Posts

Here are all published articles, sorted by date in descending order.

827 posts total
17 pages total
Prompted Policy Search: Reinforcement Learning through Linguistic and Numerical Reasoning in LLMs

Prompted Policy Search: Reinforcement Learning through Linguistic and Numerical Reasoning in LLMs

Prompted Policy Search(ProPS)๋Š” ๊ธฐ์กด ๊ฐ•ํ™”ํ•™์Šต ํŒจ๋Ÿฌ๋‹ค์ž„์— ๊ทผ๋ณธ์ ์ธ ๋ณ€ํ™”๋ฅผ ์‹œ๋„ํ•œ๋‹ค. ์ „ํ†ต์ ์ธ RL ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ์ฃผ๋กœ ํ™˜๊ฒฝ์œผ๋กœ๋ถ€ํ„ฐ ์–ป๋Š” ์Šค์นผ๋ผ ๋ณด์ƒ์— ๊ธฐ๋ฐ˜ํ•ด ์ •์ฑ…์„ ์—…๋ฐ์ดํŠธํ•œ๋‹ค. ์ด ์ ‘๊ทผ๋ฒ•์€ ์ˆ˜ํ•™์ ์œผ๋กœ๋Š” ๊น”๋”ํ•˜์ง€๋งŒ, ์‹ค์ œ ๋ฌธ์ œ์—์„œ๋Š” ๋ชฉํ‘œ ์„ค๋ช…, ์ œ์•ฝ ์กฐ๊ฑด, ์ธ๊ฐ„ ์ „๋ฌธ๊ฐ€์˜ ์กฐ์–ธ ๋“ฑ ํ…์ŠคํŠธ ํ˜•ํƒœ์˜ ํ’๋ถ€ํ•œ ๋ฉ”ํƒ€ ์ •๋ณด๋ฅผ ๋ฌด์‹œํ•œ๋‹ค๋Š” ํ•œ๊ณ„๊ฐ€ ์žˆ๋‹ค. ProPS๋Š” ์ด๋Ÿฌํ•œ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(LLM)์„ ์ •์ฑ… ์ตœ์ ํ™”์˜ ํ•ต์‹ฌ ์—”์ง„์œผ๋กœ ํ™œ์šฉํ•œ๋‹ค. ๊ตฌ์ฒด์ ์œผ๋กœ, ์—์ด์ „ํŠธ๊ฐ€ ํ™˜๊ฒฝ์—์„œ ์–ป์€ ๋ณด์ƒ๊ณผ ํ•จ๊ป˜ โ€œ๋ชฉํ‘œ๋Š” โ€˜๊ณต์„ ์žก์•„

Learning
Can Vibe Coding Beat Graduate CS Students? An LLM vs. Human Coding Tournament on Market-driven Strategic Planning

Can Vibe Coding Beat Graduate CS Students? An LLM vs. Human Coding Tournament on Market-driven Strategic Planning

์ด ๋…ผ๋ฌธ์€ ํ˜„์žฌ LLM ๊ธฐ๋ฐ˜ ์ฝ”๋“œ ์ƒ์„ฑ ์—ฐ๊ตฌ๊ฐ€ ์ง๋ฉดํ•œ ๊ทผ๋ณธ์ ์ธ ํ‰๊ฐ€ ๋ฌธ์ œ๋ฅผ ์งš์–ด๋‚ธ๋‹ค. ๋Œ€๋ถ€๋ถ„์˜ ๊ธฐ์กด ๋ฒค์น˜๋งˆํฌ๋Š” ๋‹จ์ˆœํžˆ ์ฝ”๋“œ๊ฐ€ ๋ฌธ๋ฒ•์ ์œผ๋กœ ์˜ฌ๋ฐ”๋ฅธ์ง€, ํ˜น์€ ์‚ฌ์ „ ์ •์˜๋œ ํ…Œ์ŠคํŠธ ์ผ€์ด์Šค๋ฅผ ํ†ต๊ณผํ•˜๋Š”์ง€๋งŒ์„ ํ™•์ธํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์‹ค์ œ ์‚ฐ์—… ํ˜„์žฅ์—์„œ๋Š” ์ฝ”๋“œ๊ฐ€ ๋ณต์žกํ•œ ์˜์‚ฌ๊ฒฐ์ • ํ๋ฆ„, ์ตœ์ ํ™” ์•Œ๊ณ ๋ฆฌ์ฆ˜, ๊ทธ๋ฆฌ๊ณ  ๋‹ค์ค‘ ์—์ด์ „ํŠธ ๊ฐ„์˜ ์ „๋žต์  ์ƒํ˜ธ์ž‘์šฉ์„ ํšจ๊ณผ์ ์œผ๋กœ ๊ตฌํ˜„ํ•ด์•ผ ํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ์š”๊ตฌ๋ฅผ ๋ฐ˜์˜ํ•˜๊ธฐ ์œ„ํ•ด ์—ฐ๊ตฌ์ง„์€ Auctionโ€‘Pickupโ€‘Delivery Problem(APDP)์ด๋ผ๋Š” ๋ณตํ•ฉ ๋ฌผ๋ฅ˜ ๋ฌธ์ œ๋ฅผ ์„ ํƒํ–ˆ๋‹ค. APDP๋Š” ์ž…์ฐฐ ๋‹จ๊ณ„์—์„œ ๋ถˆํ™•์‹คํ•œ ๊ฒฝ์Ÿ ์ƒํ™ฉ

Enhancing Geo-localization for Crowdsourced Flood Imagery via LLM-Guided Attention

Enhancing Geo-localization for Crowdsourced Flood Imagery via LLM-Guided Attention

๋ณธ ๋…ผ๋ฌธ์€ ์‚ฌํšŒ ๋ฏธ๋””์–ด์—์„œ ์ˆ˜์ง‘๋œ ์ŠคํŠธ๋ฆฌํŠธ ๋ทฐ ์ด๋ฏธ์ง€๋ฅผ ํ™œ์šฉํ•˜์—ฌ ๋„์‹œ ํ™์ˆ˜์™€ ๊ฐ™์€ ์œ„๊ธฐ ์ƒํ™ฉ์„ ์‹ค์‹œ๊ฐ„์œผ๋กœ ๋ชจ๋‹ˆํ„ฐ๋งํ•˜๋Š” ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด VPR AttLLM ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์•ˆํ•œ๋‹ค. ๊ธฐ์กด์˜ VPR ๋ชจ๋ธ๋“ค์€ ๊ต์ฐจ ์†Œ์Šค ์‹œ๋‚˜๋ฆฌ์˜ค์—์„œ ๋ฐœ์ƒํ•˜๋Š” ์‹œ๊ฐ์  ์™œ๊ณก๊ณผ ๋„๋ฉ”์ธ ์ด๋™์œผ๋กœ ์ธํ•ด ์„ฑ๋Šฅ์ด ์ €ํ•˜๋˜๋Š” ํ•œ๊ณ„๊ฐ€ ์žˆ๋‹ค. ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด, ๋ณธ ๋…ผ๋ฌธ์€ LLMs์˜ ์˜๋ฏธ๋ก ์  ์ถ”๋ก  ๋ฐ ์ง€๋ฆฌ ๊ณต๊ฐ„ ์ง€์‹์„ ์ฃผ์˜ ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ํ†ตํ•ด ๊ธฐ์กด VPR ํŒŒ์ดํ”„๋ผ์ธ์— ํ†ตํ•ฉํ•˜๋Š” ๋ชจ๋ธ์— ๋ฌด๊ด€ํ•œ ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์‹œํ•œ๋‹ค. VPR AttLLM์€ LLMs์„ ํ™œ์šฉํ•˜์—ฌ ์ด๋ฏธ์ง€ ๋‚ด์—์„œ ์œ„์น˜

HVAdam: A Full-Dimension Adaptive Optimizer

HVAdam: A Full-Dimension Adaptive Optimizer

๋ณธ ์—ฐ๊ตฌ๋Š” ํ˜„์žฌ ๋”ฅ๋Ÿฌ๋‹ ์ปค๋ฎค๋‹ˆํ‹ฐ์—์„œ ๋„๋ฆฌ ์‚ฌ์šฉ๋˜๋Š” ์ ์‘ํ˜• ์˜ตํ‹ฐ๋งˆ์ด์ €์ธ AdamยทRMSProp์ด ๊ฐ–๋Š” ๊ทผ๋ณธ์ ์ธ ๊ตฌ์กฐ์  ํ•œ๊ณ„๋ฅผ ์ง€์ ํ•œ๋‹ค. ๊ธฐ์กด ์ ์‘ํ˜• ๋ฐฉ๋ฒ•์€ 1์ฐจ์›(๊ฐ ํŒŒ๋ผ๋ฏธํ„ฐ)๋ณ„๋กœ ์ˆœ๊ฐ„์ ์ธ 1์ฐจยท2์ฐจ ๋ชจ๋ฉ˜ํŠธ๋ฅผ ์ถ”์ •ํ•ด ํ•™์Šต๋ฅ ์„ ์กฐ์ •ํ•œ๋‹ค. ์ด๋Š” ๊ฐ ํŒŒ๋ผ๋ฏธํ„ฐ๊ฐ€ ๋…๋ฆฝ์ ์œผ๋กœ ์›€์ง์ธ๋‹ค๋Š” ์ „์ œ ํ•˜์— ์„ค๊ณ„๋œ ๊ฒƒ์ด๋ฉฐ, ์‹ค์ œ ๊ณ ์ฐจ์› ์†์‹ค ํ‘œ๋ฉด์—์„œ๋Š” ํŒŒ๋ผ๋ฏธํ„ฐ ๊ฐ„ ์ƒ๊ด€๊ด€๊ณ„๊ฐ€ ๋ณต์žกํ•˜๊ฒŒ ์–ฝํ˜€ ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ์ƒ๊ด€๊ด€๊ณ„๋ฅผ ๋ฌด์‹œํ•˜๋ฉด, ์˜ˆ๋ฅผ ๋“ค์–ด ์†์‹ค์ด ์ข์€ ๊ณจ์งœ๊ธฐ ํ˜•ํƒœ๋กœ ์—ฐ์†๋˜๋Š” ๊ฒฝ์šฐ ํ•œ ์ฐจ์›์—์„œ๋Š” ๊ธ‰๊ฒฉํžˆ ๊ฐ์†Œํ•˜์ง€๋งŒ ๋‹ค๋ฅธ ์ฐจ์›์—์„œ๋Š” ์™„๋งŒํžˆ ๋ณ€ํ•˜๋Š” ์ƒํ™ฉ์—์„œ, ๊ฐœ๋ณ„ ํ•™

