Computer Science

All posts under tag "Computer Science"

256 posts total
Sorted by date
Do LLMs Judge Distantly Supervised Named Entity Labels Well? Constructing the JudgeWEL Dataset

Do LLMs Judge Distantly Supervised Named Entity Labels Well? Constructing the JudgeWEL Dataset

judgeWEL ๋…ผ๋ฌธ์€ ์ €์ž์› ์–ธ์–ด์ธ ๋ฃฉ์…ˆ๋ถ€๋ฅดํฌ์–ด์— ๋Œ€ํ•œ NER ๋ฐ์ดํ„ฐ ๊ตฌ์ถ•์ด๋ผ๋Š” ์‹ค์งˆ์ ์ธ ๋ฌธ์ œ์— ๋Œ€ํ•ด ์ฐฝ์˜์ ์ธ ํ•ด๊ฒฐ์ฑ…์„ ์ œ์‹œํ•œ๋‹ค. ๊ฐ€์žฅ ํฐ ๊ฐ•์ ์€ ๋‘ ๊ฐ€์ง€ ์ธก๋ฉด์—์„œ ์•ฝํ•œ ๊ฐ๋…์„ ํ™œ์šฉํ•œ๋‹ค๋Š” ์ ์ด๋‹ค. ์ฒซ์งธ, ์œ„ํ‚คํ”ผ๋””์•„ ๋‚ด๋ถ€ ๋งํฌ์™€ ์œ„ํ‚ค๋ฐ์ดํ„ฐ์˜ ๊ตฌ์กฐํ™”๋œ ๋ฉ”ํƒ€๋ฐ์ดํ„ฐ๋ฅผ ์—ฐ๊ฒฐํ•จ์œผ๋กœ์จ ์—”ํ„ฐํ‹ฐ ์œ ํ˜•์„ ์ž๋™์œผ๋กœ ์ถ”๋ก ํ•œ๋‹ค๋Š” ์•„์ด๋””์–ด๋Š” ๊ธฐ์กด์˜ ๊ทœ์น™ ๊ธฐ๋ฐ˜ ํ˜น์€ ์‚ฌ์ „ ๋งคํ•‘ ๋ฐฉ์‹๋ณด๋‹ค ํ™•์žฅ์„ฑ์ด ๋›ฐ์–ด๋‚˜๋‹ค. ์œ„ํ‚คํ”ผ๋””์•„๋Š” ์ง€์†์ ์œผ๋กœ ์—…๋ฐ์ดํŠธ๋˜๋ฉฐ ๋‹ค์–‘ํ•œ ๋„๋ฉ”์ธ์„ ํฌ๊ด„ํ•˜๋ฏ€๋กœ, ์ด ์ ‘๊ทผ๋ฒ•์€ ์ƒˆ๋กœ์šด ์—”ํ„ฐํ‹ฐ๊ฐ€ ๋“ฑ์žฅํ•ด๋„ ๋น„๊ต์  ์‰ฝ๊ฒŒ ๋ฐ˜์˜๋  ์ˆ˜ ์žˆ๋‹ค. ๋‘˜์งธ, ์ž๋™ ๋ผ๋ฒจ๋ง ๋‹จ

Computer Science NLP Data
AdaGReS:Adaptive Greedy Context Selection via Redundancy-Aware Scoring for Token-Budgeted RAG

AdaGReS:Adaptive Greedy Context Selection via Redundancy-Aware Scoring for Token-Budgeted RAG

AdaGReS ๋…ผ๋ฌธ์€ ํ˜„์žฌ RAG ์‹œ์Šคํ…œ์ด ์ง๋ฉดํ•œ ๋‘ ๊ฐ€์ง€ ํ•ต์‹ฌ ๋ฌธ์ œโ€”ํ† ํฐ ์˜ˆ์‚ฐ์˜ ์ œํ•œ๊ณผ ์ปจํ…์ŠคํŠธ ์ค‘๋ณตโ€”๋ฅผ ๋™์‹œ์— ํ•ด๊ฒฐํ•˜๋ ค๋Š” ์‹œ๋„๋กœ ๋ˆˆ์— ๋ˆ๋‹ค. ์ „ํ†ต์ ์ธ topโ€‘k ๊ฒ€์ƒ‰์€ ๋‹จ์ˆœํžˆ ์ ์ˆ˜ ์ˆœ์œผ๋กœ ์ฒญํฌ๋ฅผ ์„ ํƒํ•˜๊ธฐ ๋•Œ๋ฌธ์—, ์˜๋ฏธ์ ์œผ๋กœ ๊ฑฐ์˜ ๋™์ผํ•œ ๋ฌธ์žฅ์ด ์—ฌ๋Ÿฌ ๋ฒˆ ํฌํ•จ๋  ๊ฒฝ์šฐ ๋ถˆํ•„์š”ํ•œ ํ† ํฐ์„ ์†Œ๋ชจํ•œ๋‹ค. ์ด๋Š” ํŠนํžˆ ์ œํ•œ๋œ ์ปจํ…์ŠคํŠธ ๊ธธ์ด๋ฅผ ๊ฐ–๋Š” ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(Large Language Model, LLM)์—์„œ ์‹ฌ๊ฐํ•œ ์„ฑ๋Šฅ ์ €ํ•˜ ์š”์ธ์œผ๋กœ ์ž‘์šฉํ•œ๋‹ค. AdaGReS๋Š” ์ด๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด โ€œ๊ด€๋ จ๋„โ€‘์ค‘๋ณต ๋ณตํ•ฉ ๋ชฉํ‘œ ํ•จ์ˆ˜โ€๋ฅผ ์ •์˜ํ•œ๋‹ค. ๋ชฉํ‘œ ํ•จ์ˆ˜๋Š” (1

Computer Science NLP
AI-Driven Cloud Resource Optimization for Multi-Cluster Environments

AI-Driven Cloud Resource Optimization for Multi-Cluster Environments

์ด ๋…ผ๋ฌธ์ด ๋‹ค๋ฃจ๋Š” ๋ฌธ์ œ๋Š” ๋‹ค์ค‘ ํด๋Ÿฌ์Šคํ„ฐ ํ™˜๊ฒฝ์—์„œ ๋ฐœ์ƒํ•˜๋Š” ์ „ํ†ต์ ์ธ ์ž์› ๊ด€๋ฆฌ์˜ ํ•œ๊ณ„์ด๋‹ค. ํ˜„์žฌ ๋Œ€๋ถ€๋ถ„์˜ ํด๋ผ์šฐ๋“œ ์šด์˜์ž๋Š” ๊ฐ ํด๋Ÿฌ์Šคํ„ฐ๋ฅผ ๋…๋ฆฝ์ ์ธ ๊ด€๋ฆฌ ๋‹จ์œ„๋กœ ๋ณด๊ณ , ์Šค์ผ€์ผ๋ง์ด๋‚˜ ๋ฆฌ์†Œ์Šค ์žฌ๋ฐฐ์น˜๋ฅผ ์›Œํฌ๋กœ๋“œ ๋ณ€ํ™”์— ๋”ฐ๋ผ ์ฆ‰๊ฐ์ ์œผ๋กœ ๋ฐ˜์‘ํ•˜๋Š” ๋ฐฉ์‹์œผ๋กœ ์ˆ˜ํ–‰ํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ํด๋Ÿฌ์Šคํ„ฐโ€‘์ค‘์‹ฌ์  ์ ‘๊ทผ์€ ์ „์—ญ์ ์ธ ์‹œ์•ผ๋ฅผ ๊ฒฐ์—ฌํ•˜๊ฒŒ ๋งŒ๋“ค๋ฉฐ, ํŠนํžˆ ์ง€๋ฆฌ์ ์œผ๋กœ ๋ถ„์‚ฐ๋œ ๋ฐ์ดํ„ฐ์„ผํ„ฐ ๊ฐ„์— ๋ถ€ํ•˜๊ฐ€ ๋ถˆ๊ท ํ˜•ํ•˜๊ฒŒ ์ „ํŒŒ๋  ๊ฒฝ์šฐ ์ „์ฒด ์‹œ์Šคํ…œ์˜ ๋น„์šฉ ํšจ์œจ์„ฑ๊ณผ ์„œ๋น„์Šค ์ˆ˜์ค€์ด ํฌ๊ฒŒ ์ €ํ•˜๋œ๋‹ค. ๋…ผ๋ฌธ์€ ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ์„ธ ๊ฐ€์ง€ ํ•ต์‹ฌ ์š”์†Œ๋ฅผ ๊ฒฐํ•ฉํ•œ AIโ€‘๊ธฐ๋ฐ˜ ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์‹œํ•œ๋‹ค.

Computer Science Distributed Computing
Counterfactual Self-Questioning for Stable Policy Optimization in Language Models

Counterfactual Self-Questioning for Stable Policy Optimization in Language Models

๋ณธ ๋…ผ๋ฌธ์ด ์ œ์‹œํ•˜๋Š” Counterfactual Selfโ€‘Questioning(CSQ)์€ ๊ธฐ์กด ์ž๊ธฐ ๊ฐœ์„  ๋ฉ”์ปค๋‹ˆ์ฆ˜์ด ์•ˆ๊ณ  ์žˆ๋˜ โ€œ์™ธ๋ถ€ ์˜์กด์„ฑโ€์ด๋ผ๋Š” ๊ทผ๋ณธ์ ์ธ ๋ฌธ์ œ๋ฅผ ๊ทผ๋ณธ์ ์œผ๋กœ ํ•ด๊ฒฐํ•œ๋‹ค๋Š” ์ ์—์„œ ํ•™์ˆ ์ ยท์‹ค์šฉ์  ์˜๋ฏธ๊ฐ€ ํฌ๋‹ค. ๋จผ์ €, CSQ๋Š” ํ•˜๋‚˜์˜ ์–ธ์–ด ๋ชจ๋ธ์ด ์Šค์Šค๋กœ โ€œ์™œ ์ด ์ถ”๋ก ์ด ํ‹€๋ ธ๋Š”๊ฐ€โ€๋ฅผ ํƒ์ƒ‰ํ•˜๋„๋ก ์„ค๊ณ„๋œ ์„ธ ๋‹จ๊ณ„ ํŒŒ์ดํ”„๋ผ์ธ์„ ๋„์ž…ํ•œ๋‹ค. ์ดˆ๊ธฐ ๋กค์•„์›ƒ ๋‹จ๊ณ„์—์„œ ๋ชจ๋ธ์€ ์ผ๋ฐ˜์ ์ธ chainโ€‘ofโ€‘thought ๋ฐฉ์‹์œผ๋กœ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ณ , ๊ทธ ๊ณผ์ •์—์„œ ์ƒ์„ฑ๋œ ์ค‘๊ฐ„ ๋‹จ๊ณ„์™€ ์ตœ์ข… ๋‹ต์•ˆ์„ ๊ทธ๋Œ€๋กœ ๋ณด๊ด€ํ•œ๋‹ค. ์ด์–ด์ง€๋Š” ์ž๊ธฐ์งˆ๋ฌธ ๋‹จ๊ณ„์—์„œ๋Š” ๋ชจ๋ธ์ด โ€œ

Computer Science Artificial Intelligence Model
No Image

Do Large Language Models Know What They Are Capable Of?

์ด ๋…ผ๋ฌธ์€ โ€œ๋ฉ”ํƒ€โ€‘์ธ์ง€โ€๋ผ๋Š” ๊ด€์ ์—์„œ LLM์˜ ์ž๊ธฐ ํ‰๊ฐ€ ๋Šฅ๋ ฅ์„ ์ฒด๊ณ„์ ์œผ๋กœ ๊ฒ€์ฆํ•œ๋‹ค๋Š” ์ ์—์„œ ์˜๋ฏธ๊ฐ€ ํฌ๋‹ค. ๋จผ์ € ์—ฐ๊ตฌ์ง„์€ โ€œ์„ฑ๊ณต ์˜ˆ์ธกโ€์ด๋ผ๋Š” ์ด์ง„ ํŒ๋‹จ์„ ํ†ตํ•ด ๋ชจ๋ธ์ด ์ž์‹ ์˜ ํ•œ๊ณ„๋ฅผ ์–ผ๋งˆ๋‚˜ ์ •ํ™•ํžˆ ์ธ์‹ํ•˜๋Š”์ง€๋ฅผ ์ธก์ •ํ•˜์˜€๋‹ค. ์—ฌ๊ธฐ์„œ ์‚ฌ์šฉ๋œ ํ‰๊ฐ€์ง€ํ‘œ๋Š” ๋‹จ์ˆœ ์ •ํ™•๋„๋ฟ ์•„๋‹ˆ๋ผ ROCโ€‘AUC์™€ ๊ฐ™์€ ๊ตฌ๋ณ„๋ ฅ ์ง€ํ‘œ์ด๋ฉฐ, ์ด๋Š” ๋ชจ๋ธ์ด ๊ณผ์‹ (overโ€‘confidence)๊ณผ ๊ณผ์†Œ์‹ (underโ€‘confidence) ์‚ฌ์ด์—์„œ ์–ด๋А ์ •๋„ ๊ท ํ˜•์„ ์žก๋Š”์ง€๋ฅผ ๋ณด์—ฌ์ค€๋‹ค. ๊ฒฐ๊ณผ๋Š” ๋Œ€๋ถ€๋ถ„์˜ ์ตœ์‹  LLM์ด ๋†’์€ ํ™•์‹ ์„ ๋ณด์ด์ง€๋งŒ, ๋ฌด์ž‘์œ„๋ณด๋‹ค ๋†’์€ AUC๋ฅผ ๊ธฐ๋กํ•œ๋‹ค๋Š” ์ ์ด๋‹ค

Computer Science NLP Model
Evaluating Contextual Intelligence in Recyclability: A Comprehensive Study of Image-Based Reasoning Systems

Evaluating Contextual Intelligence in Recyclability: A Comprehensive Study of Image-Based Reasoning Systems

๋ณธ ๋…ผ๋ฌธ์€ ์žฌํ™œ์šฉ ์‹ค์ฒœ์„ ์ง€์›ํ•˜๊ธฐ ์œ„ํ•œ ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๋„๊ตฌ์˜ ๊ฐ€๋Šฅ์„ฑ์„ ํƒ์ƒ‰ํ•œ๋‹ค๋Š” ์ ์—์„œ ์‚ฌํšŒ์ ยทํ™˜๊ฒฝ์  ์˜๋ฏธ๊ฐ€ ํฌ๋‹ค. ์—ฐ๊ตฌ์ง„์€ ๋จผ์ € ์žฌํ™œ์šฉ ๋Œ€์ƒ ๋ฌผํ’ˆ์„ ๋‹ค์–‘ํ•œ ๊ฐ๋„์™€ ์กฐ๋ช… ์กฐ๊ฑด์—์„œ ์ดฌ์˜ํ•œ ์ด๋ฏธ์ง€์™€, ๊ฐ ๋ฌผํ’ˆ์ด ์†ํ•ด์•ผ ํ•  ์žฌํ™œ์šฉํ†ต(ํ”Œ๋ผ์Šคํ‹ฑ, ๊ธˆ์†, ์ข…์ด ๋“ฑ) ๋ฐ ๋ฌผ๋ฆฌ์  ์น˜์ˆ˜ ์ •๋ณด๋ฅผ ํฌํ•จํ•œ ๋ฉ”ํƒ€๋ฐ์ดํ„ฐ๋ฅผ ๊ฒฐํ•ฉํ•œ ๋ฐ์ดํ„ฐ์…‹์„ ๊ตฌ์ถ•ํ•˜์˜€๋‹ค. ๋ฐ์ดํ„ฐ์…‹์€ 5,000์—ฌ ์žฅ์˜ ์ด๋ฏธ์ง€์™€ 1,200๊ฐœ์˜ ๋‹ค์ค‘ ์žฌ์งˆ ์‚ฌ๋ก€๋ฅผ ํฌํ•จํ•ด, ์‹ค์ œ ๊ฐ€์ •์—์„œ ๋งˆ์ฃผ์น˜๋Š” ๋ณตํ•ฉ ์ƒํ™ฉ์„ ์ถฉ๋ถ„ํžˆ ๋ฐ˜์˜ํ•œ๋‹ค. ๋ชจ๋ธ ํ‰๊ฐ€์—์„œ๋Š” ๋‘ ๋‹จ๊ณ„์˜ ์งˆ๋ฌธ์„ ์ œ์‹œํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ๋Š” โ€œ์ด ๋ฌผ๊ฑด์€ ์–ด๋А ์žฌ

System Computer Vision Computer Science
Evaluating the Impact of Compression Techniques on the Robustness of CNNs under Natural Corruptions

Evaluating the Impact of Compression Techniques on the Robustness of CNNs under Natural Corruptions

