ์„ฑ๋œ ์ •์‚ฌ๊ฐํ˜• ๊ทธ๋ฆฌ๋“œ ์œ„์—์„œ ์›€์ง์ด๋Š” ์ˆ˜๋„์Šน ์บ๋ฆญํ„ฐ๋ฅผ ์ค‘์‹ฌ์œผ๋กœ ํ•œ๋‹ค. ๊ฒŒ์ž„์˜ ๋ชฉํ‘œ๋Š” ๋ชจ๋“  ๋ชจ๋ž˜ ์‚ฌ๊ฐํ˜•์„ ํ†ต๊ณผ์‹œํ‚ค๋Š” ๊ฒƒ์ด๋‹ค. ZPG์˜ ๋ณต์žก์„ฑ ๋ถ„์„์€ NP ์™„์ „์„ฑ ์ฆ๋ช…์— ์ดˆ์ ์„ ๋งž์ถ”๊ณ  ์žˆ๋‹ค. ์ด ๋…ผ๋ฌธ์—์„œ๋Š” ์ž…๋ฐฉํ˜• ๊ทธ๋ž˜ํ”„์— ๋Œ€ํ•œ ํ•˜๋ฐ€ํ„ด ํšŒ๋กœ ๋ฌธ์ œ์™€ ZPG ๊ฐ„์˜ ๊ฐ์†Œ๋ฅผ ํ†ตํ•ด NP ์™„์ „์„ฑ์„ ์ฆ๋ช…ํ•œ๋‹ค. ์ž…๋ฐฉํ˜• ๊ทธ๋ž˜ํ”„

Computer Science Computational Complexity
A Note on the Group-theoretic Approach to Fast Matrix Multiplication

A Note on the Group-theoretic Approach to Fast Matrix Multiplication

: ์ด ๋…ผ๋ฌธ์€ ํ–‰๋ ฌ ๊ณฑ์…ˆ ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ๋ณต์žก๋„๋ฅผ ์ค„์ด๋Š” ๋ฐ ์žˆ์–ด ๊ทธ๋ฃน ์ด๋ก ์  ์ ‘๊ทผ ๋ฐฉ์‹์˜ ์ค‘์š”์„ฑ์— ๋Œ€ํ•ด ํƒ๊ตฌํ•˜๊ณ  ์žˆ๋‹ค. ์ „ํ†ต์ ์ธ ํ–‰๋ ฌ ๊ณฑ์…ˆ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ O(nยณ) ์‹œ๊ฐ„ ๋ณต์žก๋„๋ฅผ ๊ฐ€์ง„๋‹ค. ๊ทธ๋Ÿฌ๋‚˜, ๋ณด๋‹ค ํšจ์œจ์ ์ธ ์•Œ๊ณ ๋ฆฌ์ฆ˜์ด ์กด์žฌํ•˜๋ฉฐ, ๊ฐ€์žฅ ๋น ๋ฅธ ์•Œ๋ ค์ง„ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ Don Coppersmith์™€ Shmuel Winograd์— ์˜ํ•ด ์ œ์‹œ๋œ O(nยฒ.376) ์‹œ๊ฐ„ ๋ณต์žก๋„์˜ ์•Œ๊ณ ๋ฆฌ์ฆ˜์ด๋‹ค. ๋…ผ๋ฌธ์—์„œ๋Š” ํ–‰๋ ฌ ๊ณฑ์…ˆ ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ์„ฑ๋Šฅ์„ ํ–ฅ์ƒ์‹œํ‚ค๋Š” ๋ฐ ์žˆ์–ด ๊ทธ๋ฃน ์ด๋ก ์  ์ ‘๊ทผ ๋ฐฉ์‹์˜ ์ค‘์š”์„ฑ์„ ๊ฐ•์กฐํ•œ๋‹ค. ํŠนํžˆ, 2003๋…„์— ์ฝ”ํ—จ(Cohn)๊ณผ ์šฐ๋งŒ์Šค(Umans)์ด

Symbolic Computation Mathematics Computer Science
Liber Mathematicae: A Web-Based Documentation and Collaboration Project   for Mathematics

Liber Mathematicae: A Web-Based Documentation and Collaboration Project for Mathematics

: ๋ณธ ๋…ผ๋ฌธ์€ ๊ธฐ์กด์˜ ์ˆ˜ํ•™ ์ถœํŒ ๋ฐฉ์‹์— ๋Œ€ํ•œ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ณ ์ž ํ•˜๋Š” ์ƒˆ๋กœ์šด ์ ‘๊ทผ๋ฒ•์„ ์ œ์‹œํ•œ๋‹ค. ์ „ํ†ต์ ์œผ๋กœ ์ˆ˜ํ•™ ์ง€์‹์€ ์ฑ…์ด๋‚˜ ํ•™์ˆ ์ง€์— ์ธ์‡„ ๋งค์ฒด๋กœ ์ถœํŒ๋˜์–ด ์™”์ง€๋งŒ, ์ธํ„ฐ๋„ท์ด ๋“ฑ์žฅํ•จ์— ๋”ฐ๋ผ ์ƒˆ๋กœ์šด ์ถœํŒ ๋ฐฉ์‹์˜ ๊ฐ€๋Šฅ์„ฑ์ด ์—ด๋ ธ์Œ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ , ๋Œ€๋ถ€๋ถ„์˜ ์˜จ๋ผ์ธ ์ˆ˜ํ•™ ์ถœํŒ๋ฌผ์€ ์—ฌ์ „ํžˆ ๋ฏธ๋””์–ด์˜ ์ž ์žฌ๋ ฅ์„ ์ถฉ๋ถ„ํžˆ ํ™œ์šฉํ•˜์ง€ ๋ชปํ•˜๊ณ  ์žˆ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด, arXiv๋Š” PDF ํ˜•์‹์„ ์‚ฌ์šฉํ•˜์—ฌ ๋ฌธ์„œ๋ฅผ ํ˜ธ์ŠคํŒ…ํ•˜๋Š”๋ฐ, ์ด๋Š” ์ธ์‡„์šฉ ๋ฌธ์„œ ์ „์†ก ๋ฐ ํ˜•์‹ ์œ ์ง€์— ์ตœ์ ํ™”๋˜์–ด ์žˆ์ง€๋งŒ, ์ˆ˜ํ•™์  ํ‘œํ˜„์„ ํ™•์žฅ ๊ฐ€๋Šฅํ•˜๊ฑฐ๋‚˜ ๋ณต์‚ฌ ๊ฐ€๋Šฅํ•œ ํ˜•ํƒœ๋กœ ํ‘œ์‹œํ•˜์ง€๋Š” ๋ชปํ•œ๋‹ค. ์œ„ํ‚คํ”ผ๋””์•„์™€ ๊ฐ™

Digital Libraries Mathematics Computer Science
On the impossibility of non-static quantum bit commitment between two   parties

On the impossibility of non-static quantum bit commitment between two parties

๋ณธ ๋…ผ๋ฌธ์€ ์–‘์ž ๋น„ํŠธ ์ปค๋ฐ‹๋จผํŠธ(QBC) ํ”„๋กœํ† ์ฝœ์˜ ๋ณด์•ˆ์„ฑ๊ณผ ํ•œ๊ณ„์— ๋Œ€ํ•ด ์‹ฌ๋„ ์žˆ๊ฒŒ ๋ถ„์„ํ•ฉ๋‹ˆ๋‹ค. QBC๋Š” ์•”ํ˜ธํ™”์—์„œ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•˜๋Š”๋ฐ, ์ด๋Š” ์ „์†ก์ž๊ฐ€ ์ˆ˜์‹ ์ž์—๊ฒŒ 0 ๋˜๋Š” 1 ์ค‘ ํ•˜๋‚˜์˜ ๋น„ํŠธ๋ฅผ ์•ฝ์†ํ•˜๋Š” ๊ณผ์ •์ž…๋‹ˆ๋‹ค. ์ด ํ”„๋กœ์„ธ์Šค๋Š” ๋ฐ”์ธ๋”ฉ ์†์„ฑ๊ณผ ๊ฐ์ถ”๋Š” ์†์„ฑ์„ ๋™์‹œ์— ์ถฉ์กฑํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค. ๋ฐ”์ธ๋”ฉ ์†์„ฑ์€ ์ „์†ก์ž๊ฐ€ ์ปค๋ฐ‹๋จผํŠธ ๋‹จ๊ณ„ ์ดํ›„์— ์•ฝ์†ํ•œ ๋น„ํŠธ ๊ฐ’์„ ๋ณ€๊ฒฝํ•  ์ˆ˜ ์—†์Œ์„ ์˜๋ฏธํ•˜๋ฉฐ, ๊ฐ์ถ”๋Š” ์†์„ฑ์€ ์ˆ˜์‹ ์ž์—๊ฒŒ ์ปค๋ฐ‹๋จผํŠธ ๋‹จ๊ณ„ ์ด์ „์—๋Š” ์•ฝ์†๋œ ๋น„ํŠธ ๊ฐ’์ด ์•Œ๋ ค์ง€์ง€ ์•Š์Œ์„ ๋‚˜ํƒ€๋ƒ…๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ๋‘ ๊ฐ€์ง€ ์†์„ฑ์„ ๋™์‹œ์— ์ถฉ์กฑํ•˜๋Š” ๊ณ ์ „์  ๋น„ํŠธ ์ปค๋ฐ‹๋จผํŠธ ํ”„๋กœํ† ์ฝœ

