Computer Science

All posts under tag "Computer Science"

256 posts total
Sorted by date
A Frequent Closed Itemsets Lattice-based Approach for Mining Minimal   Non-Redundant Association Rules

A Frequent Closed Itemsets Lattice-based Approach for Mining Minimal Non-Redundant Association Rules

: ๋ณธ ๋…ผ๋ฌธ์€ ํ˜‘์—… ๊ทœ์น™ ์ถ”์ถœ ๊ณผ์ •์—์„œ ์ค‘์š”ํ•œ ๋‘ ๋‹จ๊ณ„, ์ฆ‰ ๋นˆ๋„ ํ•ญ๋ชฉ ์ง‘ํ•ฉ(Frequent Itemsets)์˜ ๋ฐœ๊ฒฌ๊ณผ ์ด๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ํ•œ ํ˜‘์—… ๊ทœ์น™ ์ƒ์„ฑ์— ์ดˆ์ ์„ ๋งž์ถ”๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ํŠนํžˆ, ์ด ์—ฐ๊ตฌ๋Š” ์ตœ์†Œ ๋น„์ค‘๋ณต ์—ฐ๊ด€ ๊ทœ์น™(MNAR) ์ถ”์ถœ์„ ์œ„ํ•œ ์ƒˆ๋กœ์šด ์ ‘๊ทผ๋ฒ•์„ ์ œ์•ˆํ•˜๋ฉฐ, ๊ธฐ์กด ๋ฐฉ๋ฒ•๋“ค๊ณผ ๋น„๊ต ๋ถ„์„์„ ํ†ตํ•ด ๊ทธ ํšจ์œจ์„ฑ์„ ์ž…์ฆํ•˜๊ณ ์ž ํ•ฉ๋‹ˆ๋‹ค. 1. ํ˜‘์—… ๊ทœ์น™ ์ถ”์ถœ์˜ ๊ธฐ๋ณธ ๊ฐœ๋…๊ณผ ์•Œ๊ณ ๋ฆฌ์ฆ˜ ํ˜‘์—… ๊ทœ์น™ ์ถ”์ถœ์€ ํฌ๊ฒŒ ๋‘ ๋‹จ๊ณ„๋กœ ๋‚˜๋ˆŒ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค: ๋นˆ๋„ ํ•ญ๋ชฉ ์ง‘ํ•ฉ(FI) ๋˜๋Š” ๋นˆ๋„ ๋‹ซํžŒ ํ•ญ๋ชฉ ์ง‘ํ•ฉ(FCI)์„ ์ฐพ๋Š” ๊ณผ์ •๊ณผ ์ด๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ํ˜‘์—… ๊ทœ์น™์„ ์ƒ

Databases Computer Science
Comparison Of The Consumption Of Resources Between HTTP And SIP

Comparison Of The Consumption Of Resources Between HTTP And SIP

๋ณธ ๋…ผ๋ฌธ์€ HTTP์™€ SIP ํ”„๋กœํ† ์ฝœ์˜ ์ž์› ์†Œ๋น„๋ฅผ ๋น„๊ต ๋ถ„์„ํ•˜๋Š”๋ฐ ์ดˆ์ ์„ ๋งž์ถ”๊ณ  ์žˆ๋‹ค. VoIP ๊ธฐ์ˆ ์˜ ์„ฑ์žฅ๊ณผ ํ•จ๊ป˜, Asterisk๋ผ๋Š” ์˜คํ”ˆ์†Œ์Šค ์†”๋ฃจ์…˜์ด ๋„๋ฆฌ ์‚ฌ์šฉ๋˜๊ณ  ์žˆ์œผ๋ฉฐ, ์ด๋ฅผ ํ†ตํ•ด ์ €๋น„์šฉ์œผ๋กœ ํ†ต์‹  ์ธํ”„๋ผ๋ฅผ ๊ตฌ์ถ•ํ•  ์ˆ˜ ์žˆ๋Š” ๊ฐ€๋Šฅ์„ฑ์„ ๋ณด์—ฌ์ฃผ๊ณ  ์žˆ๋‹ค. ์‹คํ—˜ ํ™˜๊ฒฝ ๋ฐ ๋ฐฉ๋ฒ•๋ก  ์‹คํ—˜์€ Dell Optiplex GX 110 ์„œ๋ฒ„์™€ ํด๋ผ์ด์–ธํŠธ๋ฅผ ์ด์šฉํ•˜์—ฌ ์ˆ˜ํ–‰๋˜์—ˆ์œผ๋ฉฐ, ์šด์˜์ฒด์ œ๋Š” Debian GNU/Linux๊ฐ€ ์‚ฌ์šฉ๋˜์—ˆ๋‹ค. ์›น ์„œ๋ฒ„๋กœ Apache๋ฅผ, VoIP ์„œ๋ฒ„๋กœ Asterisk๋ฅผ ๊ฐ๊ฐ ์‚ฌ์šฉํ•˜์˜€๋‹ค. ๋ฉ”๋ชจ๋ฆฌ ์†Œ๋น„๋Ÿ‰์„ ์ธก์ •ํ•˜๊ธฐ ์œ„ํ•ด TOP

Networking Computer Science
A Well-Behaved Alternative to the Modularity Index

A Well-Behaved Alternative to the Modularity Index

์ด ๋…ผ๋ฌธ์€ ๋„คํŠธ์›Œํฌ ํด๋Ÿฌ์Šคํ„ฐ๋ง ์•Œ๊ณ ๋ฆฌ์ฆ˜์—์„œ ์‚ฌ์šฉ๋˜๋Š” ๋ชจ๋“ˆ๋Ÿฌํ‹ฐ ์ง€์ˆ˜ Q์— ๋Œ€ํ•œ ํ•œ๊ณ„์™€ Borgatti์˜ ฮท ์ง€ํ‘œ๋ฅผ ์†Œ๊ฐœํ•˜๊ณ , ์ด๋ฅผ ํ†ตํ•ด ๋” ์ •ํ™•ํ•œ ๋ถ„ํ•  ํ‰๊ฐ€ ๋ฐฉ๋ฒ•์„ ์ œ์‹œํ•œ๋‹ค. 1. ๋ชจ๋“ˆ๋Ÿฌํ‹ฐ ์ง€์ˆ˜ Q์˜ ๋ฌธ์ œ์  Q๋Š” ๋„คํŠธ์›Œํฌ ๋ฐ์ดํ„ฐ์—์„œ ํด๋Ÿฌ์Šคํ„ฐ๋ง ์„ฑ๋Šฅ์„ ์ธก์ •ํ•˜๋Š” ๋ฐ ์ฃผ๋กœ ์‚ฌ์šฉ๋˜์ง€๋งŒ, ์—ฌ๋Ÿฌ ๊ฐ€์ง€ ํ•œ๊ณ„๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ๋‹ค. ์ฒซ์งธ, Q๋Š” ์™ธ๋ถ€ ๊ฐ„์„ ์˜ ์ฆ๊ฐ€์— ๋”ฐ๋ผ ๊ฐ์†Œํ•˜๊ณ  ๋‚ด๋ถ€ ๊ฐ„์„ ์˜ ์ฆ๊ฐ€์— ๋”ฐ๋ผ ์ฆ๊ฐ€ํ•ด์•ผ ํ•˜์ง€๋งŒ, ์‹ค์ œ๋กœ๋Š” ๊ทธ๋ ‡์ง€ ์•Š๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด, ์™„๋ฒฝํ•œ ํด๋Ÿฌ์Šคํ„ฐ๋ง์„ ๋‚˜ํƒ€๋‚ด๋Š” ๊ทธ๋ž˜ํ”„์—์„œ ํ•œ ๊ฐœ์˜ ๋‚ด๋ถ€ ๊ฐ„์„ ์ด ์ œ๊ฑฐ๋˜๋”๋ผ๋„ Q ๊ฐ’์€ ๋ณ€ํ•˜์ง€ ์•Š๋Š”๋‹ค. ์ด

Social Networks Physics Computer Science
On the Intersection of All Critical Sets of a Unicyclic Graph

On the Intersection of All Critical Sets of a Unicyclic Graph

: ๋ณธ ๋…ผ๋ฌธ์€ ์œ ์‚ฌ์ดํด์  ๊ทธ๋ž˜ํ”„, ์ฆ‰ ๋‹จ์ผ ์‚ฌ์ดํด์„ ๊ฐ–๋Š” ์—ฐ๊ฒฐ ๊ทธ๋ž˜ํ”„์—์„œ ํ•ต์‹ฌ(core), ์ฝ”๋กœ๋‚˜(corona), ๊ทธ๋ฆฌ๊ณ  ker(G) ์ง‘ํ•ฉ๋“ค ๊ฐ„์˜ ๊ด€๊ณ„์— ๋Œ€ํ•ด ๊นŠ์ด ์žˆ๋Š” ๋ถ„์„์„ ์ œ๊ณตํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ๊ทธ๋ž˜ํ”„๋“ค์€ ์ด๋ก ์ ์œผ๋กœ ์ค‘์š”ํ•œ ์œ„์น˜๋ฅผ ์ฐจ์ง€ํ•˜๋ฉฐ, ํŠนํžˆ ๊ทธ๋“ค์˜ ๋…๋ฆฝ ์ง‘ํ•ฉ๊ณผ ๋งค์นญ์— ๋Œ€ํ•œ ์„ฑ์งˆ์€ ๊ทธ๋ž˜ํ”„ ์ด๋ก ์—์„œ ํ•ต์‹ฌ์ ์ธ ์—ญํ• ์„ ํ•œ๋‹ค. ๋…ผ๋ฌธ์—์„œ๋Š” ๋จผ์ € ํ•ต์‹ฌ(core)๊ณผ ์ฝ”๋กœ๋‚˜(corona)์˜ ์ •์˜๋ฅผ ์ œ์‹œํ•œ๋‹ค. ํ•ต์‹ฌ์€ ๋ชจ๋“  ์ตœ๋Œ€ ๋…๋ฆฝ ์ง‘ํ•ฉ๋“ค์˜ ๊ต์ง‘ํ•ฉ์ด๊ณ , ์ฝ”๋กœ๋‚˜๋Š” ์ด๋Ÿฌํ•œ ์ง‘ํ•ฉ๋“ค์˜ ํ•ฉ์ง‘ํ•ฉ์ด๋‹ค. ker(G)๋Š” G์˜ ์ค‘์š”ํ•œ ๋…๋ฆฝ ์ง‘ํ•ฉ๋“ค์˜ ๊ต์ง‘ํ•ฉ์œผ๋กœ ์ •

Mathematics Computer Science Discrete Mathematics
Self-Organizing Mixture Networks for Representation of Grayscale Digital   Images

Self-Organizing Mixture Networks for Representation of Grayscale Digital Images

๋ณธ ๋…ผ๋ฌธ์€ ๊ทธ๋ ˆ์ด ์Šค์ผ€์ผ ๋””์ง€ํ„ธ ์ด๋ฏธ์ง€๋ฅผ ํ‘œํ˜„ํ•˜๊ณ  ํด๋Ÿฌ์Šคํ„ฐ๋งํ•˜๋Š” ๋ฐฉ๋ฒ•์— ๋Œ€ํ•ด ์‹ฌ๋„ ์žˆ๊ฒŒ ๋‹ค๋ฃจ๊ณ  ์žˆ๋‹ค. ํŠนํžˆ, ์ฝ”ํ˜ธ๋„จ ๋„คํŠธ์›Œํฌ (Self Organizing Map, SOM)๊ณผ ํ˜ผํ•ฉ ์†Œ์Šค ์ฝ”ํ˜ธ๋„จ ๋„คํŠธ์›Œํฌ (Self Organizing Mixture Network, SOMN)๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์ด๋ฏธ์ง€๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ํ‘œํ˜„ํ•˜๊ณ  ํด๋Ÿฌ์Šคํ„ฐ๋งํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. 1. ๊ทธ๋ ˆ์ด ์Šค์ผ€์ผ ์ด๋ฏธ์ง€์˜ ํ‘œํ˜„ ๊ทธ๋ ˆ์ด ์Šค์ผ€์ผ ์ด๋ฏธ์ง€๋Š” ํ”ฝ์…€ ๊ทธ๋ฆฌ๋“œ๋กœ ์ •์˜๋˜๋ฉฐ, ๊ฐ ํ”ฝ์…€์€ ๋ฐ๊ธฐ ๊ฐ•๋„ ๊ฐ’์„ ๊ฐ€์ง„๋‹ค. ์ด ๊ฐ’๋“ค์€ ์ผ๋ฐ˜์ ์œผ๋กœ 0์—์„œ 255 ์‚ฌ์ด์˜ ์ •์ˆ˜๋กœ ๋””ํฌ๋ ˆํ‹ฐํ™”๋˜์–ด ์ปดํ“จํ„ฐ ๋ฉ”

Artificial Intelligence Network Computer Science
The complexity of tangent words

The complexity of tangent words

์ด ๋…ผ๋ฌธ์€ ๋งค๋„๋Ÿฌ์šด ๊ณก์„ ๊ณผ ๊ทธ์— ๋Œ€ํ•œ ์ ‘์„  ๋‹จ์–ด์˜ ์–ธ์–ด์  ์ ‘๊ทผ๋ฒ•์„ ์ฒด๊ณ„์ ์œผ๋กœ ๋ถ„์„ํ•œ๋‹ค. ์ฃผ์š” ๋‚ด์šฉ์€ ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค: 1. ๋งค๋„๋Ÿฌ์šด ๊ณก์„ ์˜ ์ •์˜์™€ ํŠน์„ฑ : ๋งค๋„๋Ÿฌ์šด ๊ณก์„ ์€ ์‹ค์ˆ˜ ์ง์„  ์œ„์˜ ์ปดํŒฉํŠธ ๊ตฌ๊ฐ„ I์—์„œ ์ •์˜๋˜๋ฉฐ, ๋ชจ๋“  t โˆˆ I ์— ๋Œ€ํ•ด ||ฮณโ€ฒ(t)|| > 0 ์ด๋ผ๋Š” ๊ทœ์น™์„ฑ์„ ๋งŒ์กฑํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ๊ณก์„ ์€ ์›ํ•˜๋Š” ๋งŒํผ ์žฌ๋งค๊ฐœ๋ณ€์ˆ˜ํ™”๋  ์ˆ˜ ์žˆ์œผ๋ฉฐ, ์ผ๋ฐ˜์ ์œผ๋กœ ๊ฐ t ์— ๋Œ€ํ•ด ||ฮณโ€ฒ(t)|| 1 ์ด๋‹ค. ๋งค๋„๋Ÿฌ์šด ๊ณก์„ ์˜ ๊ทผ์‚ฌ ๋ฐฉ๋ฒ•์œผ๋กœ ํ‰๋ฉด์— ๊ฒฉ์ž๋ง์„ ๊ทธ๋ ค์„œ ๊ณก์„ ์ด ๋งŒ๋‚˜๋Š” ์‚ฌ๊ฐํ˜•์˜ ์ˆœ์„œ๋ฅผ ์‚ดํŽด๋ณธ๋‹ค. ์ด ์ ˆ๋‹จ ์ˆœ์„œ๋Š” ์ƒ, ํ•˜, ์ขŒ, ์šฐ ๋ฐฉํ–ฅ์œผ

Formal Languages Computational Geometry Computer Science Discrete Mathematics
Advanced phase retrieval: maximum likelihood technique with sparse   regularization of phase and amplitude

Advanced phase retrieval: maximum likelihood technique with sparse regularization of phase and amplitude