๋ณธ ์—ฐ๊ตฌ๋Š” ๋ชจ๋ธ ์••์ถ•์ด CNN์˜ ๊ฒฌ๊ณ ์„ฑ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ์ฒด๊ณ„์ ์œผ๋กœ ๊ทœ๋ช…ํ•˜๊ธฐ ์œ„ํ•ด ์„ธ ๊ฐ€์ง€ ๋Œ€ํ‘œ์ ์ธ ์••์ถ• ๊ธฐ๋ฒ•โ€”์–‘์žํ™”(Quantization), ํ”„๋ฃจ๋‹(Pruning), ๊ฐ€์ค‘์น˜ ํด๋Ÿฌ์Šคํ„ฐ๋ง(Weight Clustering)โ€”์„ ์„ ํƒํ•˜์˜€๋‹ค. ๊ฐ๊ฐ์˜ ๊ธฐ๋ฒ•์€ ๋ฉ”๋ชจ๋ฆฌ ์‚ฌ์šฉ๋Ÿ‰๊ณผ ์—ฐ์‚ฐ๋Ÿ‰์„ ๊ฐ์†Œ์‹œํ‚ค๋Š” ๋ฉ”์ปค๋‹ˆ์ฆ˜์€ ์œ ์‚ฌํ•˜์ง€๋งŒ, ํŒŒ๋ผ๋ฏธํ„ฐ ๋ถ„ํฌ์™€ ํ™œ์„ฑํ™” ํŒจํ„ด์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์ด ๋‹ค๋ฅด๋‹ค. ์–‘์žํ™”๋Š” ๊ฐ€์ค‘์น˜๋ฅผ ๋‚ฎ์€ ๋น„ํŠธ ํญ์œผ๋กœ ํ‘œํ˜„ํ•จ์œผ๋กœ์จ ์—ฐ์‚ฐ ์ •๋ฐ€๋„๋ฅผ ๋‚ฎ์ถ”์ง€๋งŒ, ์ •๊ทœํ™”๋œ ๋ ˆ์ด์–ด์—์„œ๋Š” ์˜ค์ฐจ๊ฐ€ ๋ถ€๋ถ„์ ์œผ๋กœ ์ƒ์‡„๋˜๋Š” ๊ฒฝํ–ฅ์ด ์žˆ๋‹ค. ํ”„๋ฃจ๋‹์€ ์ค‘์š”๋„๊ฐ€ ๋‚ฎ์€ ์ฑ„๋„์ด๋‚˜ ํ•„ํ„ฐ๋ฅผ

Computer Science Computer Vision
HiGR: Efficient Generative Slate Recommendation via Hierarchical Planning and Multi-Objective Preference Alignment

HiGR: Efficient Generative Slate Recommendation via Hierarchical Planning and Multi-Objective Preference Alignment

HiGR ๋…ผ๋ฌธ์€ ์Šฌ๋ ˆ์ดํŠธ ์ถ”์ฒœ์ด๋ผ๋Š” ๋ณตํ•ฉ์ ์ธ ๋ฌธ์ œ๋ฅผ ๋‘ ๊ฐ€์ง€ ํ•ต์‹ฌ ์ฐจ์›์—์„œ ํ˜์‹ ์ ์œผ๋กœ ์ ‘๊ทผํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ๋Š” ์•„์ดํ…œ ํ† ํฌ๋‚˜์ด์ œ์ด์…˜ ๋‹จ๊ณ„์ด๋‹ค. ๊ธฐ์กด์˜ ์ž๋™ํšŒ๊ท€ ๊ธฐ๋ฐ˜ ๋ชจ๋ธ์€ ์•„์ดํ…œ์„ ๋‹จ์ˆœํžˆ ๊ณ ์œ  ๋ฒˆํ˜ธ ํ˜น์€ ์ž„๋ฒ ๋”ฉ ๋ฒกํ„ฐ๋กœ ๋ณ€ํ™˜ํ•œ ๋’ค ์ˆœ์ฐจ์ ์œผ๋กœ ์˜ˆ์ธกํ•œ๋‹ค. ์ด ๊ฒฝ์šฐ ์•„์ดํ…œ ๊ฐ„ ์˜๋ฏธ์  ์—ฐ๊ด€์„ฑ์ด ํ† ํฐ ์ˆ˜์ค€์—์„œ ์ถฉ๋ถ„ํžˆ ๋ฐ˜์˜๋˜์ง€ ์•Š์•„, โ€œ์Œ์•…โ€‘ํŒโ€๊ณผ โ€œ์Œ์•…โ€‘์žฌ์ฆˆโ€์™€ ๊ฐ™์€ ์œ ์‚ฌ ์•„์ดํ…œ์ด ์„œ๋กœ ๋‹ค๋ฅธ ํ† ํฐ์œผ๋กœ ์ทจ๊ธ‰๋ผ ๋ชจ๋ธ์ด ๋ถˆํ•„์š”ํ•œ ํ˜ผ๋™์„ ๊ฒช๋Š”๋‹ค. HiGR์€ ์ž”์ฐจ ์–‘์žํ™”(residual quantization)์™€ ๋Œ€๋น„ ํ•™์Šต(contrastive learn

Computer Science Information Retrieval
LeanCat: A Benchmark Suite for Formal Category Theory in Lean (Part I: 1-Categories)

LeanCat: A Benchmark Suite for Formal Category Theory in Lean (Part I: 1-Categories)

์ด ๋…ผ๋ฌธ์€ ํ˜•์‹ํ™”๋œ ์ˆ˜ํ•™ ์—ฐ๊ตฌ์— ์žˆ์–ด โ€œ๊ตฌ์กฐ์  ์ถ”๋ก โ€์ด๋ผ๋Š” ํ•ต์‹ฌ ๊ณผ์ œ๋ฅผ ๋ช…ํ™•ํžˆ ์ œ์‹œํ•œ๋‹ค๋Š” ์ ์—์„œ ์˜๋ฏธ๊ฐ€ ํฌ๋‹ค. ๊ธฐ์กด์˜ ์ •๋ฆฌ ์ฆ๋ช… ๋ฒค์น˜๋งˆํฌ๋Š” ์ฃผ๋กœ ๊ตฌ์ฒด์ ์ธ ๊ณ„์‚ฐ์ด๋‚˜ ์ „ํ†ต์ ์ธ ์œ„์ƒยท๋Œ€์ˆ˜์  ๋ช…์ œ์— ์ดˆ์ ์„ ๋งž์ถ”์–ด ์™”์œผ๋ฉฐ, ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ(์˜ˆ: Mathlib)์™€์˜ ์ƒํ˜ธ์ž‘์šฉ์„ ์ตœ์†Œํ™”ํ–ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ํ˜„๋Œ€ ์ˆ˜ํ•™์€ ๋ฒ”์ฃผ๋ก ๊ณผ ๊ฐ™์€ ๊ณ ์ฐจ ๊ตฌ์กฐ๋ฅผ ํ†ตํ•ด ๋‹ค์–‘ํ•œ ๋ถ„์•ผ๋ฅผ ์—ฐ๊ฒฐํ•˜๊ณ , ์ด๋Ÿฌํ•œ ๊ตฌ์กฐ๋Š” ์ •์˜, ํ•จ์ž, ์ž์—ฐ ๋ณ€ํ™˜ ๋“ฑ ๋ณตํ•ฉ์ ์ธ ์ธํ„ฐํŽ˜์ด์Šค๋ฅผ ์š”๊ตฌํ•œ๋‹ค. ๋”ฐ๋ผ์„œ LLM์ด ์‹ค์ œ ์—ฐ๊ตฌ์ž ์ˆ˜์ค€์˜ ๋Šฅ๋ ฅ์„ ๋ณด์ด๋ ค๋ฉด ๋‹จ์ˆœํžˆ โ€œ์ •๋ฆฌ๋ฅผ ์ฆ๋ช…โ€ํ•˜๋Š” ๊ฒƒ์„ ๋„˜์–ด, ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ ์•ˆ์—์„œ ์ 

Computer Science Logic
Let It Flow: Agentic Crafting on Rock and Roll, Building the ROME Model within an Open Agentic Learning Ecosystem

Let It Flow: Agentic Crafting on Rock and Roll, Building the ROME Model within an Open Agentic Learning Ecosystem

๋ณธ ๋…ผ๋ฌธ์€ โ€œ์—์ด์ „ํŠธ ์ œ์ž‘(agentic crafting)โ€์ด๋ผ๋Š” ๊ฐœ๋…์„ ๊ธฐ์กด์˜ ์ผํšŒ์„ฑ ํ…์ŠคํŠธ ์ƒ์„ฑ๊ณผ ๊ตฌ๋ณ„ํ•˜์—ฌ, ์‹ค์ œ ์„ธ๊ณ„์—์„œ ๋‹ค์ค‘ ํ„ด์„ ๊ฑฐ์ณ ํ–‰๋™ํ•˜๊ณ  ๊ทธ ๊ฒฐ๊ณผ๋ฅผ ๊ด€์ฐฐยทํ”ผ๋“œ๋ฐฑํ•˜๋Š” ๋ฐ˜๋ณต์  ํ”„๋กœ์„ธ์Šค๋กœ ์ •์˜ํ•œ๋‹ค. ์ด๋Š” ๋‹จ์ˆœํžˆ ์ฝ”๋“œ๋ฅผ ์ž๋™ ์ƒ์„ฑํ•˜๋Š” ์ˆ˜์ค€์„ ๋„˜์–ด, ๋ณตํ•ฉ์ ์ธ ํˆด ์ฒด์ธ๊ณผ ์–ธ์–ด ๊ธฐ๋ฐ˜ ์›Œํฌํ”Œ๋กœ ์ „๋ฐ˜์— ๊ฑธ์ณ ๋ชจ๋ธ์ด ๊ณ„ํšยท์‹คํ–‰ยท๋ชจ๋‹ˆํ„ฐ๋งยท์ˆ˜์ •๊นŒ์ง€ ์ „ ๊ณผ์ •์„ ๋‹ด๋‹นํ•ด์•ผ ํ•จ์„ ์˜๋ฏธํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ์š”๊ตฌ๋ฅผ ์ถฉ์กฑํ•˜๋ ค๋ฉด ๋ชจ๋ธ ์ž์ฒด๋ฟ ์•„๋‹ˆ๋ผ, ๋ชจ๋ธ์ด ์ž‘๋™ํ•  ํ™˜๊ฒฝ, ๋ฐ์ดํ„ฐ ํŒŒ์ดํ”„๋ผ์ธ, ํ•™์Šตยท๋ฐฐํฌ ์ธํ”„๋ผ๊ฐ€ ๋ชจ๋‘ ์œ ๊ธฐ์ ์œผ๋กœ ์—ฐ๊ฒฐ๋œ โ€˜์—์ด์ „ํŠธ ํ•™์Šต ์ƒํƒœ๊ณ„(AL

Model Artificial Intelligence System Computer Science Learning
R-Debater: Retrieval-Augmented Debate Generation through Argumentative Memory

R-Debater: Retrieval-Augmented Debate Generation through Argumentative Memory

Rโ€‘Debater๋Š” โ€œ๋…ผ์ฆ ๋ฉ”๋ชจ๋ฆฌโ€๋ผ๋Š” ๊ฐœ๋…์„ ํ† ๋ก  ์ƒ์„ฑ์— ์ ์šฉํ•จ์œผ๋กœ์จ ๊ธฐ์กด LLM ๊ธฐ๋ฐ˜ ํ† ๋ก  ์‹œ์Šคํ…œ์ด ๊ฐ–๋Š” ๋ช‡ ๊ฐ€์ง€ ๊ทผ๋ณธ์ ์ธ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•œ๋‹ค. ์ฒซ์งธ, ์ผ๋ฐ˜์ ์ธ LLM์€ ๋Œ€๊ทœ๋ชจ ์‚ฌ์ „ํ•™์Šต์„ ํ†ตํ•ด ํ’๋ถ€ํ•œ ์–ธ์–ด ๋Šฅ๋ ฅ์„ ๋ณด์œ ํ•˜์ง€๋งŒ, ํŠน์ • ์ฃผ์žฅ์ด๋‚˜ ์ฆ๊ฑฐ๋ฅผ ์ผ๊ด€๋˜๊ฒŒ ์ธ์šฉํ•˜๋Š” ๋Šฅ๋ ฅ์€ ์ œํ•œ์ ์ด๋‹ค. ์ด๋Š” ํŠนํžˆ ๋‹ค์ค‘ ํ„ด ํ† ๋ก ์—์„œ โ€˜์ž…์žฅ ์ผ๊ด€์„ฑโ€™๊ณผ โ€˜์ฆ๊ฑฐ ๊ธฐ๋ฐ˜ ์ฃผ์žฅโ€™์ด ์š”๊ตฌ๋  ๋•Œ, ๋ชจ๋ธ์ด ์•ž์„  ๋ฐœ์–ธ์„ ๋ง๊ฐํ•˜๊ฑฐ๋‚˜ ๋ถ€์ •ํ™•ํ•œ ์ •๋ณด๋ฅผ ์‚ฝ์ž…ํ•˜๋Š” ์˜ค๋ฅ˜๋ฅผ ์ดˆ๋ž˜ํ•œ๋‹ค. Rโ€‘Debater๋Š” ๋ณ„๋„์˜ ํ† ๋ก  ์ง€์‹๋ฒ ์ด์Šค๋ฅผ ๊ตฌ์ถ•ํ•ด ์‚ฌ๋ก€โ€‘ํ˜• ์ฆ๊ฑฐ์™€ ๊ณผ๊ฑฐ ํ† ๋ก  ์ „๊ฐœ๋ฅผ ์ธ๋ฑ์‹ฑํ•˜๊ณ ,

Computer Science NLP
An Comparative Analysis about KYC on a Recommendation System Toward Agentic Recommendation System

An Comparative Analysis about KYC on a Recommendation System Toward Agentic Recommendation System

๋ณธ ๋…ผ๋ฌธ์€ KYC ๋ฐ์ดํ„ฐ๋ฅผ ์—์ด์ „ํŠธํ˜• ์ธ๊ณต์ง€๋Šฅ(AI)๊ณผ ๊ฒฐํ•ฉํ•จ์œผ๋กœ์จ ๊ฐœ์ธํ™” ์ถ”์ฒœ์˜ ์ •ํ™•๋„์™€ ์‹ ๋ขฐ์„ฑ์„ ๋™์‹œ์— ํ–ฅ์ƒ์‹œํ‚ค๋Š” ์ƒˆ๋กœ์šด ํŒจ๋Ÿฌ๋‹ค์ž„์„ ์ œ์‹œํ•œ๋‹ค. ๋จผ์ €, KYC๋Š” ์ „ํ†ต์ ์œผ๋กœ ๊ธˆ์œต ๊ธฐ๊ด€์ด ๊ณ ๊ฐ์˜ ์‹ ์›ยท๊ฑฐ๋ž˜ ์œ„ํ—˜์„ ํ‰๊ฐ€ํ•˜๊ธฐ ์œ„ํ•ด ์ˆ˜์ง‘ํ•˜๋Š” ์ •ํ˜•ยท๋น„์ •ํ˜• ๋ฐ์ดํ„ฐ ์ง‘ํ•ฉ์ด๋ฉฐ, ๊ฐœ์ธ์ •๋ณด ๋ณดํ˜ธ์™€ ๊ทœ์ œ ์ค€์ˆ˜ ์ธก๋ฉด์—์„œ ๋†’์€ ๋ฏผ๊ฐ์„ฑ์„ ๊ฐ€์ง„๋‹ค. ์ด๋Ÿฌํ•œ ๋ฐ์ดํ„ฐ๋ฅผ ์ถ”์ฒœ ์‹œ์Šคํ…œ์— ์ง์ ‘ ํˆฌ์ž…ํ•˜๋ฉด ์‚ฌ์šฉ์ž์˜ ์‹ ์šฉ๋„ยท์†Œ๋“ ์ˆ˜์ค€ยท๊ฑฐ๋ž˜ ํŒจํ„ด ๋“ฑ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ๋งž์ถคํ˜• ์ฝ˜ํ…์ธ ๋ฅผ ์ œ๊ณตํ•  ์ˆ˜ ์žˆ์–ด, ํŠนํžˆ ๊ด‘๊ณ (Ad)์™€ ๊ธฐ์ˆ (Tech) ๋ถ„์•ผ์—์„œ ์ „ํ™˜์œจ์„ ํฌ๊ฒŒ ๋Œ์–ด์˜ฌ๋ฆด ๊ฐ€๋Šฅ์„ฑ์ด ์žˆ๋‹ค.