MotionV2V: Editing Motion in a Video

MotionV2V: Editing Motion in a Video

๋ณธ ๋…ผ๋ฌธ์€ ์ตœ๊ทผ ๊ธ‰๊ฒฉํžˆ ๋ฐœ์ „ํ•˜๊ณ  ์žˆ๋Š” ํ…์ŠคํŠธโ€‘ํˆฌโ€‘๋น„๋””์˜คยท์ด๋ฏธ์ง€โ€‘ํˆฌโ€‘๋น„๋””์˜ค ์ƒ์„ฑ ๋ชจ๋ธ์˜ โ€˜์›€์ง์ž„ ์ œ์–ดโ€™ ๋ผ๋Š” ๋ถ€์ˆ˜์  ๊ธฐ๋Šฅ์„, โ€˜์ •๋ฐ€ ์›€์ง์ž„ ํŽธ์ง‘โ€™ ์ด๋ผ๋Š” ์ƒˆ๋กœ์šด ๊ด€์ ์œผ๋กœ ์ „ํ™˜ํ•œ๋‹ค๋Š” ์ ์—์„œ ํ•™์ˆ ์ ยท์‚ฐ์—…์  ์˜์˜๊ฐ€ ํฌ๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋Š” ์ฃผ๋กœ ํ…์ŠคํŠธ ํ”„๋กฌํ”„ํŠธ์— ๋”ฐ๋ผ ์ „๋ฐ˜์ ์ธ ๋™์ž‘์„ ์ƒ์„ฑํ•˜๊ฑฐ๋‚˜, ์ด๋ฏธ์ง€์— ๋ถ€์ฐฉ๋œ ํฌ์ฆˆ๋ฅผ ์• ๋‹ˆ๋ฉ”์ด์…˜ํ™”ํ•˜๋Š” ๋ฐฉ์‹์— ๋จธ๋ฌผ๋ €๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์‹ค์ œ ์˜์ƒ ํŽธ์ง‘ ํ˜„์žฅ์—์„œ๋Š” ํŠน์ • ๊ฐ์ฒด์˜ ๊ฒฝ๋กœ๋ฅผ ๋ฏธ์„ธํ•˜๊ฒŒ ์ˆ˜์ •ํ•˜๊ฑฐ๋‚˜, ํŠน์ • ๊ตฌ๊ฐ„์—์„œ๋งŒ ์›€์ง์ž„์„ ๋ฐ”๊พธ๊ณ  ์‹ถ์–ดํ•˜๋Š” ์š”๊ตฌ๊ฐ€ ๋นˆ๋ฒˆํžˆ ๋ฐœ์ƒํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ์š”๊ตฌ๋ฅผ ์ถฉ์กฑ์‹œํ‚ค๊ธฐ ์œ„ํ•ด ์ €์ž๋“ค์€ ์ž…๋ ฅ ์˜์ƒ์œผ๋กœ๋ถ€

Space Alignment Matters: The Missing Piece for Inducing Neural Collapse in Long-Tailed Learning

Space Alignment Matters: The Missing Piece for Inducing Neural Collapse in Long-Tailed Learning

์ด ๋…ผ๋ฌธ์€ ์ตœ๊ทผ ๊ฐ๊ด‘๋ฐ›๊ณ  ์žˆ๋Š” โ€˜์‹ ๊ฒฝ ๋ถ•๊ดด(Neural Collapse, NC)โ€™ ํ˜„์ƒ์„ ๊ธด ๊ผฌ๋ฆฌ ๋ฐ์ดํ„ฐ ๋ถ„๋ฅ˜ ๋ฌธ์ œ์— ์ ์šฉํ•จ์œผ๋กœ์จ, ๊ธฐ์กด ๋ฐฉ๋ฒ•๋ก ์ด ๋†“์น˜๊ณ  ์žˆ๋˜ ํ•ต์‹ฌ์ ์ธ ์ •๋ ฌ ๋ฌธ์ œ๋ฅผ ์ƒˆ๋กญ๊ฒŒ ์กฐ๋ช…ํ•œ๋‹ค. NC๋Š” ํ•™์Šต์ด ์ง„ํ–‰๋ ์ˆ˜๋ก ํด๋ž˜์Šค๋ณ„ ํŠน์ง• ํ‰๊ท (feature means)๊ณผ ์ตœ์ข… ์„ ํ˜• ๋ถ„๋ฅ˜๊ธฐ์˜ ๊ฐ€์ค‘์น˜๊ฐ€ ์„œ๋กœ ์ •๋ ฌ๋˜๊ณ , ์ „์ฒด ํด๋ž˜์Šค๊ฐ€ ๋‹จ์ˆœ์ฒด ๋“ฑ๊ฐ ๊ธด๋ฐ€ ํ”„๋ ˆ์ž„(simplex ETF) ๊ตฌ์กฐ๋ฅผ ์ด๋ฃจ๋Š” ํ˜„์ƒ์ด๋‹ค. ์ด ๊ตฌ์กฐ๋Š” ํด๋ž˜์Šค ๊ฐ„ ๊ฐ๋„๊ฐ€ ๋™์ผํ•˜๊ณ , ๊ฐ ํด๋ž˜์Šค์˜ ํŠน์ง•์ด ์„œ๋กœ ์ •๊ทœ ์ง๊ตํ•˜๋Š” ์ตœ์ ์˜ ๊ธฐํ•˜ํ•™์  ๋ฐฐ์น˜๋ฅผ ์ œ๊ณตํ•œ๋‹ค๋Š” ์ ์—์„œ ์ด๋ก ์ ยท์‹ค์šฉ์ 

Learning
AttackPilot: Autonomous Inference Attacks Against ML Services With LLM-Based Agents

AttackPilot: Autonomous Inference Attacks Against ML Services With LLM-Based Agents

๋ณธ ์—ฐ๊ตฌ๋Š” ์ถ”๋ก  ๊ณต๊ฒฉ(inference attack)์ด๋ผ๋Š” ๊ธฐ์กด ๋ณด์•ˆ ํ‰๊ฐ€ ๊ธฐ๋ฒ•์— LLM ๊ธฐ๋ฐ˜ ์ž์œจ ์—์ด์ „ํŠธ๋ฅผ ๊ฒฐํ•ฉํ•จ์œผ๋กœ์จ, โ€œ์ „๋ฌธ๊ฐ€ ์ˆ˜์ค€์˜ ๊ณต๊ฒฉ ์ˆ˜ํ–‰์„ ๋น„์ „๋ฌธ๊ฐ€์—๊ฒŒ ์ œ๊ณตํ•œ๋‹คโ€๋Š” ํ˜์‹ ์ ์ธ ๋ชฉํ‘œ๋ฅผ ์„ค์ •ํ•œ๋‹ค. ๋จผ์ €, ๊ณต๊ฒฉ ์ˆ˜ํ–‰์— ํ•„์š”ํ•œ ๋‹จ๊ณ„โ€”๋ชฉํ‘œ ๋ชจ๋ธ ์‹๋ณ„, ๋ฐ์ดํ„ฐ ์ˆ˜์ง‘, ๊ณต๊ฒฉ ์ „๋žต ์„ ํƒ, ํŒŒ๋ผ๋ฏธํ„ฐ ํŠœ๋‹, ๊ฒฐ๊ณผ ํ•ด์„โ€”๋ฅผ ๋ช…์‹œ์ ์œผ๋กœ ํ–‰๋™(action)์œผ๋กœ ๋ถ„ํ•ดํ•˜๊ณ , ๊ฐ๊ฐ์„ LLM์ด ํ˜ธ์ถœํ•  ์ˆ˜ ์žˆ๋Š” API ํ˜•ํƒœ๋กœ ๊ตฌํ˜„ํ•˜์˜€๋‹ค. ์ด๋Ÿฌํ•œ ์ž‘์—…โ€‘ํŠนํ™” ํ–‰๋™ ๊ณต๊ฐ„์€ ์—์ด์ „ํŠธ๊ฐ€ ๋ถˆํ•„์š”ํ•œ ์ถ”๋ก ์„ ์ตœ์†Œํ™”ํ•˜๊ณ , ํ† ํฐ ๋น„์šฉ์„ ํฌ๊ฒŒ ์ ˆ๊ฐํ•˜๋„๋ก ์„ค๊ณ„๋˜์—ˆ๋‹ค๋Š” ์ ์ด

Learning Solution Operators for Partial Differential Equations via Monte Carlo-Type Approximation

Learning Solution Operators for Partial Differential Equations via Monte Carlo-Type Approximation