๋ณธ ๋…ผ๋ฌธ์€ ์œ„์ƒ ํšŒ์ˆ˜ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•œ ์ƒˆ๋กœ์šด ์ ‘๊ทผ๋ฒ•์„ ์ œ์•ˆํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ด๋Š” ๊ธฐ์กด ๋ฐฉ๋ฒ•๋“ค๊ณผ ๋น„๊ตํ•ด ๋ณต์› ์ •ํ™•๋„์™€ ์ด๋ฏธ์ง€ ํ’ˆ์งˆ์„ ํฌ๊ฒŒ ํ–ฅ์ƒ์‹œํ‚ค๋Š” ๊ฒƒ์œผ๋กœ ๋ณด์ž…๋‹ˆ๋‹ค. ํŠนํžˆ, ๋ณธ ์—ฐ๊ตฌ์˜ ํ•ต์‹ฌ ์•„์ด๋””์–ด๋Š” ์••์ถ• ๊ฐ์ง€ ๊ธฐ๋ฒ•๊ณผ ๋ณ€๋ถ„์  ์ด๋ฏธ์ง€ ์žฌ๊ตฌ์„ฑ ๋ฐฉ๋ฒ•์„ ๊ฒฐํ•ฉํ•œ ์ƒˆ๋กœ์šด ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ๊ฐœ๋ฐœํ•˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค. 1. ์œ„์ƒ ํšŒ์ˆ˜ ๋ฌธ์ œ์˜ ๋ฐฐ๊ฒฝ ์œ„์ƒ ํšŒ์ˆ˜๋Š” ๋น›์˜ ๊ฐ•๋„ ๊ด€์ธก ๋ฐ์ดํ„ฐ์™€ ๊ฐ์ฒด ํŒŒ๋™์žฅ์— ๋Œ€ํ•œ ์‚ฌ์ „ ์ง€์‹์„ ์ด์šฉํ•˜์—ฌ ์œ„์ƒ์„ ๋ณต์›ํ•˜๋Š” ๋ฌธ์ œ์ž…๋‹ˆ๋‹ค. ์ด๋Š” ํ˜„๋ฏธ๊ฒฝ, ์ฒœ๋ฌธํ•™ ๋“ฑ ๋‹ค์–‘ํ•œ ๋ถ„์•ผ์—์„œ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•ฉ๋‹ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ „ํ†ต์ ์ธ ์„ผ์„œ๋Š” ๋น›์˜ ๊ฐ•๋„๋งŒ ์ธก์ •ํ•˜๋ฏ€

Computer Science Computer Vision
Adversary lower bounds in the Hamiltonian oracle model

Adversary lower bounds in the Hamiltonian oracle model

Catchy Title KO: ํ•˜๋ฏธํ„ด ์˜ค๋ผํด ๋ชจ๋ธ์—์„œ ์ ๋Œ€์ž ๋ฐฉ๋ฒ•์„ ํ†ตํ•œ ์–‘์ž ์ฟผ๋ฆฌ ๋ณต์žก๋„ ๋ถ„์„ Abstract KO: ์ด ๋…ผ๋ฌธ์€ ์–‘์ž ์ฟผ๋ฆฌ ๋ชจ๋ธ์—์„œ ํ•จ์ˆ˜ ๊ณ„์‚ฐ์˜ ๋ณต์žก์„ฑ์„ ๋ถ„์„ํ•˜๋Š” ๋ฐ ์‚ฌ์šฉ๋˜๋Š” ์ ๋Œ€์ž ๋ฐฉ๋ฒ•์— ์ดˆ์ ์„ ๋งž์ถ”๊ณ  ์žˆ๋‹ค. ํŠนํžˆ, ์ด ๋…ผ๋ฌธ์—์„œ๋Š” ํ•˜๋ฏธํ„ด ์˜ค๋ผํด ๋ชจ๋ธ์ด๋ผ๋Š” ์—ฐ์† ์‹œ๊ฐ„ ๋ชจ๋ธ์„ ํ†ตํ•ด ์ด๋Ÿฌํ•œ ๋ฐฉ๋ฒ•๋ก ์„ ์ ์šฉํ•˜๊ณ , ์ด๋ฅผ ํ†ตํ•ด ์–‘์ž ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ์ฟผ๋ฆฌ ๋ณต์žก๋„๋ฅผ ๋ถ„์„ํ•œ๋‹ค. ์ด๋Š” ์ด์‚ฐ ์ฟผ๋ฆฌ ๋ชจ๋ธ๊ณผ ๋ถ„์ˆ˜ ์ฟผ๋ฆฌ ๋ชจ๋ธ์—์„œ ์‚ฌ์šฉ๋˜๋Š” ์ ๋Œ€์ž ๋ฐฉ๋ฒ•๊ณผ ์œ ์‚ฌํ•˜์ง€๋งŒ, ์—ฐ์† ์‹œ๊ฐ„ ๋ชจ๋ธ์—์„œ๋Š” ํ•˜๋ฏธํ„ด ์˜ค๋ผํด์„ ํ†ตํ•ด ํ•จ์ˆ˜ ๊ณ„์‚ฐ์ด ์ˆ˜ํ–‰๋œ๋‹ค. Deep Ana

Model Computational Complexity Quantum Physics Computer Science
Brouwers fixed point theorem with sequentially at most one fixed point

Brouwers fixed point theorem with sequentially at most one fixed point

์ด ๋…ผ๋ฌธ์€ ๋ธŒ๋ฃจ์–ด ๊ณ ์ •์  ์ •๋ฆฌ์™€ ๊ด€๋ จ๋œ ์ƒˆ๋กœ์šด ์ ‘๊ทผ๋ฒ•์„ ์†Œ๊ฐœํ•˜๋ฉฐ, ํŠนํžˆ ๊ทผ์‚ฌ ๊ณ ์ •์ ๊ณผ ์ˆœ์ฐจ์ ์œผ๋กœ ๊ฐ€์žฅ ํฐ ๊ฐ’์ด ํ•˜๋‚˜์ธ ์กฐ๊ฑด์— ์ดˆ์ ์„ ๋งž์ถ˜๋‹ค. ์ด๋Ÿฌํ•œ ์ ‘๊ทผ๋ฒ•์€ ๊ธฐ์กด์˜ ๋ธŒ๋ฃจ์–ด ํŒฌ ์ •๋ฆฌ๋ฅผ ํ™•์žฅํ•˜๊ณ , ์ด๋ฅผ ํ†ตํ•ด ์ œ๋กœ์„ฌ ๊ฒŒ์ž„์—์„œ ์ตœ์  ์ „๋žต์„ ์ฐพ๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์‹œํ•œ๋‹ค. 1. ๋ธŒ๋ฃจ์–ด ๊ณ ์ •์  ์ •๋ฆฌ์™€ ๊ทผ์‚ฌ ๋ฒ„์ „ ๋ธŒ๋ฃจ์–ด ๊ณ ์ •์  ์ •๋ฆฌ๋Š” ๋น„์Šˆํ”ผ์ฒ˜ ์ˆ˜ํ•™์—์„œ ๊ฑด์„ค์ ์œผ๋กœ ์ฆ๋ช…๋  ์ˆ˜ ์—†๋‹ค๋Š” ๊ฒƒ์ด ์ž˜ ์•Œ๋ ค์ ธ ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์Šคํผ๋„ˆ์˜ ํ•จ์ˆ˜๋ฅผ ์ด์šฉํ•˜์—ฌ ๊ทผ์‚ฌ ๋ฒ„์ „์„ ์ œ์‹œํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ์ ์ด ์ค‘์š”ํ•˜๋‹ค. ์ด ๋…ผ๋ฌธ์—์„œ๋Š” ์ด๋Ÿฌํ•œ ๊ทผ์‚ฌ ๋ฒ„์ „์„ ํ†ตํ•ด ๋ธŒ๋ฃจ์–ด ๊ณ ์ •์  ์ •๋ฆฌ๋ฅผ ๊ฑด์„ค์ ์œผ๋กœ ์ฆ

Mathematics Game Theory Computer Science
An Algebraic Specification of the Semantic Web

An Algebraic Specification of the Semantic Web

๋งค๋ ฅ์ ์ธ ํ•œ๊ธ€ ์ œ๋ชฉ: ์„ธ๋ฏธํ‹ฑ ์›น์˜ ์„ธ๋ถ„ํ™”๋œ ๋Œ€์ˆ˜์  ์‚ฌ์–‘: CafeOBJ๋ฅผ ํ™œ์šฉํ•œ ์ ‘๊ทผ ์ดˆ๋ก ์ „์ฒด ๋ฒˆ์—ญ ๋ฐ ์ •๋ฆฌ: ๋ณธ ๋…ผ๋ฌธ์€ ์ธํ„ฐ๋„ท๊ณผ ์›น ๊ธฐ์ˆ ์˜ ์ง„ํ™”์— ๋”ฐ๋ฅธ ๋ช…ํ™•ํ•œ ๊ทœ์ •๊ณผ ๊ณต์‹์ ์ธ ์„ค๋ช…์˜ ํ•„์š”์„ฑ์„ ๊ฐ•์กฐํ•˜๋ฉฐ, ์Šฌ๋ผ์ด๋“œ ์‡ผ์™€ ๊ฐ™์€ ๊ตฌ์กฐํ™”๋œ ์›น์‚ฌ์ดํŠธ์˜ ๋Œ€์ˆ˜์  ์‚ฌ์–‘์„ ์ œ์‹œํ•œ๋‹ค. ์ด ์‚ฌ์–‘์€ ๊ฐ ํŽ˜์ด์ง€๊ฐ€ ์—ฐ๊ฒฐ๋˜๋Š” ์›น์‚ฌ์ดํŠธ๋ฅผ ๋ชจ๋“ˆ ์‹œ์Šคํ…œ์„ ํ†ตํ•ด CafeOBJ๋กœ ๋ถ„ํ•ดํ•˜์—ฌ ์ •์˜ํ•œ๋‹ค. ์„ธ๋ฏธํ‹ฑ ์›น์€ ํ˜„์žฌ ์›น๊ณผ ๊ณต์กดํ•˜๋ฉฐ, ์˜๋ฏธ๋ก , ์˜๋ฏธ ๋ฐ ์ƒˆ๋กœ์šด ์—ฐ์‚ฐ์„ ์ถ”๊ฐ€ํ•จ์œผ๋กœ์จ ๋ณด์™„๋œ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” [9]์˜ ์›น ์‚ฌ์–‘์„ ํ™œ์šฉํ•˜๊ณ  ์ถ”๊ฐ€์ ์ธ ์„ธ๋ฏธํ‹ฑ ๊ธฐ์ˆ ๋“ค์„ ์‚ฌ์–‘ํ™”ํ•˜์—ฌ

Logic Computer Science
Is Cloud Computing Steganography-proof?

Is Cloud Computing Steganography-proof?

: 1. ํด๋ผ์šฐ๋“œ ์ปดํ“จํŒ…์˜ ํŠน์„ฑ ๋ฐ ๋ณด์•ˆ ์œ„ํ˜‘ ํด๋ผ์šฐ๋“œ ์ปดํ“จํŒ…์€ ๋„คํŠธ์›Œํฌ๋ฅผ ํ†ตํ•ด ํŽธ๋ฆฌํ•˜๊ฒŒ ์ ‘๊ทผํ•  ์ˆ˜ ์žˆ๋Š” ๊ณต์œ  ๊ฐ€๋Šฅํ•œ ์ปดํ“จํŒ… ๋ฆฌ์†Œ์Šค ๋ชจ๋ธ๋กœ, ์ดˆ๊ธฐ ๋น„์šฉ์„ ์ ˆ๊ฐํ•˜๊ณ  ์œ ์—ฐ์„ฑ์„ ๋†’์ด๋Š” ๋“ฑ์˜ ์žฅ์ ์„ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค. NIST๋Š” ํด๋ผ์šฐ๋“œ ์ปดํ“จํŒ…์˜ ํ•ต์‹ฌ ํŠน์„ฑ์œผ๋กœ ์˜จ๋””๋งจ๋“œ ์…€ํ”„ ์„œ๋น„์Šค, ๊ด‘๋ฒ”์œ„ํ•œ ๋„คํŠธ์›Œํฌ ์ ‘๊ทผ, ๋ฆฌ์†Œ์Šค ํ’€๋ง, ๋น ๋ฅธ ํ™•์žฅ์„ฑ, ์ธก์ • ๊ฐ€๋Šฅํ•œ ์„œ๋น„์Šค ๋“ฑ์„ ์ œ์‹œํ•ฉ๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ์žฅ์ ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ  ํด๋ผ์šฐ๋“œ ์ปดํ“จํŒ…์€ ๋‹ค์–‘ํ•œ ๋ณด์•ˆ ์œ„ํ˜‘์— ๋…ธ์ถœ๋˜์–ด ์žˆ์Šต๋‹ˆ๋‹ค. ํด๋ผ์šฐ๋“œ ๋ณด์•ˆ ๋™๋งน์ด ์ •์˜ํ•œ 7๋Œ€ ์ฃผ์š” ์œ„ํ˜‘ ์ค‘ ์ผ๋ถ€๋Š” ์Šคํ…Œ๊ฐ€๋…ธ๊ทธ๋ž˜ํ”ผ์™€ ๊ด€๋ จ๋˜์–ด ์žˆ์œผ๋ฉฐ, ์ด

Cryptography and Security Computer Science
E-DTN : A Multi-Interface Energy DTN Gateway

E-DTN : A Multi-Interface Energy DTN Gateway

: ๋ณธ ๋…ผ๋ฌธ์€ ์ธ๋„ ๋†์ดŒ ์ง€์—ญ์˜ ์ „๋ ฅ ๋ถ€์กฑ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ์ž์ „๊ฑฐ ๋™๋ ฅ์„ ํ™œ์šฉํ•œ ๋ฌด์„  ์„ผ์„œ ๋„คํŠธ์›Œํฌ ๊ฒŒ์ดํŠธ์›จ์ด์ธ E DTN์„ ์ œ์•ˆํ•˜๊ณ , ์ด๋ฅผ ๊ตฌํ˜„ ๋ฐ ํ‰๊ฐ€ํ•œ๋‹ค. ์ด ์‹œ์Šคํ…œ์€ Bluetooth, Wi Fi, GPRS ๊ธฐ์ˆ ์„ ํ†ตํ•ฉํ•˜์—ฌ ๋ฐ์ดํ„ฐ ์ˆ˜์ง‘๊ณผ ์ธํ„ฐ๋„ท ์—ฐ๊ฒฐ์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•˜๋ฉฐ, ํŠนํžˆ ์ž์ „๊ฑฐ ๋™๋ ฅ์œผ๋กœ ์—๋„ˆ์ง€๋ฅผ ์ƒ์„ฑํ•˜๊ณ  ์ง€์—ฐ/์ค‘๋‹จ ๋‚ด์„ฑ ๋„คํŠธ์›Œํฌ(DTN) ์Šคํƒ์„ ํ™œ์šฉํ•ด ์—๋„ˆ์ง€ ํšจ์œจ์„ฑ์„ ๊ทน๋Œ€ํ™”ํ•œ๋‹ค. 1. ์„œ๋ก  ์„œ๋ก ์—์„œ๋Š” ์„ผ์„œ ๋„คํŠธ์›Œํฌ ํด๋Ÿฌ์Šคํ„ฐ์—์„œ ๋ฐ์ดํ„ฐ๋ฅผ ์ „๋‹ฌํ•˜๋Š” ๋‹ค์–‘ํ•œ ๊ฒŒ์ดํŠธ์›จ์ด ๊ธฐ์ˆ ์— ๋Œ€ํ•ด ์„ค๋ช…ํ•˜๊ณ , ์ธ๋„ ๋†์ดŒ ์ง€์—ญ์˜ ์ฃผ์š” ์žฅ์• ๋ฌผ ์ค‘

Networking Computer Science
On the Simulation of Adaptive Measurements via Postselection