Computer Science Analysis Information Retrieval System
Causify DataFlow: A Framework For High-performance Machine Learning Stream Computing

Causify DataFlow: A Framework For High-performance Machine Learning Stream Computing

๋ณธ ๋…ผ๋ฌธ์€ ๋ฐ์ดํ„ฐ ๊ณผํ•™ ์‹ค๋ฌด์—์„œ ๊ฐ€์žฅ ๋นˆ๋ฒˆํžˆ ๋งˆ์ฃผ์น˜๋Š” โ€˜๋ฐ์ดํ„ฐ๋Š” ์œ ํ•œํ•˜๊ณ  ์™„์ „ํ•˜๋‹คโ€™๋Š” ๊ฐ€์ •์„ ๊ทผ๋ณธ์ ์œผ๋กœ ๋’คํ”๋“ ๋‹ค. ์ „ํ†ต์ ์ธ ๋ฐฐ์น˜ ๊ธฐ๋ฐ˜ ์›Œํฌํ”Œ๋กœ์šฐ๋Š” ๊ณ ์ •๋œ ๋ฐ์ดํ„ฐ์…‹์„ ํ•œ ๋ฒˆ์— ๋ฉ”๋ชจ๋ฆฌ๋กœ ๋กœ๋“œํ•˜๊ฑฐ๋‚˜ ๋‹จ์ผ ํŒจ์Šค๋กœ ์ฒ˜๋ฆฌํ•œ๋‹ค๋Š” ์ „์ œํ•˜์— ์„ค๊ณ„๋˜์—ˆ์œผ๋ฉฐ, ์ด๋Š” ์„ผ์„œ ์ŠคํŠธ๋ฆผ, ๊ธˆ์œต ๊ฑฐ๋ž˜ ๋กœ๊ทธ, ์‹œ์Šคํ…œ ์ด๋ฒคํŠธ์™€ ๊ฐ™์ด ์‹œ๊ฐ„์— ๋”ฐ๋ผ ์ง€์†์ ์œผ๋กœ ์ƒ์„ฑ๋˜๋Š” ๋ฐ์ดํ„ฐ์™€๋Š” ๊ทผ๋ณธ์ ์œผ๋กœ ๋งž์ง€ ์•Š๋Š”๋‹ค. ์ €์ž๋Š” ์ด๋Ÿฌํ•œ ๋ถˆ์ผ์น˜๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด Causify DataFlow๋ผ๋Š” ํ†ตํ•ฉ ์ปดํ“จํ…Œ์ด์…”๋„ ๋ชจ๋ธ์„ ์ œ์•ˆํ•œ๋‹ค. ์ฒซ์งธ, ํ”„๋ ˆ์ž„์›Œํฌ๋Š” DAG๋ฅผ ์„ ์–ธ์ ์œผ๋กœ ์ •์˜ํ•˜๊ณ , ๋™์ผํ•œ ์ •์˜๋ฅผ

Framework Machine Learning Computer Science Learning Data
DRL-TH: Jointly Utilizing Temporal Graph Attention and Hierarchical Fusion for UGV Navigation in Crowded Environments

DRL-TH: Jointly Utilizing Temporal Graph Attention and Hierarchical Fusion for UGV Navigation in Crowded Environments

๋ณธ ๋…ผ๋ฌธ์€ ๋ณต์žกํ•œ ์ธ๊ฐ„ยท๋กœ๋ด‡ ํ˜ผ์žฌ ํ™˜๊ฒฝ์—์„œ UGV๊ฐ€ ์‹ค์‹œ๊ฐ„์œผ๋กœ ์•ˆ์ „ํ•˜๊ณ  ํšจ์œจ์ ์œผ๋กœ ์ด๋™ํ•˜๊ธฐ ์œ„ํ•ด ํ•„์š”ํ•œ ๋‘ ๊ฐ€์ง€ ํ•ต์‹ฌ ์š”์†Œ, ์ฆ‰ โ€˜์‹œ๊ฐ„์  ์—ฐ์†์„ฑโ€™๊ณผ โ€˜๋‹ค์ค‘ ์„ผ์„œ ์œตํ•ฉโ€™์„ ๋™์‹œ์— ๋งŒ์กฑ์‹œํ‚ค๋Š” ์ƒˆ๋กœ์šด DRL ๊ธฐ๋ฐ˜ ์•„ํ‚คํ…์ฒ˜๋ฅผ ์ œ์‹œํ•œ๋‹ค. ๊ธฐ์กด DRL ๊ธฐ๋ฐ˜ ๋‚ด๋น„๊ฒŒ์ด์…˜ ์—ฐ๊ตฌ๋“ค์€ ์ฃผ๋กœ ํ˜„์žฌ ์‹œ์ ์˜ RGB ์ด๋ฏธ์ง€ ํ˜น์€ LiDAR ํฌ์ธํŠธ ํด๋ผ์šฐ๋“œ์™€ ๊ฐ™์€ ๋‹จ์ผ ํ”„๋ ˆ์ž„ ๋ฐ์ดํ„ฐ๋ฅผ ์ž…๋ ฅ์œผ๋กœ ์‚ฌ์šฉํ•˜๊ณ , ์—ฌ๋Ÿฌ ๋ชจ๋‹ฌ๋ฆฌํ‹ฐ๋ฅผ ๊ฒฐํ•ฉํ•  ๋•Œ๋Š” ๋‹จ์ˆœํžˆ ๋ฒกํ„ฐ๋ฅผ ์ด์–ด ๋ถ™์ด๋Š”(concatenation) ๋ฐฉ์‹์„ ์ฑ„ํƒํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ์„ค๊ณ„๋Š” (1) ๊ณผ๊ฑฐ ํ”„๋ ˆ์ž„์—์„œ ๊ด€์ฐฐ๋œ ์›€์ง์ด๋Š” ์žฅ์• 

Computer Science Robotics
No Image

Improving Multi-step RAG with Hypergraph-based Memory for Long-Context Complex Relational Modeling

๋ณธ ๋…ผ๋ฌธ์€ ๋‹ค๋‹จ๊ณ„ RAG ์‹œ์Šคํ…œ์—์„œ ๋ฉ”๋ชจ๋ฆฌ์˜ ์—ญํ• ์„ ๊ทผ๋ณธ์ ์œผ๋กœ ์žฌ์ •์˜ํ•œ๋‹ค๋Š” ์ ์—์„œ ํ•™์ˆ ์ ยท์‹ค์šฉ์  ์˜์˜๊ฐ€ ํฌ๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค์€ ๋ฉ”๋ชจ๋ฆฌ๋ฅผ โ€œ์ˆ˜๋™์  ์ €์žฅ์†Œโ€๋กœ ๊ฐ„์ฃผํ•˜๊ณ , ๊ฒ€์ƒ‰๋œ ํ…์ŠคํŠธ ์กฐ๊ฐ๋“ค์„ ๋‹จ์ˆœํžˆ ์••์ถ•ํ•˜๊ฑฐ๋‚˜ ์ˆœ์ฐจ์ ์œผ๋กœ ์—ฐ๊ฒฐํ•˜๋Š” ๋ฐฉ์‹์— ๋จธ๋ฌผ๋ €๋‹ค. ์ด๋Ÿฌํ•œ ์ ‘๊ทผ์€ ๊ฐœ๋ณ„ ์‚ฌ์‹ค์„ ๋‚˜์—ดํ•˜๋Š” ์ˆ˜์ค€์— ๊ทธ์น˜๋ฉฐ, ์‚ฌ์‹ค ๊ฐ„์˜ ๋ณตํ•ฉ์  ๊ด€๊ณ„โ€”์˜ˆ๋ฅผ ๋“ค์–ด, ์ธ๊ณผ๊ด€๊ณ„, ๊ณตํ†ต ์›์ธ, ์ƒํ˜ธ ๋ณด์™„์  ์ฆ๊ฑฐ ๋“ฑโ€”๋ฅผ ํฌ์ฐฉํ•˜์ง€ ๋ชปํ•œ๋‹ค. ๊ฒฐ๊ณผ์ ์œผ๋กœ ์žฅ๊ธฐ ๋ฌธ๋งฅ์—์„œ ์—ฌ๋Ÿฌ ๋‹จ๊ณ„์— ๊ฑธ์นœ ์ถ”๋ก ์ด ๋‹จ์ ˆ๋˜๊ณ , ์ „์—ญ์  ์˜๋ฏธ๋ง์„ ํ˜•์„ฑํ•˜๋Š” ๋ฐ ํ•œ๊ณ„๊ฐ€ ๋ฐœ์ƒํ•œ๋‹ค. HGMEM์€ ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜

Computer Science NLP Model
PathFound: An Agentic Multimodal Model Activating Evidence-seeking Pathological Diagnosis

PathFound: An Agentic Multimodal Model Activating Evidence-seeking Pathological Diagnosis

PathFound ๋…ผ๋ฌธ์€ ๊ธฐ์กด ๋ณ‘๋ฆฌํ•™ ์ธ๊ณต์ง€๋Šฅ ๋ชจ๋ธ์ด ๊ฐ–๋Š” โ€˜ํ•œ ๋ฒˆ์— ์ „์ฒด ์Šฌ๋ผ์ด๋“œ ์ฒ˜๋ฆฌโ€™๋ผ๋Š” ํ•œ๊ณ„๋ฅผ ๋ช…ํ™•ํžˆ ์ง€์ ํ•˜๊ณ , ์‹ค์ œ ๋ณ‘๋ฆฌํ•™์ž์˜ ์ง„๋‹จ ๊ณผ์ •๊ณผ ์œ ์‚ฌํ•œ ์ฆ๊ฑฐโ€‘์ค‘์‹ฌ์  ์ˆœํ™˜ ํ”„๋กœ์„ธ์Šค ๋ฅผ ๋„์ž…ํ•จ์œผ๋กœ์จ ์ƒˆ๋กœ์šด ์—ฐ๊ตฌ ๋ฐฉํ–ฅ์„ ์ œ์‹œํ•œ๋‹ค. ๋จผ์ €, ๋ชจ๋ธ ์•„ํ‚คํ…์ฒ˜๋Š” ์„ธ ๊ฐ€์ง€ ํ•ต์‹ฌ ๋ชจ๋“ˆ๋กœ ๊ตฌ์„ฑ๋œ๋‹ค. โ‘  ์‹œ๊ฐ ๊ธฐ๋ฐ˜ ํŒŒ์šด๋ฐ์ด์…˜ ๋ชจ๋ธ ์€ ๋Œ€์šฉ๋Ÿ‰ ๋””์ง€ํ„ธ ์Šฌ๋ผ์ด๋“œ์—์„œ ๊ณ ํ•ด์ƒ๋„ ํŠน์ง•์„ ์ถ”์ถœํ•˜๊ณ , โ‘ก ๋น„์ „โ€‘์–ธ์–ด ๋ชจ๋ธ(VLM) ์€ ์ด๋ฏธ์ง€ ํŠน์ง•์„ ํ…์ŠคํŠธ ํ˜•ํƒœ์˜ ์ž„์ƒ ์งˆ๋ฌธ์ด๋‚˜ ์„ค๋ช…๊ณผ ์—ฐ๊ฒฐํ•œ๋‹ค. โ‘ข ๊ฐ•ํ™”ํ•™์Šต(RL) ๊ธฐ๋ฐ˜ ์ถ”๋ก  ์—์ด์ „ํŠธ ๋Š” ํ˜„์žฌ ์ง„๋‹จ ๊ฐ€์„ค์„ ํ‰๊ฐ€ํ•˜๊ณ ,

Computer Science Model Computer Vision
PathoSyn: Imaging-Pathology MRI Synthesis via Disentangled Deviation Diffusion

PathoSyn: Imaging-Pathology MRI Synthesis via Disentangled Deviation Diffusion

PathoSyn ๋…ผ๋ฌธ์€ MRI ํ•ฉ์„ฑ ๋ถ„์•ผ์—์„œ ๊ธฐ์กด ์ ‘๊ทผ๋ฒ•์ด ์•ˆ๊ณ  ์žˆ๋˜ ๋‘ ๊ฐ€์ง€ ํ•ต์‹ฌ ํ•œ๊ณ„๋ฅผ ์ฒด๊ณ„์ ์œผ๋กœ ํ•ด๊ฒฐํ•œ๋‹ค๋Š” ์ ์—์„œ ํ•™์ˆ ์ ยท์‹ค์šฉ์  ์˜์˜๋ฅผ ๊ฐ€์ง„๋‹ค. ์ฒซ ๋ฒˆ์งธ ํ•œ๊ณ„๋Š” โ€œ์ „์—ญ ํ”ฝ์…€โ€‘๋ ˆ๋ฒจโ€ ์ƒ์„ฑ ๋ชจ๋ธ์ด ํ•ด๋ถ€ํ•™์  ๊ตฌ์กฐ๋ฅผ ์ถฉ๋ถ„ํžˆ ๋ณด์กดํ•˜์ง€ ๋ชปํ•œ๋‹ค๋Š” ์ ์ด๋‹ค. GANโ€‘๊ธฐ๋ฐ˜ ํ˜น์€ ์ „์ฒด ํ™•์‚ฐ ๋ชจ๋ธ์€ ์ด๋ฏธ์ง€ ์ „์ฒด๋ฅผ ํ•œ ๋ฒˆ์— ์ƒ˜ํ”Œ๋งํ•˜๊ธฐ ๋•Œ๋ฌธ์—, ๋ณ‘๋ณ€๊ณผ ์ •์ƒ ์กฐ์ง ์‚ฌ์ด์˜ ๋ฏธ์„ธํ•œ ๊ฒฝ๊ณ„๊ฐ€ ํ๋ ค์ง€๊ฑฐ๋‚˜ ๋น„ํ˜„์‹ค์ ์ธ ํ˜•ํƒœ๋กœ ๋ณ€ํ˜•๋  ์œ„ํ—˜์ด ์žˆ๋‹ค. ๋‘ ๋ฒˆ์งธ ํ•œ๊ณ„๋Š” โ€œ์ด์ง„ ๋งˆ์Šคํฌ ๊ธฐ๋ฐ˜โ€ ์กฐ๊ฑด๋ถ€ ์ƒ์„ฑ์ด ๋ณ‘๋ณ€ ์˜์—ญ์„ ์ง€๋‚˜์น˜๊ฒŒ ๋‹จ์ˆœํ™”ํ•œ๋‹ค๋Š” ์ ์ด๋‹ค. ๋งˆ์Šคํฌ๋Š” ๋ณ‘๋ณ€์˜ ์œ„์น˜์™€ ๋Œ€

Computer Science Computer Vision
Benchmark Success, Clinical Failure: When Reinforcement Learning Optimizes for Benchmarks, Not Patients

Benchmark Success, Clinical Failure: When Reinforcement Learning Optimizes for Benchmarks, Not Patients

๋ณธ ๋…ผ๋ฌธ์€ ์˜๋ฃŒ ์˜์ƒ ๋ถ„์•ผ์—์„œ ์ตœ๊ทผ ๊ฐ๊ด‘๋ฐ›๊ณ  ์žˆ๋Š” ๊ฐ•ํ™”ํ•™์Šต(RL) ๊ธฐ๋ฐ˜ ํŒŒ์ธํŠœ๋‹์ด ์‹ค์ œ ์ž„์ƒ ์ ์šฉ์— ์–ด๋–ค ํ•จ์˜๋ฅผ ๊ฐ–๋Š”์ง€ ์‹ฌ๋„ ์žˆ๊ฒŒ ํƒ๊ตฌํ•œ๋‹ค. ๋จผ์ € ์ €์ž๋“ค์€ โ€œR1โ€‘styleโ€์ด๋ผ ๋ช…๋ช…ํ•œ ๋‘ ๋‹จ๊ณ„ ํ•™์Šต ํŒŒ์ดํ”„๋ผ์ธ์„ ์ œ์‹œํ•œ๋‹ค. ์ฒซ ๋‹จ๊ณ„๋Š” ๋น„๊ต์  ์ ์€ ์–‘(2,000๊ฐœ)์˜ ๋ผ๋ฒจ๋ง๋œ ์ด๋ฏธ์ง€โ€‘ํ…์ŠคํŠธ ์Œ์„ ์ด์šฉํ•œ ์ง€๋„ํ•™์Šต(Supervised Fineโ€‘Tuning, SFT)์ด๋ฉฐ, ๋‘ ๋ฒˆ์งธ ๋‹จ๊ณ„๋Š” 1,000๊ฐœ์˜ RL ์ƒ˜ํ”Œ์„ ํ™œ์šฉํ•ด GRPO(Goalโ€‘oriented Rewardโ€‘based Policy Optimization)๋ผ๋Š” ์ •์ฑ… ์ตœ์ ํ™” ๊ธฐ๋ฒ•์„

Computer Science Artificial Intelligence Learning
A method to develop mission critical data processing systems for   satellite based instruments. The spinning mode case

A method to develop mission critical data processing systems for satellite based instruments. The spinning mode case