Quantum Physics Computer Science Cryptography and Security
Bandwidth and pathwidth of three-dimensional grids

Bandwidth and pathwidth of three-dimensional grids

๋ณธ ๋…ผ๋ฌธ์€ ๊ทธ๋ž˜ํ”„ ์ด๋ก ์—์„œ ์ค‘์š”ํ•œ ๋‘ ๊ฐ€์ง€ ํŒŒ๋ผ๋ฏธํ„ฐ์ธ ๋ฐด๋“œ ๋„ˆ๋น„์™€ ๊ฒฝ๋กœ ๋„ˆ๋น„์— ๋Œ€ํ•œ ์‹ฌ๋„ ์žˆ๋Š” ์—ฐ๊ตฌ๋ฅผ ์ œ๊ณตํ•˜๋ฉฐ, ํŠนํžˆ 3์ฐจ์› ๊ทธ๋ฆฌ๋“œ์˜ ๊ฒฝ์šฐ์— ๋Œ€ํ•ด ์ง‘์ค‘์ ์œผ๋กœ ๋‹ค๋ฃฌ๋‹ค. ์ด ์—ฐ๊ตฌ๋Š” ์ปดํ“จํ„ฐ ๊ณผํ•™ ๋ถ„์•ผ์—์„œ ๋„๋ฆฌ ํ™œ์šฉ๋˜๋Š” ๊ทธ๋ž˜ํ”„ ์ด๋ก ์˜ ์ค‘์š”ํ•œ ์ธก๋ฉด์„ ํƒ๊ตฌํ•˜๊ณ  ์žˆ์œผ๋ฉฐ, ๊ทธ ๊ฒฐ๊ณผ๋Š” VLSI ๋ ˆ์ด์•„์›ƒ๊ณผ ๋ณ‘๋ ฌ ์ปดํ“จํŒ… ๋“ฑ ๋‹ค์–‘ํ•œ ์‘์šฉ ๋ถ„์•ผ์— ์ ์šฉ๋  ์ˆ˜ ์žˆ๋‹ค. ๋ฐด๋“œ ๋„ˆ๋น„์™€ ๊ฒฝ๋กœ ๋„ˆ๋น„์˜ ์ •์˜ ๋ฐ ๊ด€๋ จ์„ฑ ๋ฐด๋“œ ๋„ˆ๋น„์™€ ๊ฒฝ๋กœ ๋„ˆ๋น„๋Š” ๊ทธ๋ž˜ํ”„ ์ด๋ก ์—์„œ ์ค‘์š”ํ•œ ๊ฐœ๋…์œผ๋กœ, ๊ฐ๊ฐ ๊ทธ๋ž˜ํ”„์˜ ๊ตฌ์กฐ๋ฅผ ์ธก์ •ํ•˜๋Š” ๋ฐ ์‚ฌ์šฉ๋œ๋‹ค. ๋ฐด๋“œ ๋„ˆ๋น„๋Š” ๊ทธ๋ž˜ํ”„์˜ ์ •์  ์ง‘ํ•ฉ์„ ์ผ๋ ฌ๋กœ ๋ฐฐ์—ดํ–ˆ์„

Computer Science Discrete Mathematics
DARC: Drum accompaniment generation with fine-grained rhythm control

DARC: Drum accompaniment generation with fine-grained rhythm control

DARC๋Š” ํ˜„์žฌ ์Œ์•… ์ƒ์„ฑ ์—ฐ๊ตฌ์—์„œ ๋‘๋“œ๋Ÿฌ์ง„ ๋ฌธ์ œ์ , ์ฆ‰ โ€˜๊ตฌ์กฐ์  ์ œ์–ด์™€ ์Šคํƒ€์ผ์  ์ž์œ  ์‚ฌ์ด์˜ ํŠธ๋ ˆ์ด๋“œ์˜คํ”„โ€™๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ํ•ด์†Œํ•œ๋‹ค๋Š” ์ ์—์„œ ์˜๋ฏธ๊ฐ€ ํฌ๋‹ค. ๊ธฐ์กด ์Šคํ…œโ€‘ํˆฌโ€‘์Šคํ…œ ์ ‘๊ทผ๋ฒ•์€ ์•…๊ธฐ ๊ฐ„ ์ƒํ˜ธ์ž‘์šฉ์„ ๋ฐ˜์˜ํ•ด ์กฐํ™”๋กœ์šด ๋ฐ˜์ฃผ๋ฅผ ๋งŒ๋“ค ์ˆ˜ ์žˆ์ง€๋งŒ, ๋ฆฌ๋“ฌ ํŒจํ„ด์„ ์‚ฌ์šฉ์ž๊ฐ€ ์ง์ ‘ ์ง€์ •ํ•˜๊ฑฐ๋‚˜ ๋ฏธ์„ธ ์กฐ์ •ํ•˜๊ธฐ๋Š” ์–ด๋ ค์› ๋‹ค. ๋ฐ˜๋Œ€๋กœ timbreโ€‘transfer ๊ธฐ๋ฐ˜ ๋ชจ๋ธ์€ ์‚ฌ์šฉ์ž๊ฐ€ ์ง์ ‘ ๋งŒ๋“  ๋น„ํŠธ๋ฐ•์‹ฑยทํƒญํ•‘ ๊ฐ™์€ ๋ฆฌ๋“ฌ ์‹œํ€€์Šค๋ฅผ ์ž…๋ ฅ์œผ๋กœ ๋ฐ›์•„๋“ค์ผ ์ˆ˜ ์žˆ์ง€๋งŒ, ๊ทธ ๋ฆฌ๋“ฌ์ด ํ˜„์žฌ ์ง„ํ–‰ ์ค‘์ธ ํ™”์„ฑยท๋ฉœ๋กœ๋””์™€ ์–ผ๋งˆ๋‚˜ ์ž˜ ๋งž๋Š”์ง€๋Š” ๋ณด์žฅ๋˜์ง€ ์•Š๋Š”๋‹ค. DARC๋Š” ์ด ๋‘

Computer Science Sound
No Image

Yukthi Opus: A Multi-Chain Hybrid Metaheuristic for Large-Scale NP-Hard Optimization

Yukthi Opus(YO)๋Š” ๋ฉ”ํƒ€ํœด๋ฆฌ์Šคํ‹ฑ ์„ค๊ณ„์—์„œ ํ”ํžˆ ๋ฐœ์ƒํ•˜๋Š” โ€˜์ „์—ญ ํƒ์ƒ‰๊ณผ ์ง€์—ญ ํƒ์ƒ‰์˜ ๊ท ํ˜•โ€™ ๋ฌธ์ œ๋ฅผ ์„ธ ๋‹จ๊ณ„ ๊ตฌ์กฐ๋กœ ๋ช…ํ™•ํžˆ ๊ตฌ๋ถ„ํ•จ์œผ๋กœ์จ ํ•ด๊ฒฐ์ฑ…์„ ์ œ์‹œํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ ๋ ˆ์ด์–ด์ธ MCMC ๊ธฐ๋ฐ˜ ์ „์—ญ ํƒ์ƒ‰์€ ํ™•๋ฅ ์  ์ „์ด ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ์ด์šฉํ•ด ํƒ์ƒ‰ ๊ณต๊ฐ„์„ ๊ท ๋“ฑํ•˜๊ฒŒ ์ƒ˜ํ”Œ๋งํ•˜๊ณ , ์ดˆ๊ธฐ ๋ฒˆ์ธ ๋‹จ๊ณ„์—์„œ ์ถฉ๋ถ„ํžˆ ๋‹ค์–‘ํ•œ ์˜์—ญ์„ ๋ฐฉ๋ฌธํ•˜๋„๋ก ์„ค๊ณ„๋˜์—ˆ๋‹ค. ์ด๋•Œ ๋ธ”๋ž™๋ฆฌ์ŠคํŠธ๋ฅผ ๋„์ž…ํ•ด ์ด๋ฏธ ๋‚ฎ์€ ํ’ˆ์งˆ์„ ๋ณด์ธ ์ง€์—ญ์„ ์žฌ๋ฐฉ๋ฌธํ•˜์ง€ ์•Š๊ฒŒ ํ•จ์œผ๋กœ์จ ๋ถˆํ•„์š”ํ•œ ๊ณ„์‚ฐ์„ ํฌ๊ฒŒ ์ ˆ๊ฐํ•œ๋‹ค๋Š” ์ ์ด ๋ˆˆ์— ๋ˆ๋‹ค. ๋‘ ๋ฒˆ์งธ ๋ ˆ์ด์–ด๋Š” ์ „ํ†ต์ ์ธ ํƒ์š•์  ๋กœ์ปฌ ์„œ์น˜๋ฅผ ์ ์šฉํ•ด ํ˜„์žฌ ์œ„์น˜์—์„œ ๊ฐ€

Computer Science Neural Computing
No Image

A construction of an optimal base for conditional attribute and attributional condition implications in triadic contexts