Monte Carloํ˜• ์‹ ๊ฒฝ ์—ฐ์‚ฐ์ž(MCNO)๋Š” ๊ธฐ์กด ์‹ ๊ฒฝ ์—ฐ์‚ฐ์ž ์—ฐ๊ตฌ์—์„œ ๋‘๋“œ๋Ÿฌ์ง„ ๋‘ ๊ฐ€์ง€ ํ•œ๊ณ„๋ฅผ ๋™์‹œ์— ํ•ด๊ฒฐํ•˜๋ ค๋Š” ์‹œ๋„๋กœ ๋ณผ ์ˆ˜ ์žˆ๋‹ค. ์ฒซ ๋ฒˆ์งธ๋Š” Fourier Neural Operator(FNO)์™€ ๊ฐ™์€ ์ŠคํŽ™ํŠธ๋Ÿผ ๊ธฐ๋ฐ˜ ๋ฐฉ๋ฒ•์ด ์ „์ œํ•˜๋Š” ์ฃผ๊ธฐ์„ฑยทํ‰ํ–‰์ด๋™ ๋ถˆ๋ณ€์„ฑ ๊ฐ€์ •์ด๋‹ค. ์ด๋Ÿฌํ•œ ๊ฐ€์ •์€ ์ •๊ทœ ๊ฒฉ์ž๋‚˜ ์ฃผ๊ธฐ์  ๊ฒฝ๊ณ„์กฐ๊ฑด์„ ๊ฐ–๋Š” ๋ฌธ์ œ์—์„  ํšจ์œจ์ ์ด์ง€๋งŒ, ๋ณต์žกํ•œ ์ง€์˜ค๋ฉ”ํŠธ๋ฆฌยท๋น„์ฃผ๊ธฐ์  ๊ฒฝ๊ณ„ยท๋น„๊ท ์ผ ๊ฒฉ์ž์—์„œ๋Š” ์ ์šฉ์ด ์–ด๋ ค์›Œ์ง„๋‹ค. MCNO๋Š” ์ปค๋„์„ ์ž„์˜์˜ ์  ์ง‘ํ•ฉ ์œ„์— ์ •์˜ํ•˜๊ณ , ์ด ์ ๋“ค์„ Monte Carlo ์ƒ˜ํ”Œ๋ง์œผ๋กœ ์„ ํƒํ•จ์œผ๋กœ์จ ์ŠคํŽ™ํŠธ๋Ÿผ ๊ฐ€์ •์„

Learning
Leveraging LLMs for reward function design in reinforcement learning control tasks

Leveraging LLMs for reward function design in reinforcement learning control tasks

๋ณธ ๋…ผ๋ฌธ์ด ์ œ์‹œํ•˜๋Š” LEARNโ€‘Opt ํ”„๋ ˆ์ž„์›Œํฌ๋Š” ๊ฐ•ํ™”ํ•™์Šต์—์„œ ๋ณด์ƒ ํ•จ์ˆ˜๋ฅผ ์„ค๊ณ„ํ•˜๋Š” ์ „ํ†ต์ ์ธ ์›Œํฌํ”Œ๋กœ์šฐ๋ฅผ ๊ทผ๋ณธ์ ์œผ๋กœ ์žฌ๊ตฌ์„ฑํ•œ๋‹ค๋Š” ์ ์—์„œ ํ•™์ˆ ์ ยท์‹ค์šฉ์  ์˜์˜๊ฐ€ ํฌ๋‹ค. ๊ธฐ์กด ๋ฐฉ๋ฒ•๋“ค์€ ๋ณดํ†ต ๋‘ ๋‹จ๊ณ„, ์ฆ‰(1) ์ธ๊ฐ„์ด ์ •์˜ํ•œ ๋ฉ”ํŠธ๋ฆญ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ›„๋ณด ๋ณด์ƒ ํ•จ์ˆ˜๋ฅผ ์ƒ์„ฑํ•˜๊ณ , (2) ์ธ๊ฐ„ ํ˜น์€ ์ „๋ฌธ๊ฐ€ ํ”ผ๋“œ๋ฐฑ์„ ํ†ตํ•ด ํ›„๋ณด๋ฅผ ์ •์ œํ•˜๋Š” ๊ณผ์ •์„ ๊ฑฐ์นœ๋‹ค. ์ด๋Ÿฌํ•œ ์ ‘๊ทผ์€ ์ธ๊ฐ„ ์ „๋ฌธ๊ฐ€์˜ ๊ฐ€์šฉ์„ฑ์— ํฌ๊ฒŒ ์˜์กดํ•˜๋ฉฐ, ํŠนํžˆ ๋ณต์žกํ•œ ๋„๋ฉ”์ธ์—์„œ๋Š” ๋ฉ”ํŠธ๋ฆญ ์„ค๊ณ„ ์ž์ฒด๊ฐ€ ์–ด๋ ค์šด ๋ฌธ์ œ๋‹ค. LEARNโ€‘Opt๋Š” LLM์„ ํ™œ์šฉํ•ด ์‹œ์Šคํ…œ ์„ค๋ช…๊ณผ ๊ณผ์ œ ๋ชฉํ‘œ๋งŒ์„ ์ž…๋ ฅ์œผ๋กœ ๋ฐ›์•„, ์ž๋™์œผ

Learning
Re-Key-Free, Risky-Free: Adaptable Model Usage Control

Re-Key-Free, Risky-Free: Adaptable Model Usage Control

ADALOC์ด ์ œ์‹œํ•˜๋Š” ํ•ต์‹ฌ ์•„์ด๋””์–ด๋Š” โ€œํ‚ค ์˜์—ญ(Access Key Region)โ€์„ ๋ชจ๋ธ ํŒŒ๋ผ๋ฏธํ„ฐ์˜ ์ผ๋ถ€๋กœ ๊ณ ์ •ํ•˜๊ณ , ์ดํ›„ ๋ฐœ์ƒํ•˜๋Š” ๋ชจ๋“  ํŒŒ์ธํŠœ๋‹ยท์ „์ดํ•™์Šตยท๋„๋ฉ”์ธ ์ ์‘ ๋“ฑ์„ ์ด ์˜์—ญ์—๋งŒ ์ œํ•œํ•œ๋‹ค๋Š” ์ ์ด๋‹ค. ๊ธฐ์กด์˜ ํ‚ค ๊ธฐ๋ฐ˜ ๋ณดํ˜ธ ๋ฐฉ์‹์€ ์ „์ฒด ํŒŒ๋ผ๋ฏธํ„ฐ์— ์•”ํ˜ธํ™”๋œ ๋งˆ์Šคํฌ๋ฅผ ์ ์šฉํ•˜๊ฑฐ๋‚˜, ํŠน์ • ๋ ˆ์ด์–ด์— ๋น„๋ฐ€๊ฐ’์„ ์‚ฝ์ž…ํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฐฉ๋ฒ•์€ ๋ชจ๋ธ์ด ์—…๋ฐ์ดํŠธ๋  ๋•Œ ๋งˆ์Šคํฌ๊ฐ€ ์†์ƒ๋˜๊ฑฐ๋‚˜, ์ƒˆ๋กœ์šด ํŒŒ๋ผ๋ฏธํ„ฐ๊ฐ€ ํ‚ค์™€ ๋…๋ฆฝ์ ์œผ๋กœ ๋ณ€ํ˜•๋ผ ๋ณดํ˜ธ๊ฐ€ ๋ฌดํšจํ™”๋˜๋Š” ๋ฌธ์ œ๊ฐ€ ์žˆ๋‹ค. ADALOC์€ ์ฒ˜์Œ ํ‚ค๋ฅผ ์„ ์ •ํ•  ๋•Œ, ๋ชจ๋ธ์˜ ์†์‹ค ๊ณก๋ฉด๊ณผ ํŒŒ๋ผ๋ฏธํ„ฐ ๋ฏผ๊ฐ๋„๋ฅผ ๋ถ„์„ํ•ด โ€œ์—…๋ฐ

Model
Trust-Based Social Learning for Communication (TSLEC) Protocol Evolution in Multi-Agent Reinforcement Learning

Trust-Based Social Learning for Communication (TSLEC) Protocol Evolution in Multi-Agent Reinforcement Learning

TSLEC ๋…ผ๋ฌธ์€ ๊ธฐ์กด์˜ ๋‹ค์ค‘ ์—์ด์ „ํŠธ ์ปค๋ฎค๋‹ˆ์ผ€์ด์…˜ ์—ฐ๊ตฌ์—์„œ ๊ฐ„๊ณผ๋˜๋˜ โ€˜์‚ฌํšŒ์  ์ „์ดโ€™๋ฅผ ์ฒด๊ณ„์ ์œผ๋กœ ๋ชจ๋ธ๋งํ•œ ์ ์ด ๊ฐ€์žฅ ํฐ ํ˜์‹ ์ด๋‹ค. ๊ธฐ์กด ์ ‘๊ทผ๋ฒ•์€ ๊ฐ ์—์ด์ „ํŠธ๊ฐ€ ํ™˜๊ฒฝ ๋ณด์ƒ๋งŒ์„ ์ด์šฉํ•ด ๋…๋ฆฝ์ ์œผ๋กœ ์–ธ์–ด๋ฅผ ํ˜•์„ฑํ•˜๋„๋ก ์„ค๊ณ„๋ผ, ์ดˆ๊ธฐ ํƒ์ƒ‰ ๋‹จ๊ณ„์—์„œ ๋ฌด์ˆ˜ํžˆ ๋งŽ์€ ๋น„ํšจ์œจ์ ์ธ ์‹ ํ˜ธ ์กฐํ•ฉ์ด ๋ฐœ์ƒํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ๋น„ํšจ์œจ์„ฑ์€ ํ•™์Šต ๊ณก์„ ์ด ์™„๋งŒํ•˜๊ณ , ์ตœ์ข… ํ”„๋กœํ† ์ฝœ์ด ๋น„๊ตฌ์กฐ์ ์ด๋ฉฐ, ํ™˜๊ฒฝ ๋ณ€ํ™”์— ์ทจ์•ฝํ•œ ๋‹จ์ ์œผ๋กœ ์ด์–ด์ง„๋‹ค. TSLEC์€ ๋‘ ๊ฐ€์ง€ ํ•ต์‹ฌ ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ๋„์ž…ํ•œ๋‹ค. ์ฒซ์งธ, ๊ต์‚ฌโ€‘ํ•™์ƒ ๋ฉ”์ปค๋‹ˆ์ฆ˜ ์„ ํ†ตํ•ด ์—์ด์ „ํŠธ๊ฐ€ ์ž์‹ ์˜ ์„ฑ๊ณต์ ์ธ ํ–‰๋™โ€‘์‹ ํ˜ธ ๋งคํ•‘์„ ๋‹ค๋ฅธ ์—์ด์ „