๋ณธ ๋…ผ๋ฌธ์€ ํ˜„๋Œ€ ์œ„์„ฑ ์‹คํ—˜์˜ ๋ณต์žก์„ฑ์„ ๊ณ ๋ คํ•œ ๋ฐ์ดํ„ฐ ์ฒ˜๋ฆฌ ์‹œ์Šคํ…œ ๊ฐœ๋ฐœ ๋ฐฉ๋ฒ•๋ก ์— ์ดˆ์ ์„ ๋งž์ถ”๊ณ  ์žˆ๋‹ค. ํŠนํžˆ, ํšŒ์ „ ๋ชจ๋“œ์—์„œ์˜ ๋ฐ์ดํ„ฐ ์ฒ˜๋ฆฌ๋ฅผ ์œ„ํ•œ SPIPI ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ œ์•ˆํ•˜๊ณ , ์ด๋ฅผ ํ†ตํ•ด ์œ„์„ฑ ๊ธฐ๋ฐ˜ ์‹คํ—˜์—์„œ ๋ฐœ์ƒํ•˜๋Š” ๋‹ค์–‘ํ•œ ์ž์› ๊ด€๋ จ ์ œ์•ฝ ์กฐ๊ฑด์„ ํ•ด๊ฒฐํ•˜๋ ค๋Š” ์˜๋„๊ฐ€ ๋ช…ํ™•ํžˆ ๋“œ๋Ÿฌ๋‚œ๋‹ค. 1. ์‹œ์Šคํ…œ ๊ฐœ์š” ๋ฐ ๋ฌธ์ œ ์ธ์‹ ํ˜„๋Œ€ ์œ„์„ฑ ์‹คํ—˜์€ ๋น„ํ–‰ ๋ฐ ์ง€์ƒ ์„ธ๊ทธ๋จผํŠธ๋กœ ๊ตฌ์„ฑ๋œ ๋ณต์žกํ•œ ์‹ค์‹œ๊ฐ„ ์‹œ์Šคํ…œ์œผ๋กœ, ํฌ๊ธฐ, ๋ฌด๊ฒŒ, ์ „๋ ฅ ์†Œ๋น„, ์‹ค์‹œ๊ฐ„ ์‘๋‹ต ์š”๊ตฌ์‚ฌํ•ญ, ๊ณ ์žฅ ๋‚ด์„ฑ ๋“ฑ์˜ ์ž์› ๊ด€๋ จ ์ œ์•ฝ ์กฐ๊ฑด์„ ๊ฐ€์ง„๋‹ค. ์ด๋Ÿฌํ•œ ์‹œ์Šคํ…œ์€ ๋†’์€ ์ˆ˜์ค€์˜ ๋ณด์ฆ์ด ํ•„์š”ํ•˜๋ฉฐ, ํ•˜

Software Engineering System Data Computer Science Astrophysics
No Image

Class-based Rough Approximation with Dominance Principle

์ด ๋…ผ๋ฌธ์€ ๋‹ค์ค‘ ๊ธฐ์ค€ ์˜์‚ฌ๊ฒฐ์ • ๋ถ„์„(MCDA)๊ณผ ์ง€๋ฐฐ ๊ธฐ๋ฐ˜ ๊ฑฐ์นœ ์ง‘ํ•ฉ ์ ‘๊ทผ๋ฒ•(DRSA)์„ ์ค‘์‹ฌ์œผ๋กœ, ๊ณ ์ „์ ์ธ ๊ฑฐ์นœ ์ง‘ํ•ฉ ์ ‘๊ทผ๋ฒ•(CRSA)์˜ ํ•œ๊ณ„์™€ DRSA์˜ ์žฅ์ ์„ ํƒ๊ตฌํ•œ๋‹ค. MCDA๋Š” ๋‹ค์–‘ํ•œ ๊ธฐ์ค€์— ๋”ฐ๋ผ ํ‰๊ฐ€๋œ ๊ฐ์ฒด๋“ค ์ค‘์—์„œ ์ตœ์ ์˜ ๊ฒฐ์ •์„ ๋‚ด๋ฆฌ๋Š” ๋ฐ ์‚ฌ์šฉ๋˜๋ฉฐ, ์ด ๋…ผ๋ฌธ์€ ์ด๋ฅผ ์œ„ํ•œ ํšจ๊ณผ์ ์ธ ์ˆ˜ํ•™์  ๋„๊ตฌ๋กœ์„œ CRSA์™€ DRSA๋ฅผ ๋น„๊ตํ•˜๊ณ  ๋ถ„์„ํ•œ๋‹ค. CRSA๋Š” ๋ถˆ๋ถ„๋ช…์„ฑ ๊ด€๊ณ„๋ฅผ ํ†ตํ•ด ์ง€์‹ ๊ฑฐ์น ๊ธฐ๋ฅผ ๊ตฌ์ถ•ํ•˜๋Š” ๋ฐ˜๋ฉด, DRSA๋Š” ์˜์‚ฌ๊ฒฐ์ • ํ‘œ์—์„œ์˜ ์ง€๋ฐฐ ๊ด€๊ณ„์— ์ดˆ์ ์„ ๋งž์ถ˜๋‹ค. ์ด ๋…ผ๋ฌธ์€ ํŠนํžˆ ์„ ํ˜ธ๋„ ์ˆœ์„œ ๋ฐ์ดํ„ฐ ์ฒ˜๋ฆฌ์— ํ•œ๊ณ„๊ฐ€ ์žˆ๋Š” CRSA์™€

Computational Complexity Computer Science Artificial Intelligence
New Principles of Coordination in Large-scale Micro- and   Molecular-Robotic Groups

New Principles of Coordination in Large-scale Micro- and Molecular-Robotic Groups

๋งค๋ ฅ์ ์ธ ํ•œ๊ธ€ ์ œ๋ชฉ: ๋Œ€๊ทœ๋ชจ ๋ฏธ์„ธ ๋ฐ ๋ถ„์ž ๋กœ๋ด‡ ์ง‘๋‹จ ์กฐ์ •์˜ ์ƒˆ๋กœ์šด ์›์น™ ์ดˆ๋ก ์ „์ฒด ๋ฒˆ์—ญ ๋ฐ ์ •๋ฆฌ: ์ด ๋…ผ๋ฌธ์€ '์ž์Šค๋ฏผ(Jasmine)' ๋กœ๋ด‡์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ ๊ตฐ์ง‘ ์—ฐ๊ตฌ์—์„œ ์œ ๋ž˜ํ•œ ๋™๊ธฐ ๋ถ€์—ฌ ์‹คํ—˜์— ๋Œ€ํ•ด ๋‹ค๋ฃน๋‹ˆ๋‹ค. ์ด ํ”Œ๋žซํผ์„ ํ†ตํ•ด ๋‹ค์–‘ํ•œ ์ƒ๋ฌผ ์˜๊ฐ ์ ‘๊ทผ ๋ฐฉ์‹์„ ํ…Œ์ŠคํŠธํ•˜๊ณ , ์ œํ•œ๋œ ๊ฐ์ง€ ๋ฐ ํ†ต์‹  ๋Šฅ๋ ฅ์„ ๋ฐ”ํƒ•์œผ๋กœ ํ†ต์ œ ๊ฐ€๋Šฅ ๋ฐœ์ƒ์  ์ง‘๋‹จ ํ–‰๋™์„ ๊ฐœ๋ฐœํ•ฉ๋‹ˆ๋‹ค. ๋กœ๋ด‡์˜ ํฌ๊ธฐ๋Š” 26 x 26 x 20mm(์ตœ์‹  ๋ฒ„์ „์€ 30 x 30 x 20mm)์ด๋ฉฐ, ์‹คํ—˜์—์„œ ์‚ฌ์šฉ๋œ ๋กœ๋ด‡ ์ˆ˜๋Š” 50~130๋Œ€์ž…๋‹ˆ๋‹ค. ์‹คํ—˜์˜ ๋ชฉ์ ์€ ๋กœ๋ด‡ ์ง‘๋‹จ ๋‚ด ์ •๋ณด ์ „๋‹ฌ์— ๊ด€ํ•œ

Robotics Computer Science
No Image

Recovery of a Sparse Integer Solution to an Underdetermined System of Linear Equations

๋ณธ ๋…ผ๋ฌธ์€ ์Šค๋งˆํŠธ ๊ทธ๋ฆฌ๋“œ์—์„œ ๋ฐœ์ƒํ•˜๋Š” ์ด์ง„ ํ•ด ๋ณต์› ๋ฌธ์ œ๋ฅผ ๋‹ค๋ฃจ๋ฉฐ, ํŠนํžˆ m < n ์ธ ๊ฒฝ์šฐ ๋ฌดํ•œํ•œ ์‹ค์ˆ˜ ํ•ด์™€ ์—ฌ๋Ÿฌ ์ด์ง„ ํ•ด๊ฐ€ ์กด์žฌํ•  ์ˆ˜ ์žˆ๋Š” ์ƒํ™ฉ์„ ๊ณ ๋ คํ•ฉ๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋Š” NP ํ•˜๋“œ๋กœ ์•Œ๋ ค์ ธ ์žˆ์œผ๋ฉฐ, ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด Mangasarian ๋“ฑ์ด ์ œ์•ˆํ•œ ๋ฐฉ๋ฒ•๋ก ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ์—ฐ๊ตฌ๋ฅผ ์ง„ํ–‰ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. 1. ๋ฌธ์ œ์˜ ๋ฐฐ๊ฒฝ๊ณผ ์ค‘์š”์„ฑ ๋…ผ๋ฌธ์€ ์Šค๋งˆํŠธ ๊ทธ๋ฆฌ๋“œ์—์„œ ๋ฐœ์ƒํ•˜๋Š” ์ด์ง„ ํ•ด ๋ณต์› ๋ฌธ์ œ์— ๋Œ€ํ•ด ๋‹ค๋ฃน๋‹ˆ๋‹ค. ๊ฐ ๊ณ ๊ฐ ๊ฐ€๊ตฌ๋Š” ์ €์ „์•• ๋ณ€์••๊ธฐ์˜ ์„ธ ๊ฐ€์ง€ ์ „์œ„ ์ค‘ ํ•˜๋‚˜์— ์—ฐ๊ฒฐ๋˜์–ด ์žˆ์œผ๋ฉฐ, ์ด๋ฅผ ์ถ”์ถœํ•˜๊ธฐ ์œ„ํ•ด A ํ–‰๋ ฌ์„ ์‚ฌ์šฉํ•ฉ๋‹ˆ๋‹ค. ์—ฌ๊ธฐ์„œ A ์˜ ์—ด

Information Theory Machine Learning Computer Science System Discrete Mathematics Mathematics
A note on triangle-free graphs

A note on triangle-free graphs

: ๋ณธ ๋…ผ๋ฌธ์€ ์‚ผ๊ฐ ๋ฌด๋ณ€ ๊ทธ๋ž˜ํ”„์˜ ์ด๋ก ์  ํƒ๊ตฌ๋ฅผ ์ค‘์‹ฌ์œผ๋กœ ์ง„ํ–‰๋˜๋ฉฐ, ํŠนํžˆ ์ด๋Ÿฌํ•œ ๊ทธ๋ž˜ํ”„๊ฐ€ ๊ฐ–๋Š” ํŠน์„ฑ๊ณผ ๊ทธ์— ๋”ฐ๋ฅธ ์—ฌ๋Ÿฌ ์กฐ๊ฑด๋“ค์„ ๋ถ„์„ํ•˜๊ณ  ์žˆ๋‹ค. ์‚ผ๊ฐ ๋ฌด๋ณ€ ๊ทธ๋ž˜ํ”„๋ž€ ๊ฐ„๋‹จํžˆ ๋งํ•ด ์‚ผ๊ฐํ˜•์„ ํฌํ•จํ•˜์ง€ ์•Š๋Š” ๊ทธ๋ž˜ํ”„๋ฅผ ์˜๋ฏธํ•˜๋ฉฐ, ์ด๋Š” ๊ทธ๋ž˜ํ”„ ์ด๋ก ์—์„œ ์ค‘์š”ํ•œ ์—ฐ๊ตฌ ๋Œ€์ƒ ์ค‘ ํ•˜๋‚˜์ด๋‹ค. ๋…ผ๋ฌธ์˜ ์ดˆ๋ฐ˜๋ถ€์—์„œ๋Š” ๊ธฐ๋ณธ์ ์ธ ์šฉ์–ด์™€ ์ •์˜๊ฐ€ ์ œ์‹œ๋œ๋‹ค. ํŠนํžˆ, ์ •์ ๊ณผ ๊ฐ„์„ ์˜ ์ง‘ํ•ฉ, ์ฐจ์ˆ˜, ์ง€๋ฆ„ ๋“ฑ์˜ ๊ฐœ๋…์ด ์†Œ๊ฐœ๋˜๋ฉฐ, ์ด๋Ÿฌํ•œ ๊ธฐ์ดˆ์ ์ธ ์ •์˜๋“ค์€ ์ดํ›„ ๋…ผ์˜์— ์žˆ์–ด ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•œ๋‹ค. ๋˜ํ•œ, Cn๊ณผ Km,n์ด๋ผ๋Š” ํŠน๋ณ„ํ•œ ํ˜•ํƒœ์˜ ๊ทธ๋ž˜ํ”„๋“ค์ด ์–ธ๊ธ‰๋˜๋Š”๋ฐ, ์ด๋Š” ์‚ผ๊ฐ ๋ฌด๋ณ€

Computer Science Discrete Mathematics
On the Non-Termination of Rupperts Algorithm

On the Non-Termination of Rupperts Algorithm

๋ฃจํผํŠธ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ์‚ผ๊ฐํ™” ๊ณผ์ •์—์„œ ๊ฐ๋„์— ๋Œ€ํ•œ ์—„๊ฒฉํ•œ ์ œํ•œ์„ ์„ค์ •ํ•จ์œผ๋กœ์จ, ํ‰๋ฉด ๊ทธ๋ž˜ํ”„๋ฅผ ์•ˆ์ •์ ์ธ ๊ตฌ์กฐ๋กœ ๋ณ€ํ™˜ํ•˜๋Š” ๋ฐ ์ค‘์ ์„ ๋‘๊ณ  ์žˆ๋‹ค. ์ด ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ํ•ต์‹ฌ์€ ๋ชจ๋“  ์‚ผ๊ฐํ˜•์ด ์ตœ์†Œ ๊ฐ๋„ ฮฑ๋ณด๋‹ค ์ž‘๊ฑฐ๋‚˜ ๊ฐ™์€ ๊ฐ๋„๋ฅผ ๊ฐ€์ง€๋„๋ก ํ•˜๋Š” ๊ฒƒ์ด๋‹ค. ์ดˆ๊ธฐ ์—ฐ๊ตฌ์—์„œ๋Š” 20.7ยฐ๊ฐ€ ์ด ์•Œ๊ณ ๋ฆฌ์ฆ˜์ด ์ข…๋ฃŒ๋˜๋Š” ๊ฐ€์žฅ ์ž‘์€ ฮฑ ๊ฐ’์œผ๋กœ ์ œ์‹œ๋˜์—ˆ์œผ๋‚˜, ํ›„์† ์‹คํ—˜์„ ํ†ตํ•ด ์ด๋Š” ๋งค์šฐ ๋ณด์ˆ˜์ ์ธ ์ถ”์ •์ด๋ผ๋Š” ๊ฒƒ์ด ๋ฐํ˜€์กŒ๋‹ค. ํŒŒ๋ธŒ ์˜ˆ์ œ์˜ ๋ถ„์„: ์Šคํ‹ฐ๋ธ ํŒŒ๋ธŒ๋Š” ๋ฃจํผํŠธ ์•Œ๊ณ ๋ฆฌ์ฆ˜์—์„œ ๋น„์ข…๊ฒฐ์„ฑ์ด ๋ฐœ์ƒํ•˜๋Š” ๊ฒฝ์šฐ๋ฅผ ๋ณด์—ฌ์ฃผ๋Š” ์˜ˆ์ œ๋ฅผ ์ œ์‹œํ–ˆ๋‹ค. ์ด ์˜ˆ์ œ์—์„œ๋Š” ๋‘ ๊ฐœ์˜ ์ธ์ ‘ํ•œ ์„ธ๊ทธ๋จผํŠธ๊ฐ€ 3