On the Simulation of Adaptive Measurements via Postselection

๋ณธ ๋…ผ๋ฌธ์€ ์–‘์ž ๊ณ„์‚ฐ ๋ชจ๋ธ์—์„œ ์ ์‘ ์ธก์ •์ด ํฌ์ŠคํŠธ์„ ํƒ์„ ํ†ตํ•ด ์‹œ๋ฎฌ๋ ˆ์ด์…˜๋  ์ˆ˜ ์žˆ๋Š”์ง€์— ๋Œ€ํ•œ ํƒ๊ตฌ๋ฅผ ์ค‘์‹ฌ์œผ๋กœ ์ง„ํ–‰๋ฉ๋‹ˆ๋‹ค. ์ด ์—ฐ๊ตฌ๋Š” ์–‘์ž ์ปดํ“จํŒ… ๋ถ„์•ผ์—์„œ ์ค‘์š”ํ•œ ์˜๋ฏธ๋ฅผ ์ง€๋‹ˆ๋ฉฐ, ํŠนํžˆ P ๋ฌธ์ œ ํ•ด๊ฒฐ ๋Šฅ๋ ฅ๊ณผ ๊ฐ™์€ ์ž ์žฌ์ ์ธ ํ˜์‹ ์  ๊ฒฐ๊ณผ๋ฅผ ์ œ์‹œํ•ฉ๋‹ˆ๋‹ค. 1. ์„œ๋ก  ์„œ๋ก ์—์„œ๋Š” ํฌ์ŠคํŠธBQP(PostBQP) ๋ณต์žก์„ฑ ํด๋ž˜์Šค์— ๋Œ€ํ•œ ์†Œ๊ฐœ์™€ ์•„๋ก ์†์ด ์ œ๊ธฐํ•œ ํฅ๋ฏธ๋กœ์šด ์งˆ๋ฌธ์„ ๋‹ค๋ฃน๋‹ˆ๋‹ค. ํฌ์ŠคํŠธBQP๋Š” ํฌ์ŠคํŠธ์„ ํƒ๊ณผ ์ œํ•œ๋œ ์˜ค์ฐจ๋ฅผ ๊ฐ€์ง„ ์–‘์ž ํŠœ๋ง ๋จธ์‹ ์—์„œ ํ•ด๊ฒฐ ๊ฐ€๋Šฅํ•œ ๋ชจ๋“  ๊ณ„์‚ฐ ๋ฌธ์ œ๋ฅผ ํฌํ•จํ•˜๋Š” ๋ณต์žก์„ฑ ํด๋ž˜์Šค์ž…๋‹ˆ๋‹ค. ๋˜ํ•œ, ํฌ์ŠคํŠธBQP๊ฐ€ ํ™•๋ฅ ์  ํŠœ๋ง ๋จธ์‹ ์— ์˜ํ•ด

Quantum Physics Computational Complexity Computer Science
An Ontology-driven Framework for Supporting Complex Decision Process

An Ontology-driven Framework for Supporting Complex Decision Process

: ๋ณธ ๋…ผ๋ฌธ์€ ๋ณต์žกํ•œ ๊ทธ๋ฃน ์˜์‚ฌ๊ฒฐ์ • ๊ณผ์ •์„ ์ง€์›ํ•˜๊ธฐ ์œ„ํ•œ ์˜จํ†จ๋กœ์ง€ ๊ธฐ๋ฐ˜ ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์†Œ๊ฐœํ•˜๊ณ , ์ด๋ฅผ ํ†ตํ•ด ์˜์‚ฌ๊ฒฐ์ • ๊ณผ์ •์˜ ํšจ์œจ์„ฑ๊ณผ ์ •ํ™•์„ฑ์„ ํ–ฅ์ƒ์‹œํ‚ค๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์‹œํ•ฉ๋‹ˆ๋‹ค. ์ด ๋…ผ๋ฌธ์€ DSS(Decision Support System)์˜ ์ง„ํ™”์™€ ํ•จ๊ป˜ ๊ฐœ๋ฐœ๋˜์—ˆ์œผ๋ฉฐ, ํŠนํžˆ ์—ฌ๋Ÿฌ ์‚ฌ๋žŒ์ด ์ฐธ์—ฌํ•˜๋Š” ๋ณต์žกํ•œ ์˜์‚ฌ๊ฒฐ์ • ๋ฌธ์ œ์— ์ดˆ์ ์„ ๋งž์ถฅ๋‹ˆ๋‹ค. 1. DSS์˜ ๋ฐœ์ „๊ณผ ๊ทธ๋ฃน ์˜์‚ฌ๊ฒฐ์ • DSS๋Š” 1960๋…„๋Œ€ ํ›„๋ฐ˜๋ถ€ํ„ฐ ์˜์‚ฌ๊ฒฐ์ •์ž์˜ ํšจ์œจ์„ฑ๊ณผ ์ •ํ™•์„ฑ์„ ํ–ฅ์ƒ์‹œํ‚ค๊ธฐ ์œ„ํ•ด ์ œ์•ˆ๋˜์–ด ์™”์Šต๋‹ˆ๋‹ค. ์ดˆ๊ธฐ์—๋Š” ๊ฐœ์ธ์˜ ๊ฒฐ์ •์— ์ดˆ์ ์„ ๋งž์ถ”์—ˆ์ง€๋งŒ, ์—ฐ๊ตฌ์ž๋“ค์€ ์‹ค์ œ ์˜์‚ฌ๊ฒฐ์ •์ด ์ข…์ข…

Framework Computer Science Artificial Intelligence
A note on the generalized min-sum set cover problem

A note on the generalized min-sum set cover problem

๋งค๋ ฅ์ ์ธ ํ•œ๊ธ€ ์ œ๋ชฉ: ์ผ๋ฐ˜ํ™”๋œ ์ตœ์†Œ ํ•ฉ ์ง‘ํ•ฉ ์ปค๋ฒ„ ๋ฌธ์ œ์— ๋Œ€ํ•œ ๊ฐœ์„ ๋œ ์•Œ๊ณ ๋ฆฌ์ฆ˜ ์ดˆ๋ก ์ „์ฒด ๋ฒˆ์—ญ ๋ฐ ์ •๋ฆฌ: ์ด ๋…ผ๋ฌธ์—์„œ๋Š” ์ผ๋ฐ˜ํ™”๋œ ์ตœ์†Œ ํ•ฉ ์ง‘ํ•ฉ ์ปค๋ฒ„ ๋ฌธ์ œ๋ฅผ ๋‹ค๋ฃจ๋ฉฐ, ์ด ๋ฌธ์ œ๋Š” Feige, Lovรกsz, Tetali์™€ Hassin, Levin์ด ๊ฐ๊ฐ ์†Œ๊ฐœํ•œ ์ตœ์†Œ ํ•ฉ ์ง‘ํ•ฉ ์ปค๋ฒ„ ๋ฌธ์ œ์™€ ์ตœ์†Œ ์ง€์—ฐ ์ง‘ํ•ฉ ์ปค๋ฒ„ ๋ฌธ์ œ์˜ ์ผ๋ฐ˜ํ™”์ž…๋‹ˆ๋‹ค. Azar, Gamzu, Yin์€ O(log r) ๊ทผ์‚ฌ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ œ์‹œํ–ˆ์œผ๋ฉฐ, Bansal, Gupta, Krishnaswamy๋Š” ์ด๋ฅผ ๊ฐœ์„ ํ•˜์—ฌ 485.1์˜ ์„ฑ๋Šฅ ๋ณด์žฅ์„ ๋‹ฌ์„ฑํ–ˆ์Šต๋‹ˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” Skutella

Data Structures Computer Science
A Novel Adaptive Routing through Fitness Function Estimation Technique   with Multiple QoS Parameters Compliance

A Novel Adaptive Routing through Fitness Function Estimation Technique with Multiple QoS Parameters Compliance

๋ณธ ๋…ผ๋ฌธ์€ ๋„คํŠธ์›Œํฌ ๋ผ์šฐํŒ… ๊ธฐ์ˆ  ์ค‘ ํ•˜๋‚˜์ธ ๊ฑฐ๋ฆฌ ๋ฒกํ„ฐ(DV) ํ”„๋กœํ† ์ฝœ์„ ๊ฐœ์„ ํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์‹œํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ํŠนํžˆ, ๋‹ค์ค‘ QoS ๋งค๊ฐœ๋ณ€์ˆ˜๋ฅผ ์ค€์ˆ˜ํ•˜๋ฉด์„œ๋„ ํšจ์œจ์ ์ธ ๊ฒฝ๋กœ ์„ ํƒ์ด ๊ฐ€๋Šฅํ•œ ์ƒˆ๋กœ์šด ์ ์‘ํ˜• ๋ผ์šฐํŒ… ๊ธฐ๋ฒ•์— ์ดˆ์ ์„ ๋งž์ถ”๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. 1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋ชฉ์  ๋ผ์šฐํŒ…์€ ๋„คํŠธ์›Œํฌ์—์„œ ๋ฐ์ดํ„ฐ ํŒจํ‚ท์„ ์›ํ•˜๋Š” ๋ชฉ์ ์ง€๊นŒ์ง€ ์ „์†กํ•˜๊ธฐ ์œ„ํ•œ ํ•ต์‹ฌ ๊ธฐ์ˆ ์ž…๋‹ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜, ๊ธฐ์กด์˜ DV ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ๋ผ์šฐํŒ… ๋ฃจํ”„์™€ count to infinity ๋ฌธ์ œ ๋“ฑ์˜ ํ•œ๊ณ„๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฌธ์ œ์ ์„ ํ•ด๊ฒฐํ•˜๊ณ ์ž ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์ŠคํŒฌ๋‹ ํŠธ๋ฆฌ ์ ‘๊ทผ ๋ฐฉ์‹์„ ํ™œ์šฉํ•œ ์ƒˆ๋กœ์šด

Networking Computer Science
Kunchenkos Polynomials for Template Matching

Kunchenkos Polynomials for Template Matching

: ๋ณธ ๋…ผ๋ฌธ์€ 1์ฐจ์› ๋””์ง€ํ„ธ ์‹ ํ˜ธ์—์„œ ํŠน์ • ๊ฐ์ฒด๋ฅผ ์ธ์‹ํ•˜๋Š” ๋ฌธ์ œ์— ๋Œ€ํ•œ ์ƒˆ๋กœ์šด ์ ‘๊ทผ๋ฒ•์„ ์ œ์‹œํ•˜๊ณ  ์žˆ๋‹ค. ์ด๋Š” ์ปดํ“จํ„ฐ ๋น„์ „, ํ•„๊ธฐ ๋ฌธ์ž ์ธ์‹, ๋ฐ์ดํ„ฐ ๋งˆ์ด๋‹ ๋“ฑ ๋‹ค์–‘ํ•œ ๋ถ„์•ผ์—์„œ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•˜๋Š” ํ…œํ”Œ๋ฆฟ ๋งค์นญ์˜ ํ•œ ํ˜•ํƒœ๋กœ ๋ณผ ์ˆ˜ ์žˆ๋‹ค. 1. ๊ธฐ์กด ๋ฐฉ๋ฒ•๊ณผ ์ฟจ์ฒธ์ฝ” ๋‹คํ•ญ์‹์˜ ์ฐจ๋ณ„ํ™” ๊ธฐ์กด์˜ ํ…œํ”Œ๋ฆฟ ๋งค์นญ ๋ฐฉ๋ฒ•์€ ํฌ๊ฒŒ ๋‘ ๊ฐ€์ง€๋กœ ๋‚˜๋ˆŒ ์ˆ˜ ์žˆ๋‹ค: ์ธ๊ณต ์‹ ๊ฒฝ๋ง์„ ํ™œ์šฉํ•œ ํ•™์Šต ๋ฐฉ์‹๊ณผ ํŠน์ง• ๊ธฐ๋ฐ˜ ๋˜๋Š” ์ „์ฒด ํ…œํ”Œ๋ฆฟ ๊ธฐ๋ฐ˜ ๋น„๊ต ๋ฐฉ์‹์ด๋‹ค. ์ด ์ค‘ ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ํŠนํžˆ ์ „์ฒด ํ…œํ”Œ๋ฆฟ ๊ฒ€์ƒ‰์— ์ดˆ์ ์„ ๋งž์ถ”๊ณ  ์žˆ์œผ๋ฉฐ, ์ด๋ฅผ ์œ„ํ•ด ์ฟจ์ฒธ์ฝ” ๋‹คํ•ญ์‹์ด๋ผ๋Š” ์ƒˆ๋กœ์šด ์ ‘๊ทผ๋ฒ•์„ ์ œ

Computer Science Computer Vision
Integral Value Transformations: A Class of Discrete Dynamical Systems

Integral Value Transformations: A Class of Discrete Dynamical Systems

์ด ๋…ผ๋ฌธ์€ Integral Value Transformations (IVTs)๋ฅผ ์ค‘์‹ฌ์œผ๋กœ ์ด์งˆ์  ๋™์—ญํ•™ ์‹œ์Šคํ…œ๊ณผ ๊ทธ ์•ˆ์ •์„ฑ์— ๋Œ€ํ•œ ๊นŠ์ด ์žˆ๋Š” ๋ถ„์„์„ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค. IVT๋Š” Sk. S. Hassan ์™ธ ์—ฐ๊ตฌ์ž๋“ค์— ์˜ํ•ด ์†Œ๊ฐœ๋˜์—ˆ์œผ๋ฉฐ, p adic ์‹œ์Šคํ…œ์—์„œ Collatz ์œ ์‚ฌ ํ•จ์ˆ˜์™€ ๊ด€๋ จ์ด ์žˆ์Šต๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ๋ณ€ํ™˜์€ ์…€๋ฃฐ๋Ÿฌ ์˜คํ† ๋งˆํƒ€์™€ ์œ ์‚ฌํ•œ ๋ฐฉ์‹์œผ๋กœ ์—ฐ๊ตฌ๋˜์–ด ์™”์Šต๋‹ˆ๋‹ค. ๋™์—ญํ•™ ์‹œ์Šคํ…œ์˜ ์ •์˜ ๋ฐ ๋ถ„์„ ๋…ผ๋ฌธ์—์„œ๋Š” IVTs๊ฐ€ ๋ฐ˜๋ณต์ ์œผ๋กœ ์ ์šฉ๋  ๋•Œ ํ˜•์„ฑ๋˜๋Š” ์ด์งˆ์  ๋™์—ญํ•™ ์‹œ์Šคํ…œ์„ ํƒ๊ตฌํ•ฉ๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ํ•จ์ˆ˜๋“ค์ด ์‹œ๊ฐ„์— ๋”ฐ๋ผ ์–ด๋–ป๊ฒŒ ์ง„ํ™”ํ•˜๊ณ  ํ˜ผ๋ž€์Šค๋Ÿฌ์šด

System Mathematics Computer Science Discrete Mathematics
The Unlucky Door

The Unlucky Door

๋ณธ ๋…ผ๋ฌธ์€ ๋ชฌํ‹ฐ ํ™€ ๋ฌธ์ œ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ ๊ฒŒ์ž„ ์ด๋ก ์  ์ ‘๊ทผ๋ฒ•๊ณผ ๋‹ค์–‘ํ•œ ๋ณ€ํ˜•์— ๋Œ€ํ•ด ์‹ฌ๋„ ์žˆ๊ฒŒ ๋ถ„์„ํ•˜๊ณ  ์žˆ๋‹ค. ํŠนํžˆ, ์„ธ ๋ฌธ ๊ฒŒ์ž„์—์„œ ์ฝ˜์ด์™€ ๋ชฌํ…Œ์˜ ์ƒํ˜ธ์ž‘์šฉ์„ ์กฐํ•ฉ์ ์œผ๋กœ ๋ถ„์„ํ•˜๋ฉฐ, ๋„ค ๊ฐœ ์ด์ƒ์˜ ๋ฌธ์„ ํฌํ•จํ•œ ํ™•์žฅ๋œ ๋ฒ„์ „์—์„œ๋Š” ํ˜‘๋ ฅ์ ์ธ ์ „๋žต์„ ์ œ์‹œํ•œ๋‹ค. 1. ์„ธ ๋ฌธ ๊ฒŒ์ž„ ๋ถ„์„ ์„ธ ๋ฌธ ๊ฒŒ์ž„์€ ํ€ด์ฆˆ ํŒ€์ด ํ•œ ๋ฌธ ๋’ค์— ์ƒํ’ˆ์„ ์ˆจ๊ธฐ๊ณ , ์ฝ˜์ด๊ฐ€ ์ฒซ ๋ฒˆ์งธ ์„ ํƒ์œผ๋กœ ๋ฌธ ํ•˜๋‚˜๋ฅผ ๊ณ ๋ฅธ๋‹ค. ๋ชฌํ…Œ๋Š” ์ƒํ’ˆ์ด ์•„๋‹Œ ๋‹ค๋ฅธ ๋ฌธ์„ ๊ณต๊ฐœํ•˜๊ณ , ์ฝ˜์ด๋Š” ์ž์‹ ์˜ ์„ ํƒ์„ ์œ ์ง€ํ•˜๊ฑฐ๋‚˜ ๋ณ€๊ฒฝํ•  ์ˆ˜ ์žˆ๋‹ค. ์ด ๊ฒŒ์ž„์—์„œ ์ฝ˜์ด์˜ ์ „๋žต์€ ์ƒํ™ฉ์— ๋”ฐ๋ผ ๋‹ฌ๋ผ์ง€๋ฉฐ, ์˜ˆ๋ฅผ ๋“ค์–ด '1ss'์™€ ๊ฐ™

Game Theory Mathematics Computer Science
Automatic Multi-GPU Code Generation applied to Simulation of Electrical   Machines