Learning
Understanding Accelerator Compilers via Performance Profiling

Understanding Accelerator Compilers via Performance Profiling

๋ณธ ๋…ผ๋ฌธ์€ ๊ฐ€์†๊ธฐ ์„ค๊ณ„ ์–ธ์–ด(ADL) ์ปดํŒŒ์ผ๋Ÿฌ๊ฐ€ ๊ฐ–๋Š” ๋ณธ์งˆ์ ์ธ ๋ณต์žก์„ฑ๊ณผ ์˜ˆ์ธก ๋ถˆ๊ฐ€๋Šฅ์„ฑ์„ ์ง€์ ํ•˜๊ณ , ์ด๋ฅผ ๋ณด์™„ํ•˜๊ธฐ ์œ„ํ•œ ํ”„๋กœํŒŒ์ผ๋ง ๋„๊ตฌ์˜ ํ•„์š”์„ฑ์„ ์„ค๋“๋ ฅ ์žˆ๊ฒŒ ์ œ์‹œํ•œ๋‹ค. ADL์€ ํ•˜๋“œ์›จ์–ด ์„ค๊ณ„์™€ ์†Œํ”„ํŠธ์›จ์–ด ๊ฐœ๋ฐœ ์‚ฌ์ด์˜ ์ค‘๊ฐ„ ๋‹จ๊ณ„์— ์œ„์น˜ํ•ด, ๋†’์€ ์ƒ์‚ฐ์„ฑ๊ณผ ์„ฑ๋Šฅ์„ ๋™์‹œ์— ์ถ”๊ตฌํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๊ณ ์ˆ˜์ค€ ์–ธ์–ด์˜ ์ถ”์ƒํ™”์™€ ์‚ฌ์ดํดโ€‘์ •๋ฐ€ ํ•˜๋“œ์›จ์–ด ๊ตฌํ˜„ ์‚ฌ์ด์˜ ๋ณ€ํ™˜ ๊ณผ์ •์€ ๋‹ค์ค‘ ๋‹จ๊ณ„ ์ตœ์ ํ™”์™€ ๋ณต์žกํ•œ ์Šค์ผ€์ค„๋ง์„ ์š”๊ตฌํ•œ๋‹ค. ํŠนํžˆ, ๋ฐ์ดํ„ฐ ๊ฒฝ๋กœ ์ตœ์ ํ™”์™€ ์ œ์–ด ํ๋ฆ„ ๋ณ€ํ™˜์€ ์„œ๋กœ ์ƒ์ถฉ๋˜๋Š” ๋ชฉํ‘œ๋ฅผ ๊ฐ€์งˆ ์ˆ˜ ์žˆ์–ด, ์ปดํŒŒ์ผ๋Ÿฌ๋Š” ํœด๋ฆฌ์Šคํ‹ฑ ๊ธฐ๋ฐ˜ ์˜์‚ฌ๊ฒฐ์ •์„ ๋ฐ˜๋ณตํ•œ๋‹ค. ์ด๋Ÿฌ

VADE: Variance-Aware Dynamic Sampling via Online Sample-Level Difficulty Estimation for Multimodal RL

VADE: Variance-Aware Dynamic Sampling via Online Sample-Level Difficulty Estimation for Multimodal RL

GRPO์™€ GSPO์™€ ๊ฐ™์€ ๊ทธ๋ฃน ๊ธฐ๋ฐ˜ ์ •์ฑ… ์ตœ์ ํ™” ๊ธฐ๋ฒ•์€ ๋‹ค์ค‘๋ชจ๋‹ฌ ๋ชจ๋ธ์ด ๋ณต์žกํ•œ ์ž…๋ ฅโ€‘์ถœ๋ ฅ ๊ด€๊ณ„๋ฅผ ํ•™์Šตํ•˜๋„๋ก ์„ค๊ณ„๋˜์—ˆ์œผ๋ฉฐ, ๊ทธ๋ฃน๋ณ„ ๋กค์•„์›ƒ์„ ํ†ตํ•ด ๋‹ค์–‘ํ•œ ์ƒํ™ฉ์— ๋Œ€ํ•œ ํ–‰๋™์„ ๋™์‹œ์— ํ‰๊ฐ€ํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ์ ‘๊ทผ๋ฒ•์˜ ํ•ต์‹ฌ ์žฅ์ ์€ โ€œ์ƒ๋Œ€ ์ด์ (relative advantage)โ€์„ ์ด์šฉํ•ด ๋™์ผํ•œ ๋ณด์ƒ์„ ๋ฐ›์€ ์ƒ˜ํ”Œ๋“ค ์‚ฌ์ด์—์„œ๋„ ๋ฏธ์„ธํ•œ ์ฐจ์ด๋ฅผ ํฌ์ฐฉํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ์ ์ด๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์‹ค์ œ ํ•™์Šต ๊ณผ์ •์—์„œ ํŠน์ • ๊ทธ๋ฃน ๋‚ด ๋ชจ๋“  ์‘๋‹ต์ด ๋™์ผํ•œ ๋ณด์ƒ์„ ๋ฐ›๋Š” ๊ฒฝ์šฐ, ์ด์  ์ถ”์ •๊ฐ’์ด 0์— ์ˆ˜๋ ดํ•˜๊ฒŒ ๋˜๊ณ , ๊ฒฐ๊ณผ์ ์œผ๋กœ ์ •์ฑ… ์—…๋ฐ์ดํŠธ์— ํ•„์š”ํ•œ ๊ทธ๋ž˜๋””์–ธํŠธ๊ฐ€ ์‚ฌ๋ผ์ง€๋Š” โ€˜๊ทธ๋ผ๋””์–ธ

Evaluating perturbation robustness of generative systems that use COBOL code inputs

Evaluating perturbation robustness of generative systems that use COBOL code inputs

๋ณธ ๋…ผ๋ฌธ์ด ๋‹ค๋ฃจ๋Š” ํ•ต์‹ฌ ๋ฌธ์ œ๋Š” โ€œLLM ๊ธฐ๋ฐ˜ ์‹œ์Šคํ…œ์ด ์ž…๋ ฅ ์ฝ”๋“œ์˜ ์‚ฌ์†Œํ•œ ๋ณ€ํ˜•์— ์–ผ๋งˆ๋‚˜ ์ทจ์•ฝํ•œ๊ฐ€โ€๋ผ๋Š” ์งˆ๋ฌธ์ด๋‹ค. ํŠนํžˆ COBOL์ด๋ผ๋Š” ๋ ˆ๊ฑฐ์‹œ ์–ธ์–ด๋Š” ๊ธˆ์œตยท๋ณดํ—˜ยท์ •๋ถ€ ๋“ฑ ํ•ต์‹ฌ ์‚ฐ์—…์—์„œ ์•„์ง๋„ ๋Œ€๊ทœ๋ชจ ์šด์˜ ์‹œ์Šคํ…œ์„ ์ง€ํƒฑํ•˜๊ณ  ์žˆ์œผ๋ฉฐ, ๊ทธ ์ฝ”๋“œ๋ฒ ์ด์Šค๋Š” ๋Œ€๋ถ€๋ถ„ ํ์‡„ํ˜•์ด๋ฉฐ LLM ํ›ˆ๋ จ ๋ฐ์ดํ„ฐ์— ํฌํ•จ๋˜์ง€ ์•Š๋Š”๋‹ค. ๋”ฐ๋ผ์„œ ๊ธฐ์กด์˜ LLM ํ‰๊ฐ€ ๋ฐฉ๋ฒ•์„ ๊ทธ๋Œ€๋กœ ์ ์šฉํ•˜๊ธฐ ์–ด๋ ต๋‹ค. ์ €์ž๋“ค์€ ์ด๋Ÿฌํ•œ ์ƒํ™ฉ์„ ์ธ์‹ํ•˜๊ณ , COBOL ์ฝ”๋“œ๋ฅผ ๋Œ€์ƒ์œผ๋กœ ํ•˜๋Š” ์ „์šฉ ๊ฒฌ๊ณ ์„ฑ ํ‰๊ฐ€ ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์„ค๊ณ„ํ•˜์˜€๋‹ค. ์ฒซ ๋ฒˆ์งธ ๊ธฐ์—ฌ๋Š” โ€œCOBOL ํŒŒ๋ผ๊ทธ๋ž˜ํ”„ ๋ฐ ์ „์ฒด ํ”„๋กœ๊ทธ๋žจ ์ˆ˜์ค€์˜ ๋ณ€

System
GNSS Jammer Direction Finding in Dynamic Scenarios Using an Inertial-based Multi-Antenna System

GNSS Jammer Direction Finding in Dynamic Scenarios Using an Inertial-based Multi-Antenna System