Computer Science Computational Geometry
Notes on Electronic Lexicography

Notes on Electronic Lexicography

๋ณธ ๋…ผ๋ฌธ์€ ์ „์ž ์‚ฌ์ „์˜ ๋ณธ์งˆ๊ณผ ๊ทธ ์ค‘์š”์„ฑ์„ ๋‹ค๊ฐ๋„๋กœ ๋ถ„์„ํ•˜๋ฉฐ, ๋””์ง€ํ„ธ ์‹œ๋Œ€์—์„œ ์–ธ์–ด ์ž๋ฃŒ ํ‘œํ˜„ ๋ฐฉ์‹์— ๋Œ€ํ•œ ์ƒˆ๋กœ์šด ๊ด€์ ์„ ์ œ์‹œํ•œ๋‹ค. ์ฃผ์š” ๋‚ด์šฉ์„ ์„ธ ๊ฐ€์ง€ ํฐ ๋ฒ”์ฃผ๋กœ ๋‚˜๋ˆ„์–ด ์‚ดํŽด๋ณด๋ฉด ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค. 1. ์ „์ž ์‚ฌ์ „์˜ ๋ณธ์งˆ๊ณผ ์˜๋ฏธ ์žฌํ•ด์„ ์ „์ž ์‚ฌ์ „์€ ๋‹จ์ˆœํžˆ ์ข…์ด ์‚ฌ์ „์˜ ๋””์ง€ํ„ธ ๋ณ€ํ˜•์ฒด๊ฐ€ ์•„๋‹ˆ๋ผ, ์ƒˆ๋กœ์šด ์˜๋ฏธ์™€ ๊ธฐ๋Šฅ์„ ์ง€๋‹Œ ๋…ํŠนํ•œ ์–ธ์–ด ์ž๋ฃŒ๋กœ ์ •์˜๋œ๋‹ค. ์ด๋Š” '์ข…์ด ์ „์ž' ์ด๋ถ„๋ฒ•์—์„œ ๋ฒ—์–ด๋‚˜ ํ…์ŠคํŠธ์™€ ๋งค์ฒด๋ฅผ ๋ถ„๋ฆฌํ•˜์ง€ ์•Š๋Š” ๋ณธ์งˆ์ ์ธ ๊ด€์ ์„ ์ œ์‹œํ•œ๋‹ค. ์ „์ž ์‚ฌ์ „์€ ๋””์ง€ํ„ธ ํ™˜๊ฒฝ์—์„œ ์˜๋ฏธ ์ƒ์„ฑ ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ํ†ตํ•ด ์„ธ๋ถ„ํ™”๋œ ์˜๋ฏธ๋ฅผ ์ œ๊ณตํ•˜๋ฉฐ, ์ด๋ฅผ ํ†ตํ•ด ๋…

NLP Computer Science
A deterministic algorithm for fitting a step function to a weighted   point-set

A deterministic algorithm for fitting a step function to a weighted point-set

: ๋ณธ ๋…ผ๋ฌธ์€ k๋‹จ๊ณ„ ํ•จ์ˆ˜๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๊ฐ€์ค‘๋œ ์  ์ง‘ํ•ฉ์„ ๊ทผ์‚ฌํ•˜๋Š” ๋ฌธ์ œ์— ๋Œ€ํ•œ ์ƒˆ๋กœ์šด ์ ‘๊ทผ ๋ฐฉ์‹์„ ์ œ์•ˆํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ด ๋ฌธ์ œ๋Š” ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค ์‘์šฉ ํ”„๋กœ๊ทธ๋žจ์—์„œ ํšจ์œจ์ ์ธ ๋ฐ์ดํ„ฐ ์ €์žฅ ๋ฐ ์ฟผ๋ฆฌ ์ฒ˜๋ฆฌ ์†๋„ ํ–ฅ์ƒ์„ ์œ„ํ•ด ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•ฉ๋‹ˆ๋‹ค. 1. k๋‹จ๊ณ„ ํ•จ์ˆ˜์™€ ์ค‘๋Ÿ‰์ ์˜ ์ •์˜ k๋‹จ๊ณ„ ํ•จ์ˆ˜๋Š” ์‹ค์ˆ˜ ์‹œํ€€์Šค๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๊ฐ ๊ตฌ๊ฐ„์— ์ƒ์ˆ˜ ๊ฐ’์„ ๊ฐ€์ง€๋Š” ํ•จ์ˆ˜์ž…๋‹ˆ๋‹ค. ์ค‘๋Ÿ‰์ ์€ (x, y, w)๋กœ ํ‘œํ˜„๋˜๋ฉฐ, ์—ฌ๊ธฐ์„œ x์™€ y๋Š” ์ ์˜ ์ขŒํ‘œ์ด๊ณ , w๋Š” ํ•ด๋‹น ์ ์˜ ๋ฌด๊ฒŒ๋ฅผ ๋‚˜ํƒ€๋ƒ…๋‹ˆ๋‹ค. 2. ๊ทผ์‚ฌ ๋ฌธ์ œ ์ฃผ์–ด์ง„ ๊ฐ€์ค‘๋œ ์  ์ง‘ํ•ฉ P์— ๋Œ€ํ•ด k๋‹จ๊ณ„ ํ•จ์ˆ˜ f๋ฅผ ์ฐพ์•„์„œ P์™€

Computational Geometry Computer Science Data Structures
LSM is not generated by binary functions

LSM is not generated by binary functions

์ด ๋…ผ๋ฌธ์€ ๋กœ๊ทธ ์Šˆํผ๋ชจ๋“ˆ๋Ÿฌ(LSM) ํ•จ์ˆ˜ ์ง‘ํ•ฉ์˜ ๋ชจ๋“  ํ•จ์ˆ˜๊ฐ€ IMP๋กœ ์ •์˜๋  ์ˆ˜ ์žˆ๋Š”์ง€ ์—ฌ๋ถ€๋ฅผ ํƒ๊ตฌํ•˜๋ฉฐ, ์ด๋ฅผ ๋ถ€์ •์ ์œผ๋กœ ๊ฒฐ๋ก ์ง“๋Š”๋‹ค. ์ด ์—ฐ๊ตฌ๋Š” ํŠนํžˆ T2 ๊ตฌ์„ฑ ๊ฐ€๋Šฅ์„ฑ๊ณผ ๊ด€๋ จ๋œ ์ตœ์†Œํ•œ์˜ ์—ฐ์‚ฐ์„ ์‚ฌ์šฉํ•˜์—ฌ ์ด์ง„ LSM ํ•จ์ˆ˜๋ฅผ ํฌํ•จํ•˜๋Š” ์ง‘ํ•ฉ C๋ฅผ ๊ตฌ์„ฑํ•˜๊ณ , ์ด๋ฅผ PPS ฯ‰ ์ •์˜ ๊ฐ€๋Šฅ์„ฑ๊ณผ ์—ฐ๊ฒฐํ•œ๋‹ค. ๋…ผ๋ฌธ์€ ๋‹ค์Œ๊ณผ ๊ฐ™์€ ํ•ต์‹ฌ ๊ฐœ๋…๋“ค์„ ๋‹ค๋ฃฌ๋‹ค: 1. LSM ํ•จ์ˆ˜ ์ •์˜ : F(x โˆจ y)F(x โˆง y) โ‰ฅ F(x)F(y) (๋ชจ๋“  x, y โˆˆ {0, 1}^k์— ๋Œ€ํ•ด)๋ฅผ ๋งŒ์กฑํ•˜๋Š” ํ•จ์ˆ˜๋“ค๋กœ ๊ตฌ์„ฑ๋œ๋‹ค. 2. T2 ๊ตฌ์„ฑ ๊ฐ€๋Šฅ์„ฑ๊ณผ ์ตœ์†Œ ์—ฐ์‚ฐ : ์ด์ง„ LS

Computational Complexity Computer Science
No Image

Monochromatic Progressions in Random Colorings

: 1. ๋ฐ˜๋”์™€๋ฅด๋ด ์ •๋ฆฌ์™€ W(k) ๋ฐ˜๋”์™€๋ฅด๋ด ์ •๋ฆฌ๋Š” ๋žจ์ง€ ์ด๋ก ์—์„œ ์ค‘์š”ํ•œ ์œ„์น˜๋ฅผ ์ฐจ์ง€ํ•˜๋ฉฐ, ๋ชจ๋“  ์–‘์˜ ์ •์ˆ˜ k์— ๋Œ€ํ•ด W(k)๋ผ๋Š” ์ƒํ•œ์„ ์„ ์ œ์‹œํ•ฉ๋‹ˆ๋‹ค. ์ด๋Š” {1, 2, ..., W(k)}์˜ 2์ƒ‰ ๋ถ„๋ฅ˜์—์„œ kํ•ญ ์•„๋ ˆํŠธ๋ฆญ ์ง„ํ–‰์ด ๋ฐ˜๋“œ์‹œ ๋ชจ๋…ธํฌ๋กฌ์œผ๋กœ ๋‚˜ํƒ€๋‚œ๋‹ค๋Š” ๊ฒƒ์„ ์˜๋ฏธํ•ฉ๋‹ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ W(k)์˜ ์ •ํ™•ํ•œ ๊ฐ’์€ k๊ฐ€ ์ž‘์„ ๋•Œ๋งŒ ์•Œ๋ ค์ ธ ์žˆ์œผ๋ฉฐ, k๊ฐ€ ์ปค์งˆ์ˆ˜๋ก ์ด ๊ฐ’์„ ๊ตฌํ•˜๋Š” ๊ฒƒ์ด ๋งค์šฐ ์–ด๋ ค์›Œ์ง‘๋‹ˆ๋‹ค. 2. ํ™•๋ฅ ์  ์ ‘๊ทผ: N+(k)์™€ N (k) N+(k)๋Š” {1, 2, ..., N+(k)}์˜ 2์ƒ‰ ๋ถ„๋ฅ˜์—์„œ kํ•ญ ์•„๋ ˆํŠธ๋ฆญ ์ง„ํ–‰์ด ํฌํ•จ๋  ํ™•๋ฅ ์ด

Computer Science Mathematics Discrete Mathematics
No Image

Quantum Cost Efficient Reversible BCD Adder for Nanotechnology Based Systems

๋ณธ ๋…ผ๋ฌธ์€ ์—ญ์ „ํŒŒ ๋…ผ๋ฆฌ ํšŒ๋กœ์˜ ์ค‘์š”์„ฑ๊ณผ ๊ทธ ์ ์šฉ ๋ฒ”์œ„์— ๋Œ€ํ•ด ์ƒ์„ธํžˆ ์„ค๋ช…ํ•˜๋ฉฐ, ํŠนํžˆ BCD ๋ง์…ˆ๊ธฐ์˜ ์–‘์ž ๋น„์šฉ ํšจ์œจ์ ์ธ ์„ค๊ณ„๋ฅผ ์ œ์‹œํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ด ์—ฐ๊ตฌ๋Š” ์—ญ์ „ํŒŒ ๊ฒŒ์ดํŠธ์˜ ํŠน์„ฑ์„ ์ดํ•ดํ•˜๋Š” ๋ฐ ์ค‘์ ์„ ๋‘๊ณ  ์žˆ์œผ๋ฉฐ, ์ด๋ฅผ ํ†ตํ•ด ์ €์ „๋ ฅ ํšŒ๋กœ ์„ค๊ณ„์™€ ๋‚˜๋…ธ๊ธฐ์ˆ  ๋ถ„์•ผ์—์„œ ์ค‘์š”ํ•œ ๋ฐœ์ „์„ ์ด๋ฃจ์—ˆ์Šต๋‹ˆ๋‹ค. 1. ์—ญ์ „ํŒŒ ๋…ผ๋ฆฌ์˜ ์ค‘์š”์„ฑ ์—ญ์ „ํŒŒ ๋…ผ๋ฆฌ๋Š” ์ •๋ณด ์†์‹ค ์—†์ด ์ž‘๋™ํ•˜๊ธฐ ๋•Œ๋ฌธ์— ์—ด ๋ฐœ์ƒ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์ด๋Š” ํŠนํžˆ ์ €์ „๋ ฅ ์†Œ๋ชจ ํšŒ๋กœ ์„ค๊ณ„์— ์žˆ์–ด ๋งค์šฐ ์ค‘์š”ํ•œ ํŠน์ง•์ž…๋‹ˆ๋‹ค. ์—ญ์ „ํŒŒ ๊ฒŒ์ดํŠธ๋Š” ์ž…๋ ฅ๊ณผ ์ถœ๋ ฅ ๊ฐ„ 1๋Œ€1 ๋งคํ•‘์„ ๊ตฌํ˜„ํ•˜๋ฉฐ, ์ด๋ฅผ ํ†ตํ•ด

System Computer Science Hardware Architecture
No Image

A note on the paper 'Minimizing total tardiness on parallel machines with preemptions' by Kravchenko and Werner [2010]

: Kravchenko์™€ Werner์˜ ๋…ผ๋ฌธ์€ ๋ณ‘๋ ฌ ๋จธ์‹  ํ™˜๊ฒฝ์—์„œ ์ž‘์—…์˜ ์ด ์ง€์—ฐ ์‹œ๊ฐ„์„ ์ตœ์†Œํ™”ํ•˜๋Š” ๋ฌธ์ œ์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๋ฅผ ๋‹ค๋ฃจ๊ณ  ์žˆ๋‹ค. ์ด๋“ค์€ 'ํŒŒํ‹ฐ์…˜' ๋ฌธ์ œ๋กœ๋ถ€ํ„ฐ ํŒŒ์ƒ๋œ ๋‘ ๊ฐ€์ง€ ๋ณต์žก๋„ ํด๋ž˜์Šค์ธ P |pmtn| T j์™€ P |r j , p j p, pmtn| T j์— ๋Œ€ํ•ด ๊ฐ์†Œ ๋ฐฉ๋ฒ•์„ ์ œ์‹œํ•˜์˜€์œผ๋ฉฐ, ํŠนํžˆ P |pmtn| T j์˜ ๊ฐ์†Œ ๋ฐฉ๋ฒ•์„ ์ƒ์„ธํžˆ ์„ค๋ช…ํ•˜์˜€๋‹ค. ์ด ๋…ผ๋ฌธ์€ ๋ณ‘๋ ฌ ๋จธ์‹  ํ™˜๊ฒฝ์—์„œ ์ž‘์—… ์Šค์ผ€์ค„๋ง ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๋Š” ๋ฐ ์žˆ์–ด ์ค‘์š”ํ•œ ๊ธฐ์—ฌ๋ฅผ ํ•˜์˜€์ง€๋งŒ, ์ผ๋ถ€ ๋ถ€๋ถ„์— ๋Œ€ํ•œ ๋ถ„์„์ด ๋ถ€์กฑํ•˜๊ฑฐ๋‚˜ ์ž˜๋ชป๋˜์—ˆ์Œ์„ ๋ณด์—ฌ์ฃผ๊ณ  ์žˆ๋‹ค. ๋…ผ๋ฌธ์˜ ํ•ต์‹ฌ ๋‚ด

Computer Science Discrete Mathematics
No Image

ITIL frameworks to ITD Company for improving capabilities in service management

์ด ๋…ผ๋ฌธ์€ ITD ํšŒ์‚ฌ๊ฐ€ ์„œ๋น„์Šค ๊ด€๋ฆฌ๋ฅผ ๊ฐœ์„ ํ•˜๊ธฐ ์œ„ํ•ด ITIL ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ํ™œ์šฉํ•˜๋Š” ๋ฐฉ๋ฒ•์— ๋Œ€ํ•ด ์ƒ์„ธํžˆ ์„ค๋ช…ํ•˜๊ณ  ์žˆ๋‹ค. ์ฃผ์š” ๋‚ด์šฉ์„ ๋ถ„์„ํ•ด๋ณด๋ฉด ๋‹ค์Œ๊ณผ ๊ฐ™์€ ์š”์†Œ๋“ค์ด ํฌํ•จ๋˜์–ด ์žˆ๋‹ค: 1. ํ•ด๊ฒฐ์ฑ… ํ‰๊ฐ€ : ๋…ผ๋ฌธ์€ ์—ฌ๋Ÿฌ ํ•ด๊ฒฐ์ฑ… ์ค‘์—์„œ ํšŒ์‚ฌ์˜ ํ˜„์žฌ ์ƒํ™ฉ๊ณผ ๊ฐ€์žฅ ์ž˜ ๋งž๋Š” ๊ฒƒ์„ ์„ ํƒํ•ด์•ผ ํ•œ๋‹ค๊ณ  ๊ฐ•์กฐํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ์™€ ๋‘ ๋ฒˆ์งธ ํ•ด๊ฒฐ์ฑ…์€ IT ์ž์›์ด ๋งŽ์ด ํ•„์š”ํ•˜๋ฉฐ, ํšŒ์‚ฌ๋Š” ๋ฌด์—ญ์— ์ง‘์ค‘ํ•˜๊ณ  ์žˆ์–ด ์ด๋Ÿฌํ•œ ํ•ด๊ฒฐ์ฑ…์„ ์„ ํ˜ธํ•˜์ง€ ์•Š๋Š”๋‹ค. ์„ธ ๋ฒˆ์งธ ํ•ด๊ฒฐ์ฑ…์ธ SAP ERP์˜ ๋„์ž…์€ ๋ง‰๋Œ€ํ•œ ํˆฌ์ž์™€ ๋ณ€ํ™” ๊ด€๋ฆฌ ์œ„ํ—˜์„ ์ˆ˜๋ฐ˜ํ•˜๋ฏ€๋กœ ํšŒ์‚ฌ๊ฐ€ ์›ํ•˜๋Š” ๋‹จ๊ณ„์ ์ธ ๊ฐœ์„  ๋ฐฉ์‹๊ณผ ๋งž