Automatic Multi-GPU Code Generation applied to Simulation of Electrical Machines

: 1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋ชฉ์  ๋ณธ ๋…ผ๋ฌธ์€ ๋ณ‘๋ ฌ ํ”„๋กœ๊ทธ๋ž˜๋ฐ์˜ ์–ด๋ ค์›€์„ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด, OpenCL ๊ธฐ๋ฐ˜์˜ ํ˜ผ์„ฑ ์•„ํ‚คํ…์ฒ˜(CPU + GPU)์šฉ ์ฝ”๋“œ ์ƒ์„ฑ ๋ฐฉ๋ฒ•๋ก ์„ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. ํŠนํžˆ, MDE์™€ MARTE ํ”„๋กœํŒŒ์ผ์„ ํ™œ์šฉํ•˜์—ฌ ๋ณ‘๋ ฌ ํ”„๋กœ๊ทธ๋ž˜๋ฐ์— ์ต์ˆ™ํ•˜์ง€ ์•Š์€ ์‚ฌ๋žŒ๋“ค๋„ ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜์„ ์‰ฝ๊ฒŒ ๊ตฌํ˜„ํ•  ์ˆ˜ ์žˆ๋„๋ก ์ง€์›ํ•˜๋Š” ๊ฒƒ์ด ์ฃผ์š” ๋ชฉํ‘œ์ž…๋‹ˆ๋‹ค. 2. ๊ธฐ์ˆ ์  ๋ฐฐ๊ฒฝ OpenCL : Khronos ๊ทธ๋ฃน์—์„œ ๊ฐœ๋ฐœํ•œ ๋ณ‘๋ ฌ ์ปดํ“จํŒ… ํ‘œ์ค€์œผ๋กœ, ๋‹ค์–‘ํ•œ ํ•˜๋“œ์›จ์–ด ์•„ํ‚คํ…์ฒ˜๋ฅผ ์ง€์›ํ•ฉ๋‹ˆ๋‹ค. MDE์™€ MARTE ํ”„๋กœํŒŒ์ผ : MDE๋Š” ํ”„๋กœ๊ทธ๋žจ ์‚ฌ์–‘์„ ์ถ”์ƒํ™”ํ•˜๊ณ  ์ž๋™ํ™”๋ฅผ ํ–ฅ์ƒ์‹œ

Distributed Computing Computer Science
No Image

Entropy of Telugu

์ด ๋…ผ๋ฌธ์€ ์ธ๋„์–ด ๋ฌธ์ž์™€ ๊ทธ์— ๋”ฐ๋ฅธ ์ฒ ์ž๋ฒ•์„ ๋ฐ”ํƒ•์œผ๋กœ ํ…”๋ฃจ๊ตฌ์–ด์˜ ์—”ํŠธ๋กœํ”ผ๋ฅผ ๋ถ„์„ํ•˜๋Š” ๋ฐ ์ดˆ์ ์„ ๋งž์ถ”๊ณ  ์žˆ๋‹ค. ๋จผ์ €, ์ธ๋„ ๋ฌธ์ž์˜ ๊ธฐ์›๊ณผ ๋ฐœ์ „ ๊ณผ์ •์„ ์‚ดํŽด๋ณด๋ฉด, ๋ธŒ๋ผ๋ฏธ ๋ฌธ์ž๋Š” 3์ฒœ๋…„ ์ „ ์ธ๋”์Šค ๋ฌธ์ž์—์„œ ์ง„ํ™”ํ•œ ๊ฒƒ์œผ๋กœ ์•Œ๋ ค์ ธ ์žˆ์œผ๋ฉฐ, ์ดํ›„ ๋‹ค์–‘ํ•œ ์ธ๋„ ํ˜„๋Œ€ ๋ฌธ์ž๋กœ ๋ถ„ํ™”๋˜์—ˆ๋‹ค. ์ด๋“ค ๋ฌธ์ž๋Š” ๊ตฌ์กฐ์ ์œผ๋กœ ๋ฐ€์ ‘ํ•˜๊ฒŒ ์—ฐ๊ด€๋˜์–ด ์žˆ์ง€๋งŒ, ๋ชจ์–‘์€ ๋‹ค์–‘ํ•˜๋‹ค. ์ธ๋„์–ด ์•ŒํŒŒ๋ฒณ์€ ์ž์Œ, ๋ชจ์Œ ๋ฐ ๊ธฐํƒ€ ๊ธฐํ˜ธ๋กœ ๊ตฌ์„ฑ๋˜๋ฉฐ, ํ•œ ์Œ์ ˆ(akshara)์€ 0๊ฐœ์—์„œ 3๊ฐœ์˜ ์ž์Œ๊ณผ ๋ชจ์Œ ๋˜๋Š” ๊ธฐํƒ€ ๊ธฐํ˜ธ๋กœ ์ด๋ฃจ์–ด์ง„๋‹ค. ๊ฐ akshara๋Š” ๋…๋ฆฝ์ ์œผ๋กœ ๋ฐœ์Œ๋  ์ˆ˜ ์žˆ์œผ๋ฉฐ, ๋ชจ๋“ 

Computer Science NLP
No Image

LISA (Localhost Information Service Agent)

LISA๋Š” MonALISA ํ”„๋กœ์ ํŠธ์—์„œ ๊ฐœ๋ฐœ๋œ ๋ชจ๋‹ˆํ„ฐ๋ง ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜์œผ๋กœ์„œ, ๋‹ค์–‘ํ•œ ๋ถ„์‚ฐ ์‹œ์Šคํ…œ ํ™˜๊ฒฝ์—์„œ ๋กœ์ปฌ ์Šคํ…Œ์ด์…˜์˜ ์ƒํƒœ๋ฅผ ๋ชจ๋‹ˆํ„ฐ๋งํ•˜๊ณ  ์ด๋ฅผ ํ†ตํ•ด ๋‹ค๋ฅธ ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜์˜ ์„ฑ๋Šฅ ์ตœ์ ํ™”์— ๊ธฐ์—ฌํ•ฉ๋‹ˆ๋‹ค. ์ด ๋…ผ๋ฌธ์€ LISA์˜ ๊ตฌ์กฐ์™€ ์ฃผ์š” ํŠน์ง•์„ ์ƒ์„ธํžˆ ์„ค๋ช…ํ•˜๋ฉฐ, ํŠนํžˆ ๊ทธ ์œ ์—ฐ์„ฑ๊ณผ ํ™•์žฅ ๊ฐ€๋Šฅ์„ฑ, ๊ทธ๋ฆฌ๊ณ  ๋†’์€ ํ†ต์‹  ์„ฑ๋Šฅ์„ ๊ฐ•์กฐํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. 1. LISA ํ”„๋ ˆ์ž„์›Œํฌ LISA๋Š” ์šด์˜ ์ฒด์ œ ํ”Œ๋žซํผ์— ๋…๋ฆฝ์ ์œผ๋กœ ์ž‘๋™ํ•˜๋„๋ก ์„ค๊ณ„๋˜์–ด ์žˆ์œผ๋ฉฐ, Java์™€ C ์–ธ์–ด๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๊ฐœ๋ฐœ๋˜์—ˆ์Šต๋‹ˆ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด Linux, Windows ๋ฐ MacOS์—์„œ ์‹คํ–‰ ๊ฐ€

Distributed Computing Computer Science
No Image

Faire levier sur les architectures logicielles pour guider et verifier le developpement dapplications SCC

์ด ๋…ผ๋ฌธ์€ SCC ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜ ๊ฐœ๋ฐœ์— ์žˆ์–ด ์†Œํ”„ํŠธ์›จ์–ด ์•„ํ‚คํ…์ฒ˜์˜ ์ค‘์š”์„ฑ๊ณผ ์ƒํ˜ธ์ž‘์šฉ ๊ณ„์•ฝ์ด๋ผ๋Š” ์ƒˆ๋กœ์šด ๊ฐœ๋…์„ ์ œ์‹œํ•˜๋ฉฐ, ์ด๋ฅผ ํ†ตํ•ด ์•„ํ‚คํ…์ฒ˜์™€ ๊ตฌํ˜„ ๊ฐ„์˜ ์ผ๊ด€์„ฑ์„ ๋ณด์žฅํ•˜๊ณ  ๊ฒ€์ฆ ๊ณผ์ •์„ ๊ฐ•ํ™”ํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ํƒ๊ตฌํ•œ๋‹ค. SCC ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜์€ ์™ธ๋ถ€ ํ™˜๊ฒฝ๊ณผ ์ƒํ˜ธ์ž‘์šฉํ•˜๋Š” ์‹œ์Šคํ…œ์œผ๋กœ, ํ™ˆ ์˜คํ† ๋ฉ”์ด์…˜, ๋กœ๋ด‡ ๊ณตํ•™, ์ž์œจ ์‹œ์Šคํ…œ ๋“ฑ ๋‹ค์–‘ํ•œ ๋ถ„์•ผ์—์„œ ํ™œ์šฉ๋œ๋‹ค. 1. ์•„ํ‚คํ…์ฒ˜์™€ ๊ตฌํ˜„์˜ ์—ฐ๊ฒฐ SCC ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜์€ ์ •๋ณด ์ˆ˜์ง‘, ์ƒํ™ฉ ์ธ์‹, ์ œ์–ด, ํ–‰๋™์ด๋ผ๋Š” ๋„ค ๊ฐ€์ง€ ์š”์†Œ๋กœ ๊ตฌ์„ฑ๋˜๋ฉฐ, ๊ฐ ์š”์†Œ๋Š” ๊ณ„์ธต์ ์œผ๋กœ ์ƒํ˜ธ์ž‘์šฉํ•œ๋‹ค. ์ด ๋…ผ๋ฌธ์—์„œ๋Š” ์ด๋Ÿฌํ•œ ๊ณ ์ˆ˜์ค€ ์ถ”์ƒํ™”๋ฅผ ๊ตฌํ˜„์œผ

Computer Science Programming Languages
No Image

An introduction to ML(n)BiCGStab

1. ์„œ๋ก  ๋ฐ ๋ฐฐ๊ฒฝ ML(n)BiCGStab๋Š” BiCGStab ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ์ž์—ฐ์Šค๋Ÿฌ์šด ์ผ๋ฐ˜ํ™”๋กœ, Yeung๊ณผ Chan์— ์˜ํ•ด 1999๋…„ ์†Œ๊ฐœ๋˜์—ˆ๋‹ค. ์ด ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ์—ฌ๋Ÿฌ ์‹œ์ž‘ ๋žœํฌ๋กœ์Šค ๊ณผ์ •์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•˜๋ฉฐ, van der Vorst์˜ BiCGStab์—์„œ ํŒŒ์ƒ๋˜์—ˆ์ง€๋งŒ ๋” ์•ˆ์ •์ ์ด๊ณ  ํšจ์œจ์ ์ธ ์„ฑ๋Šฅ์„ ์ œ๊ณตํ•œ๋‹ค. Sonneveld์™€ van der Vorst๊ฐ€ CGS์™€ BiCGStab๋ฅผ ๊ตฌ์„ฑํ•˜๋Š” ๋ฐ ์‚ฌ์šฉํ•œ ๊ธฐ๋ฒ•์ด ML(n)BiCGStab์—๋„ ์ ์šฉ๋˜์—ˆ๋‹ค. 2. ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ์œ ๋„ ๋ฐ ๊ตฌ์กฐ ML(n)BiCGStab๋Š” ์—ฌ๋Ÿฌ ์‹œ์ž‘ ๋ฒกํ„ฐ๋ฅผ ์ด์šฉํ•˜์—ฌ Kryl

Computer Science Mathematics Numerical Analysis
No Image

Handling uncertainties in SVM classification

๋ณธ ๋…ผ๋ฌธ์€ ๋ถˆํ™•์‹คํ•œ ๋ ˆ์ด๋ธ”์„ ๋‹ค๋ฃจ๋Š” ๋ฐฉ๋ฒ•์œผ๋กœ์„œ ์ƒˆ๋กœ์šด SVM ๋ถ„๋ฅ˜ ๊ธฐ๋ฒ•์„ ์ œ์•ˆํ•˜๊ณ , ์ด๋ฅผ ํ†ตํ•ด ์‹ค์ œ ์ƒํ™œ์—์„œ ๋ฐœ์ƒํ•˜๋Š” ์ฃผ์„ ๋ฌธ์ œ์— ๋Œ€์‘ํ•˜๋ ค๊ณ  ํ•ฉ๋‹ˆ๋‹ค. ์ด ์—ฐ๊ตฌ์˜ ํ•ต์‹ฌ ์•„์ด๋””์–ด๋Š” ํ™•๋ฅ ์  ๋ ˆ์ด๋ธ”์„ ๋„์ž…ํ•˜์—ฌ ๋ถˆํ™•์‹ค์„ฑ์„ ์ฒ˜๋ฆฌํ•˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค. 1. ๋ฌธ์ œ ์ •์˜์™€ ๋ฐฐ๊ฒฝ ์ „ํ†ต์ ์ธ ๊ฐ๋… ํ•™์Šต์—์„œ๋Š” ๋ฐ์ดํ„ฐ ์„ธํŠธ๋ฅผ ์ „๋ฌธ๊ฐ€์—๊ฒŒ ๋ ˆ์ด๋ธ”๋งํ•˜๋Š” ๊ณผ์ •์ด ํ•„์š”ํ•ฉ๋‹ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ด๋Š” ๋งŽ์€ ์‘์šฉ ๋ถ„์•ผ์—์„œ ์–ด๋ ค์›€์„ ๊ฒช๊ฒŒ ๋˜๋ฉฐ, ํŠนํžˆ ์˜๋ฃŒ ์˜์ƒ ๋ถ„์•ผ์—์„œ๋Š” ์ฐธ์กฐ ๋ณ‘๋ฆฌ ์ •๋ณด ์—†์ด ์•…์„ฑ ์กฐ์ง์„ ์œค๊ณฝ์„ ์œผ๋กœ ๊ทธ๋ฆด ๋•Œ ์ด๋Ÿฌํ•œ ๋ฌธ์ œ์ ์ด ๋ฐœ์ƒํ•ฉ๋‹ˆ๋‹ค. ์ด๋กœ ์ธํ•ด ํ›ˆ๋ จ ๋ฐ์ดํ„ฐ์— ๋ถ€์ •ํ™•ํ•œ ํด

Machine Learning Computer Science
No Image

Model of Opinion Spreading in Social Networks

๋ณธ ๋…ผ๋ฌธ์€ ์†Œ์…œ ๋„คํŠธ์›Œํฌ์—์„œ ์ •๋ณด์™€ ์˜๊ฒฌ์ด ์–ด๋–ป๊ฒŒ ํ™•์‚ฐ๋˜๋Š”์ง€์— ๋Œ€ํ•œ ์‹ฌ๋„ ์žˆ๋Š” ๋ถ„์„์„ ์ œ๊ณตํ•œ๋‹ค. ํŠนํžˆ, ๊ธฐ์กด ๋ชจ๋ธ๋“ค์ด ๋…ผ์Ÿ ๊ฐ€๋Šฅํ•œ ์ •๋ณด์˜ ํ™•์‚ฐ ๊ณผ์ •์„ ์ •ํ™•ํžˆ ์„ค๋ช…ํ•˜์ง€ ๋ชปํ•˜๋Š” ํ•œ๊ณ„๋ฅผ ์ง€์ ํ•˜๊ณ , ์ด๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•œ ์ƒˆ๋กœ์šด ์ ‘๊ทผ๋ฒ•์„ ์ œ์‹œํ•œ๋‹ค. 1. ๊ธฐ์กด ์—ฐ๊ตฌ์™€์˜ ์ฐจ๋ณ„ํ™” ์ „์—ผ๋ณ‘ ํ™•์‚ฐ ๋ชจ๋ธ : ์ด ๋ชจ๋ธ์€ ์ •๋ณด๋‚˜ ์˜๊ฒฌ์ด ํ™•์‚ฐ๋˜๋Š” ๊ณผ์ •์„ ์งˆ๋ณ‘ ์ „์—ผ๊ณผ ์œ ์‚ฌํ•˜๊ฒŒ ์„ค๋ช…ํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜, ๋…ผ์Ÿ ๊ฐ€๋Šฅํ•œ ์ •๋ณด๋Š” ๋‹จ์ˆœํžˆ ๋…ธ์ถœ์— ์˜ํ•œ ๊ฐ์—ผ๋งŒ์œผ๋กœ ์„ค๋ช…ํ•˜๊ธฐ ์–ด๋ ต๋‹ค. ๊ธฐ์ค€ ๋ชจ๋ธ (๋ณต์žกํ•œ ์ „์—ผ) : ์ด ๋ชจ๋ธ์€ ๊ฐœ์ธ์˜ ์˜๊ฒฌ ํ˜•์„ฑ์ด ๊ทธ์˜ ์ฃผ๋ณ€ ๋„คํŠธ์›Œํฌ ๊ตฌ์„ฑ์›๋“ค์˜ ์˜ํ–ฅ์„ ๋ฐ›