์‚ผ์ค‘ ์ปจํ…์ŠคํŠธ๋Š” ์ „ํ†ต์ ์ธ ์ดํ•ญ ๊ด€๊ณ„๋ฅผ ๋„˜์–ด ๊ฐ์ฒดโ€‘์†์„ฑโ€‘์กฐ๊ฑด์ด๋ผ๋Š” ์„ธ ์ฐจ์›์„ ๋™์‹œ์— ๊ณ ๋ คํ•˜๋Š” ๋ฐ์ดํ„ฐ ๋ชจ๋ธ๋กœ, ์ง€์‹ ๋ฐœ๊ฒฌ ๋ฐ ์˜๋ฏธ๋ก ์  ๋ถ„์„์— ์žˆ์–ด ๊ฐ•๋ ฅํ•œ ํ‘œํ˜„๋ ฅ์„ ์ œ๊ณตํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ด๋Ÿฌํ•œ ๋‹ค์ฐจ์› ๊ตฌ์กฐ์—์„œ๋Š” ๊ธฐ์กด์˜ ์ดํ•ญ ์ปจํ…์ŠคํŠธ์—์„œ ์‚ฌ์šฉ๋˜๋Š” ํ•จ์ถ•(implication) ๊ธฐ๋ฐ˜ ์ถ”๋ก  ๊ธฐ๋ฒ•์„ ๊ทธ๋Œ€๋กœ ์ ์šฉํ•˜๊ธฐ ์–ด๋ ต๋‹ค. ํŠนํžˆ ์กฐ๊ฑด ์†์„ฑ(conditional attribute)๊ณผ ๊ท€์† ์กฐ๊ฑด(attributional condition)์ด๋ผ๋Š” ๋‘ ์ข…๋ฅ˜์˜ ํ•จ์ถ•์ด ๋™์‹œ์— ์กด์žฌํ•  ๊ฒฝ์šฐ, ์„œ๋กœ ์–ฝํžˆ๋Š” ์ „์ œ์™€ ๊ฒฐ๋ก  ์‚ฌ์ด์˜ ์ค‘๋ณต ๋ฐ ๋ถˆํ•„์š”ํ•œ ํ•จ์ถ•์ด ๊ธ‰์ฆํ•˜์—ฌ ํšจ์œจ

Computer Science Artificial Intelligence
Exposing Hidden Interfaces: LLM-Guided Type Inference for Reverse Engineering macOS Private Frameworks

Exposing Hidden Interfaces: LLM-Guided Type Inference for Reverse Engineering macOS Private Frameworks

MOTIF๋Š” ํฌ๊ฒŒ ๋‘ ๊ฐ€์ง€ ํ•ต์‹ฌ ์š”์†Œ๋กœ ๊ตฌ์„ฑ๋œ๋‹ค. ์ฒซ ๋ฒˆ์งธ๋Š” Objectiveโ€‘C ๋Ÿฐํƒ€์ž„ ์ •๋ณด๋ฅผ ํ™œ์šฉํ•ด ๋ฉ”์„œ๋“œ ํ˜ธ์ถœ ๊ด€๊ณ„์™€ ํด๋ž˜์Šค ๊ณ„์ธต ๊ตฌ์กฐ๋ฅผ ์ถ”์ถœํ•˜๋Š” โ€˜๋ฉ”ํƒ€๋ฐ์ดํ„ฐ ์ˆ˜์ง‘ ๋ชจ๋“ˆโ€™์ด๋‹ค. ์ด ๋ชจ๋“ˆ์€ dyld shared cache์™€ Machโ€‘O ๋ฐ”์ด๋„ˆ๋ฆฌ๋ฅผ ๋™์ ์œผ๋กœ ๋กœ๋“œํ•˜๊ณ , objc getClass, method getImplementation ๋“ฑ์˜ ๋Ÿฐํƒ€์ž„ API๋ฅผ ํ˜ธ์ถœํ•ด ์‹ค์ œ ๋ฉ”๋ชจ๋ฆฌ ์ฃผ์†Œ์™€ ์‹ฌ๋ณผ ์ •๋ณด๋ฅผ ์ˆ˜์ง‘ํ•œ๋‹ค. ์ˆ˜์ง‘๋œ ๋ฐ์ดํ„ฐ๋Š” ๊ทธ๋ž˜ํ”„ ํ˜•ํƒœ๋กœ ์ •๊ทœํ™”๋˜์–ด ์ดํ›„ ๋‹จ๊ณ„์— ์ „๋‹ฌ๋œ๋‹ค. ๋‘ ๋ฒˆ์งธ๋Š” ํŒŒ์ธํŠœ๋‹๋œ ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(LLM)์ด๋‹ค. ์—ฐ๊ตฌํŒ€์€

Computer Science Framework Cryptography and Security
No Image

FALCON: Few-Shot Adversarial Learning for Cross-Domain Medical Image Segmentation

FALCON ๋…ผ๋ฌธ์€ ํ˜„์žฌ ์˜๋ฃŒ ์˜์ƒ ๋ถ„ํ•  ๋ถ„์•ผ๊ฐ€ ์ง๋ฉดํ•œ ์„ธ ๊ฐ€์ง€ ํ•ต์‹ฌ ๋ฌธ์ œโ€”๋ผ๋ฒจ ๋ฐ์ดํ„ฐ์˜ ํฌ์†Œ์„ฑ, ํ™˜์ž ๊ฐ„ ํ•ด๋ถ€ํ•™์  ๋ณ€์ด, ๊ทธ๋ฆฌ๊ณ  ์‹ค์‹œ๊ฐ„ ์ž„์ƒ ์ ์šฉ์„ ์œ„ํ•œ ์—ฐ์‚ฐ ํšจ์œจ์„ฑโ€”๋ฅผ ๋™์‹œ์— ํ•ด๊ฒฐํ•˜๋ ค๋Š” ์‹œ๋„๋กœ ํ‰๊ฐ€ํ•  ์ˆ˜ ์žˆ๋‹ค. ๊ฐ€์žฅ ๋ˆˆ์— ๋„๋Š” ์ ์€ โ€œ๋ฉ”ํƒ€โ€‘ํ•™์Šต โ†’ ์ ๋Œ€์  ํŒŒ์ธํŠœ๋‹ โ†’ ๊ฒฝ๊ณ„ ์ธ์‹ ํ•™์Šตโ€์ด๋ผ๋Š” 3๋‹จ๊ณ„ ์ „์ด ์ „๋žต์ด๋‹ค. ์ฒซ ๋‹จ๊ณ„์—์„œ ์ž์—ฐ ์ด๋ฏธ์ง€(์˜ˆ: PASCALโ€‘5โฑ, COCOโ€‘20โฑ)๋กœ ๋ฉ”ํƒ€โ€‘๋Ÿฌ๋‹์„ ์ˆ˜ํ–‰ํ•จ์œผ๋กœ์จ, ๋‹ค์–‘ํ•œ ํด๋ž˜์Šค์™€ ๋ณต์žกํ•œ ๋ฐฐ๊ฒฝ์„ ๊ฐ€์ง„ ์ƒํ™ฉ์—์„œ๋„ ๋น ๋ฅด๊ฒŒ ์ƒˆ๋กœ์šด ํƒœ์Šคํฌ์— ์ ์‘ํ•  ์ˆ˜ ์žˆ๋Š” โ€˜ํ•™์Šตโ€‘ํ•™์Šตโ€™ ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ๊ตฌ์ถ•ํ•œ๋‹ค.

Computer Vision Computer Science Learning
HanoiWorld : A Joint Embedding Predictive Architecture BasedWorld Model for Autonomous Vehicle Controller

HanoiWorld : A Joint Embedding Predictive Architecture BasedWorld Model for Autonomous Vehicle Controller

๋ณธ ๋…ผ๋ฌธ์€ ์ž์œจ์ฃผํ–‰ ์ œ์–ด์— ์žˆ์–ด ๊ฐ•ํ™”ํ•™์Šต(RL)์ด ์ง๋ฉดํ•œ ๊ทผ๋ณธ์ ์ธ ํ•œ๊ณ„๋ฅผ ์งš์–ด๋‚ธ ๋’ค, JEPA ๊ธฐ๋ฐ˜ ์ž๊ธฐ์ง€๋„ ํ•™์Šต์ด ์ œ๊ณตํ•  ์ˆ˜ ์žˆ๋Š” ๋Œ€์•ˆ์„ ์ œ์‹œํ•œ๋‹ค. ๊ธฐ์กด RL ์ ‘๊ทผ๋ฒ•์€ ๋ณด์ƒ ์„ค๊ณ„๊ฐ€ ๋ณต์žกํ•˜๊ณ , ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ํ˜น์€ ์‹ค์ œ ๋„๋กœ์—์„œ ์ˆ˜๋ฐฑ๋งŒ ๋‹จ๊ณ„์— ๋‹ฌํ•˜๋Š” ๋ฐ์ดํ„ฐ๊ฐ€ ํ•„์š”ํ•˜๋‹ค. ํŠนํžˆ ํ”ฝ์…€ ์ˆ˜์ค€์˜ ์žฌ๊ตฌ์„ฑ ์†์‹ค์„ ์ตœ์†Œํ™”ํ•˜๋ ค๋Š” ๋ชฉํ‘œ๋Š” ๊ณ ์ฐจ์› ์ž…๋ ฅ ๊ณต๊ฐ„์—์„œ ์žก์Œ(๋…ธ์ด์ฆˆ) ํŠน์„ฑ์„ ๊ณผ๋„ํ•˜๊ฒŒ ํ•™์Šตํ•˜๊ฒŒ ๋งŒ๋“ค๋ฉฐ, ์ด๋Š” ์ •์ฑ…์˜ ๋ถˆ์•ˆ์ •์„ฑ๊ณผ ์•ˆ์ „์„ฑ ์ €ํ•˜๋กœ ์ด์–ด์ง„๋‹ค. ์ธ๊ฐ„์ด ์ƒˆ๋กœ์šด ๊ธฐ์ˆ ์„ ์Šต๋“ํ•  ๋•Œ โ€˜์ƒ์ƒโ€™๊ณผ โ€˜์˜ˆ์ธกโ€™ ๊ณผ์ •์„ ํ†ตํ•ด ์ ์€ ๊ฒฝํ—˜๋งŒ์œผ๋กœ๋„ ์ผ๋ฐ˜ํ™”๋œ ๋ชจ๋ธ์„ ๊ตฌ์ถ•