Computer Science Software Engineering Framework
No Image

Testing Differences Statistically with the Leiden Ranking

๋ณธ ๋…ผ๋ฌธ์€ ์ƒ์œ„ 10% ๋…ผ๋ฌธ ๋น„์œจ (PP ์ƒ์œ„ 10%)์ด๋ผ๋Š” ์ƒˆ๋กœ์šด ์ง€ํ‘œ๋ฅผ ํ†ตํ•ด ๋Œ€ํ•™ ๊ฐ„์˜ ์˜ํ–ฅ๋ ฅ์„ ์ธก์ •ํ•˜๊ณ , ์ด๋ฅผ ํ†ต๊ณ„์ ์œผ๋กœ ๊ฒ€์ฆํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์‹œํ•ฉ๋‹ˆ๋‹ค. ์ด๋Š” SCImago ๊ธฐ๊ด€ ์ˆœ์œ„์—์„œ ์‚ฌ์šฉ๋˜๋Š” ์šฐ์ˆ˜์„ฑ ์ง€ํ‘œ(EI)์™€ ์œ ์‚ฌํ•œ ์—ญํ• ์„ ํ•˜๋ฉฐ, ๋‘ ์ง€ํ‘œ ๋ชจ๋‘ CWTS(Centre for Science and Technology Studies)๊ฐ€ ์ œ๊ณตํ•˜๋Š” ์•ˆ์ • ๊ตฌ๊ฐ„ ๋‚ด์—์„œ ํ†ต๊ณ„์ ์œผ๋กœ ๊ฒ€์ฆ ๊ฐ€๋Šฅํ•˜๋‹ค๋Š” ์ ์ด ๊ฐ•์กฐ๋ฉ๋‹ˆ๋‹ค. 1. ์ƒˆ๋กœ์šด ์˜ํ–ฅ๋ ฅ ์ง€ํ‘œ์˜ ๋„์ž… ์ƒ์œ„ 10% ๋…ผ๋ฌธ ๋น„์œจ์€ ๋Œ€ํ•™์ด๋‚˜ ์—ฐ๊ตฌ ๊ธฐ๊ด€์ด ์ถœํŒํ•œ ๋ชจ๋“  ๋…ผ๋ฌธ ์ค‘ ์ƒ์œ„ 10%์— ํ•ด๋‹นํ•˜๋Š”

Computers and Society Computer Science
No Image

An Alternative Interpretation of Linguistic Variables as Linguistic Finite Automata

: 1. ์–ธ์–ด ๋ณ€์ˆ˜ ๊ฐœ๋… ์žฌํ•ด์„ Zadeh๋Š” ์–ธ์–ด ๋ณ€์ˆ˜๋ฅผ ๋„ค ๊ฐ€์ง€ ๊ตฌ์„ฑ ์š”์†Œ๋กœ ์ •์˜ํ–ˆ๋‹ค: ๋ณ€์ˆ˜ ์ด๋ฆ„, ๋ ˆ์ด๋ธ” ์ง‘ํ•ฉ, ๋‹ด๋ก  ์˜์—ญ, ๊ทธ๋ฆฌ๊ณ  ์˜๋ฏธ ๊ทœ์น™. ์ด ๋…ผ๋ฌธ์€ ์ด๋Ÿฌํ•œ ์ •์˜์— ๋Œ€ํ•œ ๋น„ํŒ์„ ์ œ๊ธฐํ•˜๋ฉฐ, ํŠนํžˆ ํ—ค๋“œ(hedge)์˜ ์˜๋ฏธ๊ฐ€ ๋ถˆ๋ถ„๋ช…ํ•˜๋‹ค๋Š” ์ ์„ ์ง€์ ํ•œ๋‹ค. ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด, ๋…ผ๋ฌธ์€ ๋ชจ๋“  ๋ ˆ์ด๋ธ”๊ณผ ๊ทธ ์˜๋ฏธ๋ฅผ ์‚ฌ์ „์— ์ •์˜๋œ ๊ณ ์ •๋œ ์œ ํ•œ ๋‹จ์–ด ์ง‘ํ•ฉ์œผ๋กœ ํ•œ์ •ํ•œ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด, '๋งค์šฐ ์ž‘์€'์ด๋ผ๋Š” ํ‘œํ˜„์€ '์ž‘์€'์˜ ์˜๋ฏธ์—์„œ ํŒŒ์ƒ๋˜์ง€ ์•Š๊ณ , ์ž์ฒด์ ์œผ๋กœ ๋…๋ฆฝ์ ์ธ ์˜๋ฏธ๋ฅผ ๊ฐ€์ง„๋‹ค. ์ด๋Š” ๋ชจํ˜ธ ์ง‘ํ•ฉ์„ ํ†ตํ•ด ํ‘œํ˜„๋˜๋ฉฐ, ๊ฐ ๋ ˆ์ด๋ธ”์— ๋Œ€ํ•œ ํšŒ์›๋„(me

Formal Languages Computer Science
No Image

How to Lose with Least Probability

: ์ด ๋…ผ๋ฌธ์€ ์•จ๋ฆฌ์Šค์™€ ๋ฐฅ์ด ์ฐธ์—ฌํ•˜๋Š” ๊ฒŒ์ž„์—์„œ ์•จ๋ฆฌ์Šค๊ฐ€ ์Šน๋ฆฌํ•  ํ™•๋ฅ  I(p | n, ฮฑ, ฮฒ)๋ฅผ ์ˆ˜ํ•™์ ์œผ๋กœ ๋ถ„์„ํ•˜๊ณ  ์ตœ์ ์˜ ๋™์ „ ํŽธํ–ฅ์„ ์ฐพ๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์‹œํ•œ๋‹ค. ์ด ๊ฒŒ์ž„์€ ํ”Œ๋ ˆ์ด์–ด๋“ค์ด ๋ฒˆ๊ฐˆ์•„๊ฐ€๋ฉฐ ๋™์ „์„ ๋˜์ ธ ๊ผฌ๋ฆฌ์— ฮฑ ํฌ์ธํŠธ, ๋จธ๋ฆฌ์— ฮฑ + ฮฒ ํฌ์ธํŠธ๋ฅผ ํš๋“ํ•˜๋ฉฐ, ๋จผ์ € n ํฌ์ธํŠธ๋ฅผ ์–ป๋Š” ํ”Œ๋ ˆ์ด์–ด๊ฐ€ ์Šน๋ฆฌํ•˜๋Š” ๋ฐฉ์‹์œผ๋กœ ์ง„ํ–‰๋œ๋‹ค. ๋…ผ๋ฌธ์€ I(p | n, ฮฑ, ฮฒ)์˜ ์„ฑ์งˆ์„ ๋ถ„์„ํ•˜๊ณ  ์ด๋ฅผ ์ตœ์†Œํ™”ํ•˜๋Š” ๋™์ „ ํŽธํ–ฅ p n์— ๋Œ€ํ•ด ๊นŠ์ด ์žˆ๊ฒŒ ๋‹ค๋ฃฌ๋‹ค. ๊ฒŒ์ž„์˜ ๊ธฐ๋ณธ ์›์น™๊ณผ ์ˆ˜ํ•™์  ๋ชจ๋ธ๋ง ๊ฒŒ์ž„์—์„œ ์•จ๋ฆฌ์Šค์™€ ๋ฐฅ์€ ๋ฒˆ๊ฐˆ์•„๊ฐ€๋ฉฐ ๋™์ „์„ ๋˜์ง„๋‹ค. ๋™์ „์˜ ๋จธ๋ฆฌ๋‚˜

Computer Science Game Theory Mathematics
No Image

Real-time face swapping as a tool for understanding infant self-recognition

๋ณธ ๋…ผ๋ฌธ์€ ์‹ ์ƒ์•„์˜ ์ž๊ธฐ์ธ์‹ ๋ฐœ๋‹ฌ์— ๋Œ€ํ•œ ์‹ฌ๋„ ์žˆ๋Š” ๋ถ„์„๊ณผ ํ•จ๊ป˜, ์ด๋ฅผ ์œ„ํ•œ ๊ธฐ์ˆ ์  ์ ‘๊ทผ ๋ฐฉ์•ˆ์„ ์ œ์‹œํ•œ๋‹ค. ์—ฐ๊ตฌ๋Š” ์•„๊ธฐ์˜ ์ž๊ธฐ์ธ์‹์ด ์›€์ง์ž„์˜ ์—ฐ์†์„ฑ๊ณผ ์–ผ๊ตด ์นœ์ˆ™์„ฑ์„ ํ†ตํ•ด ์–ด๋–ป๊ฒŒ ํ˜•์„ฑ๋˜๋Š”์ง€ ํƒ๊ตฌํ•˜๊ณ  ์žˆ๋‹ค. 1. ์ž๊ธฐ์ธ์‹ ๋ฐœ๋‹ฌ ์ด๋ก  ์‹ ์ƒ์•„๋Š” ์ž์‹ ์˜ ์›€์ง์ž„๊ณผ ์‹œ๊ฐ์  ์ž๊ทน ์‚ฌ์ด์˜ ์—ฐ๊ฒฐ์„ ์ธ์‹ํ•˜์ง€๋งŒ, ๋‹ค๋ฅธ ์•„๊ธฐ์˜ ์ด๋ฏธ์ง€๋ฅผ ๊ตฌ๋ณ„ํ•˜๋Š” ๋Šฅ๋ ฅ์€ 5๊ฐœ์›”์ด ์ง€๋‚˜์•ผ ๋ฐœ๋‹ฌํ•œ๋‹ค(Sanefuji et al., 2006). ์ด ์—ฐ๊ตฌ์—์„œ๋Š” ์ด๋Ÿฌํ•œ ์ž๊ธฐ์ธ์‹์˜ ๋ฐœ๋‹ฌ ๋‹จ๊ณ„๋ฅผ ์ดํ•ดํ•˜๊ธฐ ์œ„ํ•ด ์›€์ง์ž„๊ณผ ์–ผ๊ตด ์นœ์ˆ™์„ฑ ์š”์†Œ๋ฅผ ํ†ตํ•ฉํ•œ ์‹คํ—˜์„ ์ œ์•ˆํ•˜๊ณ  ์žˆ๋‹ค. ํŠนํžˆ, ์•„๊ธฐ๋“ค์€ ์ž์‹ 

Computer Vision Computer Science Artificial Intelligence
No Image

Dominance in the Monty Hall Problem

๋งค๋ ฅ์ ์ธ ํ•œ๊ธ€ ์ œ๋ชฉ: ๋ชฌํ‹ฐ ํ™€ ๋ฌธ์ œ์—์„œ ์ „๋žต์˜ ์ง€๋ฐฐ์„ฑ๊ณผ ์ตœ์ ์„ฑ ์ดˆ๋ก ์ „์ฒด ๋ฒˆ์—ญ ๋ฐ ์ •๋ฆฌ: ๋ชฌํ‹ฐ ํ™€ ๋ฌธ์ œ๋Š” ์„ธ ๊ฐœ์˜ ๋ฌธ ์ค‘ ํ•˜๋‚˜๊ฐ€ ์ƒ์„ ์ˆจ๊ธฐ๊ณ , ๋‚˜๋จธ์ง€ ๋‘ ๋ฌธ์€ ํ—ˆ์šธ๋ฟ์ธ ๋‹ต๋ณ€์„ ์ œ๊ณตํ•˜๋Š” ๊ณ ์ „์ ์ธ ํ™•๋ฅ  ๋ฌธ์ œ๊ฐ€๋ฉฐ, ํ”Œ๋ ˆ์ด์–ด๋Š” ํ•œ ๋ฌธ์„ ์„ ํƒํ•˜๊ณ  ์ง„ํ–‰์ž๋Š” ์„ ํƒํ•˜์ง€ ์•Š์€ ๋ฌธ ์ค‘ ํ•˜๋‚˜๋ฅผ ์—ด์–ด ์ƒ์ด ์—†๋Š” ๊ฒƒ์„ ๋“œ๋Ÿฌ๋‚ด๋ฉฐ, ์ดํ›„ ํ”Œ๋ ˆ์ด์–ด์—๊ฒŒ ์„ ํƒํ•œ ๋ฌธ์„ ๊ณ ์ˆ˜ํ• ์ง€ ๋‹ค๋ฅธ ๋ฌธ์œผ๋กœ ์ „ํ™˜ํ• ์ง€๋ฅผ ๊ฒฐ์ •ํ•˜๊ฒŒ ํ•ฉ๋‹ˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์ด ๋ฌธ์ œ์— ๋‚ด์žฌ๋œ ์ง€๋ฐฐ์„ฑ ๊ฐœ๋…์„ ๋ถ„์„ํ•˜๊ณ , ํ•ญ์ƒ ์ „ํ™˜ ์ „๋žต์˜ ์ตœ์ ์„ฑ์„ ์ฆ๋ช…ํ•˜๋ฉฐ, ๋ฒ ์ด์ฆˆ์•ˆ ๊ด€์ ์—์„œ ์ตœ์ ์˜ ์ „๋žต์„ ํƒ๊ตฌํ•ฉ๋‹ˆ๋‹ค. ์‹ฌ๋„ ๋ถ„์„

Computer Science Mathematics Game Theory
Awareness and Self-Awareness for Multi-Robot Organisms

Awareness and Self-Awareness for Multi-Robot Organisms

: ์ด ๋…ผ๋ฌธ์€ ์ธ์‹๊ณผ ์ž๊ธฐ์ธ์‹์ด๋ผ๋Š” ๋‘ ๊ฐ€์ง€ ์ค‘์š”ํ•œ ๊ฐœ๋…์„ ๋‹ค๋ฃจ๋ฉฐ, ํŠนํžˆ ์ด๋“ค์ด ๋‹ค์ค‘ ๋กœ๋ด‡ ์ƒ๋ฌผ์ฒด์—์„œ ์–ด๋–ค ์—ญํ• ์„ ํ•˜๋Š”์ง€๋ฅผ ํƒ๊ตฌํ•˜๊ณ  ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ์—ฐ๊ตฌ๋Š” ์ง€๋Šฅํ˜• ์‹œ์Šคํ…œ์˜ ๋ฐœ์ „์— ์žˆ์–ด ํ•ต์‹ฌ์ ์ธ ์š”์†Œ๋กœ ์ž‘์šฉํ•˜๋ฉฐ, ํŠนํžˆ ์ž์œจ์  ์ ์‘๊ณผ ์ž๊ธฐ ์ˆ˜๋ณต ๋“ฑ '์ž๊ธฐ ' ๋ฉ”์ปค๋‹ˆ์ฆ˜์— ์ค‘์ ์„ ๋‘”๋‹ค. 1. ์ธ์‹๊ณผ ์ž๊ธฐ์ธ์‹์˜ ๊ฐœ๋… ์ธ์‹์€ ํ™˜๊ฒฝ์— ๋Œ€ํ•œ ์ดํ•ด๋ฅผ ์˜๋ฏธํ•˜๊ณ , ์ž๊ธฐ์ธ์‹์€ ์ž์‹ ์— ๋Œ€ํ•œ ์ง€์‹์„ ์–ป๋Š” ๊ฒƒ์„ ๋งํ•œ๋‹ค. ์ด ๋‘ ๊ฐ€์ง€ ๋Šฅ๋ ฅ์€ ์ƒ๋ฌผ์ฒด๊ฐ€ ์ž์‹ ์˜ ์กด์žฌ์™€ ํ™˜๊ฒฝ ์‚ฌ์ด์—์„œ ์ ์‘๋ ฅ์„ ๊ฐ–์ถ”๊ณ  ๋ฐœ์ „ํ•˜๋Š” ๋ฐ ํ•„์ˆ˜์ ์ด๋‹ค. ๋…ผ๋ฌธ์—์„œ๋Š” ์ด๋Ÿฌํ•œ ๊ฐœ๋…์ด ์–ด๋–ป๊ฒŒ ์ง‘๋‹จ ์‹œ์Šคํ…œ

Robotics Computer Science
A Formal Approach for Agent Based Large Concurrent Intelligent Systems