๋ณธ ๋…ผ๋ฌธ์€ GNSS ์žฌ๋ฐ ์‹ ํ˜ธ ํƒ์ง€ยท์œ„์น˜์ถ”์ • ๋ถ„์•ผ์—์„œ ๋‘ ๊ฐ€์ง€ ํ˜์‹ ์ ์ธ ์š”์†Œ๋ฅผ ๊ฒฐํ•ฉํ•œ๋‹ค. ์ฒซ์งธ, ์ €๋น„์šฉยท๋ฒ”์šฉ์ ์ธ SDR ํ”Œ๋žซํผ์ธ Ettus USRP X440๊ณผ 2 ร— 2 ํŒจ์น˜ ์•ˆํ…Œ๋‚˜ ๋ฐฐ์—ด์„ ํ™œ์šฉํ•ด ์‹ค์‹œ๊ฐ„ I/Q ๋ฐ์ดํ„ฐ๋ฅผ ํ™•๋ณดํ•œ๋‹ค๋Š” ์ ์€ ์‹คํ—˜ ์žฌํ˜„์„ฑ๊ณผ ํ™•์žฅ์„ฑ์„ ํฌ๊ฒŒ ๋†’์ธ๋‹ค. ์ „ํ†ต์ ์ธ ๋‹จ์ผ ์•ˆํ…Œ๋‚˜ ๊ธฐ๋ฐ˜ AoA ์ถ”์ •์€ ์•ˆํ…Œ๋‚˜ ๊ฐ„ ์œ„์ƒ ์ฐจ์ด๋ฅผ ์ด์šฉํ•˜์ง€๋งŒ, ๋ฐฐ์—ด์ด 2 ร— 2์— ๋ถˆ๊ณผํ•ด ๊ฐ๋„ ํ•ด์ƒ๋„๊ฐ€ ์ œํ•œ์ ์ด๋‹ค. ์ด๋ฅผ ๋ณด์™„ํ•˜๊ธฐ ์œ„ํ•ด ์ €์ž๋“ค์€ ํ”Œ๋žซํผ์˜ ์ด๋™์„ ์ด์šฉํ•œ ํ•ฉ์„ฑ ๊ฐœ๊ตฌ(Synthetic Aperture) ๋ฐฉ์‹์„ ๋„์ž…ํ•œ๋‹ค. ์ด๋™ ๊ฒฝ๋กœ์™€ ์†๋„

System
Shape-Adapting Gated Experts: Dynamic Expert Routing for Colonoscopic Lesion Segmentation

Shape-Adapting Gated Experts: Dynamic Expert Routing for Colonoscopic Lesion Segmentation

๋ณธ ๋…ผ๋ฌธ์€ ์ „ํ†ต์ ์ธ CNNโ€‘Transformer ํ˜ผํ•ฉ ๊ตฌ์กฐ๊ฐ€ ๊ณ ์ •๋œ ์—ฐ์‚ฐ ๊ทธ๋ž˜ํ”„์™€ ์ •์ ์ธ ๋ผ์šฐํŒ… ์ „๋žต์— ์˜์กดํ•จ์œผ๋กœ์จ ๋ฐœ์ƒํ•˜๋Š” ๋‘ ๊ฐ€์ง€ ๊ทผ๋ณธ์ ์ธ ํ•œ๊ณ„๋ฅผ ์ง€์ ํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ๋Š” ์ž…๋ ฅ ์ด๋ฏธ์ง€์˜ ๊ทœ๋ชจยทํ˜•ํƒœ๊ฐ€ ํฌ๊ฒŒ ๋ณ€๋™ํ•˜๋Š” ์ „๋ณ‘ ์Šฌ๋ผ์ด๋“œ(WSI)์™€ ๊ฐ™์€ ์ดˆ๊ณ ํ•ด์ƒ๋„ ์˜๋ฃŒ ์˜์ƒ์—์„œ ๋ถˆํ•„์š”ํ•œ ์—ฐ์‚ฐ์ด ๊ณผ๋‹คํ•˜๊ฒŒ ๋ฐœ์ƒํ•œ๋‹ค๋Š” ์ ์ด๋‹ค. ๋‘ ๋ฒˆ์งธ๋Š” ๊ณ ์ • ๋ผ์šฐํŒ…์ด ๋‹ค์–‘ํ•œ ์„ธํฌ ํ˜•ํƒœ์™€ ์กฐ์ง ๊ตฌ์กฐ์— ๋Œ€ํ•œ ์ ์‘์„ฑ์„ ์ €ํ•ดํ•œ๋‹ค๋Š” ์ ์ด๋‹ค. ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ์ œ์•ˆ๋œ Shapeโ€‘Adapting Gated Experts(SAGE)๋Š” โ€˜์ „๋ฌธ๊ฐ€(Expert)โ€™๋ผ๋Š” ๊ฐœ๋…์„ ๋„์ž…ํ•ด

Wireless Power Transfer and Intent-Driven Network Optimization in AAVs-assisted IoT for 6G Sustainable Connectivity

Wireless Power Transfer and Intent-Driven Network Optimization in AAVs-assisted IoT for 6G Sustainable Connectivity

๋ณธ ์—ฐ๊ตฌ๋Š” 6G ์‹œ๋Œ€์— ๊ธ‰์ฆํ•˜๋Š” ์ดˆ์—ฐ๊ฒฐ IoT ํ™˜๊ฒฝ๊ณผ ์ž์œจํ•ญ๊ณต๊ธฐ(AAV)์˜ ํ˜‘์—…์„ ์œ„ํ•œ ํ•ต์‹ฌ ๊ธฐ์ˆ ์  ๊ณผ์ œ๋ฅผ ์ฒด๊ณ„์ ์œผ๋กœ ํ•ด๊ฒฐํ•˜๊ณ ์ž ํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ ๊ณผ์ œ๋Š” ์‚ฌ์šฉ์ž ์˜๋„๋ฅผ ์ •ํ™•ํžˆ ํŒŒ์•…ํ•˜๋Š” ๊ฒƒ์ด๋‹ค. ๊ธฐ์กด์˜ ์˜๋„ ์ถ”๋ก  ๋ชจ๋ธ์€ ์ฃผ๋กœ ํ…์ŠคํŠธ ๊ธฐ๋ฐ˜์˜ ๋ช…์‹œ์  ํ‘œํ˜„์— ์˜์กดํ•˜๋Š”๋ฐ, ์‹ค์ œ ํ˜„์žฅ์—์„œ๋Š” ์Œ์„ฑ, ์„ผ์„œ ๋ฐ์ดํ„ฐ, ๋น„์ •ํ˜• ์‹ ํ˜ธ ๋“ฑ ๋‹ค์–‘ํ•œ ํ˜•ํƒœ์˜ ๋ชจํ˜ธํ•˜๊ณ  ๋ถˆ์™„์ „ํ•œ ์ž…๋ ฅ์ด ์กด์žฌํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ์ƒํ™ฉ์—์„œ ์•”์‹œ์  ์˜๋„ ๋ชจ๋ธ๋ง์„ ๋„์ž…ํ•จ์œผ๋กœ์จ, ์ž…๋ ฅ์˜ ๋ถˆํ™•์‹ค์„ฑ์„ ํ™•๋ฅ ์  ํ‘œํ˜„์œผ๋กœ ์ „ํ™˜ํ•˜๊ณ , ํ•˜์ดํผ์ฐจ์›(Hyperdimensional) ๊ณต๊ฐ„์— ๋งคํ•‘ํ•จ์œผ๋กœ์จ ๊ณ ์ฐจ์› ํŠน์„ฑ

Network
QuickLAP: Quick Language-Action Preference Learning for Autonomous Driving Agents

QuickLAP: Quick Language-Action Preference Learning for Autonomous Driving Agents

๋ณธ ๋…ผ๋ฌธ์€ ์ธ๊ฐ„โ€‘๋กœ๋ด‡ ์ƒํ˜ธ์ž‘์šฉ(HRI) ๋ถ„์•ผ์—์„œ ์žฅ๊ธฐ์ ์œผ๋กœ ์ค‘์š”ํ•œ ๋ฌธ์ œ์ธ โ€˜๋‹ค์ค‘๋ชจ๋‹ฌ ํ”ผ๋“œ๋ฐฑ์„ ํ†ตํ•œ ๋ณด์ƒ ํ•™์Šตโ€™์— ๋Œ€ํ•ด ์‹ค์šฉ์ ์ธ ํ•ด๊ฒฐ์ฑ…์„ ์ œ์‹œํ•œ๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค์€ ๋ฌผ๋ฆฌ์  ๊ต์ •(์˜ˆ: ์‹œ์—ฐ, ๋ฌผ๋ฆฌ์  ๋Œ์–ด๋‹น๊น€)์ด๋‚˜ ์–ธ์–ด์  ์ง€์‹œ(์˜ˆ: ๋ช…๋ น๋ฌธ, ์„ค๋ช…) ์ค‘ ํ•˜๋‚˜์— ์ดˆ์ ์„ ๋งž์ถ”์—ˆ์œผ๋ฉฐ, ๋‘ ๋ชจ๋‹ฌ๋ฆฌํ‹ฐ๋ฅผ ๊ฒฐํ•ฉํ•˜๋ ค๋Š” ์‹œ๋„๋Š” ๋Œ€๋ถ€๋ถ„ ๊ทœ์น™ ๊ธฐ๋ฐ˜์ด๊ฑฐ๋‚˜ ์‚ฌํ›„ ํ†ตํ•ฉ ๋ฐฉ์‹์— ๋จธ๋ฌผ๋ €๋‹ค. ์ด๋Ÿฌํ•œ ์ ‘๊ทผ์€ (1) ๋ฌผ๋ฆฌ์  ๊ต์ •์ด ์˜๋„ ํ•ด์„์— ๋ถˆํ™•์‹ค์„ฑ์„ ๋‚ดํฌํ•˜๊ณ , (2) ์–ธ์–ด๊ฐ€ ๊ตฌ์ฒด์ ์ธ ํ–‰๋™ ๋งคํ•‘์„ ์ œ๊ณตํ•˜์ง€ ๋ชปํ•œ๋‹ค๋Š” ๊ทผ๋ณธ์ ์ธ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜์ง€ ๋ชปํ•œ๋‹ค. QuickLAP์€ ์ด๋Ÿฌํ•œ