Computer Science Robotics Model
KGCE: Knowledge-Augmented Dual-Graph Evaluator for Cross-Platform Educational Agent Benchmarking with Multimodal Language Models

KGCE: Knowledge-Augmented Dual-Graph Evaluator for Cross-Platform Educational Agent Benchmarking with Multimodal Language Models

KGCE ๋…ผ๋ฌธ์€ ํ˜„์žฌ ๊ต์œก์šฉ AI ์—์ด์ „ํŠธ ํ‰๊ฐ€ ์ฒด๊ณ„๊ฐ€ ์ง๋ฉดํ•œ ๋‘ ๊ฐ€์ง€ ํ•ต์‹ฌ ํ•œ๊ณ„๋ฅผ ์ฒด๊ณ„์ ์œผ๋กœ ์ง„๋‹จํ•˜๊ณ , ์ด๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•œ ์„ค๊ณ„ ์›์น™์„ ๋ช…ํ™•ํžˆ ์ œ์‹œํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ ํ•œ๊ณ„๋Š” โ€˜ํ”„๋ผ์ด๋น— ๋„๋ฉ”์ธ ์†Œํ”„ํŠธ์›จ์–ดโ€™์— ๋Œ€ํ•œ ๊ตฌ์กฐ์  ์ดํ•ด ๋ถ€์กฑ์ด๋‹ค. XiaoYa Intelligent Assistant๋‚˜ HuaShi XiaZi์™€ ๊ฐ™์€ ํ•™๊ต ์ „์šฉ ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜์€ UI ํ๋ฆ„, API ํ˜ธ์ถœ ๋ฐฉ์‹, ๋ฐ์ดํ„ฐ ํฌ๋งท ๋“ฑ์ด ์ผ๋ฐ˜ ์ƒ์šฉ ์†Œํ”„ํŠธ์›จ์–ด์™€ ํฌ๊ฒŒ ๋‹ค๋ฅด๋‹ค. ๊ธฐ์กด ๋ฉ€ํ‹ฐ๋ชจ๋‹ฌ LLM ๊ธฐ๋ฐ˜ ์—์ด์ „ํŠธ๋Š” ์‚ฌ์ „ ํ•™์Šต ๋ฐ์ดํ„ฐ์— ์ด๋Ÿฌํ•œ ํŠน์ˆ˜ ์‚ฌ๋ก€๊ฐ€ ๊ฑฐ์˜ ํฌํ•จ๋˜์ง€ ์•Š์•„, ์‹ค์ œ ์‹คํ–‰

Computer Science Artificial Intelligence Model
Length-Aware Adversarial Training for Variable-Length Trajectories: Digital Twins for Mall Shopper Paths

Length-Aware Adversarial Training for Variable-Length Trajectories: Digital Twins for Mall Shopper Paths

๋ณธ ๋…ผ๋ฌธ์€ ๊ฐ€๋ณ€ ๊ธธ์ด ์‹œํ€€์Šค, ํŠนํžˆ ์‡ผํ•‘๋ชฐ ๋‚ด ๊ณ ๊ฐ์˜ ์ด๋™ ๊ฒฝ๋กœ์™€ ๊ฐ™์€ ๋ณตํ•ฉ์ ์ธ ์‹œ๊ฐ„ยท๊ณต๊ฐ„ ๋ฐ์ดํ„ฐ๋ฅผ ์ƒ์„ฑํ•˜๋Š” ๋ฌธ์ œ์— ์ดˆ์ ์„ ๋งž์ถ˜๋‹ค. ์ „ํ†ต์ ์ธ ๋ฏธ๋‹ˆ๋ฐฐ์น˜ ํ•™์Šต์—์„œ๋Š” ๋™์ผ ๋ฐฐ์น˜ ๋‚ด์— ๊ธธ์ด๊ฐ€ ํฌ๊ฒŒ ๋‹ค๋ฅธ ์‹œํ€€์Šค๊ฐ€ ์„ž์ด๊ฒŒ ๋˜๋Š”๋ฐ, ์ด๋Š” ๊ทธ๋ž˜๋””์–ธํŠธ์˜ ์Šค์ผ€์ผ ์ฐจ์ด๋ฅผ ์•ผ๊ธฐํ•˜๊ณ  ์ตœ์ ํ™” ๊ณผ์ •์—์„œ ๋ถˆ์•ˆ์ •์„ฑ์„ ์ดˆ๋ž˜ํ•œ๋‹ค. ํŠนํžˆ GAN ๊ธฐ๋ฐ˜ ์ƒ์„ฑ ๋ชจ๋ธ์€ ํŒ๋ณ„์ž๊ฐ€ โ€œ๊ธธ์ด ์ž์ฒดโ€๋ฅผ ์‰ฝ๊ฒŒ ๊ตฌ๋ถ„ํ•˜๋Š” ๋‹จ์ถ•(shortcut) ์ „๋žต์„ ์ทจํ•  ์œ„ํ—˜์ด ์žˆ๋Š”๋ฐ, ์ด๋Š” ์‹ค์ œ ์˜๋ฏธ ์žˆ๋Š” ํŒจํ„ด(์˜ˆ: ๋ฐฉ๋ฌธ ์ˆœ์„œ, ์ฒด๋ฅ˜ ์‹œ๊ฐ„)๋ณด๋‹ค ๊ธธ์ด ์ฐจ์ด์—๋งŒ ๋ฏผ๊ฐํ•˜๊ฒŒ ๋ฐ˜์‘ํ•˜๊ฒŒ ๋งŒ๋“ ๋‹ค. ๊ฒฐ๊ณผ์ ์œผ๋กœ ์ƒ์„ฑ

Machine Learning Computer Science
Logics-STEM: Empowering LLM Reasoning via Failure-Driven Post-Training and Document Knowledge Enhancement

Logics-STEM: Empowering LLM Reasoning via Failure-Driven Post-Training and Document Knowledge Enhancement

Logicsโ€‘STEM ๋…ผ๋ฌธ์€ ์ตœ๊ทผ LLM(Large Language Model) ๋ถ„์•ผ์—์„œ ๊ฐ€์žฅ ๋œจ๊ฑฐ์šด ์ด์Šˆ์ธ โ€œ์ถ”๋ก  ๋Šฅ๋ ฅ ๊ฐ•ํ™”โ€์— ๋Œ€ํ•ด ๋ฐ์ดํ„ฐ์™€ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ๋™์‹œ์— ์ตœ์ ํ™”ํ•˜๋Š” ์ „๋žต์„ ์ œ์‹œํ•œ๋‹ค. ๋จผ์ € ๋ฐ์ดํ„ฐ ์ธก๋ฉด์„ ์‚ดํŽด๋ณด๋ฉด, ์ €์ž๋“ค์€ 7.2 M ๊ทœ๋ชจ์˜ SFT( supervised fineโ€‘tuning ) ๋ฐ์ดํ„ฐ์…‹์„ ๊ตฌ์ถ•ํ•˜๊ธฐ ์œ„ํ•ด 5๋‹จ๊ณ„ ํŒŒ์ดํ”„๋ผ์ธ์„ ์ ์šฉํ–ˆ๋‹ค. ์ฃผ์„ ๋‹จ๊ณ„์—์„œ๋Š” ์ธ๊ฐ„ ์ „๋ฌธ๊ฐ€๊ฐ€ ์žฅ๊ธฐ ์‚ฌ๊ณ  ์‚ฌ์Šฌ(chainโ€‘ofโ€‘thought) ํ˜•ํƒœ์˜ ๋‹ต๋ณ€์„ ์ง์ ‘ ์ž‘์„ฑํ•˜๋„๋ก ํ•˜์—ฌ, ๋ชจ๋ธ์ด ๋‹จ์ˆœํžˆ ์ •๋‹ต์„ ๋งž์ถ”๋Š” ๊ฒƒ์ด ์•„๋‹ˆ๋ผ ์‚ฌ๊ณ  ๊ณผ์ •์„ ํ•™์Šตํ•˜๋„๋ก

Computer Science Artificial Intelligence
Online Estimation and Manipulation of Articulated Objects