A Formal Approach for Agent Based Large Concurrent Intelligent Systems

: ๋ณธ ๋…ผ๋ฌธ์€ ์—์ด์ „ํŠธ ๊ธฐ๋ฐ˜ ๋ชจ๋ธ๋ง์„ ํ†ตํ•œ ๋ณต์žก ์ง€๋Šฅํ˜• ์‹œ์Šคํ…œ ์„ค๊ณ„์— ์ดˆ์ ์„ ๋งž์ถ”๊ณ  ์žˆ์œผ๋ฉฐ, ์ด๋Š” ํ˜„์žฌ์˜ ํ”„๋กœ์ ํŠธ ๊ด€๋ฆฌ์™€ ์‹œ์Šคํ…œ ๊ฐœ๋ฐœ์—์„œ ์ง๋ฉดํ•˜๋Š” ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•œ ์ƒˆ๋กœ์šด ์ ‘๊ทผ๋ฒ•์œผ๋กœ ์ œ์‹œ๋œ๋‹ค. ํŠนํžˆ, ์—์ด์ „ํŠธ ๊ธฐ๋ฐ˜ ๋ชจ๋ธ๋ง์€ ๋ณต์žกํ•œ ์‹œ์Šคํ…œ์„ ํšจ๊ณผ์ ์œผ๋กœ ์„ค๊ณ„ํ•˜๊ณ  ๊ตฌํ˜„ํ•  ์ˆ˜ ์žˆ๋Š” ๋ฐฉ๋ฒ•๋ก  ์ค‘ ํ•˜๋‚˜๋กœ ์ฃผ๋ชฉ๋ฐ›๊ณ  ์žˆ๋‹ค. 1. ์—์ด์ „ํŠธ์˜ ์ž์œจ์„ฑ๊ณผ ๋ฐ˜์‘์„ฑ ๋…ผ๋ฌธ์—์„œ๋Š” ์—์ด์ „ํŠธ์˜ ํ•ต์‹ฌ ํŠน์ง•์œผ๋กœ ์ž์œจ์„ฑ๊ณผ ๋ฐ˜์‘์„ฑ์„ ๊ฐ•์กฐํ•œ๋‹ค. ์ž์œจ์„ฑ์€ ์—์ด์ „ํŠธ๊ฐ€ ์Šค์Šค๋กœ ์ž‘๋™ํ•˜๊ณ , ์‹œ์Šคํ…œ ๋ชฉํ‘œ๋ฅผ ๋‹ฌ์„ฑํ•˜๊ธฐ ์œ„ํ•ด ๋‚ด๋ถ€ ํ•˜์œ„ ๋ชฉํ‘œ๋ฅผ ์„ค์ •ํ•˜๊ณ  ์ด๋ฅผ ์ˆ˜ํ–‰ํ•˜๋Š” ๋Šฅ๋ ฅ์„ ์˜๋ฏธํ•œ๋‹ค. ์ด

System Computer Science Software Engineering
On a property of the $n$-dimensional cube

On a property of the $n$-dimensional cube

๋ณธ ๋…ผ๋ฌธ์€ ๊ณ ์ฐจ์› ๊ทธ๋ž˜ํ”„ ์ด๋ก ์—์„œ ์ค‘์š”ํ•œ ๋ฌธ์ œ ์ค‘ ํ•˜๋‚˜์ธ n์ฐจ์› ํ๋ธŒ์˜ ๋ถ€๋ถ„ ์ง‘ํ•ฉ์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๋ฅผ ์ˆ˜ํ–‰ํ•˜๊ณ  ์žˆ๋‹ค. ํŠนํžˆ, n โ‰ฅ 4์ผ ๋•Œ, |V'| โ‰ฅ 2^(n 1) + 1์ธ ๋ชจ๋“  ๋ถ€๋ถ„ ์ง‘ํ•ฉ V'์— ๋Œ€ํ•ด ํด๋ผ์šฐ ๋˜๋Š” ๋‹จ์ˆœ ์ˆœํ™˜์„ ์œ ๋„ํ•˜๋Š” ์ •์ ๋“ค์˜ ์กด์žฌ๋ฅผ ์ฆ๋ช…ํ•œ๋‹ค. ์„œ๋ก  ๋ฐ ์ •์˜ ๋…ผ๋ฌธ์€ ๊ทธ๋ž˜ํ”„ ์ด๋ก ์—์„œ ์ค‘์š”ํ•œ ๊ฐœ๋…๋“ค์„ ์†Œ๊ฐœํ•˜๊ณ , n์ฐจ์› ํ๋ธŒ Qn๊ณผ ํด๋ผ์šฐ(K1,3)์˜ ์ •์˜๋ฅผ ์ œ๊ณตํ•œ๋‹ค. ํŠนํžˆ, n์ฐจ์› ํ๋ธŒ๋Š” ๊ฐ ์ฐจ์›๋งˆ๋‹ค ๋‘ ๊ฐœ์˜ ๊ฐ’์„ ๊ฐ€์งˆ ์ˆ˜ ์žˆ๋Š” ์ •์  ์ง‘ํ•ฉ์œผ๋กœ ๊ตฌ์„ฑ๋˜๋ฉฐ, ํด๋ผ์šฐ๋Š” ์ค‘์‹ฌ ์ •์ ์„ ํฌํ•จํ•˜๋Š” ์™„์ „ ์ด๋ถ„ ๊ทธ๋ž˜ํ”„ K1,3์„ ์˜๋ฏธํ•œ

Mathematics Computer Science Discrete Mathematics
A conjecture on independent sets and graph covers

A conjecture on independent sets and graph covers

๋ณธ ๋…ผ๋ฌธ์€ ๊ทธ๋ž˜ํ”„ ์ด๋ก ์˜ ํ•ต์‹ฌ ๊ฐœ๋…์ธ ๋…๋ฆฝ ์ง‘ํ•ฉ๊ณผ ์ปค๋ฒ„๋ฅผ ๋‹ค๋ฃจ๋ฉฐ, ํŠนํžˆ M ์ปค๋ฒ„์™€ ๋ฒ ํ…Œ ๊ทผ์‚ฌ(Bethe approximation) ์‚ฌ์ด์˜ ๊ด€๊ณ„๋ฅผ ํƒ๊ตฌํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ์—ฐ๊ตฌ๋Š” ํ†ต๊ณ„ ๋ฌผ๋ฆฌํ•™์—์„œ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•˜๋Š” ๋ถ„ํ•  ํ•จ์ˆ˜(partition function)์™€ ์ž์œ  ์—๋„ˆ์ง€(free energy)์— ๋Œ€ํ•œ ์ดํ•ด๋ฅผ ํ™•์žฅํ•˜๋Š” ๋ฐ ๊ธฐ์—ฌํ•œ๋‹ค. 1. ๋‹ค๋ณ€์ˆ˜ ๋…๋ฆฝ ์ง‘ํ•ฉ ๋‹คํ•ญ์‹๊ณผ M ์ปค๋ฒ„ ๋…ผ๋ฌธ์€ ๊ทธ๋ž˜ํ”„ G์˜ ๋‹ค๋ณ€์ˆ˜ ๋…๋ฆฝ ์ง‘ํ•ฉ ๋‹คํ•ญ์‹์„ ์ •์˜ํ•˜๊ณ , ์ด๋ฅผ ํ†ตํ•ด ๋…๋ฆฝ ์ง‘ํ•ฉ์˜ ํฌ๊ธฐ์— ๋”ฐ๋ฅธ ๊ฐ€์ค‘์น˜๋ฅผ ํ‘œํ˜„ํ•œ๋‹ค. ์ด ๋‹คํ•ญ์‹์€ G์˜ ๋ชจ๋“  ๋…๋ฆฝ ์ง‘ํ•ฉ I์— ๋Œ€ํ•ด x^{|I|

Mathematics Computer Science Discrete Mathematics
Performance Measurement of the Heterogeneous Network

Performance Measurement of the Heterogeneous Network

์ด ๋…ผ๋ฌธ์€ M/M/2 ํ ์‹œ์Šคํ…œ์„ ํ™œ์šฉํ•˜์—ฌ ๋„คํŠธ์›Œํฌ ์ง€์—ฐ ๋ฌธ์ œ๋ฅผ ๋ถ„์„ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ด ๋ชจ๋ธ์€ ๋‘ ๊ฐœ์˜ ์„œ๋ฒ„๋กœ ๊ตฌ์„ฑ๋˜๋ฉฐ, ๊ฐ ์„œ๋ฒ„๋Š” ์„œ๋กœ ๋‹ค๋ฅธ ์ฒ˜๋ฆฌ ๋Šฅ๋ ฅ์„ ๊ฐ€์ง€๊ณ  ์žˆ์–ด ์ž‘์—… ์Šค์ผ€์ค„๋ง ๋ฐฉ์‹์€ FCFS(First Come First Served)์ž…๋‹ˆ๋‹ค. 1. M/M/2 ํ ์‹œ์Šคํ…œ M/M/2 ํ ์‹œ์Šคํ…œ์€ ๋„คํŠธ์›Œํฌ ์ง€์—ฐ ๋ฌธ์ œ๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ๋ชจ๋ธ๋งํ•˜๊ธฐ ์œ„ํ•œ ๋„๊ตฌ๋กœ, ์ด ์‹œ์Šคํ…œ์˜ ์ฃผ์š” ํŠน์ง• ์ค‘ ํ•˜๋‚˜๋Š” ๋‘ ๊ฐœ์˜ ์„œ๋ฒ„๊ฐ€ ์„œ๋กœ ๋‹ค๋ฅธ ์ฒ˜๋ฆฌ ๋Šฅ๋ ฅ์„ ๊ฐ€์ง€๊ณ  ์žˆ๋‹ค๋Š” ์ ์ž…๋‹ˆ๋‹ค. ์ž‘์—… ์Šค์ผ€์ค„๋ง ๋ฐฉ์‹์€ FCFS๋กœ, ์ž‘์—…์ด ๋„์ฐฉํ•œ ์ˆœ์„œ๋Œ€๋กœ ์ฒ˜๋ฆฌ๋ฉ๋‹ˆ๋‹ค. 2. ์ƒํƒœ

Networking Network Computer Science
X-ray view on a Class using Conceptual Analysis in Java Environment

X-ray view on a Class using Conceptual Analysis in Java Environment

์ด ๋…ผ๋ฌธ์€ ๊ฐœ๋… ๋ถ„์„(Conceptual Analysis, CA)์„ ํ™œ์šฉํ•˜์—ฌ ์†Œํ”„ํŠธ์›จ์–ด ์žฌ๊ณตํ•™์—์„œ์˜ ๋ชจ๋“ˆํ™”์™€ ํด๋ž˜์Šค ๋‚ด๋ถ€ ๊ตฌ์กฐ๋ฅผ ๋ถ„์„ํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์‹œํ•˜๊ณ  ์žˆ๋‹ค. ํŠนํžˆ ์ž๋ฐ” ํ™˜๊ฒฝ์—์„œ ์ด๋Ÿฌํ•œ ์ ‘๊ทผ๋ฒ•์„ ์ ์šฉํ•จ์œผ๋กœ์จ, ๊ฐœ๋ฐœ์ž๋“ค์ด ์ฝ”๋“œ์˜ ๋ณต์žก์„ฑ์„ ์ค„์ด๊ณ  ์œ ์ง€๋ณด์ˆ˜์„ฑ์„ ํ–ฅ์ƒ์‹œํ‚ค๋Š” ๋ฐ ๋„์›€์ด ๋˜๋„๋ก ์„ค๊ณ„๋˜์—ˆ๋‹ค. ๊ฐœ๋… ๋ถ„์„๊ณผ X Ray ๋ทฐ ๊ฐœ๋… ๋ถ„์„์€ ์š”์†Œ๋“ค ๊ฐ„์˜ ๊ณตํ†ต ์†์„ฑ์— ๊ธฐ๋ฐ˜ํ•˜์—ฌ ์˜๋ฏธ ์žˆ๋Š” ์ง‘๋‹จ์„ ์‹๋ณ„ํ•˜๋Š” ์ด๋ก ์  ์ ‘๊ทผ๋ฒ•์ด๋‹ค. ์ด๋Ÿฌํ•œ ์ง‘๋‹จ์€ '๊ฐœ๋…'์œผ๋กœ ๋ถˆ๋ฆฌ๋ฉฐ, ๊ฐ๊ฐ์˜ ๊ฐœ๋…์€ ํŠน์ • ์†์„ฑ์„ ๊ณต์œ ํ•œ๋‹ค. ๋…ผ๋ฌธ์—์„œ๋Š” X Ray ๋ทฐ๋ผ๋Š” ๊ธฐ๋ฒ•์„ ์†Œ๊ฐœํ•˜๋Š”๋ฐ

Analysis Software Engineering Computer Science
A Variant of Azumas Inequality for Martingales with Subgaussian Tails

A Variant of Azumas Inequality for Martingales with Subgaussian Tails

๋ณธ ๋…ผ๋ฌธ์€ Azuma ๋ถ€๋“ฑ์‹์˜ ๋ณ€ํ˜•์— ๋Œ€ํ•ด ๊นŠ์ด ์žˆ๊ฒŒ ๋ถ„์„ํ•˜๊ณ  ์žˆ๋‹ค. ๊ธฐ์กด Azuma ๋ถ€๋“ฑ์‹์€ ํ™•๋ฅ ์  ๊ณผ์ •์—์„œ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•˜๋Š”๋ฐ, ํŠนํžˆ ๋งˆ๋ฅดํŒ…์•Œ์˜ ์ˆ˜๋ ด์„ฑ์„ ๋ณด์žฅํ•˜๋Š” ๊ฐ•๋ ฅํ•œ ๋„๊ตฌ์ด๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ด ๋ถ€๋“ฑ์‹์€ ๋ชจ๋“  ์‹œ๊ฐ„ t์— ๋Œ€ํ•ด |Zt|๊ฐ€ ์ƒ์ˆ˜ b ์ด๋‚ด๋กœ ์ œํ•œ๋˜์–ด์•ผ ํ•œ๋‹ค๋Š” ์—„๊ฒฉํ•œ ๊ฐ€์ •์„ ํ•„์š”๋กœ ํ•˜๋ฉฐ, ์ด๋Š” ์‹ค์ œ ๋ฌธ์ œ์—์„œ ์ ์šฉํ•˜๊ธฐ ์–ด๋ ค์šด ๊ฒฝ์šฐ๊ฐ€ ๋งŽ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์ด๋Ÿฌํ•œ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ณ ์ž ๋งˆ๋ฅดํŒ…์•Œ์˜ ๊ฐ ํ•ญ์ด ๊ณ ํ™•๋ฅ ๋กœ ํฐ ๊ฐ’์„ ๊ฐ€์ง€๋”๋ผ๋„ Azuma ๋ถ€๋“ฑ์‹์„ ์ผ๋ฐ˜ํ™”ํ•˜๋Š” ์ƒˆ๋กœ์šด ๋ณ€ํ˜•์„ ์ œ์‹œํ•œ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด, '๊ฑฐ์˜ ๊ฒฝ๊ณ„๊ฐ€ ์žˆ๋Š”' ๋งˆ๋ฅดํŒ…์•Œ์—

Mathematics Machine Learning Computer Science
Maximizing the Cohesion is NP-hard

Maximizing the Cohesion is NP-hard

๋ณธ ๋…ผ๋ฌธ์˜ ์ฃผ์š” ๋ชฉํ‘œ๋Š” ์‚ฌํšŒ ๋„คํŠธ์›Œํฌ ๋ถ„์„์—์„œ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•˜๋Š” '๊ฒฐ์†์„ฑ'์ด๋ผ๋Š” ์ƒˆ๋กœ์šด ์ง€ํ‘œ๋ฅผ ๋„์ž…ํ•˜๊ณ , ์ด ์ง€ํ‘œ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๊ทธ๋ž˜ํ”„ ๋‚ด์—์„œ ์ตœ๋Œ€ ๊ฒฐ์†์„ฑ์„ ๊ฐ–๋Š” ์ง‘ํ•ฉ์„ ์ฐพ๋Š” ๋ฌธ์ œ๊ฐ€ NP ํ•˜๋“œ์ž„์„ ์ฆ๋ช…ํ•˜๋Š” ๊ฒƒ์ด๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ์‚ฌํšŒ ๋„คํŠธ์›Œํฌ ๋ถ„์„์˜ ๋ณต์žก์„ฑ์„ ์ดํ•ดํ•˜๊ณ , ํšจ์œจ์ ์ธ ์•Œ๊ณ ๋ฆฌ์ฆ˜ ๊ฐœ๋ฐœ์— ๋Œ€ํ•œ ํ•„์š”์„ฑ๊ณผ ํ•œ๊ณ„๋ฅผ ํŒŒ์•…ํ•  ์ˆ˜ ์žˆ๋‹ค. 1. ๊ฒฐ์†์„ฑ ์ง€ํ‘œ์˜ ๋„์ž… ๋ฐ ์‹คํ—˜์  ๊ฒ€์ฆ ๊ฒฐ์†์„ฑ์€ ์‚ฌํšŒ ๋„คํŠธ์›Œํฌ ๋‚ด์—์„œ ์ง‘๋‹จ์˜ ์ผ์ฒด๊ฐ์„ ์ธก์ •ํ•˜๋Š” ์ƒˆ๋กœ์šด ์ง€ํ‘œ๋กœ, ์ด๋Š” ์‚ฌ์šฉ์ž ์ฃผ๊ด€์  ์ปค๋ฎค๋‹ˆํ‹ฐ ์ธ์‹๊ณผ ๋†’์€ ์ƒ๊ด€๊ด€๊ณ„๋ฅผ ๊ฐ€์ง์„ ํŽ˜์ด์Šค๋ถ ์‹คํ—˜์„ ํ†ตํ•ด ํ™•์ธํ•˜์˜€๋‹ค. ์ด

Networking Computational Complexity Computer Science
An Approach for Message Hiding using Substitution Techniques and Audio   Hiding in Steganography

An Approach for Message Hiding using Substitution Techniques and Audio Hiding in Steganography