Model Physics Network Social Networks Computer Science
Diffusion of Confidential Information on Networks

Diffusion of Confidential Information on Networks

: ๋ณธ ๋…ผ๋ฌธ์€ ๋””์ง€ํ„ธ ์„ธ์ƒ์—์„œ ๊ฐœ์ธ์ •๋ณด์™€ ๋น„๋ฐ€์ •๋ณด๊ฐ€ ์–ด๋–ป๊ฒŒ ํผ์ ธ๋‚˜๊ฐ€๋Š”์ง€๋ฅผ ์ˆ˜ํ•™์ ์œผ๋กœ ๋ชจ๋ธ๋งํ•˜๊ณ  ๋ถ„์„ํ•˜๋Š” ๋ฐ ์ดˆ์ ์„ ๋งž์ถ”๊ณ  ์žˆ๋‹ค. ์ด๋Š” ์ •๋ณด ๊ธฐ์ˆ ์˜ ๋ฐœ์ „์œผ๋กœ ์ธํ•ด ์–ธ์ œ ์–ด๋””์„œ๋“  ์ •๋ณด๋ฅผ ๊ณต์œ ํ•  ์ˆ˜ ์žˆ๊ฒŒ ๋˜๋ฉด์„œ, ๋ฏผ๊ฐํ•œ ์ฝ˜ํ…์ธ ์˜ ๋ณด์•ˆ ์œ ์ง€๊ฐ€ ๋”์šฑ ์ค‘์š”ํ•˜๊ฒŒ ๋œ ์ƒํ™ฉ์„ ๋ฐ˜์˜ํ•œ๋‹ค. ๋„คํŠธ์›Œํฌ ๊ตฌ์กฐ์™€ ๊ฐœ์ธ์ •๋ณด ํ™•์‚ฐ ๋ณธ ๋…ผ๋ฌธ์€ ๋„คํŠธ์›Œํฌ ์ด๋ก ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ๋‹ค์–‘ํ•œ ์œ ํ˜•์˜ ๋„คํŠธ์›Œํฌ์—์„œ ์ •๋ณด์˜ ํ™•์‚ฐ ํŒจํ„ด์„ ๋ถ„์„ํ•˜๊ณ  ์žˆ๋‹ค. ๋„คํŠธ์›Œํฌ๋Š” ์ (๋…ธ๋“œ)๊ณผ ์„ (์—ฃ์ง€)์œผ๋กœ ๊ตฌ์„ฑ๋˜๋ฉฐ, ๋…ธ๋“œ์™€ ์—ฃ์ง€์˜ ์—ฐ๊ฒฐ ๋ฐฉ์‹์— ๋”ฐ๋ผ ์—ฌ๋Ÿฌ ๊ฐ€์ง€ ํ˜•ํƒœ๋กœ ๊ตฌ๋ถ„๋œ๋‹ค. 1. ์™„์ „ํ•œ ๋„คํŠธ์›Œํฌ : ๋ชจ

Computer Science Physics Social Networks Network
A Reformulation of the Arora-Rao-Vazirani Structure Theorem

A Reformulation of the Arora-Rao-Vazirani Structure Theorem

๋งค๋ ฅ์ ์ธ ํ•œ๊ธ€ ์ œ๋ชฉ: ์•„๋กœ๋ผ ๋ผ์˜ค ๋ฐ”์ง€๋ผ๋‹ˆ ๊ตฌ์กฐ ์ •๋ฆฌ์˜ ๊ทธ๋ž˜ํ”„ ์ด๋ก ์  ์žฌํ•ด์„ ์ดˆ๋ก ์ „์ฒด ๋ฒˆ์—ญ ๋ฐ ์ •๋ฆฌ: ๋ณธ ๋…ผ๋ฌธ์€ ์•„๋กœ๋ผ, ๋ผ์˜ค, ๋ฐ”์ง€๋ผ๋‹ˆ(ARV)๊ฐ€ ์ฆ๋ช…ํ•œ ๊ตฌ์กฐ ์ •๋ฆฌ๋ฅผ ํ™•์žฅ๋œ ๊ทธ๋ž˜ํ”„ ๊ฐœ๋…์œผ๋กœ ์žฌํ•ด์„ํ•ฉ๋‹ˆ๋‹ค. ARV๋Š” ๊ท ํ˜• ๋ถ„๋ฆฌ ๋ฌธ์ œ์™€ ๊ท ์ผ ๊ฐ€์žฅ ํฌ๋ฐ• ์ ˆ๋‹จ ๋ฌธ์ œ์— ๋Œ€ํ•ด O(โˆšlog n) ๊ทผ์‚ฌ์น˜๋ฅผ ๋„์ถœํ–ˆ์Šต๋‹ˆ๋‹ค. ๊ทธ๋“ค์˜ ๊ฒฐ๊ณผ๋Š” ์‚ผ๊ฐ ๋ถ€๋“ฑ์‹์„ ๋งŒ์กฑํ•˜๋Š” ์  ์ง‘ํ•ฉ์˜ ๊ธฐํ•˜ํ•™์  ์ง„์ˆ ์— ๊ธฐ๋ฐ˜ํ•˜๊ณ  ์žˆ์œผ๋ฉฐ, ์ดํ›„ ๊ทผ์‚ฌ ์•Œ๊ณ ๋ฆฌ์ฆ˜๊ณผ ๋ฉ”ํŠธ๋ฆญ ์ž„๋ฒ ๋”ฉ ์—ฐ๊ตฌ์˜ ํ† ๋Œ€๊ฐ€ ๋˜์—ˆ์Šต๋‹ˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ARV ๊ตฌ์กฐ ์ •๋ฆฌ๋ฅผ ํ™•์žฅ๋œ ๊ทธ๋ž˜ํ”„ GV,ฯต์—์„œ ํฐ ์ง‘ํ•ฉ์˜ ํ™•์žฅ ๊ฐœ๋…์œผ

Computer Science Discrete Mathematics
Convex Polyhedra Realizing Given Face Areas

Convex Polyhedra Realizing Given Face Areas

: ์ด ๋…ผ๋ฌธ์€ 3์ฐจ์› ๊ณต๊ฐ„์—์„œ ํŠน์ • ๋ฉด์ ์ด ์ฃผ์–ด์กŒ์„ ๋•Œ, ์ด ๋ฉด์ ์ด ๋‹ค๊ฐํ˜•์˜ ๊ฐ ๋ฉด์˜ ๋ฉด์ ์„ ๋‚˜ํƒ€๋‚ด๋Š” ์กฐ๊ฑด์— ๋Œ€ํ•ด ๊นŠ๊ฒŒ ํƒ๊ตฌํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ํŠนํžˆ, Aโ‚ โ‰ค i > 1 Aแตข์ธ ๊ฒฝ์šฐ, ์ด ๋ฒกํ„ฐ๋กœ ๊ตฌ์„ฑ๋œ ๋‹ค๊ฐํ˜•์ด ์กด์žฌํ•œ๋‹ค๋Š” ๊ฒƒ์„ ์ฆ๋ช…ํ•ฉ๋‹ˆ๋‹ค. ์ฃผ์š” ๊ฐœ๋…๊ณผ ์ •๋ฆฌ Minkowski์˜ ์ •๋ฆฌ : Minkowski์˜ ์ •๋ฆฌ๋Š” ์ฃผ์–ด์ง„ ๋ฉด์ ๊ณผ ๋‹จ์œ„ ๋ฒ•์„  ๋ฒกํ„ฐ๋ฅผ ํ†ตํ•ด ๊ณ ์œ ํ•œ ๋‹ซํžŒ ๋‹ค๊ฐํ˜•์„ ํ˜•์„ฑํ•  ์ˆ˜ ์žˆ๋Š” ์กฐ๊ฑด์„ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค. ์ด ๋…ผ๋ฌธ์—์„œ๋Š” ์ด๋ฅผ '์™„์ „ํžˆ ๊ท ํ˜• ์žกํžŒ' ๋ฒกํ„ฐ๋กœ ์žฌํ•ด์„ํ•˜์—ฌ, ๊ฐ ๋ฉด์˜ ๋ฉด์ ์ด ์ฃผ์–ด์กŒ์„ ๋•Œ, ๊ทธ ๋ฉด์ ์„ ๊ฐ€์ง„ ๋‹ค๊ฐํ˜•์ด ์กด์žฌํ•˜๋Š”์ง€ ํŒ๋‹จํ• 

Computer Science Discrete Mathematics
O Algoritmo usado no programa de criptografia PASME

O Algoritmo usado no programa de criptografia PASME

์ด ๋…ผ๋ฌธ์€ PASME ๋„๊ตฌ์˜ ํ•ต์‹ฌ ์•”ํ˜ธํ™” ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ƒ์„ธํžˆ ์„ค๋ช…ํ•˜๊ณ  ์žˆ๋‹ค. ์ด ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ํฐ ์ˆ˜์˜ ์†Œ์ธ์ˆ˜ ๋ถ„ํ•ด๋ผ๋Š” ๊ณ„์‚ฐ์ ์œผ๋กœ ์–ด๋ ค์šด ๋ฌธ์ œ๋ฅผ ํ™œ์šฉํ•˜์—ฌ ๋ฐ์ดํ„ฐ๋ฅผ ์•ˆ์ „ํ•˜๊ฒŒ ์•”ํ˜ธํ™”ํ•œ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ๊ธฐ์กด ์•”ํ˜ธํ™” ๋ฐฉ๋ฒ•๋“ค์˜ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๋ ค๋Š” ์‹œ๋„๊ฐ€ ์ด๋ฃจ์–ด์ง€๊ณ  ์žˆ์œผ๋ฉฐ, ํŠนํžˆ ๋นˆ๋„ ๋ถ„์„๊ณผ ๊ฐ™์€ ๊ณต๊ฒฉ์— ์ทจ์•ฝํ•œ ๊ณ ์ „์ ์ธ ์•”ํ˜ธํ™” ๋ฐฉ๋ฒ•๋“ค๋ณด๋‹ค ๋ณด์•ˆ์„ฑ์ด ํ–ฅ์ƒ๋˜์—ˆ๋‹ค. I. ์„œ๋ก  ์„œ๋ก ์—์„œ๋Š” ์•”ํ˜ธํ™” ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ํ•„์š”์„ฑ๊ณผ ๋‹ค์–‘ํ•œ ์•”ํ˜ธํ™” ๊ธฐ๋ฒ•๋“ค์˜ ํ•œ๊ณ„๋ฅผ ์„ค๋ช…ํ•œ๋‹ค. ํŠนํžˆ, ๋ฌธ์ž ์ง‘ํ•ฉ ์ˆœ์„œ ๋ณ€๊ฒฝ์ด๋‚˜ ์ด์ง„ ๋ฉ”์‹œ์ง€์—์„œ ๋น„ํŠธ ์—ญ์ „ ๋“ฑ์˜ ๋ฐฉ๋ฒ•๋“ค์€ ๋นˆ๋„ ๋ถ„์„ ๊ณต๊ฒฉ์— ์ทจ์•ฝํ•˜๋‹ค๋Š” ์ ์„

Mathematics Computer Science Cryptography and Security
Information Retrieval of Jumbled Words

Information Retrieval of Jumbled Words

์ด ๋…ผ๋ฌธ์€ ํ˜ผ๋ˆ๋œ ๋‹จ์–ด์˜ ๋…ํ•ด์— ๋Œ€ํ•œ ์‹ฌ๋„ ์žˆ๋Š” ๋ถ„์„์„ ์ œ๊ณตํ•˜๋ฉฐ, ํŠนํžˆ ์ธ๊ฐ„ ๋‡Œ๊ฐ€ ์–ด๋–ป๊ฒŒ ์ด๋Ÿฌํ•œ ํ˜ผ๋ž€์Šค๋Ÿฌ์šด ํ…์ŠคํŠธ๋ฅผ ์ฒ˜๋ฆฌํ•˜๋Š”์ง€์— ๋Œ€ํ•ด ์ƒ์„ธํžˆ ์„ค๋ช…ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์—ฐ๊ตฌ๋Š” ์บ ๋ธŒ๋ฆฌ์ง€ ๋Œ€ํ•™๊ต์˜ ๊ฒฐ๊ณผ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ, ๋‹จ์–ด ๋‚ด ๊ธ€์ž์˜ ์ˆœ์„œ๊ฐ€ ๋ฐ”๋€Œ์–ด๋„ ์ฒซ ๋ฒˆ์งธ์™€ ๋งˆ์ง€๋ง‰ ๊ธ€์ž๊ฐ€ ์˜ฌ๋ฐ”๋ฅธ ์œ„์น˜์— ์žˆ์œผ๋ฉด ๋…ํ•ด์— ํฐ ์˜ํ–ฅ์„ ๋ฏธ์น˜์ง€ ์•Š๋Š”๋‹ค๋Š” ์‚ฌ์‹ค์„ ๋ฐํ˜€๋ƒ…๋‹ˆ๋‹ค. ์ด๋Š” ์ธ๊ฐ„ ๋‡Œ๊ฐ€ ์ „์ฒด ๋‹จ์–ด๋กœ ์ธ์‹ํ•˜๋Š” ๋Šฅ๋ ฅ ๋•๋ถ„์ด๋ฉฐ, ์ด๋Ÿฌํ•œ ํ˜„์ƒ์€ ์—ฌ๋Ÿฌ ์š”์ธ๋“ค์— ์˜ํ•ด ์„ค๋ช…๋  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. 1. ๋ฌธ๋ฒ• ๊ตฌ์กฐ ๋ณด์กด ํ˜ผ๋ˆ๋œ ํ…์ŠคํŠธ์—์„œ๋„ ๋ฌธ์žฅ์˜ ๋ฌธ๋ฒ•์  ๊ตฌ์กฐ๊ฐ€ ์œ ์ง€๋˜๋ฉด ๋…์ž๋Š” ๋‹ค์Œ ๋‹จ์–ด๋ฅผ

Computer Science Information Retrieval
Status of GDL - GNU Data Language

Status of GDL - GNU Data Language

: GDL์€ ์ฒœ๋ฌธํ•™ ๋ถ„์•ผ์—์„œ IDL์˜ ๋ฌด๋ฃŒ ๋Œ€์ฒด ์†Œํ”„ํŠธ์›จ์–ด๋กœ ๋„๋ฆฌ ์‚ฌ์šฉ๋˜๊ณ  ์žˆ์œผ๋ฉฐ, ๋‹ค์–‘ํ•œ ๋ฐ์ดํ„ฐ ๋ถ„์„๊ณผ ์‹œ๊ฐํ™” ์ž‘์—…์— ํ™œ์šฉ๋ฉ๋‹ˆ๋‹ค. GDL์˜ ์ฃผ์š” ํŠน์ง• ์ค‘ ํ•˜๋‚˜๋Š” IDL๊ณผ์˜ ์™„๋ฒฝํ•œ ๋ฌธ๋ฒ• ํ˜ธํ™˜์„ฑ์œผ๋กœ, ๊ธฐ์กด IDL ์ฝ”๋“œ๋ฅผ ์‰ฝ๊ฒŒ GDL์—์„œ ์‹คํ–‰ํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ์ ์ž…๋‹ˆ๋‹ค. ์ด๋กœ ์ธํ•ด ์ฒœ๋ฌธํ•™์ž๋“ค์€ ๋น„์šฉ ๋ถ€๋‹ด ์—†์ด ๊ณ ๊ธ‰ ๋ฐ์ดํ„ฐ ๋ถ„์„ ๋ฐ ์‹œ๊ฐํ™” ์ž‘์—…์„ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. GDL์€ ๋‹ค์–‘ํ•œ ํ”Œ๋žซํผ์—์„œ ์‹คํ–‰ ๊ฐ€๋Šฅํ•˜๋ฉฐ, Linux, BSD, Mac OSX, OpenSolaris ๋“ฑ ์ฃผ์š” ์šด์˜ ์ฒด์ œ๋ฅผ ์ง€์›ํ•ฉ๋‹ˆ๋‹ค. ๋˜ํ•œ, ์—ฌ๋Ÿฌ ์šด์˜ ์ฒด์ œ์— ๋Œ€ํ•œ ์‚ฌ์ „ ์ปดํŒŒ์ผ