Online Estimation and Manipulation of Articulated Objects

์ด ๋…ผ๋ฌธ์€ ์„œ๋น„์Šค ๋กœ๋ด‡์ด ์ผ์ƒ ๊ฐ€์ • ํ™˜๊ฒฝ์—์„œ ๋งˆ์ฃผ์น˜๋Š” ๋‹ค์–‘ํ•œ ๊ด€์ ˆํ˜• ๊ฐ์ฒด(์˜ˆ: ์„œ๋ž, ๋ฌธ, ํšŒ์ „์‹ ์†์žก์ด ๋“ฑ)๋ฅผ ์‚ฌ์ „ ์ง€์‹ ์—†์ด๋„ ์‹ ์†ํžˆ ํŒŒ์•…ํ•˜๊ณ  ์กฐ์ž‘ํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•˜๋Š” ํ†ตํ•ฉ ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์‹œํ•œ๋‹ค. ํ•ต์‹ฌ ์•„์ด๋””์–ด๋Š” โ€˜์‹œ๊ฐโ€‘์ด‰๊ฐ ์œตํ•ฉโ€™์ด๋‹ค. ๊ธฐ์กด ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜ ์–ดํฌ๋˜์Šค ์˜ˆ์ธก์€ ํ’๋ถ€ํ•œ ์ด๋ฏธ์ง€ ๋ฐ์ดํ„ฐ๋กœ๋ถ€ํ„ฐ ๊ฐ์ฒด์˜ ์ž ์žฌ์  ์›€์ง์ž„ ์ถ•์ด๋‚˜ ์ œํ•œ์„ ์ถ”์ •ํ•˜์ง€๋งŒ, ์‹ค์ œ ๋ฌผ๋ฆฌ์  ์ œ์•ฝ(๋งˆ์ฐฐ, ์Šคํ”„๋ง ์ €ํ•ญ ๋“ฑ)์„ ๋ฐ˜์˜ํ•˜์ง€ ๋ชปํ•œ๋‹ค. ๋ฐ˜๋ฉด, ๊ด€์ ˆ ์šด๋™์„ ์ง์ ‘ ๊ด€์ฐฐํ•ด ์ถ”์ •ํ•˜๋Š” ์ „ํ†ต์  ๋ฐฉ๋ฒ•์€ ์‹ค์ œ ์ ‘์ด‰์ด ์„ ํ–‰๋ผ์•ผ ํ•˜๋ฏ€๋กœ ์ดˆ๊ธฐ ํƒ์ƒ‰ ๋น„์šฉ์ด ํฌ๋‹ค. ์ €์ž๋“ค์€ ์ด ๋‘

Computer Science Robotics
No Image

The Optimal Sample Complexity of Linear Contracts

์ด ๋…ผ๋ฌธ์€ ๋””์ง€ํ„ธ ์Œ์•… ํ”Œ๋žซํผ์—์„œ ์ƒˆ๋กœ์šด ๋กœ์—ดํ‹ฐ ๋ชจ๋ธ ๋„์ž…์— ๋Œ€ํ•œ ํ•ต์‹ฌ ๋ฌธ์ œ, ์ฆ‰ ๋ถˆํ™•์‹คํ•œ ์•„ํ‹ฐ์ŠคํŠธ ํŠน์„ฑ์˜ ํ•™์Šต์„ ๋‹ค๋ฃจ๋ฉฐ, ์ด๋ฅผ ์œ„ํ•œ ์ตœ์  ์ƒ˜ํ”Œ ๋ณต์žก๋„๋ฅผ ๋ถ„์„ํ•˜๊ณ  ์ œ์‹œํ•ฉ๋‹ˆ๋‹ค. ๋…ผ๋ฌธ์€ (Dรผtting ๋“ฑ, 2025)์˜ ํ‘œ๋ณธ ๊ธฐ๋ฐ˜ ํ•™์Šต ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ํ™•์žฅํ•˜์—ฌ ์„ ํ˜• ๊ณ„์•ฝ์ด๋ผ๋Š” ํŠน์ • ๊ณ„์•ฝ ํด๋ž˜์Šค์— ๋Œ€ํ•œ ์ตœ์  ํ•™์Šต์„ ์œ„ํ•œ ์ƒ˜ํ”Œ ๋ณต์žก๋„๋ฅผ ๋ถ„์„ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ๊ธฐ์ˆ ์  ํ˜์‹ ์„ฑ: ๋…ผ๋ฌธ์€ ๋””์ง€ํ„ธ ์Œ์•… ํ”Œ๋žซํผ์ด ์ƒˆ๋กœ์šด ๋กœ์—ดํ‹ฐ ๋ชจ๋ธ์„ ๋„์ž…ํ•  ๋•Œ ์ง๋ฉดํ•˜๋Š” ํ•ต์‹ฌ ๋ฌธ์ œ์ธ ๋ถˆํ™•์‹คํ•œ ์•„ํ‹ฐ์ŠคํŠธ ํŠน์„ฑ์˜ ํ•™์Šต์„ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•œ ๋ฐฉ๋ฒ•๋ก ์„ ์ œ์‹œํ•ฉ๋‹ˆ๋‹ค. ํŠนํžˆ, ์ด ๋…ผ๋ฌธ์—์„œ ์ œ์•ˆ

Computer Science Game Theory
Data-Driven Assessment of Concrete Mixture Compositions on Chloride Transport via Standalone Machine Learning Algorithms

Data-Driven Assessment of Concrete Mixture Compositions on Chloride Transport via Standalone Machine Learning Algorithms

์ด ๋…ผ๋ฌธ์€ ์ฝ˜ํฌ๋ฆฌํŠธ ๊ตฌ์กฐ๋ฌผ ๋‚ด์—์„œ ์—ผํ™”๋ฌผ์˜ ์‹œ๊ฐ„ ๊ฒฝ๊ณผ ๋ณ€ํ™”์— ๋ฏธ์น˜๋Š” ํ˜ผํ•ฉ๋ฌผ ์กฐ์„ฑ์˜ ์˜ํ–ฅ์„ ๋ถ„์„ํ•˜๋Š”๋ฐ ์ดˆ์ ์„ ๋งž์ถ”๊ณ  ์žˆ๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ๋‹ค์–‘ํ•œ ๋จธ์‹ ๋Ÿฌ๋‹ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์‚ฌ์šฉํ•˜์—ฌ ๋ฐ์ดํ„ฐ ์ฃผ๋„์  ์ ‘๊ทผ๋ฒ•์„ ์ ์šฉํ•œ๋‹ค. ์—ฐ๊ตฌ ๋ฐฉ๋ฒ•๋ก ์€ ๊ฐ„๋‹จํ•œ ์„ ํ˜• ํšŒ๊ท€, k ์ตœ๊ทผ์ ‘ ์ด์›ƒ ํšŒ๊ท€, ์ปค๋„ ๋ฆฌ์ง€ ํšŒ๊ท€์™€ ๋ณต์žกํ•œ ์„œํฌํŠธ ๋ฒกํ„ฐ ํšŒ๊ท€, ๊ฐ€์šฐ์‹œ์•ˆ ํ”„๋กœ์„ธ์Šค ํšŒ๊ท€, ๋‹ค์ธต ํผ์…‰ํŠธ๋ก (MLP), ๊ฒŒ์ดํŠธ ์ˆœํ™˜ ์œ ๋‹›(GRU)์„ ํฌํ•จํ•œ๋‹ค. ๊ฐ ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ์„ฑ๋Šฅ์€ ๋‹ค์–‘ํ•œ ์ง€ํ‘œ๋ฅผ ํ†ตํ•ด ํ‰๊ฐ€๋˜๋ฉฐ, ํŠนํžˆ GPR ๋ชจ๋ธ์€ ๋ช…ํ™•ํ•˜๊ณ  ์„ค๋ช… ๊ฐ€๋Šฅํ•œ ์ถ”์„ธ๋ฅผ ์ œ๊ณตํ•˜์—ฌ ์ˆจ๊ฒจ์ง„ ์ƒ๊ด€๊ด€๊ณ„๋ฅผ ๋“œ๋Ÿฌ๋‚ด๋Š” ๋ฐ ํšจ๊ณผ

Computer Science Learning Data Machine Learning
No Image

EgoGrasp: World-Space Hand-Object Interaction Estimation from Egocentric Videos

EgoGrasp ๋…ผ๋ฌธ์€ ์ด๋จธ์‹œ๋ธŒ(egocentric) ์˜์ƒ์—์„œ ์„ธ๊ณ„ ์ขŒํ‘œ๊ณ„์˜ ์†โ€‘๋ฌผ์ฒด ์ƒํ˜ธ์ž‘์šฉ์„ ๋ณต์›ํ•œ๋‹ค๋Š” ๋งค์šฐ ์•ผ์‹ฌ์ฐฌ ๋ชฉํ‘œ๋ฅผ ์„ค์ •ํ•œ๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋Š” ํฌ๊ฒŒ ๋‘ ๊ฐ€์ง€ ํ•œ๊ณ„์— ๋ด‰์ฐฉํ•œ๋‹ค. ์ฒซ์งธ, ์ •์  ์ด๋ฏธ์ง€ ๊ธฐ๋ฐ˜ ๋ฐฉ๋ฒ•์€ ์‹œ๊ฐ„์  ์—ฐ์†์„ฑ์„ ํ™œ์šฉํ•˜์ง€ ๋ชปํ•ด ๋™์ ์ธ ์†๋™์ž‘๊ณผ ๋ฌผ์ฒด ๋ณ€ํ™”๋ฅผ ์ •ํ™•ํžˆ ํฌ์ฐฉํ•˜์ง€ ๋ชปํ•œ๋‹ค. ๋‘˜์งธ, ์นด๋ฉ”๋ผ ์ขŒํ‘œ๊ณ„์— ๊ตญํ•œ๋œ ์ ‘๊ทผ๋ฒ•์€ ์ „์—ญ์ ์ธ ์œ„์น˜์™€ ์ž์„ธ ์ •๋ณด๋ฅผ ์ œ๊ณตํ•˜์ง€ ๋ชปํ•œ๋‹ค. ํŠนํžˆ ์ผ์ƒ ์ƒํ™œ์—์„œ ์ดฌ์˜๋˜๋Š” ์ด๋จธ์‹œ๋ธŒ ์˜์ƒ์€ ๊ธ‰๊ฒฉํ•œ ์นด๋ฉ”๋ผ ์›€์ง์ž„, ์กฐ๋ช… ๋ณ€ํ™”, ๊ทธ๋ฆฌ๊ณ  ์†๊ณผ ๋ฌผ์ฒด์˜ ๋นˆ๋ฒˆํ•œ ๊ฐ€๋ฆผ ํ˜„์ƒ์ด ํŠน์ง•์ด๋‹ค. ์ด๋Ÿฌํ•œ ํ™˜๊ฒฝ์—์„œ๋Š” 2D