: ๋ณธ ๋…ผ๋ฌธ์€ ์Šคํ…Œ๊ฐ€๋…ธ๊ทธ๋ž˜ํ”ผ๋ฅผ ์ด์šฉํ•œ ์ •๋ณด ์€๋‹‰ ๊ธฐ๋ฒ•์„ ๋‹ค๋ฃจ๊ณ  ์žˆ์œผ๋ฉฐ, ํŠนํžˆ 24๋น„ํŠธ BMP ์ด๋ฏธ์ง€ ํŒŒ์ผ์— ํ…์ŠคํŠธ๋‚˜ ์˜ค๋””์˜ค ๊ฐ™์€ ๋น„๋ฐ€ ๋ฉ”์‹œ์ง€๋ฅผ ์ˆจ๊ธฐ๋Š” ๋ฐฉ๋ฒ•์— ์ง‘์ค‘ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ด๋Š” ์ •๋ณด ๋ณด์•ˆ์˜ ์ค‘์š”ํ•œ ํ•˜์œ„ ๋ถ„์•ผ๋กœ, ์Šคํ…Œ๊ฐ€๋…ธ๊ทธ๋ž˜ํ”ผ์™€ ์›Œํ„ฐ๋งˆํ‚น์„ ํ†ตํ•ด ๋ฐœ์ „ํ•ด ์™”์Šต๋‹ˆ๋‹ค. ๋…ผ๋ฌธ์€ ์•”ํ˜ธํ™” ๊ธฐ์ˆ ์—์„œ ์˜๊ฐ์„ ๋ฐ›์•„, ์ „์†ก๋œ ๋ฉ”์‹œ์ง€๋ฅผ ๋„์ฒญ์ž๋กœ๋ถ€ํ„ฐ ์•ˆ์ „ํ•˜๊ฒŒ ์ˆจ๊ธธ ์ˆ˜ ์žˆ๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ด๋Š” ๋‹จ์ˆœํžˆ ๋ฉ”์‹œ์ง€๋ฅผ ์•”ํ˜ธํ™”ํ•˜๋Š” ๊ฒƒ ์ด์ƒ์œผ๋กœ, ์‹ค์ œ ๋ฐ์ดํ„ฐ๋ฅผ ๋‹ค๋ฅธ ๋ฏธ๋””์–ด์— ์ˆจ๊ธฐ๋Š” ๋ฐฉ์‹์ž…๋‹ˆ๋‹ค. ์Šคํ…Œ๊ฐ€๋…ธ๊ทธ๋ž˜ํ”ผ ๊ธฐ๋ฒ•: ๋…ผ๋ฌธ์—์„œ ์ œ์•ˆ๋œ ์Šคํ…Œ๊ฐ€๋…ธ๊ทธ๋ž˜ํ”ผ ๊ธฐ๋ฒ•์€

Computer Science Cryptography and Security
mizar-items: Exploring fine-grained dependencies in the Mizar   Mathematical Library

mizar-items: Exploring fine-grained dependencies in the Mizar Mathematical Library

๋ณธ ๋…ผ๋ฌธ์€ MML(Mathematical Meta Language) ๋‚ด์˜ ๋ฏธ์„ธํ•œ ์˜์กด์„ฑ์„ ๋ถ„์„ํ•˜๋Š” ์‹œ์Šคํ…œ์„ ๊ฐœ๋ฐœํ•˜๊ณ  ๊ทธ ํ™œ์šฉ ๋ฐฉ๋ฒ•์— ๋Œ€ํ•ด ์„ค๋ช…ํ•œ๋‹ค. MML์€ ์ˆ˜ํ•™์  ์ฆ๋ช…๊ณผ ์ •๋ฆฌ๊ฐ€ ๊ณต์‹ํ™”๋œ ๊ฐ€์žฅ ํฐ ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค ์ค‘ ํ•˜๋‚˜๋กœ, ์•ฝ 1,100๊ฐœ์˜ ๊ธฐ์‚ฌ์™€ 250๋งŒ ์ค„ ์ด์ƒ์˜ ํ…์ŠคํŠธ๋ฅผ ํฌํ•จํ•˜๋ฉฐ, ์ด๋Š” 5๋งŒ ๊ฐœ ์ด์ƒ์˜ ์ •๋ฆฌ์™€ 1๋งŒ ๊ฐœ ์ด์ƒ์˜ ์ •์˜๋ฅผ ์ˆ˜ํ•™์  ๊ธฐํ˜ธ๋กœ ํ‘œํ˜„ํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฐฉ๋Œ€ํ•œ ๋ฐ์ดํ„ฐ๋Š” ๋‹ค์–‘ํ•œ ์‹คํ—˜์„ ์ˆ˜ํ–‰ํ•˜๊ธฐ ์œ„ํ•œ ์ฝ”ํผ์Šค๋กœ์„œ ๊ฐ€์น˜๊ฐ€ ํฌ๋‹ค. ๋…ผ๋ฌธ์—์„œ ์ œ์‹œ๋œ Mizar items ์‹œ์Šคํ…œ์€ MML ๋‚ด์˜ ๋ฏธ์„ธ ์˜์กด์„ฑ์„ ๊ณ„์‚ฐํ•˜๋Š” ๋ฐ ์ค‘์ ์„ ๋‘๊ณ 

Digital Libraries Mathematics Computer Science
Secured color image watermarking technique in DWT-DCT domain

Secured color image watermarking technique in DWT-DCT domain

๋ณธ ๋…ผ๋ฌธ์€ ๋””์ง€ํ„ธ ์ด๋ฏธ์ง€์˜ ์ €์ž‘๊ถŒ ๋ณดํ˜ธ๋ฅผ ์œ„ํ•ด DWT DCT ๋„๋ฉ”์ธ์—์„œ ์ƒ‰์ƒ ์ด๋ฏธ์ง€ ์›Œํ„ฐ๋งˆํ‚น ๊ธฐ๋ฒ•์„ ์ œ์•ˆํ•˜๊ณ  ์žˆ๋‹ค. ์ด ๋ฐฉ๋ฒ•์€ ์ด๋ฏธ์ง€์˜ YIQ ์ƒ‰ ๊ณต๊ฐ„ ๋ณ€ํ™˜๊ณผ DWT, DCT๋ฅผ ํ™œ์šฉํ•˜์—ฌ ๊ณ ์ฃผํŒŒ ํ•˜์œ„ ๋Œ€์—ญ์— ์›Œํ„ฐ๋งˆํฌ๋ฅผ ์‚ฝ์ž…ํ•จ์œผ๋กœ์จ ๋‚ด๊ตฌ์„ฑ์„ ํ–ฅ์ƒ์‹œํ‚จ๋‹ค. 1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋””์ง€ํ„ธ ๋ฐ์ดํ„ฐ์˜ ํ™•์‚ฐ์€ ์ €์ž‘๊ถŒ ๋ณดํ˜ธ๊ฐ€ ํ•„์ˆ˜์ ์ธ ํ•„์š”๋กœ ์ด์–ด์กŒ๋‹ค. ๋””์ง€ํ„ธ ์ด๋ฏธ์ง€ ์›Œํ„ฐ๋งˆํ‚น์€ ์›๋ณธ ์ด๋ฏธ์ง€์— ์ ์ ˆํ•œ ์ •๋ณด๋ฅผ ์ˆจ๊ฒจ ์†Œ์œ ๊ถŒ์„ ๋ช…์‹œํ•จ์œผ๋กœ์จ ์ €์ž‘๊ถŒ์„ ๋ณดํ˜ธํ•œ๋‹ค. ์›Œํ„ฐ๋งˆํ‚น ์‹œ์Šคํ…œ์˜ ํ’ˆ์งˆ์€ ๊ฐ•์ธ์„ฑ, ์ง€๊ฐ ํˆฌ๋ช…๋„, ์šฉ๋Ÿ‰ ๋ฐ ๋ธ”๋ผ์ธ๋“œ ์›Œํ„ฐ๋งˆํ‚น์ด๋ผ๋Š” ๋„ค ๊ฐ€์ง€ ํ•ต์‹ฌ ์š”์†Œ์— ์˜ํ•ด

Multimedia Computer Science
An Efficient Preprocessing Methodology for Discovering Patterns and   Clustering of Web Users using a Dynamic ART1 Neural Network

An Efficient Preprocessing Methodology for Discovering Patterns and Clustering of Web Users using a Dynamic ART1 Neural Network

๋ณธ ๋…ผ๋ฌธ์€ ์›น ์‚ฌ์šฉ์ž ํŒจํ„ด ๋ถ„์„์„ ์œ„ํ•œ ์ „์ฒ˜๋ฆฌ ๋ฐ ํด๋Ÿฌ์Šคํ„ฐ๋ง ๋ฐฉ๋ฒ•๋ก ์— ์ค‘์ ์„ ๋‘๊ณ  ์žˆ๋‹ค. ์ฃผ์š” ๋‚ด์šฉ๊ณผ ๊ทธ ์ค‘์š”์„ฑ, ๊ทธ๋ฆฌ๊ณ  ์ œ์•ˆ๋œ ์ ‘๊ทผ ๋ฐฉ์‹์˜ ํšจ๊ณผ๋ฅผ ์‹ฌ๋„ ์žˆ๊ฒŒ ๋ถ„์„ํ•ด๋ณด์ž. 1. ์ „์ฒ˜๋ฆฌ์˜ ํ•„์š”์„ฑ ์›น ๋กœ๊ทธ ๋ฐ์ดํ„ฐ๋Š” ์›น์‚ฌ์ดํŠธ ๋ฐฉ๋ฌธ์ž์˜ ํ–‰๋™์„ ๊ธฐ๋กํ•œ ๋Œ€๋Ÿ‰์˜ ์ •๋ณด๋กœ ๊ตฌ์„ฑ๋˜์–ด ์žˆ์œผ๋ฉฐ, ์ด ๋ฐ์ดํ„ฐ์—์„œ ์œ ์˜๋ฏธํ•œ ํŒจํ„ด์„ ๋ฐœ๊ฒฌํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ์ •๊ตํ•œ ์ „์ฒ˜๋ฆฌ ๊ณผ์ •์ด ํ•„์ˆ˜์ ์ด๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์ „์ฒ˜๋ฆฌ๋ฅผ ํ†ตํ•ด ์ดˆ๊ธฐ ๋กœ๊ทธ ํŒŒ์ผ ํฌ๊ธฐ๋ฅผ 73 82%๊นŒ์ง€ ์ค„์ด๋Š” ๋™์‹œ์— ํ’๋ถ€ํ•˜๊ณ  ๊ตฌ์กฐํ™”๋œ ๋ฐ์ดํ„ฐ๋ฅผ ์ œ๊ณตํ•˜๋Š” ๋ฐฉ๋ฒ•๋ก ์„ ์ œ์‹œํ•œ๋‹ค. ์ „์ฒ˜๋ฆฌ์˜ ์ฃผ์š” ๋ชฉํ‘œ๋Š” ๋ถ„์„ ๋Œ€์ƒ ๋ฐ์ดํ„ฐ์˜

Neural Computing Network Computer Science
A Radio Based Intelligent Railway Grade Crossing System to Avoid   Collision

A Radio Based Intelligent Railway Grade Crossing System to Avoid Collision

: ๋ณธ ๋…ผ๋ฌธ์€ ์ฒ ๋„ ๋“ฑ๊ธ‰ ๊ต์ฐจ์ ์—์„œ ๋ฐœ์ƒํ•˜๋Š” ์‚ฌ๊ณ ๋ฅผ ์ค„์ด๊ธฐ ์œ„ํ•œ ์ง€๋Šฅํ˜• ์ฒ ๋„ ๊ต๋Ÿ‰ ์‹œ์Šคํ…œ์„ ์ œ์•ˆํ•˜๊ณ , ๊ทธ ๊ตฌํ˜„ ๋ฐฉ๋ฒ•๊ณผ ์ž‘๋™ ์›๋ฆฌ๋ฅผ ์ƒ์„ธํžˆ ์„ค๋ช…ํ•œ๋‹ค. ์ด ์‹œ์Šคํ…œ์˜ ํ•ต์‹ฌ์€ ๋ฌด์„  ๋งํฌ๋ฅผ ํ†ตํ•ด ์—ด์ฐจ์˜ ์ ‘๊ทผ ๋ฐ ํ‡ด์ถœ ์ •๋ณด๋ฅผ ์ˆ˜์ง‘ํ•˜๋Š” ๊ฒƒ์ด๋‹ค. 1. ๋ฌธ์ œ ์ธ์‹ ์ฒ ๋„ ๋“ฑ๊ธ‰ ๊ต์ฐจ์ ์—์„œ ๋ฐœ์ƒํ•˜๋Š” ์‚ฌ๊ณ ๋Š” ์šด์ „์ž์˜ ๊ณผ์‹ค, ์•…์ฒœํ›„, ๋ถ€์ ์ ˆํ•œ ๊ตํ†ต ๊ณ„ํš ๋“ฑ์˜ ๋‹ค์–‘ํ•œ ์š”์ธ์— ์˜ํ•ด ๋ฐœ์ƒํ•˜๋ฉฐ, ํŠนํžˆ ๊ฒŒ์ดํŠธ๊ฐ€ ์—†๋Š” ๊ฒฝ์šฐ ์ด๋Ÿฌํ•œ ์‚ฌ๊ณ ์˜ ์œ„ํ—˜์ด ๋”์šฑ ์ฆ๊ฐ€ํ•œ๋‹ค. ์ด๋กœ ์ธํ•ด ์ตœ๊ทผ 5๋…„ ๋™์•ˆ ๋งŽ์€ ์‚ฌ๋žŒ๋“ค์ด ์‚ฌ๋งํ•˜๊ฑฐ๋‚˜ ๋ถ€์ƒ์„ ์ž…์—ˆ๋‹ค๋Š” ์ ์„ ๊ฐ•์กฐํ•˜๊ณ  ์žˆ๋‹ค. 2. ๊ธฐ์กด ์‹œ์Šคํ…œ์˜

Computer Science System Systems and Control
A Rejoinder on Energy versus Impact Indicators

A Rejoinder on Energy versus Impact Indicators

: ๋ณธ ๋…ผ๋ฌธ์€ ๊ณผํ•™ ์—ฐ๊ตฌ์˜ ์˜ํ–ฅ๋ ฅ์„ ์ธก์ •ํ•˜๋Š” ์ƒˆ๋กœ์šด ์ง€ํ‘œ์ธ ํ†ตํ•ฉ ์˜ํ–ฅ ์ง€ํ‘œ(I3)๋ฅผ ์ œ์•ˆํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ด๋Š” ๊ธฐ์กด์˜ ์ €๋„ ์ธ์šฉ ์ ์ˆ˜(JCS)์™€ ๋ถ„์•ผ ์ธ์šฉ ์ ์ˆ˜(FCS)๋ฅผ ํ‰๊ท ์œผ๋กœ ์‚ฌ์šฉํ•˜๋Š” ๋ฐฉ์‹๊ณผ ๋‹ฌ๋ฆฌ, ๋‘ ํžˆํŠธ(citations)์˜ ์˜ํ–ฅ์„ ํ•ฉ์œผ๋กœ ๊ณ„์‚ฐํ•ฉ๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ์ ‘๊ทผ๋ฒ•์€ ์ถฉ๋Œ ์‹œ ๋ชจ๋ฉ˜ํ…€์˜ ๋ฒกํ„ฐ ํ•ฉ๊ณผ ์œ ์‚ฌํ•œ ๊ฐœ๋…์„ ์ ์šฉํ•˜๋ฉฐ, ์ธ์šฉ ๋ถ„์„์—์„œ ์Šค์นผ๋ผ ํ•ฉ์„ ์‚ฌ์šฉํ•˜๋Š” ๊ฒƒ์ด ํƒ€๋‹นํ•˜๋‹ค๋Š” ์ฃผ์žฅ์„ ํ•ฉ๋‹ˆ๋‹ค. ๋…ผ๋ฌธ์—์„œ๋Š” I3๋ฅผ ๊ฐœ๋ฐœํ•˜๋ฉด์„œ Prathap (2011a)์˜ ์—”ํŠธ๋กœํ”ผ ๊ฐœ๋…์ด ํ™•๋ฅ ์  ์—”ํŠธ๋กœํ”ผ๊ฐ€ ์•„๋‹Œ ์—ด์—ญํ•™์  ์—”ํŠธ๋กœํ”ผ๋ผ๋Š” ์ ์„ ์ง€์ ํ•ฉ๋‹ˆ๋‹ค. ์ด

Physics Computer Science Digital Libraries

< Category Statistics (Total: 769) >

Electrical Engineering and Systems Science
7
General
272
General Relativity
9
HEP-EX
7
HEP-PH
12
HEP-TH
7
MATH-PH
4
NUCL-TH
1
Quantum Physics
10

Start searching

Enter keywords to search articles

โ†‘โ†“
โ†ต
ESC
โŒ˜K Shortcut