Learning
MultiGA: Leveraging Multi-Source Seeding in Genetic Algorithms

MultiGA: Leveraging Multi-Source Seeding in Genetic Algorithms

๋ณธ ๋…ผ๋ฌธ์ด ์ œ์‹œํ•˜๋Š” MultiGA๋Š” ๊ธฐ์กด LLM ํ™œ์šฉ ๋ฐฉ์‹์— ์ค‘์š”ํ•œ ๋ณ€ํ™”๋ฅผ ๋„์ž…ํ•œ๋‹ค. ์ „ํ†ต์ ์œผ๋กœ ํ•˜๋‚˜์˜ ์‚ฌ์ „ ํ•™์Šต๋œ ๋ชจ๋ธ์„ ์„ ํƒํ•˜๊ณ , ํ•„์š”์— ๋”ฐ๋ผ ํŒŒ์ธํŠœ๋‹ํ•˜๊ฑฐ๋‚˜ ํ”„๋กฌํ”„ํŠธ ์—”์ง€๋‹ˆ์–ด๋ง์„ ์ ์šฉํ•ด ์„ฑ๋Šฅ์„ ๋Œ์–ด์˜ฌ๋ฆฌ๋Š” ๊ฒƒ์ด ์ผ๋ฐ˜์ ์ด์—ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ํŒŒ์ธํŠœ๋‹์€ ๋Œ€๊ทœ๋ชจ ๋ฐ์ดํ„ฐ์™€ ์—ฐ์‚ฐ ๋น„์šฉ์ด ์š”๊ตฌ๋˜๋ฉฐ, ํ”„๋กฌํ”„ํŠธ ์„ค๊ณ„๋Š” ์ „๋ฌธ๊ฐ€ ์ˆ˜์ค€์˜ ๋…ธํ•˜์šฐ๊ฐ€ ํ•„์š”ํ•˜๋‹ค. ์ด์— ๋น„ํ•ด MultiGA๋Š” โ€œ๋‹ค์ค‘ ์†Œ์Šค ์‹œ๋”ฉโ€์ด๋ผ๋Š” ์•„์ด๋””์–ด๋ฅผ ํ†ตํ•ด ์—ฌ๋Ÿฌ LLM์˜ ์ถœ๋ ฅ์„ ๋™์‹œ์— ํ™œ์šฉํ•œ๋‹ค๋Š” ์ ์—์„œ ํ˜์‹ ์ ์ด๋‹ค. ์ดˆ๊ธฐ ์ง‘๋‹จ์„ ๋‹ค์–‘ํ•œ ๋ชจ๋ธ์—์„œ ์ถ”์ถœํ•จ์œผ๋กœ์จ, ๊ฐ ๋ชจ๋ธ์ด ๊ฐ€์ง„ ๊ณ ์œ ํ•œ ๊ฐ•์ (์˜ˆ:

Polarity-Aware Probing for Quantifying Latent Alignment in Language Models

Polarity-Aware Probing for Quantifying Latent Alignment in Language Models

๋ณธ ๋…ผ๋ฌธ์€ ์ตœ๊ทผ ๊ธ‰๋ถ€์ƒํ•˜๊ณ  ์žˆ๋Š” ๋น„์ง€๋„ํ˜• ํƒ์ง€ ๊ธฐ๋ฒ•์ธ Contrastโ€‘Consistent Search(CCS)์˜ ์ •๋ ฌ ํ‰๊ฐ€ ๊ฐ€๋Šฅ์„ฑ์„ ์‹ฌ๋„ ์žˆ๊ฒŒ ํƒ๊ตฌํ•œ๋‹ค. ๊ธฐ์กด CCS๋Š” ๋ชจ๋ธ์ด ํŠน์ • ์ž…๋ ฅ์— ๋Œ€ํ•ด ์ผ๊ด€๋œ ๋‚ด๋ถ€ ํ‘œํ˜„์„ ์ƒ์„ฑํ•˜๋Š”์ง€๋ฅผ ํ™•์ธํ•จ์œผ๋กœ์จ, ํ† ํฐ ์ˆ˜์ค€์˜ ์ถœ๋ ฅ ์—†์ด๋„ ๋ชจ๋ธ์ด ์–ด๋–ค โ€˜์‹ ๋…โ€™์„ ๊ฐ€์ง€๊ณ  ์žˆ๋Š”์ง€๋ฅผ ์ถ”๋ก ํ•œ๋‹ค๋Š” ์žฅ์ ์ด ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ด๋Ÿฌํ•œ ์ ‘๊ทผ์ด ์‹ค์ œ๋กœ ๋ชจ๋ธ์ด ํ•ด๋กœ์šด ๋‚ด์šฉ๊ณผ ์•ˆ์ „ํ•œ ๋‚ด์šฉ์„ ์–ด๋–ป๊ฒŒ ๊ตฌ๋ถ„ํ•˜๊ณ , ๊ทธ ๊ตฌ๋ถ„์ด ์ •๋ ฌ(Alignment)๊ณผ ์–ผ๋งˆ๋‚˜ ์—ฐ๊ด€๋˜๋Š”์ง€๋Š” ์•„์ง ๋ช…ํ™•ํžˆ ๊ทœ๋ช…๋˜์ง€ ์•Š์•˜๋‹ค. ์—ฐ๊ตฌ์ง„์€ ๋จผ์ € CCS๊ฐ€ ํ•ด๋กœ์šด ์ง„์ˆ ๊ณผ

Model
Pre-cache: A Microarchitectural Solution to prevent Meltdown and Spectre

Pre-cache: A Microarchitectural Solution to prevent Meltdown and Spectre

๋ฉœํŠธ๋‹ค์šด๊ณผ ์ŠคํŽ™ํ„ฐ๋Š” ํ˜„๋Œ€ CPU๊ฐ€ ์ฑ„ํƒํ•œ ์‚ฌ์ „ ์‹คํ–‰(outโ€‘ofโ€‘order) ๋ฐ ์ถ”์ธก ์‹คํ–‰(speculative execution) ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ์•…์šฉํ•œ๋‹ค. ์ด ๋ฉ”์ปค๋‹ˆ์ฆ˜์€ ํ”„๋กœ๊ทธ๋žจ ํ๋ฆ„์„ ์˜ˆ์ธกํ•ด ๋ฏธ๋ฆฌ ๋ช…๋ น์„ ์‹คํ–‰ํ•˜๊ณ , ๊ฒฐ๊ณผ๋ฅผ ๋ ˆ์ง€์Šคํ„ฐ์™€ ์บ์‹œ ๊ฐ™์€ ๋งˆ์ดํฌ๋กœ์•„ํ‚คํ…์ฒ˜ ๊ตฌ์กฐ์— ์ €์žฅํ•œ๋‹ค. ์ •์ƒ์ ์ธ ์‹คํ–‰์ด ๋๋‚˜๋ฉด ์ž˜๋ชป๋œ ์ถ”์ธก์— ์˜ํ•ด ์ƒ์„ฑ๋œ ๊ฒฐ๊ณผ๋Š” ํ๊ธฐ๋˜์ง€๋งŒ, ๊ทธ ๊ณผ์ •์—์„œ ์บ์‹œ ๋ผ์ธ์— ๋‚จ์€ ํ”์ ์€ ์‚ฌ๋ผ์ง€์ง€ ์•Š๋Š”๋‹ค. ๊ณต๊ฒฉ์ž๋Š” ์ด๋Ÿฌํ•œ ์บ์‹œ ์ž”์—ฌ๋ฌผ์„ ํƒ€์ด๋ฐ ์ธก์ •์„ ํ†ตํ•ด ์ฝ์–ด ๋น„๋ฐ€ ๋ฐ์ดํ„ฐ๋ฅผ ๋ณต์›ํ•œ๋‹ค. ๊ธฐ์กด ์†Œํ”„ํŠธ์›จ์–ด ํŒจ์น˜๋Š” ํŠน์ • ๋ช…๋ น์–ด ์‹œํ€€์Šค์— ๋ฉ”๋ชจ๋ฆฌ ์žฅ