Computer Science Computer Vision
Learning from Historical Activations in Graph Neural Networks

Learning from Historical Activations in Graph Neural Networks

HISTOGRAPH๋Š” ๊ทธ๋ž˜ํ”„ ์‹ ๊ฒฝ๋ง(GNN) ๋ถ„์•ผ์˜ ์ค‘์š”ํ•œ ๋ฐœ์ „์„ ์ด๋Œ์–ด๋‚ด๋ฉฐ, ํŠนํžˆ ๋…ธ๋“œ ์ž„๋ฒ ๋”ฉ์˜ ์ง„ํ™”์™€ ๊ณต๊ฐ„์  ์ƒํ˜ธ์ž‘์šฉ์„ ๋™์‹œ์— ๋ชจ๋ธ๋งํ•˜๋Š” ๋ฐ ์ค‘์ ์„ ๋‘๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ์ ‘๊ทผ๋ฒ•์€ ๊ธฐ์กด GNN ์•„ํ‚คํ…์ฒ˜๋ฅผ ๊ฐœ์„ ํ•˜๊ณ , ๋‹ค์–‘ํ•œ ๊ทธ๋ž˜ํ”„ ๊ด€๋ จ ์ž‘์—…์—์„œ ์šฐ์ˆ˜ํ•œ ์„ฑ๋Šฅ์„ ๋‹ฌ์„ฑํ•  ์ˆ˜ ์žˆ๋Š” ์ƒˆ๋กœ์šด ๋ฐฉํ–ฅ์„ฑ์„ ์ œ์‹œํ•ฉ๋‹ˆ๋‹ค. ๊ธฐ์ˆ ์  ํ˜์‹ ์„ฑ: HISTOGRAPH์˜ ํ•ต์‹ฌ ํ˜์‹  ์ค‘ ํ•˜๋‚˜๋Š” ์—ญ์‚ฌ์  ํ™œ์„ฑํ™” ์ถ”์  ์ž…๋‹ˆ๋‹ค. ์ด ์ ‘๊ทผ๋ฒ•์€ GNN์ด ๋ฉ”์‹œ์ง€ ์ „๋‹ฌ๊ณผ ์ง‘๊ณ„๋ฅผ ํ†ตํ•ด ๋…ธ๋“œ ์ž„๋ฒ ๋”ฉ์„ ์ƒ์„ฑํ•˜๋Š” ๊ณผ์ •์—์„œ ๋ฐœ์ƒํ•œ ์‹œ๊ฐ„์  ๊ฒฝ๋กœ๋ฅผ ๊ณ ๋ คํ•ฉ๋‹ˆ๋‹ค. ๊ฐ ๋…ธ๋“œ์˜ ์ธต๋ณ„ ํ‘œํ˜„์„ ์‹œํ€€์Šค

Computer Science Network Learning Machine Learning
Multi-Dimensional Prompt Chaining to Improve Open-Domain Dialogue Generation

Multi-Dimensional Prompt Chaining to Improve Open-Domain Dialogue Generation

๋ณธ ๋…ผ๋ฌธ์€ ์ตœ๊ทผ ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(LLM)์ด ๋Œ€ํ™” ์‹œ์Šคํ…œ์—์„œ ๋ณด์—ฌ์ฃผ๋Š” ๋›ฐ์–ด๋‚œ ์„ฑ๋Šฅ๊ณผ๋Š” ๋‹ฌ๋ฆฌ, ์†Œํ˜• ์–ธ์–ด ๋ชจ๋ธ(SLM)์ด ๊ฐ–๋Š” ๋ฐฐํฌยท์šด์˜์ƒ์˜ ์žฅ์ ์„ ์‚ด๋ฆฌ๋ฉด์„œ๋„ ํ’ˆ์งˆ ๊ฒฉ์ฐจ๋ฅผ ๋ฉ”์šฐ๊ธฐ ์œ„ํ•œ ์‹ค์šฉ์ ์ธ ์ ‘๊ทผ๋ฒ•์„ ์ œ์‹œํ•œ๋‹ค. ํ•ต์‹ฌ ์•„์ด๋””์–ด๋Š” โ€˜ํ”„๋กฌํ”„ํŠธ ์ฒด์ด๋‹(prompt chaining)โ€™์ด๋ผ๋Š” ๊ธฐ๋ฒ•์„ ๋‹ค์ฐจ์›์ ์œผ๋กœ ํ™•์žฅํ•˜์—ฌ, ๊ฐ๊ฐ์˜ ๋Œ€ํ™” ํ’ˆ์งˆ ์š”์†Œ์ธ ์ž์—ฐ์Šค๋Ÿฌ์›€(Naturalness), ์ผ๊ด€์„ฑ(Coherence), ํฅ๋ฏธ์„ฑ(Engagingness)์„ ๋…๋ฆฝ์ ์œผ๋กœ ๊ฐ•ํ™”ํ•˜๊ณ , ์ตœ์ข… ์‘๋‹ต์—์„œ ์ด๋“ค์„ ์กฐํ™”๋กญ๊ฒŒ ๊ฒฐํ•ฉํ•˜๋„๋ก ์„ค๊ณ„ํ•œ ๊ฒƒ์ด๋‹ค. 1. ํ”„๋ ˆ์ž„์›Œํฌ ์„ค๊ณ„ N

Computer Science NLP
No Image

Warp-Cortex: An Asynchronous, Memory-Efficient Architecture for Million-Agent Cognitive Scaling on Consumer Hardware

๋ณธ ๋…ผ๋ฌธ์€ ์›Œํ”„ ์ฝ”๋ฅดํ…์Šค ์•„ํ‚คํ…์ฒ˜๋ฅผ ํ†ตํ•ด ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(LLM)์˜ ๋ณ‘๋ ฌ ์ถ”๋ก  ๋Šฅ๋ ฅ์„ ํฌ๊ฒŒ ํ–ฅ์ƒ์‹œํ‚ค๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์‹œํ•œ๋‹ค. ์ด ์•„ํ‚คํ…์ฒ˜๋Š” ์—์ด์ „ํŠธ๊ฐ€ ๋…๋ฆฝ์ ์ธ ํ”„๋กœ์„ธ์Šค๊ฐ€ ์•„๋‹Œ ๋น„๋™๊ธฐ ์Šค๋ ˆ๋“œ๋กœ์„œ ๋™์ž‘ํ•˜๋„๋ก ์„ค๊ณ„๋˜์–ด, ๊ฐ€์ค‘์น˜์™€ ์ปจํ…์ŠคํŠธ ๋ฉ”๋ชจ๋ฆฌ์˜ ๋ณต์žก๋„๋ฅผ ํฌ๊ฒŒ ์ค„์ธ๋‹ค. ํŠนํžˆ, ํ† ํด๋กœ์ง€ ๋ฐ์ดํ„ฐ ๋ถ„์„(TDA)์—์„œ ์œ ๋ž˜ํ•œ ํ•˜์ด๋ธŒ๋ฆฌ๋“œ ๋žœ๋“œ๋งˆํฌ ๊ธฐ๋ฒ•์„ ํ†ตํ•ด KV ์บ์‹œ๋ฅผ ์  ํด๋ผ์šฐ๋“œ๋กœ ์ทจ๊ธ‰ํ•˜๊ณ , ์ฆ์ธ ๋ณต์žก์ฒด์— ์˜๊ฐ์„ ๋ฐ›์€ ํฌ๋ฐ•ํ™” ๋ฐฉ๋ฒ•์„ ์ ์šฉํ•˜์—ฌ ์ปจํ…์ŠคํŠธ์˜ ์ง€์†์  ํ˜ธ๋ชจ๋กœ์ง€ ํŠน์„ฑ์„ ์œ ์ง€ํ•˜๋ฉด์„œ ๋ฉ”๋ชจ๋ฆฌ ์‚ฌ์šฉ๋Ÿ‰์„ ํฌ๊ฒŒ ์ค„์ผ ์ˆ˜ ์žˆ๋‹ค. ๋…ผ๋ฌธ์—์„œ ์ œ์‹œ๋œ ์›Œํ”„ ์ฝ”๋ฅดํ…