Computer Science Data Computational Engineering Astrophysics
Jenius Agent: Towards Experience-Driven Accuracy Optimization in Real-World Scenarios

Jenius Agent: Towards Experience-Driven Accuracy Optimization in Real-World Scenarios

Jeniusโ€‘Agent ๋…ผ๋ฌธ์€ ์ตœ๊ทผ LLMโ€‘๊ธฐ๋ฐ˜ ์—์ด์ „ํŠธ๊ฐ€ ์ง๋ฉดํ•œ ๋‘ ๊ฐ€์ง€ ๊ทผ๋ณธ์ ์ธ ํ•œ๊ณ„๋ฅผ ๋ช…ํ™•ํžˆ ์งš๊ณ  ์žˆ๋‹ค. ์ฒซ ๋ฒˆ์งธ๋Š” โ€œ์‹คํ–‰ ๊ฐ€์‹œ์„ฑ ๋ถ€์กฑโ€์ด๋‹ค. ๊ธฐ์กด ๋ฒค์น˜๋งˆํฌ๋Š” ์ตœ์ข… ์ถœ๋ ฅ๋งŒ์„ ํ‰๊ฐ€ ์ง€ํ‘œ๋กœ ์‚ผ์•„, ์—์ด์ „ํŠธ๊ฐ€ ๋‚ด๋ถ€์ ์œผ๋กœ ์–ด๋–ค ํ”„๋กฌํ”„ํŠธ๋ฅผ ์ƒ์„ฑํ•˜๊ณ , ์–ด๋–ค ๋„๊ตฌ๋ฅผ ์–ธ์ œ ํ˜ธ์ถœํ–ˆ๋Š”์ง€, ์ƒํƒœ๋ฅผ ์–ด๋–ป๊ฒŒ ์—…๋ฐ์ดํŠธํ–ˆ๋Š”์ง€๋ฅผ ํŒŒ์•…ํ•  ๋ฐฉ๋ฒ•์„ ์ œ๊ณตํ•˜์ง€ ์•Š๋Š”๋‹ค. ์ด๋กœ ์ธํ•ด ๊ฐœ๋ฐœ์ž๋Š” ์˜ค๋ฅ˜ ์›์ธ์„ ์ถ”์ ํ•˜๊ธฐ ์œ„ํ•ด ๋กœ๊ทธ๋ฅผ ์ผ์ผ์ด ์ˆ˜์ž‘์—…์œผ๋กœ ๋ถ„์„ํ•ด์•ผ ํ•˜๋ฉฐ, ์žฌํ˜„์„ฑ๋„ ๋–จ์–ด์ง„๋‹ค. ๋‘ ๋ฒˆ์งธ๋Š” โ€œ์žฅ๊ธฐยท๋„๊ตฌโ€‘๋ณด๊ฐ• ์ž‘์—…์—์„œ์˜ ๋ถˆ์•ˆ์ •์„ฑโ€์ด๋‹ค. LLM์€ ์งง์€ ์ปจํ…์ŠคํŠธ์—์„œ๋Š” ๋›ฐ์–ด๋‚œ

Computer Science Artificial Intelligence
Accelerating Storage-Based Training for Graph Neural Networks

Accelerating Storage-Based Training for Graph Neural Networks

๋ณธ ์—ฐ๊ตฌ๋Š” ๊ทธ๋ž˜ํ”„ ์‹ ๊ฒฝ๋ง(GNN) ํ•™์Šต์„ ๋Œ€๊ทœ๋ชจ ์‹ค์„ธ๊ณ„ ๊ทธ๋ž˜ํ”„์— ์ ์šฉํ•˜๊ธฐ ์œ„ํ•ด ์™ธ๋ถ€ ์Šคํ† ๋ฆฌ์ง€๋ฅผ ํ™œ์šฉํ•˜๋Š” โ€˜์Šคํ† ๋ฆฌ์ง€ ๊ธฐ๋ฐ˜โ€™ ์ ‘๊ทผ๋ฒ•์˜ ๊ทผ๋ณธ์ ์ธ ํ•œ๊ณ„๋ฅผ ์งš์–ด๋‚ธ๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค์€ ์ฃผ๋กœ ๋ฉ”๋ชจ๋ฆฌ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด NVMe SSD์™€ ๊ฐ™์€ ๊ณ ์† ์ €์žฅ์†Œ๋ฅผ ์ด์šฉํ–ˆ์ง€๋งŒ, ๊ทธ๋ž˜ํ”„ ๊ตฌ์กฐ๊ฐ€ ๋งค์šฐ ๋ถˆ๊ทœ์น™ํ•˜๊ณ  ์—ฃ์ง€์™€ ๋…ธ๋“œ๊ฐ€ ์ˆ˜๋ฐฑ๋งŒ~์ˆ˜์‹ญ์–ต ์ˆ˜์ค€์œผ๋กœ ๋ถ„์‚ฐ๋ผ ์žˆ๊ธฐ ๋•Œ๋ฌธ์— ํ•™์Šต ๊ณผ์ •์—์„œ ๋ฐœ์ƒํ•˜๋Š” ์ˆ˜์‹ญ๋งŒ~์ˆ˜๋ฐฑ๋งŒ ๊ฐœ์˜ ์ž‘์€ I/O ์š”์ฒญ์„ ํšจ์œจ์ ์œผ๋กœ ๋ณ‘ํ•ฉํ•˜๊ฑฐ๋‚˜ ์Šค์ผ€์ค„๋งํ•˜์ง€ ๋ชปํ•œ๋‹ค. ์ด๋Ÿฌํ•œ โ€˜์†Œํ˜• I/O ํญ์ฃผโ€™๋Š” ์Šคํ† ๋ฆฌ์ง€์˜ ์ˆœ์ฐจ ์ „์†ก ๋Œ€์—ญํญ์„ ํ™œ์šฉํ•˜์ง€ ๋ชปํ•˜๊ฒŒ ๋งŒ๋“ค๊ณ , ๊ฒฐ

Machine Learning Computer Science Network
Data Complexity-aware Deep Model Performance Forecasting

Data Complexity-aware Deep Model Performance Forecasting

์ด ๋…ผ๋ฌธ์€ โ€œ๋ฐ์ดํ„ฐ ๋ณต์žก๋„ ์ธ์‹ ๋”ฅ ๋ชจ๋ธ ์„ฑ๋Šฅ ์˜ˆ์ธกโ€์ด๋ผ๋Š” ์ฃผ์ œ๋กœ, ๋ชจ๋ธ ์„ค๊ณ„ ๋‹จ๊ณ„์—์„œ ์‚ฌ์ „์ ์œผ๋กœ ์„ฑ๋Šฅ์„ ์ถ”์ •ํ•  ์ˆ˜ ์žˆ๋Š” ๊ฒฝ๋Ÿ‰ํ™”๋œ ๋‘ ๋‹จ๊ณ„ ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์‹œํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ ๋‹จ๊ณ„๋Š” ๋ฐ์ดํ„ฐ ์ž์ฒด์˜ ํ†ต๊ณ„์ ยท๊ตฌ์กฐ์  ํŠน์„ฑ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ๋ฒ ์ด์Šค๋ผ์ธ ์„ฑ๋Šฅ์„ ์˜ˆ์ธกํ•œ๋‹ค. ์—ฌ๊ธฐ์—๋Š” ๋ฐ์ดํ„ฐ ๋ถ„์‚ฐ, ํด๋ž˜์Šค ๋ถˆ๊ท ํ˜•, ์ด๋ฏธ์ง€ ํ•ด์ƒ๋„, ํ…์ŠคํŠธ ๊ธธ์ด ๋“ฑ ๋‹ค์–‘ํ•œ ๋ฉ”ํŠธ๋ฆญ์ด ํฌํ•จ๋˜๋ฉฐ, ์ด๋Ÿฌํ•œ ํŠน์„ฑ์€ ๊ธฐ์กด ์—ฐ๊ตฌ์—์„œ ๋ชจ๋ธ ๋ณต์žก๋„์™€ ์ง์ ‘์ ์ธ ์ƒ๊ด€๊ด€๊ณ„๋ฅผ ๋ณด์ธ ๋ฐ” ์žˆ๋‹ค. ๋‘ ๋ฒˆ์งธ ๋‹จ๊ณ„๋Š” ๋ชจ๋ธ ์•„ํ‚คํ…์ฒ˜(์˜ˆ: ๋ ˆ์ด์–ด ์ˆ˜, ํŒŒ๋ผ๋ฏธํ„ฐ ๊ทœ๋ชจ, ์—ฐ์‚ฐ๋Ÿ‰)์™€ ์ฃผ์š” ํ•˜์ดํผํŒŒ๋ผ๋ฏธํ„ฐ(ํ•™์Šต๋ฅ , ๋ฐฐ์น˜

Computer Science Data Machine Learning Model
No Image

DrivingGen: A Comprehensive Benchmark for Generative Video World Models in Autonomous Driving

DrivingGen ๋…ผ๋ฌธ์€ ํ˜„์žฌ ์ž์œจ์ฃผํ–‰ ๋ถ„์•ผ์—์„œ ๊ธ‰์ฆํ•˜๊ณ  ์žˆ๋Š” โ€˜์ƒ์„ฑ ๋น„๋””์˜ค ์„ธ๊ณ„ ๋ชจ๋ธโ€™ ์—ฐ๊ตฌ์˜ ํ‰๊ฐ€ ์ฒด๊ณ„๊ฐ€ ๋ถ€์žฌํ•จ์„ ์ •ํ™•ํžˆ ์งš์–ด๋‚ธ๋‹ค. ๊ธฐ์กด ๋ฒค์น˜๋งˆํฌ๊ฐ€ ์ฃผ๋กœ PSNR, SSIM, LPIPS์™€ ๊ฐ™์€ ์ „ํ†ต์ ์ธ ๋น„๋””์˜ค ํ’ˆ์งˆ ์ง€ํ‘œ์— ์˜์กดํ•˜๋Š”๋ฐ, ์ด๋Ÿฌํ•œ ์ง€ํ‘œ๋Š” ํ”ฝ์…€ ์ˆ˜์ค€์˜ ์ฐจ์ด๋ฅผ ์ •๋Ÿ‰ํ™”ํ•  ๋ฟ, ์ž์œจ์ฃผํ–‰์— ํ•„์ˆ˜์ ์ธ ๋ฌผ๋ฆฌ์  ์ผ๊ด€์„ฑ์ด๋‚˜ ์•ˆ์ „์„ฑ์„ ๋ฐ˜์˜ํ•˜์ง€ ๋ชปํ•œ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด, ์ฐจ๋Ÿ‰์ด ๊ฐ‘์ž๊ธฐ ์‚ฌ๋ผ์ง€๊ฑฐ๋‚˜ ๋ณดํ–‰์ž๊ฐ€ ๋น„ํ˜„์‹ค์ ์ธ ์†๋„๋กœ ์›€์ง์ด๋Š” ๊ฒฝ์šฐ, ์‹œ๊ฐ์ ์œผ๋กœ๋Š” ๋†’์€ SSIM์„ ๊ธฐ๋กํ•˜๋”๋ผ๋„ ์‹ค์ œ ์ฃผํ–‰ ์‹œ๋‚˜๋ฆฌ์˜ค์—์„œ๋Š” ์น˜๋ช…์ ์ธ ์˜ค๋ฅ˜๊ฐ€ ๋œ๋‹ค. ๋…ผ๋ฌธ์€ ์ด๋Ÿฌํ•œ

Computer Science Model Computer Vision
EscherVerse: An Open World Benchmark and Dataset for Teleo-Spatial Intelligence with Physical-Dynamic and Intent-Driven Understanding

EscherVerse: An Open World Benchmark and Dataset for Teleo-Spatial Intelligence with Physical-Dynamic and Intent-Driven Understanding

๋ณธ ๋…ผ๋ฌธ์€ ์ธ๊ณต์ง€๋Šฅยท๋กœ๋ณดํ‹ฑ์Šค ๋ถ„์•ผ์—์„œ ์ตœ๊ทผ ์ฃผ๋ชฉ๋ฐ›๊ณ  ์žˆ๋Š” โ€œํ…”๋ ˆ์˜คโ€‘์ŠคํŽ˜์ด์…œ ์ธํ…”๋ฆฌ์ „์Šค(TSI)โ€๋ผ๋Š” ์ƒˆ๋กœ์šด ๊ฐœ๋…์„ ์ œ์‹œํ•œ๋‹ค. ๊ธฐ์กด์˜ ๋Œ€๋ถ€๋ถ„ ์—ฐ๊ตฌ๋Š” ๋ฌผ์ฒดโ€‘์ค‘์‹ฌ(objectโ€‘centric) ์ ‘๊ทผ์„ ์ทจํ•ด, ๋ฌผ๋ฆฌโ€‘๋™์—ญํ•™(Physicalโ€‘Dynamic) ๋ชจ๋ธ๋ง์— ์ง‘์ค‘ํ•œ๋‹ค. ์˜ˆ์ปจ๋Œ€, ๋ฌผ์ฒด์˜ ์งˆ๋Ÿ‰ยท๋งˆ์ฐฐยท์ถฉ๋Œ ๋ฒ•์น™์„ ์ด์šฉํ•ด ์‹œ๋ฎฌ๋ ˆ์ด์…˜ํ•˜๊ฑฐ๋‚˜, ๋น„์ „ ๊ธฐ๋ฐ˜ ํŠธ๋ž˜ํ‚น์„ ํ†ตํ•ด ์›€์ง์ž„์„ ์˜ˆ์ธกํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฐฉ๋ฒ•์€ ์ •๋Ÿ‰์  ์ •ํ™•๋„์—์„œ๋Š” ๋›ฐ์–ด๋‚˜์ง€๋งŒ, ์ธ๊ฐ„์ด ๋ฌผ์ฒด๋ฅผ ์กฐ์ž‘ํ•˜๊ฑฐ๋‚˜ ๋ฐฐ์น˜ํ•˜๋Š” ๊ทผ๋ณธ์ ์ธ โ€˜์˜๋„โ€™๋ฅผ ํŒŒ์•…ํ•˜์ง€ ๋ชปํ•œ๋‹ค๋Š” ํ•œ๊ณ„๊ฐ€ ์žˆ๋‹ค. TSI๋Š” ์ด๋Ÿฌํ•œ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ

Computer Vision Computer Science Data
REE-TTT: Highly Adaptive Radar Echo Extrapolation Based on Test-Time Training

REE-TTT: Highly Adaptive Radar Echo Extrapolation Based on Test-Time Training

๋ณธ ๋…ผ๋ฌธ์€ ๋ ˆ์ด๋” ์—์ฝ” ์™ธ์‚ฝ(Radar Echo Extrapolation, REE) ๋ถ„์•ผ์—์„œ ๊ฐ€์žฅ ์‹œ๊ธ‰ํ•œ ๋ฌธ์ œ์ธ ๋„๋ฉ”์ธ ์ „์ด์™€ ๋ฐ์ดํ„ฐ ๋ถ„ํฌ ๋ณ€ํ™” ์— ๋Œ€ํ•œ ํ•ด๊ฒฐ์ฑ…์„ ์ œ์‹œํ•œ๋‹ค. ๊ธฐ์กด์˜ ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜ REE ๋ชจ๋ธ์€ ๋Œ€๊ทœ๋ชจ ๋ ˆ์ด๋” ์‹œํ€€์Šค๋ฅผ ํ•™์Šตํ•ด ๋‹จ๊ธฐ ๊ฐ•์ˆ˜ ์˜ˆ๋ณด๋ฅผ ์ˆ˜ํ–‰ํ•˜์ง€๋งŒ, ํ•™์Šต ๋‹จ๊ณ„์—์„œ ์‚ฌ์šฉ๋œ ์ง€์—ญยท์‹œ์ฆŒยท๊ธฐํ›„ ์กฐ๊ฑด์— ๊ฐ•ํ•˜๊ฒŒ ์˜์กดํ•œ๋‹ค. ๋”ฐ๋ผ์„œ ์ƒˆ๋กœ์šด ์ง€์—ญ์ด๋‚˜ ๊ทนํ•œ ๊ฐ•์ˆ˜ ์ƒํ™ฉ์— ์ ์šฉํ•˜๋ฉด ์„ฑ๋Šฅ์ด ๊ธ‰๊ฒฉํžˆ ์ €ํ•˜๋˜๋Š” ๊ฒƒ์ด ์ผ๋ฐ˜์ ์ด๋‹ค. 1. ํ•ต์‹ฌ ์•„์ด๋””์–ด์™€ ๊ธฐ์—ฌ ํ…Œ์ŠคํŠธโ€‘์‹œ์  ํ•™์Šต(Testโ€‘Time Training, TTT) ์ ์šฉ : ๋ชจ๋ธ ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ

Computer Science Machine Learning
SwinIFS: Landmark Guided Swin Transformer For Identity Preserving Face Super Resolution

SwinIFS: Landmark Guided Swin Transformer For Identity Preserving Face Super Resolution

SwinIFS๋Š” ์–ผ๊ตด ์ดˆํ•ด์ƒ๋„(Face Superโ€‘Resolution, FSR) ๋ถ„์•ผ์—์„œ ๋‘ ๊ฐ€์ง€ ํ•ต์‹ฌ ๋ฌธ์ œ, ์ฆ‰ โ€˜์„ธ๋ฐ€ํ•œ ๊ตฌ์กฐ ์†์‹คโ€™๊ณผ โ€˜์•„์ด๋ดํ‹ฐํ‹ฐ ๋ณ€ํ˜•โ€™์— ๋™์‹œ์— ๋Œ€์‘ํ•˜๋ ค๋Š” ์‹œ๋„๋กœ ๋ˆˆ์— ๋ˆ๋‹ค. ๊ธฐ์กด CNN ๊ธฐ๋ฐ˜ ๋ฐฉ๋ฒ•๋“ค์€ ์ง€์—ญ์ ์ธ ํŠน์ง•์„ ์ž˜ ํฌ์ฐฉํ•˜์ง€๋งŒ, ์žฅ๊ฑฐ๋ฆฌ ์˜์กด์„ฑ์„ ๋ชจ๋ธ๋งํ•˜๊ธฐ์—” ํ•œ๊ณ„๊ฐ€ ์žˆ๋‹ค. ๋ฐ˜๋ฉด Vision Transformer(ViT) ๊ณ„์—ด์€ ์ „์—ญ ์ •๋ณด๋ฅผ ํšจ์œจ์ ์œผ๋กœ ํ•™์Šตํ•˜์ง€๋งŒ, ์–ผ๊ตด๊ณผ ๊ฐ™์ด ๊ณ ์ •๋œ ๊ตฌ์กฐ์  ํŒจํ„ด์„ ๋‹ค๋ฃฐ ๋•Œ๋Š” ์‚ฌ์ „ ์ง€์‹์ด ๋ถ€์กฑํ•ด ์„ธ๋ถ€ ๋””ํ…Œ์ผ ๋ณต์›์— ์•ฝ์ ์ด ์žˆ๋‹ค. SwinIFS๋Š” ์ด๋Ÿฌํ•œ ๋”œ๋ ˆ๋งˆ๋ฅผ โ€˜๋žœ๋“œ๋งˆํฌ ๊ฐ€์ด๋“œ

Computer Science Computer Vision
Correctness isnt Efficiency: Runtime Memory Divergence in LLM-Generated Code

Correctness isnt Efficiency: Runtime Memory Divergence in LLM-Generated Code

์ด ๋…ผ๋ฌธ์€ ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(LLM)์—์„œ ์ƒ์„ฑ๋œ ์ฝ”๋“œ์˜ ์‹คํ–‰ ์•ˆ์ •์„ฑ์— ์ค‘์ ์„ ๋‘๊ณ , ํŠนํžˆ ๋ฉ”๋ชจ๋ฆฌ ๋™์—ญํ•™ ์ธก๋ฉด์—์„œ ๊ทธ ์ค‘์š”์„ฑ์„ ๊ฐ•์กฐํ•œ๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ์—์„œ๋Š” ์ฃผ๋กœ LLM์˜ ์ถœ๋ ฅ ์ •ํ™•๋„์™€ ๋‹ค์–‘์„ฑ์— ์ดˆ์ ์„ ๋งž์ถ”์—ˆ์ง€๋งŒ, ์ด ๋…ผ๋ฌธ์€ ์ด๋Ÿฌํ•œ ์ •ํ™•ํ•œ ๊ฒฐ๊ณผ๊ฐ€ ๋ฐ˜๋“œ์‹œ ์‹คํ–‰ ์‹œ๊ฐ„ ๋ฉ”๋ชจ๋ฆฌ ํ”„๋กœํŒŒ์ผ๋ง์—์„œ๋„ ์•ˆ์ •์ ์ธ ์„ฑ๋Šฅ์„ ๋ณด์žฅํ•˜์ง€ ์•Š๋Š”๋‹ค๋Š” ์ ์„ ์ง€์ ํ•œ๋‹ค. ๋…ผ๋ฌธ์—์„œ ์ œ์‹œ๋œ ์ฃผ์š” ๊ธฐ์—ฌ ์ค‘ ํ•˜๋‚˜๋Š” Monotonic Peak Profile (MPP) ์™€ Dynamic Time Warping (DTW) ๋ฅผ ํ™œ์šฉํ•œ ์‹คํ–‰ ์‹œ๊ฐ„ ๋ฉ”๋ชจ๋ฆฌ ํ”„๋กœํŒŒ์ผ๋ง ๋ฐฉ๋ฒ•์ด๋‹ค. ์ด ๋ฐฉ๋ฒ•์€ ์• ํ”Œ

Computer Science Software Engineering
No Image

Improved Object-Centric Diffusion Learning with Registers and Contrastive Alignment

๋ณธ ๋…ผ๋ฌธ์€ ๊ฐ์ฒด ์ค‘์‹ฌ ํ•™์Šต(Object centric Learning, OCL) ๋ถ„์•ผ์—์„œ ์ค‘์š”ํ•œ ๊ธฐ์ˆ ์  ํ˜์‹ ์„ ์ œ์‹œํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. CODA(Contrastive Object centric Diffusion Alignment)๋Š” ์‚ฌ์ „ ํ•™์Šต๋œ ๋””ํ“จ์ „ ๋ชจ๋ธ์„ ํ™œ์šฉํ•˜์—ฌ ์Šฌ๋กฏ ์—ฎ์ž„๊ณผ ์•ฝํ•œ ์ •๋ ฌ์ด๋ผ๋Š” ์ฃผ์š” ๋„์ „ ๊ณผ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๋Š” ์ƒˆ๋กœ์šด ์ ‘๊ทผ ๋ฐฉ์‹์ž…๋‹ˆ๋‹ค. ๊ธฐ์ˆ ์  ํ˜์‹ ์„ฑ: 1. ๋“ฑ๋ก ์Šฌ๋กฏ(Register Slots): ๋“ฑ๋ก ์Šฌ๋กฏ์€ ๋…๋ฆฝ์ ์ธ ์ž…๋ ฅ ๋ฐ์ดํ„ฐ๋กœ ์ถ”๊ฐ€๋˜์–ด ์ž”์—ฌ ์ฃผ์˜๋ฅผ ํก์ˆ˜ํ•˜๊ณ  ๊ฐ์ฒด ์Šฌ๋กฏ ๊ฐ„์˜ ๊ฐ„์„ญ์„ ์ค„์ด๋Š” ์—ญํ• ์„ ํ•ฉ๋‹ˆ๋‹ค. ์ด๋Š” ์Šฌ๋กฏ ์—ฎ์ž„ ๋ฌธ

Computer Science Learning Computer Vision
RovoDev Code Reviewer: A Large-Scale Online Evaluation of LLM-based Code Review Automation at Atlassian

RovoDev Code Reviewer: A Large-Scale Online Evaluation of LLM-based Code Review Automation at Atlassian

RovoDev ์ฝ”๋“œ ๋ฆฌ๋ทฐ์–ด๋Š” LLM ๊ธฐ๋ฐ˜์˜ ์ฝ”๋“œ ๊ฒ€ํ†  ์ž๋™ํ™” ๋„๊ตฌ๋กœ์„œ, ํ˜„๋Œ€ ์†Œํ”„ํŠธ์›จ์–ด ๊ฐœ๋ฐœ ํ”„๋กœ์„ธ์Šค์—์„œ ์ค‘์š”ํ•œ ์—ญํ• ์„ ์ˆ˜ํ–‰ํ•œ๋‹ค. ์ด ๋…ผ๋ฌธ์€ RovoDev์ด ์–ด๋–ป๊ฒŒ ๋ฐ์ดํ„ฐ ํ”„๋ผ์ด๋ฒ„์‹œ์™€ ๋ณด์•ˆ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ณ , ๋ฆฌ๋ทฐ ๊ฐ€์ด๋“œ๋ผ์ธ์— ๋”ฐ๋ฅธ ์ •ํ™•ํ•œ ์ฝ”๋“œ ๊ฒ€ํ† ๋ฅผ ์ œ๊ณตํ•˜๋ฉฐ, ์ƒˆ๋กœ์šด ํ”„๋กœ์ ํŠธ์—์„œ๋„ ํšจ๊ณผ์ ์œผ๋กœ ์ž‘๋™ํ•˜๋Š”์ง€ ์„ค๋ช…ํ•œ๋‹ค. ๊ธฐ์ˆ ์  ํ˜์‹ ์„ฑ: RovoDev์˜ ํ•ต์‹ฌ ๊ธฐ์ˆ ์€ ์ œ๋กœ์ƒท ์ปจํ…์ŠคํŠธ ์ธ์‹ ๋ฆฌ๋ทฐ ๋Œ“๊ธ€ ์ƒ์„ฑ, ์‚ฌ์‹ค์  ์ •ํ™•์„ฑ ํ’ˆ์งˆ ๊ฒ€์‚ฌ, ๊ทธ๋ฆฌ๊ณ  ํ–‰๋™์„ฑ ํ’ˆ์งˆ ๊ฒ€์‚ฌ๋ฅผ ํ†ตํ•œ ์œ ํšจํ•˜๊ณ  ํ–‰๋™ ๊ฐ€๋Šฅํ•œ ๋ฆฌ๋ทฐ ๋Œ“๊ธ€ ์ถ”์ฒœ์ด๋‹ค. ์ด ์ค‘ ํŠนํžˆ ์ œ๋กœ์ƒท ์ ‘๊ทผ ๋ฐฉ์‹์€ ๊ณ ๊ฐ

Computer Science Software Engineering
No Image

CoCo-Fed: A Unified Framework for Memory- and Communication-Efficient Federated Learning at the Wireless Edge

CoCoโ€‘Fed๊ฐ€ ์ œ์‹œํ•˜๋Š” ๋‘ ๊ฐ€์ง€ ํ•ต์‹ฌ ํ˜์‹ ์€ โ€˜์ด์ค‘ ์ฐจ์› ๋‹ค์šดํ”„๋กœ์ ์…˜โ€™๊ณผ โ€˜์ง๊ต ๋ถ€๋ถ„๊ณต๊ฐ„ ์ดˆ์ค‘์ฒฉ ์ „์†กโ€™์ด๋‹ค. ์ฒซ ๋ฒˆ์งธ ๋‹จ๊ณ„์—์„œ๋Š” ๊ธฐ์กด ์—ฐํ•ฉ ํ•™์Šต์—์„œ ๊ฐ gNB๊ฐ€ ์ „์ฒด ๋ชจ๋ธ ํŒŒ๋ผ๋ฏธํ„ฐ์— ๋Œ€ํ•œ ๊ทธ๋ž˜๋””์–ธํŠธ๋ฅผ ์ €์žฅยท์ „์†กํ•ด์•ผ ํ•˜๋Š” ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•œ๋‹ค. ์ €์ž๋“ค์€ ๊ทธ๋ž˜๋””์–ธํŠธ๋ฅผ ๋จผ์ € ์ฑ„๋„ ์ฐจ์›(์˜ˆ: ์ž…๋ ฅ ํ”ผ์ฒ˜)๊ณผ ๋ชจ๋ธ ์ฐจ์›(์˜ˆ: ์ถœ๋ ฅ ํ”ผ์ฒ˜) ๋‘ ์ถ•์—์„œ ๊ฐ๊ฐ ์ €โ€‘๋žญํฌ ํ–‰๋ ฌ๋กœ ๊ทผ์‚ฌํ•œ๋‹ค. ์ด๋•Œ ์‚ฌ์šฉ๋˜๋Š” ํˆฌ์‚ฌ ํ–‰๋ ฌ์€ ์‚ฌ์ „์— ํ•™์Šต๋œ ๊ณ ์ • ์ •๊ทœ ์ง๊ต ํ–‰๋ ฌ์ด๊ฑฐ๋‚˜, ๊ฐ ๋ผ์šด๋“œ๋งˆ๋‹ค ๋žœ๋คํ•˜๊ฒŒ ์ƒ์„ฑ๋œ ์Šค์ผ€์น˜ ํ–‰๋ ฌ์ผ ์ˆ˜ ์žˆ๋‹ค. ์ด๋ ‡๊ฒŒ ํ•˜๋ฉด ๋ฉ”๋ชจ๋ฆฌ ์š”๊ตฌ๋Ÿ‰์ด O(rankยท

Computer Science Learning Information Theory Framework
Detecting Performance Degradation under Data Shift in Pathology Vision-Language Model

Detecting Performance Degradation under Data Shift in Pathology Vision-Language Model

๋ณธ ๋…ผ๋ฌธ์€ ์ตœ๊ทผ ์˜๋ฃŒ ์˜์ƒ ๋ถ„์•ผ์—์„œ ๊ฐ๊ด‘๋ฐ›๊ณ  ์žˆ๋Š” ๋น„์ „โ€‘์–ธ์–ด ๋ชจ๋ธ(VLM)์˜ ์‹ค์ œ ์šด์˜ ๋‹จ๊ณ„์—์„œ ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ๋Š” โ€˜๋ฐ์ดํ„ฐ ์‹œํ”„ํŠธ(data shift)โ€™ ๋ฌธ์ œ์— ์ดˆ์ ์„ ๋งž์ถ”์—ˆ๋‹ค. ๋ฐ์ดํ„ฐ ์‹œํ”„ํŠธ๋Š” ํฌ๊ฒŒ ๋‘ ๊ฐ€์ง€ ์ฐจ์›์œผ๋กœ ๋‚˜๋‰œ๋‹ค. ์ฒซ ๋ฒˆ์งธ๋Š” ์ž…๋ ฅ ๋ฐ์ดํ„ฐ ์ž์ฒด๊ฐ€ ํ›ˆ๋ จ ์‹œ์™€ ๋‹ค๋ฅธ ๋ถ„ํฌ๋ฅผ ๋ณด์ด๋Š” ๊ฒฝ์šฐ์ด๋ฉฐ, ๋‘ ๋ฒˆ์งธ๋Š” ๋ชจ๋ธ์ด ์ถœ๋ ฅํ•˜๋Š” ์˜ˆ์ธก๊ฐ’์ด๋‚˜ ์‹ ๋ขฐ๋„(confidence)๊ฐ€ ๋ณ€ํ•˜๋Š” ๊ฒฝ์šฐ์ด๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค์€ ์ฃผ๋กœ ์ž…๋ ฅ ์ฐจ์›์˜ ํ†ต๊ณ„์  ๋ณ€ํ™”๋ฅผ ํƒ์ง€ํ•˜๋Š” ๋ฐฉ๋ฒ•์— ์˜์กดํ–ˆ์ง€๋งŒ, ์ด๋Ÿฌํ•œ ๋ณ€๋™์ด ๋ฐ˜๋“œ์‹œ ๋ชจ๋ธ ์„ฑ๋Šฅ ์ €ํ•˜์™€ ์ง๊ฒฐ๋˜์ง€ ์•Š๋Š”๋‹ค๋Š” ์ ์„ ๊ฐ„๊ณผํ•˜๊ณ  ์žˆ์—ˆ๋‹ค.