Series Prediction based on Algebraic Approximants

Series Prediction based on Algebraic Approximants

์ด ๋…ผ๋ฌธ์€ ๋ณต์žกํ•œ ํ•จ์ˆ˜์˜ ์‹œํ€€์Šค ์˜ˆ์ธก์„ ์œ„ํ•œ ์ƒˆ๋กœ์šด ์ ‘๊ทผ๋ฒ•์„ ์ œ์‹œํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ํŠนํžˆ, ์ด ์—ฐ๊ตฌ๋Š” ๋Œ€์ˆ˜์  ๊ทผ์‚ฌ์™€ ํ—ˆ๋ฏธํŠธ ํŒŒ๋ฐ ๋‹คํ•ญ์‹(HPP)์— ์ค‘์ ์„ ๋‘๊ณ  ์žˆ์œผ๋ฉฐ, ์ด๋ฅผ ํ†ตํ•ด ๋ณต์žกํ•œ ์‹œํ€€์Šค๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ์˜ˆ์ธกํ•  ์ˆ˜ ์žˆ๋Š” ๋ฐฉ๋ฒ•๋ก ์„ ๊ฐœ๋ฐœํ•˜์˜€์Šต๋‹ˆ๋‹ค. 1. ๋Œ€์ˆ˜์  ๊ทผ์‚ฌ์˜ ๊ฐœ๋… ๋…ผ๋ฌธ์€ ๋Œ€์ˆ˜์  ๊ทผ์‚ฌ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๋ณต์žกํ•œ ํ•จ์ˆ˜์˜ ์ง€์ˆ˜ ๊ธ‰์ˆ˜๋ฅผ ๊ทผ์‚ฌํ•˜๋Š” ๋ฐฉ๋ฒ•์— ๋Œ€ํ•ด ์„ค๋ช…ํ•ฉ๋‹ˆ๋‹ค. ์ด๋Š” ํ—ˆ๋ฏธํŠธ ํŒŒ๋ฐ ๋‹คํ•ญ์‹(HPP)์„ ์ด์šฉํ•ด ์ˆ˜ํ–‰๋˜๋ฉฐ, HPP๋Š” ์ฃผ์–ด์ง„ ํ•จ์ˆ˜ f ๊ฐ€ ์ง€์ˆ˜ ๊ธ‰์ˆ˜ ํ˜•ํƒœ๋กœ ํ‘œํ˜„๋  ๋•Œ, ์ด๋ฅผ ๊ทผ์‚ฌํ•˜๋Š” ๋‹คํ•ญ์‹ ์ง‘ํ•ฉ์ž…๋‹ˆ๋‹ค. 2. ํ—ˆ๋ฏธํŠธ ํŒŒ๋ฐ ๋‹คํ•ญ์‹์˜ ๊ตฌ์„ฑ

Mathematics Physics
Quantum Private Information Retrieval with Sublinear Communication   Complexity

Quantum Private Information Retrieval with Sublinear Communication Complexity

๋ณธ ๋…ผ๋ฌธ์€ ์–‘์ž ๊ฐœ์ธ ์ •๋ณด ๊ฒ€์ƒ‰ ํ”„๋กœํ† ์ฝœ ์— ๋Œ€ํ•œ ์‹ฌ๋„ ์žˆ๋Š” ๋ถ„์„์„ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค. ์ด๋Š” ์„œ๋ฒ„๋กœ๋ถ€ํ„ฐ ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค ํ•ญ๋ชฉ์„ ๋น„๊ณต๊ฐœ๋กœ ๊ฒ€์ƒ‰ํ•˜๋Š” ๋ฐฉ๋ฒ•์œผ๋กœ, Chor, Kushilevitz, Goldreich ๋ฐ Sudan์˜ ์—ฐ๊ตฌ์—์„œ ์‹œ์ž‘๋œ ๋ถ„์•ผ์ž…๋‹ˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์€ ๊ณต๊ฐœ ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค๊ฐ€ ๋ณดํŽธํ™”๋จ์— ๋”ฐ๋ผ ๋”์šฑ ์ค‘์š”ํ•ด์ง„ ์ด ์ฃผ์ œ๋ฅผ ๋‹ค๋ฃน๋‹ˆ๋‹ค. 1. ๊ฐœ์ธ ์ •๋ณด ๊ฒ€์ƒ‰ ํ”„๋กœํ† ์ฝœ์˜ ๋ฐฐ๊ฒฝ ๋ณธ ๋…ผ๋ฌธ์€ Chor, Kushilevitz, Goldreich ๋ฐ Sudan์˜ ์—ฐ๊ตฌ์—์„œ ์‹œ์ž‘๋œ ๊ฐœ์ธ ์ •๋ณด ๊ฒ€์ƒ‰ ๋ถ„์•ผ๋ฅผ ์†Œ๊ฐœํ•ฉ๋‹ˆ๋‹ค. ์ด๋Š” ์„œ๋ฒ„๋กœ๋ถ€ํ„ฐ ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค ํ•ญ๋ชฉ์„ ๋น„๊ณต๊ฐœ๋กœ

Computational Complexity Quantum Physics Computer Science Cryptography and Security
A method to develop mission critical data processing systems for   satellite based instruments. The spinning mode case

A method to develop mission critical data processing systems for satellite based instruments. The spinning mode case

๋ณธ ๋…ผ๋ฌธ์€ ํ˜„๋Œ€ ์œ„์„ฑ ์‹คํ—˜์˜ ๋ณต์žก์„ฑ์„ ๊ณ ๋ คํ•œ ๋ฐ์ดํ„ฐ ์ฒ˜๋ฆฌ ์‹œ์Šคํ…œ ๊ฐœ๋ฐœ ๋ฐฉ๋ฒ•๋ก ์— ์ดˆ์ ์„ ๋งž์ถ”๊ณ  ์žˆ๋‹ค. ํŠนํžˆ, ํšŒ์ „ ๋ชจ๋“œ์—์„œ์˜ ๋ฐ์ดํ„ฐ ์ฒ˜๋ฆฌ๋ฅผ ์œ„ํ•œ SPIPI ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ œ์•ˆํ•˜๊ณ , ์ด๋ฅผ ํ†ตํ•ด ์œ„์„ฑ ๊ธฐ๋ฐ˜ ์‹คํ—˜์—์„œ ๋ฐœ์ƒํ•˜๋Š” ๋‹ค์–‘ํ•œ ์ž์› ๊ด€๋ จ ์ œ์•ฝ ์กฐ๊ฑด์„ ํ•ด๊ฒฐํ•˜๋ ค๋Š” ์˜๋„๊ฐ€ ๋ช…ํ™•ํžˆ ๋“œ๋Ÿฌ๋‚œ๋‹ค. 1. ์‹œ์Šคํ…œ ๊ฐœ์š” ๋ฐ ๋ฌธ์ œ ์ธ์‹ ํ˜„๋Œ€ ์œ„์„ฑ ์‹คํ—˜์€ ๋น„ํ–‰ ๋ฐ ์ง€์ƒ ์„ธ๊ทธ๋จผํŠธ๋กœ ๊ตฌ์„ฑ๋œ ๋ณต์žกํ•œ ์‹ค์‹œ๊ฐ„ ์‹œ์Šคํ…œ์œผ๋กœ, ํฌ๊ธฐ, ๋ฌด๊ฒŒ, ์ „๋ ฅ ์†Œ๋น„, ์‹ค์‹œ๊ฐ„ ์‘๋‹ต ์š”๊ตฌ์‚ฌํ•ญ, ๊ณ ์žฅ ๋‚ด์„ฑ ๋“ฑ์˜ ์ž์› ๊ด€๋ จ ์ œ์•ฝ ์กฐ๊ฑด์„ ๊ฐ€์ง„๋‹ค. ์ด๋Ÿฌํ•œ ์‹œ์Šคํ…œ์€ ๋†’์€ ์ˆ˜์ค€์˜ ๋ณด์ฆ์ด ํ•„์š”ํ•˜๋ฉฐ, ํ•˜

Software Engineering System Data Computer Science Astrophysics
State Synchronization for Homogeneous Networks of Non-introspective   Agents in Presence of Input Saturation -A Scale-free Protocol Design

State Synchronization for Homogeneous Networks of Non-introspective Agents in Presence of Input Saturation -A Scale-free Protocol Design

This paper addresses the challenge of achieving global and semi global regulated state synchronization in homogeneous networks of non introspective agents, particularly under input saturation conditions. The key contribution is a scalable protocol design that does not require detailed knowledge abou

Computer Science Systems and Control Network Electrical Engineering and Systems Science
Shenjing: A low power reconfigurable neuromorphic accelerator with   partial-sum and spike networks-on-chip

Shenjing: A low power reconfigurable neuromorphic accelerator with partial-sum and spike networks-on-chip

This paper introduces Shenjing, a novel architecture that aims to achieve energy efficient deep neural networks (DNNs). The primary focus is on addressing the high energy consumption of DNNs, especially in on device AI applications where both computation and communication consume significant amounts

Emerging Technologies Neural Computing Network Computer Science Hardware Architecture
No Image

Indian EmoSpeech Command Dataset: A dataset for emotion based speech recognition in the wild

This paper introduces the Indian EmoSpeech Command Dataset, a new dataset for speech emotion analysis that takes into account both verbal and non verbal components of speech in real life scenarios. The research addresses the challenge faced by traditional models which often operate under controlled

Multimedia Electrical Engineering and Systems Science Computer Science Sound Audio Processing Data
E(A+M)PEC - An OpenCL Atomic & Molecular Plasma Emission Code For   Interstellar Medium Simulations

E(A+M)PEC - An OpenCL Atomic & Molecular Plasma Emission Code For Interstellar Medium Simulations