Computer Science Machine Learning
No Image

A Comprehensive Dataset for Human vs. AI Generated Image Detection

๋ณธ ๋…ผ๋ฌธ์ด ์ œ์‹œํ•˜๋Š” MS COCOAI ๋ฐ์ดํ„ฐ์…‹์€ ํ˜„์žฌ ์ด๋ฏธ์ง€ ์ง„์œ„ ํƒ์ง€ ์—ฐ๊ตฌ์—์„œ ๊ฐ€์žฅ ์‹œ๊ธ‰ํžˆ ์š”๊ตฌ๋˜๋Š” โ€˜๋‹ค์–‘์„ฑโ€™๊ณผ โ€˜๊ทœ๋ชจโ€™๋ฅผ ๋™์‹œ์— ๋งŒ์กฑํ•œ๋‹ค๋Š” ์ ์—์„œ ํฐ ์˜๋ฏธ๋ฅผ ๊ฐ€์ง„๋‹ค. ์ฒซ์งธ, ๊ธฐ์กด ๋ฐ์ดํ„ฐ์…‹๋“ค์€ ์ฃผ๋กœ ๋‹จ์ผ ์ƒ์„ฑ ๋ชจ๋ธ์ด๋‚˜ ์ œํ•œ๋œ ํ”„๋กฌํ”„ํŠธ ์„ธํŠธ๋ฅผ ์‚ฌ์šฉํ•ด ๋งŒ๋“  ์ด๋ฏธ์ง€์— ๊ตญํ•œ๋ผ ์žˆ์—ˆ์œผ๋ฉฐ, ์ด๋Š” ์‹ค์ œ ํ˜„์žฅ์—์„œ ๋งˆ์ฃผ์น˜๋Š” ๋‹ค์–‘ํ•œ AI ํˆด๊ณผ์˜ ๊ฒฉ์ฐจ๋ฅผ ์ดˆ๋ž˜ํ•œ๋‹ค. ๋ฐ˜๋ฉด ๋ณธ ๋ฐ์ดํ„ฐ์…‹์€ Stable Diffusion 3ยท2.1ยทSDXL, DALLโ€‘E 3, MidJourney v6 ๋“ฑ ์ตœ์‹  ๋ชจ๋ธ์„ ๋ชจ๋‘ ํฌํ•จํ•จ์œผ๋กœ์จ, ํ˜„์žฌ ์‹œ์žฅ์—์„œ ๋„๋ฆฌ ์‚ฌ์šฉ๋˜๋Š” ์ฃผ์š” ์ƒ์„ฑ

Computer Science Data Detection Computer Vision
No Image

The Illusion of Insight in Reasoning Models

์ด ๋…ผ๋ฌธ์€ ์ตœ๊ทผ AI ์ปค๋ฎค๋‹ˆํ‹ฐ์—์„œ ํ™”์ œ๊ฐ€ ๋œ โ€œ์ถ”๋ก  ์ค‘ โ€˜์•„ํ•˜!โ€™ ์ˆœ๊ฐ„โ€์ด๋ผ๋Š” ํ˜„์ƒ์„ ๊ณผํ•™์ ์œผ๋กœ ๊ฒ€์ฆํ•˜๋ ค๋Š” ์‹œ๋„์ด๋‹ค. ์ €์ž๋“ค์€ ๋จผ์ € ๊ธฐ์กด ์—ฐ๊ตฌ๊ฐ€ ์ œ์‹œํ•œ ์‚ฌ๋ก€, ์ฆ‰ DeepSeekโ€‘R1โ€‘Zero๊ฐ€ ์ค‘๊ฐ„ ๋‹จ๊ณ„์—์„œ ๊ฐ‘์ž‘์Šค๋Ÿฌ์šด ์ „๋žต ์ „ํ™˜์„ ๋ณด์ด๋ฉฐ ์ •๋‹ต์„ ๋„์ถœํ•œ๋‹ค๋Š” ์ฃผ์žฅ์„ ์žฌํ˜„ํ•˜๋ ค ํ–ˆ๋‹ค. ์ด๋ฅผ ์œ„ํ•ด 1๋ฐฑ๋งŒ ๊ฐœ๊ฐ€ ๋„˜๋Š” ์ถ”๋ก  ํŠธ๋ ˆ์ด์Šค๋ฅผ ์ˆ˜์ง‘ํ•˜๊ณ , ๊ฐ ํŠธ๋ ˆ์ด์Šค์—์„œ ํ† ํฐ ์ˆ˜์ค€์˜ ํ™•๋ฅ  ๋ณ€ํ™”, ๋‚ด๋ถ€ ํ‘œํ˜„์˜ ๋ณ€๋™, ๊ทธ๋ฆฌ๊ณ  ์ถœ๋ ฅ ์ •ํ™•๋„๋ฅผ ๋™์‹œ์— ๊ธฐ๋กํ–ˆ๋‹ค. ๋ถ„์„ ๋Œ€์ƒ์€ ์ž์—ฐ์–ด ์งˆ๋ฌธโ€‘๋‹ต๋ณ€, ์ˆ˜ํ•™ ๋ฌธ์ œ ํ’€์ด, ์ฝ”๋”ฉ ์ƒ์„ฑ์ด๋ผ๋Š” ์„ธ ๊ฐ€์ง€ ๋„๋ฉ”์ธ์œผ๋กœ, ๊ฐ๊ฐ์˜ ๋„๋ฉ”์ธ

Computer Science Artificial Intelligence Model
VEAT Quantifies Implicit Associations in Text-to-Video Generator Sora and Reveals Challenges in Bias Mitigation

VEAT Quantifies Implicit Associations in Text-to-Video Generator Sora and Reveals Challenges in Bias Mitigation

๋ณธ ๋…ผ๋ฌธ์€ ํ…์ŠคํŠธํˆฌ๋น„๋””์˜ค ์ƒ์„ฑ ๋ชจ๋ธ์ด ์‚ฌํšŒ์  ํŽธํ–ฅ์„ ์–ด๋–ป๊ฒŒ ๋‚ด์žฌํ•˜๊ณ  ์žฌ์ƒ์‚ฐํ•˜๋Š”์ง€๋ฅผ ์ •๋Ÿ‰์ ์œผ๋กœ ๋ฐํžˆ๋ ค๋Š” ์‹œ๋„๋กœ, ๊ธฐ์กด์˜ Implicit Association Test(IAT)์™€ ์ด๋ฏธ์ง€ ๊ธฐ๋ฐ˜ ์—ฐ๊ด€์„ฑ ํ…Œ์ŠคํŠธ๋ฅผ ๋น„๋””์˜ค ์ž„๋ฒ ๋”ฉ์— ์ ์šฉํ•œ ์ ์—์„œ ํ•™์ˆ ์  ์˜์˜๊ฐ€ ํฌ๋‹ค. VEAT๋Š” ๋น„๋””์˜ค ํ”„๋ ˆ์ž„๋“ค์˜ ์‹œ๊ฐยท์Œํ–ฅ ํŠน์ง•์„ ๊ณ ์ฐจ์› ์ž„๋ฒ ๋”ฉ ๊ณต๊ฐ„์— ๋งคํ•‘ํ•œ ๋’ค, ๋ชฉํ‘œ ์ง‘๋‹จ(์˜ˆ: ์•„ํ”„๋ฆฌ์นด๊ณ„ ๋ฏธ๊ตญ์ธ, ์œ ๋Ÿฝ๊ณ„ ๋ฏธ๊ตญ์ธ)๊ณผ ์†์„ฑ(pleasant, unpleasant) ์‚ฌ์ด์˜ ๊ฑฐ๋ฆฌ ์ฐจ์ด๋ฅผ ํšจ๊ณผํฌ๊ธฐ(d)๋กœ ์ธก์ •ํ•œ๋‹ค. SCโ€‘VEAT๋Š” ๋‹จ์ผ ์นดํ…Œ๊ณ ๋ฆฌ(์˜ˆ: ํŠน์ • ์ง์—…)์™€ ๋‘ ์ง‘

Computers and Society Computer Science
Can Large Language Models Still Explain Themselves? Investigating the Impact of Quantization on Self-Explanations

Can Large Language Models Still Explain Themselves? Investigating the Impact of Quantization on Self-Explanations

๋ณธ ๋…ผ๋ฌธ์€ ์–‘์žํ™”๊ฐ€ ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(Large Language Model, LLM)์˜ ์ž๊ธฐ์„ค๋ช…(selfโ€‘explanations, SE) ๋Šฅ๋ ฅ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ์ฒด๊ณ„์ ์œผ๋กœ ์กฐ์‚ฌํ•œ ์ตœ์ดˆ์˜ ์—ฐ๊ตฌ๋ผ ํ•  ์ˆ˜ ์žˆ๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ์—์„œ๋Š” ์–‘์žํ™”๊ฐ€ ๋ชจ๋ธ์˜ ์ถ”๋ก  ์†๋„์™€ ๋ฉ”๋ชจ๋ฆฌ ์‚ฌ์šฉ๋Ÿ‰์„ ํฌ๊ฒŒ ๊ฐœ์„ ํ•œ๋‹ค๋Š” ์ ์— ์ดˆ์ ์„ ๋งž์ถ”์—ˆ์ง€๋งŒ, SE์™€ ๊ฐ™์ด ๋ชจ๋ธ ๋‚ด๋ถ€์˜ ์ถ”๋ก  ๊ณผ์ •์„ ์™ธ๋ถ€์— ์„ค๋ช…ํ•˜๋„๋ก ์š”๊ตฌ๋˜๋Š” ๊ณ ์ฐจ์› ์ž‘์—…์— ๋Œ€ํ•œ ์˜ํ–ฅ์€ ๊ฐ„๊ณผ๋˜์–ด ์™”๋‹ค. ์ด ์ ์„ ๋ฉ”์šฐ๊ธฐ ์œ„ํ•ด ์ €์ž๋“ค์€ ๋‘ ๊ฐ€์ง€ SE ์œ ํ˜•, ์ฆ‰ ์ž์—ฐ์–ด ์„ค๋ช…(NLE)๊ณผ ๋ฐ˜์‚ฌ์‹ค ์˜ˆ์‹œ(counterfactual exa