Computer Science Model Data Computer Vision
ElecTwit: A Framework for Studying Persuasion in Multi-Agent Social Systems

ElecTwit: A Framework for Studying Persuasion in Multi-Agent Social Systems

ElecTwit์ด ์ œ์‹œํ•˜๋Š” ๊ฐ€์žฅ ํฐ ํ˜์‹ ์€ ์„ค๋“ ์—ฐ๊ตฌ๋ฅผ ์œ„ํ•œ ์‹คํ—˜ ํ™˜๊ฒฝ์„ โ€˜๊ฒŒ์ž„โ€™์ด๋ผ๋Š” ์ธ์œ„์  ์„ค์ •์—์„œ ๋ฒ—์–ด๋‚˜ ์‹ค์ œ ์†Œ์…œ ๋ฏธ๋””์–ด ํ”Œ๋žซํผ์˜ ๊ตฌ์กฐ์™€ ํ–‰ํƒœ๋ฅผ ๋ชจ์‚ฌํ•œ ์ ์ด๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ์ €์ž๋“ค์€ ํŠธ์œ„ํ„ฐ์™€ ์œ ์‚ฌํ•œ ๊ฒŒ์‹œยท๋ฆฌํŠธ์œ—ยทํŒ”๋กœ์šฐ ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ๊ตฌํ˜„ํ•˜๊ณ , ์ •์น˜์  ์„ ๊ฑฐ๋ผ๋Š” ๊ตฌ์ฒด์  ์‹œ๋‚˜๋ฆฌ์˜ค๋ฅผ ์„ค์ •ํ•จ์œผ๋กœ์จ ์—์ด์ „ํŠธ ๊ฐ„์˜ ์ •๋ณด ํ๋ฆ„, ์˜๊ฒฌ ํ˜•์„ฑ, ๊ทธ๋ฆฌ๊ณ  ์„ค๋“ ์ „๋žต์˜ ์ „๊ฐœ ๊ณผ์ •์„ ์ •๋ฐ€ํ•˜๊ฒŒ ๊ด€์ฐฐํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ํŠนํžˆ 25๊ฐ€์ง€ ์„ค๋“ ๊ธฐ๋ฒ•์„ ์‚ฌ์ „ ์ •์˜ํ•˜๊ณ , ๊ฐ LLM์ด ์ด๋ฅผ ์–ด๋–ป๊ฒŒ ์„ ํƒยท์กฐํ•ฉํ•˜๋Š”์ง€๋ฅผ ์ •๋Ÿ‰ํ™”ํ•œ ๋ฐฉ๋ฒ•๋ก ์€ ์„ค๋“ ๊ธฐ์ˆ ์˜ โ€˜๋ ˆ์‹œํ”ผโ€™๋ฅผ ๋น„๊ต ๋ถ„์„ํ•˜๋Š” ๋ฐ

Computer Science Artificial Intelligence Framework System
No Image

LLM Agents for Combinatorial Efficient Frontiers: Investment Portfolio Optimization

๋ณธ ๋…ผ๋ฌธ์€ ์–ธ์–ด ๋ชจ๋ธ(LLM)์„ ํ™œ์šฉํ•œ ์—์ด์ „ํŠธ ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ํ†ตํ•ด ๋ณต์žกํ•œ ์กฐํ•ฉ ์ตœ์ ํ™” ๋ฌธ์ œ์— ์ƒˆ๋กœ์šด ์ ‘๊ทผ ๋ฐฉ์‹์„ ์ œ์‹œํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ด ์—ฐ๊ตฌ์˜ ํ•ต์‹ฌ ๊ฐ€์น˜๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์€ ๊ธฐ์ˆ ์  ํ˜์‹ ์„ฑ, ๋ฐฉ๋ฒ•๋ก , ์‹คํ—˜ ๊ฒฐ๊ณผ๋ฅผ ํ†ตํ•ด ๋ถ„์„ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. 1. ๊ธฐ์ˆ ์  ํ˜์‹ ์„ฑ: ๋ณธ ๋…ผ๋ฌธ์€ LLM์„ ํ™œ์šฉํ•œ ์—์ด์ „ํŠธ ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์‹œํ•จ์œผ๋กœ์จ, ๊ธฐ์กด์˜ ํ•™๋ฌธ์ ์ธ ์ตœ์ ํ™” ์ ‘๊ทผ๋ฒ•์—์„œ ๋ฒ—์–ด๋‚˜ ์‹ค์ œ ์ƒํ™œ ๋ฌธ์ œ์— ์ดˆ์ ์„ ๋งž์ถ”๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ํŠนํžˆ, NPhardํ•œ ์กฐํ•ฉ ์ตœ์ ํ™” ๋ฌธ์ œ ํ•ด๊ฒฐ์— ์žˆ์–ด LLM์„ ํ™œ์šฉํ•˜๋Š” ๊ฒƒ์€ ์ด์ „ ์—ฐ๊ตฌ์—์„œ๋Š” ์ฐพ์•„๋ณด๊ธฐ ์–ด๋ ค์šด ํ˜์‹ ์ ์ธ ์‹œ๋„์ž…๋‹ˆ๋‹ค. MOCO

Computer Science Computational Engineering
LOFA: Online Influence Maximization under Full-Bandit Feedback using Lazy Forward Selection

LOFA: Online Influence Maximization under Full-Bandit Feedback using Lazy Forward Selection

๋ณธ ๋…ผ๋ฌธ์ด ๋‹ค๋ฃจ๋Š” ์˜จ๋ผ์ธ ์˜ํ–ฅ๋ ฅ ์ตœ๋Œ€ํ™”(Online Influence Maximization, OIM) ๋ฌธ์ œ๋Š” ์ „ํ†ต์ ์ธ ์ •์  IM๊ณผ ๋‹ฌ๋ฆฌ ์‹œ๊ฐ„์— ๋”ฐ๋ผ ์‹œ๋“œ ์ง‘ํ•ฉ์„ ๋™์ ์œผ๋กœ ์„ ํƒํ•ด์•ผ ํ•˜๋Š” ์ƒํ™ฉ์„ ์ „์ œ๋กœ ํ•œ๋‹ค. ์—ฌ๊ธฐ์„œ โ€˜์ „์ฒด ๋ฐด๋”ง(fullโ€‘bandit) ํ”ผ๋“œ๋ฐฑโ€™์ด๋ผ๋Š” ๊ฐ€์ •์€ ์—์ด์ „ํŠธ๊ฐ€ ๋งค ๋ผ์šด๋“œ๋งˆ๋‹ค ์„ ํƒํ•œ ์‹œ๋“œ ์ง‘ํ•ฉ์— ์˜ํ•ด ์‹ค์ œ๋กœ ๋ฐœ์ƒํ•œ ํ™•์‚ฐ ๊ทœ๋ชจ(์ฆ‰, ์ „์ฒด ํ™œ์„ฑํ™”๋œ ๋…ธ๋“œ ์ˆ˜)๋งŒ์„ ๊ด€์ฐฐํ•œ๋‹ค๋Š” ์˜๋ฏธ์ด๋ฉฐ, ์ด๋Š” ๊ฐ ๋…ธ๋“œ๋ณ„ ํ™œ์„ฑํ™” ์—ฌ๋ถ€๋‚˜ ๋„คํŠธ์›Œํฌ์˜ ์ธ์ ‘ ํ–‰๋ ฌ ๋“ฑ ์ถ”๊ฐ€์ ์ธ ๊ตฌ์กฐ์  ์ •๋ณด๋ฅผ ์ „ํ˜€ ์ œ๊ณตํ•˜์ง€ ์•Š๋Š”๋‹ค. ์ด๋Ÿฌํ•œ ์ œํ•œ๋œ ํ”ผ๋“œ๋ฐฑ ํ™˜๊ฒฝ์—์„œ๋Š”

Machine Learning Computer Science
An AI Monkey Gets Grapes for Sure -- Sphere Neural Networks for Reliable Decision-Making

An AI Monkey Gets Grapes for Sure -- Sphere Neural Networks for Reliable Decision-Making

๋ณธ ์—ฐ๊ตฌ๋Š” ํ˜„์žฌ ์ธ๊ณต์ง€๋Šฅ ์ถ”๋ก  ๋ถ„์•ผ์—์„œ ๊ฐ€์žฅ ๋…ผ์Ÿ์ด ๋˜๋Š” ์„ธ ๊ฐ€์ง€ ์ ‘๊ทผ๋ฒ•์„ ์ฒด๊ณ„์ ์œผ๋กœ ๋น„๊ตํ•จ์œผ๋กœ์จ, โ€œ์‹ ๋ขฐ์„ฑโ€์ด๋ผ๋Š” ๊ด€์ ์—์„œ ์ค‘์š”ํ•œ ํ†ต์ฐฐ์„ ์ œ๊ณตํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ ๋ฒ”์ฃผ์ธ ๋Œ€๊ทœ๋ชจ ์–ธ์–ด ๋ชจ๋ธ(LLM) ๊ธฐ๋ฐ˜ ์ถ”๋ก ์€ ๋ฐฉ๋Œ€ํ•œ ํ…์ŠคํŠธ ์ฝ”ํผ์Šค๋ฅผ ์‚ฌ์ „ ํ•™์Šตํ•จ์œผ๋กœ์จ ์–ธ์–ด์  ์œ ์—ฐ์„ฑ์„ ์–ป์ง€๋งŒ, ๋…ผ๋ฆฌ์  ์ผ๊ด€์„ฑ ์œ ์ง€์™€ ๊ฐ™์€ ์—„๊ฒฉํ•œ ํŒ๋‹จ์—์„œ๋Š” ์—ฌ์ „ํžˆ ๋ถˆ์•ˆ์ •ํ•œ ๊ฒฐ๊ณผ๋ฅผ ๋ณด์ธ๋‹ค. ์ด๋Š” LLM์ด ํ†ต๊ณ„์  ํŒจํ„ด์— ๊ธฐ๋ฐ˜ํ•œ ์˜ˆ์ธก์„ ์ˆ˜ํ–‰ํ•˜๊ธฐ ๋•Œ๋ฌธ์—, ๋ช…์‹œ์ ์ธ ๋…ผ๋ฆฌ ๊ทœ์น™์„ ๋‚ด์žฌํ™”ํ•˜์ง€ ๋ชปํ•œ๋‹ค๋Š” ๊ทผ๋ณธ์ ์ธ ํ•œ๊ณ„์™€ ์—ฐ๊ฒฐ๋œ๋‹ค. ๋‘ ๋ฒˆ์งธ์ธ ๊ฐ๋… ํ•™์Šต ๊ธฐ๋ฐ˜ ์ถ”๋ก ์€ ํŠน์ • ๋…ผ๋ฆฌ ๊ณผ์ œ์— ๋Œ€ํ•ด ๋ผ

Network Computer Science Artificial Intelligence
An Empirical Evaluation of LLM-Based Approaches for Code Vulnerability Detection: RAG, SFT, and Dual-Agent Systems

An Empirical Evaluation of LLM-Based Approaches for Code Vulnerability Detection: RAG, SFT, and Dual-Agent Systems

๋ณธ ์—ฐ๊ตฌ๋Š” LLM์„ ํ™œ์šฉํ•œ ์ฝ”๋“œ ์ทจ์•ฝ์  ํƒ์ง€์˜ ์‹ค์šฉ์„ฑ์„ ์ •๋Ÿ‰์ ์œผ๋กœ ํ‰๊ฐ€ํ•˜๊ธฐ ์œ„ํ•ด ์„ธ ๊ฐ€์ง€ ์ ‘๊ทผ๋ฒ•์„ ์ฒด๊ณ„์ ์œผ๋กœ ๋น„๊ตํ•˜์˜€๋‹ค. ์ฒซ ๋ฒˆ์งธ ์ ‘๊ทผ๋ฒ•์ธ Retrievalโ€‘Augmented Generation(RAG)์€ ์‚ฌ์ „ ํ•™์Šต๋œ LLM์— ์™ธ๋ถ€ ์ง€์‹ ๋ฒ ์ด์Šค๋ฅผ ๋™์ ์œผ๋กœ ์—ฐ๊ฒฐํ•œ๋‹ค. ๊ตฌ์ฒด์ ์œผ๋กœ, MITRE CWE ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค์™€ ์ตœ์‹  ์›น ๊ฒ€์ƒ‰ ๊ฒฐ๊ณผ๋ฅผ ์‹ค์‹œ๊ฐ„์œผ๋กœ ๊ฐ€์ ธ์™€ ํ”„๋กฌํ”„ํŠธ์— ์‚ฝ์ž…ํ•จ์œผ๋กœ์จ ๋ชจ๋ธ์ด ์ฝ”๋“œ ์กฐ๊ฐ์„ ํ•ด์„ํ•  ๋•Œ ์ตœ์‹  ๋ณด์•ˆ ํŒจํ„ด๊ณผ CWE ์ •์˜๋ฅผ ์ฐธ์กฐํ•˜๋„๋ก ์„ค๊ณ„๋˜์—ˆ๋‹ค. ์ด ๊ณผ์ •์€ ๋ฒกํ„ฐ ๊ฒ€์ƒ‰ ์—”์ง„(FAISS)๊ณผ ํ…์ŠคํŠธ ์ž„๋ฒ ๋”ฉ์„ ํ™œ์šฉํ•ด ๊ด€๋ จ ๋ฌธ์„œ๋ฅผ

System Computer Science Software Engineering Detection
Device-Native Autonomous Agents for Privacy-Preserving Negotiations

Device-Native Autonomous Agents for Privacy-Preserving Negotiations

๋ณธ ๋…ผ๋ฌธ์€ ๊ธฐ์กด ํด๋ผ์šฐ๋“œโ€‘์ค‘์‹ฌ ํ˜‘์ƒ ํ”Œ๋žซํผ์ด ๊ฐ–๋Š” โ€œ๋ฐ์ดํ„ฐ ์ค‘์•™์ง‘์ค‘ โ†’ ๋ณด์•ˆ ์œ„ํ˜‘ โ†’ ์‚ฌ์šฉ์ž ์‹ ๋ขฐ ์ €ํ•˜โ€๋ผ๋Š” ๊ตฌ์กฐ์  ๋ฌธ์ œ๋ฅผ ๊ทผ๋ณธ์ ์œผ๋กœ ์žฌ๊ตฌ์„ฑํ•œ๋‹ค๋Š” ์ ์—์„œ ํ•™์ˆ ์ ยท์‚ฐ์—…์  ์˜์˜๋ฅผ ๊ฐ€์ง„๋‹ค. ์ฒซ ๋ฒˆ์งธ๋กœ, ๋””๋ฐ”์ด์Šคโ€‘๋„ค์ดํ‹ฐ๋ธŒ( deviceโ€‘native ) ์•„ํ‚คํ…์ฒ˜๋Š” ๋ชจ๋“  ํ˜‘์ƒ ๋กœ์ง๊ณผ ์ œ์•ฝ ์กฐ๊ฑด์„ ์‚ฌ์šฉ์ž์˜ ๋กœ์ปฌ ํ™˜๊ฒฝ์— ๊ฒฉ๋ฆฌํ•จ์œผ๋กœ์จ ๋ฐ์ดํ„ฐ ํƒˆ์ทจ ์œ„ํ—˜์„ ์ตœ์†Œํ™”ํ•œ๋‹ค. ์ด๋Š” ํŠนํžˆ GDPRยทCCPA ๋“ฑ ๋ฐ์ดํ„ฐ ์ฃผ๊ถŒ ๊ทœ์ œ๊ฐ€ ๊ฐ•ํ™”๋˜๋Š” ํ˜„์žฌ ์ƒํ™ฉ์—์„œ ๋ฒ•์ ยท๊ทœ์ œ์  ์ปดํ”Œ๋ผ์ด์–ธ์Šค๋ฅผ ์ž์—ฐ์Šค๋Ÿฝ๊ฒŒ ์ถฉ์กฑํ•œ๋‹ค๋Š” ์žฅ์ ์ด ์žˆ๋‹ค. ๋‘ ๋ฒˆ์งธ๋กœ, ์ œ๋กœ ์ง€์‹ ์ฆ๋ช…(zeroโ€‘knowl

Computer Science Cryptography and Security

< Category Statistics (Total: 769) >

Electrical Engineering and Systems Science
7
General
272
General Relativity
9
HEP-EX
7
HEP-PH
12
HEP-TH
7
MATH-PH
4
NUCL-TH
1
Quantum Physics
10

Start searching

Enter keywords to search articles

โ†‘โ†“
โ†ต
ESC
โŒ˜K Shortcut