Computer Science NLP Model
No Image

Can Semantic Methods Enhance Team Sports Tactics? A Methodology for Football with Broader Applications

์ด ๋…ผ๋ฌธ์€ ์˜๋ฏธ๋ก ์  ๋ฒกํ„ฐ ๊ณต๊ฐ„์„ ํŒ€ ์Šคํฌ์ธ  ์ „์ˆ ์— ์ ์šฉํ•œ๋‹ค๋Š” ๋…์ฐฝ์ ์ธ ์•„์ด๋””์–ด๋ฅผ ์ œ์‹œํ•จ์œผ๋กœ์จ, ๊ธฐ์กด ์ „์ˆ  ๋ถ„์„ ๋ฐฉ๋ฒ•๋ก ๊ณผ๋Š” ์ฐจ๋ณ„ํ™”๋œ ํ•™์ˆ ์  ๊ฐ€์น˜๋ฅผ ์ œ๊ณตํ•œ๋‹ค. ์ฒซ์งธ, ์„ ์ˆ˜ ๊ฐœ๊ฐœ์ธ์„ ๋‹ค์ฐจ์› ๋ฒกํ„ฐ๋กœ ๋ชจ๋ธ๋งํ•œ๋‹ค๋Š” ์ ‘๊ทผ์€ ๊ธฐ์กด์˜ ๋‹จ์ˆœ ํ†ต๊ณ„ ๊ธฐ๋ฐ˜ ํ‰๊ฐ€๋ฅผ ๋„˜์–ด, ๊ธฐ์ˆ ยท์‹ ์ฒดยท์‹ฌ๋ฆฌ์  ํŠน์„ฑ์„ ๋™์‹œ์— ๊ณ ๋ คํ•œ ๋ณตํ•ฉ์ ์ธ ํŠน์„ฑ ํ‘œํ˜„์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•œ๋‹ค. ํŠนํžˆ, ์‹ฌ๋ฆฌ์  ๋ณ€์ˆ˜(์˜ˆ: ๊ฒฝ๊ธฐ ์ง‘์ค‘๋„, ์ŠคํŠธ๋ ˆ์Šค ์ˆ˜์ค€)๋ฅผ ์ˆ˜์น˜ํ™”ํ•˜์—ฌ ๋ฒกํ„ฐ์— ํฌํ•จ์‹œํ‚ค๋Š” ์‹œ๋„๋Š” ํ˜„์žฌ ์Šคํฌ์ธ  ๊ณผํ•™์—์„œ ์•„์ง ์ถฉ๋ถ„ํžˆ ๋‹ค๋ฃจ์–ด์ง€์ง€ ์•Š์€ ์˜์—ญ์ด๋ฉฐ, ์ „์ˆ ์  ์˜์‚ฌ๊ฒฐ์ •์— ์ธ๊ฐ„์ ์ธ ์š”์†Œ๋ฅผ ๋ฐ˜์˜ํ•œ๋‹ค๋Š” ์ ์—์„œ ์˜๋ฏธ๊ฐ€

Computer Science Artificial Intelligence
Conformal Prediction Under Distribution Shift: A COVID-19 Natural Experiment

Conformal Prediction Under Distribution Shift: A COVID-19 Natural Experiment

์ด ๋…ผ๋ฌธ์€ ์ปจํฌ๋ฉ€ ์˜ˆ์ธก์ด ์‹ค์ œ ์šด์˜ ํ™˜๊ฒฝ์—์„œ ๋งˆ์ฃผ์น˜๋Š” โ€˜๋ถ„ํฌ ๋ณ€๋™(distribution shift)โ€™์— ์–ผ๋งˆ๋‚˜ ์ทจ์•ฝํ•œ์ง€๋ฅผ ์ฝ”๋กœ๋‚˜19๋ผ๋Š” ์ „ ์„ธ๊ณ„์  ์ถฉ๊ฒฉ์„ ์ด์šฉํ•ด ์‹ค์ฆ์ ์œผ๋กœ ๋ณด์—ฌ์ค€๋‹ค. ์—ฐ๊ตฌ์ž๋Š” 8๊ฐœ์˜ ๊ณต๊ธ‰๋ง ๊ด€๋ จ ํƒœ์Šคํฌ๋ฅผ ์„ ์ •ํ•˜๊ณ , ํŒฌ๋ฐ๋ฏน ์ด์ „๊ณผ ์ดํ›„์˜ ๋ฐ์ดํ„ฐ ํŠน์„ฑ์„ Jaccard ์ง€์ˆ˜๋ฅผ ํ†ตํ•ด ์ •๋Ÿ‰ํ™”ํ•˜์˜€๋‹ค. ํฅ๋ฏธ๋กญ๊ฒŒ๋„, Jaccard ์ง€์ˆ˜๊ฐ€ ๊ฑฐ์˜ 0์— ๊ฐ€๊นŒ์›Œ ํŠน์ง• ์ž์ฒด๋Š” ๊ฑฐ์˜ ๋ณ€ํ•˜์ง€ ์•Š์•˜์Œ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ , ์˜ˆ์ธก ๊ตฌ๊ฐ„์˜ ์‹ค์ œ ์ปค๋ฒ„๋ฆฌ์ง€๋Š” 0 %์—์„œ 86.7 %๊นŒ์ง€ ๊ทน๋‹จ์ ์ธ ์ฐจ์ด๋ฅผ ๋ณด์˜€๋‹ค. ์ด๋Š” ์ปจํฌ๋ฉ€ ๋ฐฉ๋ฒ•์ด ๋‹จ์ˆœํžˆ ํŠน์ง• ๋ถ„ํฌ์˜ ๋ณ€ํ™”๋ฅผ ๊ฐ

Machine Learning Computer Science
Defensive M2S: Training Guardrail Models on Compressed Multi-turn Conversations

Defensive M2S: Training Guardrail Models on Compressed Multi-turn Conversations

Defensive M2S๋Š” ๊ธฐ์กด ๊ฐ€๋“œ๋ ˆ์ผ ๋ชจ๋ธ์ด ์ „์ฒด ๋Œ€ํ™” ํžˆ์Šคํ† ๋ฆฌ๋ฅผ ์ž…๋ ฅ์œผ๋กœ ๋ฐ›์•„์•ผ ํ•˜๋Š” ๊ตฌ์กฐ์  ํ•œ๊ณ„๋ฅผ ๊ทผ๋ณธ์ ์œผ๋กœ ํ•ด๊ฒฐํ•œ๋‹ค๋Š” ์ ์—์„œ ์˜๋ฏธ๊ฐ€ ํฌ๋‹ค. ๋‹ค์ค‘ํ„ด ๋Œ€ํ™”๋Š” ์ผ๋ฐ˜์ ์œผ๋กœ ํ† ํฐ ์ˆ˜๊ฐ€ O(nยฒ) ์ˆ˜์ค€์œผ๋กœ ๊ธ‰์ฆํ•˜๋Š”๋ฐ, ์ด๋Š” ํŠนํžˆ 10ํ„ด ์ด์ƒ์œผ๋กœ ๊ธธ์–ด์ง€๋Š” ์‹ค์ œ ์„œ๋น„์Šค ์‹œ๋‚˜๋ฆฌ์˜ค์—์„œ GPU ๋ฉ”๋ชจ๋ฆฌ์™€ ์—ฐ์‚ฐ ์‹œ๊ฐ„์˜ ๋ณ‘๋ชฉ์„ ์ดˆ๋ž˜ํ•œ๋‹ค. ๋…ผ๋ฌธ์€ ์ด๋ฅผ โ€˜Multiโ€‘turn to Singleโ€‘turn (M2S)โ€™ ์••์ถ•์ด๋ผ๋Š” ๊ฐ„๋‹จํ•˜์ง€๋งŒ ํšจ๊ณผ์ ์ธ ๋ณ€ํ™˜ ๊ทœ์น™์œผ๋กœ ์ „ํ™˜ํ•œ๋‹ค. ๊ตฌ์ฒด์ ์œผ๋กœ, ๊ฐ ํ„ด์˜ ํ•ต์‹ฌ ๋ฐœํ™”๋งŒ์„ ๋‚จ๊ธฐ๊ณ , ๋Œ€ํ™” ํ๋ฆ„์„ ์œ ์ง€ํ•˜๊ธฐ ์œ„ํ•ด ํ•˜์ดํ”ˆ(โ€“),

Computer Science NLP Model

< Category Statistics (Total: 793) >

Electrical Engineering and Systems Science
7
General
272
General Relativity
9
HEP-EX
7
HEP-PH
12
HEP-TH
7
MATH-PH
4
NUCL-TH
1
Quantum Physics
11

Start searching

Enter keywords to search articles

โ†‘โ†“
โ†ต
ESC
โŒ˜K Shortcut