: E(A+M)PEC ์ฝ”๋“œ๋Š” ISM์˜ ์—ด์  ์ง„ํ™”์™€ ์—ญํ•™์  ์ง„ํ™”๋ฅผ ์ผ๊ด€์„ฑ ์žˆ๊ฒŒ ๋ชจ๋ธ๋งํ•˜๊ธฐ ์œ„ํ•œ ์ค‘์š”ํ•œ ๋„๊ตฌ๋กœ, ์ด์˜จํ™” ๋ฐ ์žฌ๊ฒฐํ•ฉ ๊ณผ์ •์„ ํฌํ•จํ•˜์—ฌ ๋‹ค์–‘ํ•œ ๋ฌผ๋ฆฌ์  ํ˜„์ƒ์„ ๊ณ ๋ คํ•ฉ๋‹ˆ๋‹ค. ํŠนํžˆ, ์ž์—ฐ์—์„œ ๊ฐ€์žฅ ํ’๋ถ€ํ•œ 10๊ฐ€์ง€ ์›์†Œ์— ๋Œ€ํ•œ ๋ฐ์ดํ„ฐ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•˜๋ฉฐ, ์ตœ์‹  ํƒœ์–‘ ์›์†Œ์™€ ์›์ž ๋ฐ ๋ถ„์ž ๋ฐ์ดํ„ฐ๋ฅผ ํ™œ์šฉํ•จ์œผ๋กœ์จ ์ •ํ™•๋„๋ฅผ ๋†’์˜€์Šต๋‹ˆ๋‹ค. ์ด ์ฝ”๋“œ๋Š” ISM์˜ ์—ด์  ์ง„ํ™” ๊ณผ์ •์—์„œ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•˜๋Š” ์—ฌ๋Ÿฌ ๋ฌผ๋ฆฌ์  ํ˜„์ƒ์„ ํฌํ•จํ•ฉ๋‹ˆ๋‹ค. ์ด ์ค‘ ์ „์ž ์ถฉ๊ฒฉ ์ด์˜จํ™”, ํฅ๋ถ„ ์ž๋™ ์ด์˜จํ™”, ๋ณต์‚ฌ ๋ฐ ๋‹ค์ด์ผ๋ ‰ํŠธ๋ก  ์žฌ๊ฒฐํ•ฉ, ์ „ํ•˜ ๊ตํ™˜ ๋ฐ˜์‘ ๋“ฑ์€ ISM์˜ ์—ด์  ์ƒํƒœ๋ฅผ

Astrophysics
Discovery of High-Energy and Very High-Energy Gamma-Ray Emission from   the Blazar RBS 0413

Discovery of High-Energy and Very High-Energy Gamma-Ray Emission from the Blazar RBS 0413

: ์ด ๋…ผ๋ฌธ์€ ๊ณ ์—๋„ˆ์ง€ ์ฒœ์ฒด๋ฌผ๋ฆฌํ•™์—์„œ ์ค‘์š”ํ•œ ๋ฐœ๊ฒฌ ์ค‘ ํ•˜๋‚˜์ธ RBS 0413์—์„œ์˜ ๊ฐ๋งˆ์„  ๋ฐฉ์ถœ์— ๋Œ€ํ•ด ์ž์„ธํžˆ ์„ค๋ช…ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. RBS 0413์€ BL ๋ผ์ผ€ํƒ€๋กœ ๋ถ„๋ฅ˜๋˜๋ฉฐ, ์ด๋Š” ํ™œ๋™ ์€ํ•˜ํ•ต(AGN) ์ค‘ ํ•˜๋‚˜๋กœ ๊ด€์ฐฐ์ž์˜ ์ถ• ๋ฐฉํ–ฅ์— ๋Œ€ํ•ด ์ž‘์€ ๊ฐ๋„๋กœ ์ œํŠธ ์ถ•์ด ๊ธฐ์šธ์–ด์ ธ ์žˆ๋Š” ์ฒœ์ฒด์ž…๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ํŠน์„ฑ ๋•Œ๋ฌธ์— RBS 0413์€ ๋ธ”์ž๋ฅด๋กœ ๋ถ„๋ฅ˜๋˜๋ฉฐ, ์ด๋Š” ๊ณ ์—๋„ˆ์ง€ ๊ฐ๋งˆ์„  ๋ฐฉ์ถœ์„ ํฌํ•จํ•œ ๋‹ค์–‘ํ•œ ์—๋„ˆ์ง€ ๋ฒ”์œ„์—์„œ์˜ ๋ณต์žกํ•œ ์ŠคํŽ™ํŠธ๋Ÿผ์„ ๋ณด์—ฌ์ค๋‹ˆ๋‹ค. ๋…ผ๋ฌธ์—์„œ๋Š” VERITAS์™€ Fermi LAT ๋‘ ๊ฐ€์ง€ ๊ด€์ธก ์žฅ๋น„๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ RBS 0413์˜ ์—๋„ˆ์ง€ ๋ถ„ํฌ

Astrophysics
No Image

Anisotropies in the cosmic radiation observed with ARGO-YBJ

๋ณธ ๋…ผ๋ฌธ์€ ARGO YBJ ์‹คํ—˜์„ ํ†ตํ•ด ์€ํ•˜ ์ž๊ธฐ์žฅ(GMF)์ด ์šฐ์ฃผ์„ ์˜ ๋ฐฉํ–ฅ์„ฑ์„ ์–ด๋–ป๊ฒŒ ํŽธํ–ฅ์‹œํ‚ค๋Š”์ง€์— ๋Œ€ํ•ด ์‹ฌ๋„ ์žˆ๋Š” ๋ถ„์„์„ ์ œ์‹œํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ด ์—ฐ๊ตฌ๋Š” ๊ณ ์—๋„ˆ์ง€ ์šฐ์ฃผ์„ (๋ช‡ ๋ฐฑ ํ…Œ๋ผ๋ณผํŠธ ์ด์ƒ)์—์„œ ๊ด€์ฐฐ๋˜๋Š” ํŽธํ–ฅ ํ˜„์ƒ์„ ์ค‘์‹ฌ์œผ๋กœ, ํŠนํžˆ '๊ผฌ๋ฆฌ ์•ˆ์ชฝ'๊ณผ '์†์‹ค ๊ณต' ์ง€์—ญ์˜ ํ˜•์„ฑ์„ ์„ค๋ช…ํ•ฉ๋‹ˆ๋‹ค. 1. ์€ํ•˜ ์ž๊ธฐ์žฅ(GMF)์˜ ์˜ํ–ฅ ์€ํ•˜ ๋‚ด์—์„œ ์šฐ์ฃผ์„ ์ด ์ง€๊ตฌ๊นŒ์ง€ ๋„๋‹ฌํ•˜๋Š” ๊ณผ์ •์—์„œ GMF๋Š” ์ฃผ์š” ์—ญํ• ์„ ํ•ฉ๋‹ˆ๋‹ค. GMF๋Š” ์šฐ์ฃผ์„ ์˜ ๋ฐฉํ–ฅ์„ฑ์„ ํŽธํ–ฅ์‹œ์ผœ, ์›๋ž˜์˜ ๋™์งˆ์„ฑ์ด ๊นจ์–ด๋‚˜๊ฒŒ ๋ฉ๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ํ˜„์ƒ์€ ์€ํ•˜ ๋‚ด์—์„œ ๋‘ ๊ฐœ์˜ ์ฃผ์š” ์ง€์—ญ์„ ํ˜•์„ฑํ•˜๋Š”๋ฐ ๊ธฐ

Astrophysics Physics
Discovery of VHE gamma-ray emission from the direction of the globular   cluster Terzan 5

Discovery of VHE gamma-ray emission from the direction of the globular cluster Terzan 5

: ๋ฐฐ๊ฒฝ ๋ฐ ์—ฐ๊ตฌ ์˜์˜ ํ…Œ์ž” 5๋Š” ์€ํ•˜๊ณ„ ๋‚ด์—์„œ ๊ฐ€์žฅ ๋ฐ€๋„๊ฐ€ ๋†’์€ ๊ตฌํ˜• ๋ณ„ ์ง‘๋‹จ ์ค‘ ํ•˜๋‚˜๋กœ, ํŠนํžˆ ๋งŽ์€ ์ˆ˜์˜ ๋ฐ€๋ฆฌ์ดˆ ํŽ„์‚ฌ(msPSR)๋ฅผ ํฌํ•จํ•˜๊ณ  ์žˆ์–ด ์ฃผ๋ชฉ์„ ๋ฐ›๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ด ์„ฑ๋‹จ์€ ์ง€๊ตฌ๋กœ๋ถ€ํ„ฐ ์•ฝ 5.9 kpc(์ฒœ๋ฌธํ•™์  ๋‹จ์œ„์—์„œ์˜ ๊ฑฐ๋ฆฌ) ๋–จ์–ด์ ธ ์žˆ์œผ๋ฉฐ, ๊ทธ ์ค‘์‹ฌ์—๋Š” ๋งค์šฐ ๋†’์€ ๋ณ„ ๋ฐ€๋„๊ฐ€ ์กด์žฌํ•˜์—ฌ ๋ณ„๋“ค ๊ฐ„์˜ ์ƒํ˜ธ์ž‘์šฉ์ด ํ™œ๋ฐœํ•˜๊ฒŒ ์ผ์–ด๋‚˜๋Š” ํ™˜๊ฒฝ์„ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค. ๊ด€์ธก ๋ฐฉ๋ฒ• ๋ฐ ๊ฒฐ๊ณผ ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋‚˜๋ฏธ๋น„์•„์— ์œ„์น˜ํ•œ H.E.S.S. ๋ง์›๊ฒฝ ๋ฐฐ์—ด์„ ์‚ฌ์šฉํ•ด ํ…Œ์ž” 5๋ฅผ ๊ด€์ฐฐํ•˜์˜€์Šต๋‹ˆ๋‹ค. ์ด ๋ง์›๊ฒฝ์€ ๊ณ ์—๋„ˆ์ง€ ๊ฐ๋งˆ์„ ์˜ ์—๋„ˆ์ง€์™€ ๋„์ฐฉ ๋ฐฉํ–ฅ์„ ์ •ํ™•ํ•˜๊ฒŒ ์žฌ

Astrophysics
Discovery of very-high-energy gamma-ray emission from the vicinity of   PSR J1831-952 with H.E.S.S

Discovery of very-high-energy gamma-ray emission from the vicinity of PSR J1831-952 with H.E.S.S

: 1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋ชฉ์  H.E.S.S. (High Energy Stereoscopic System)์€ ๋งค์šฐ ๋†’์€ ์—๋„ˆ์ง€(VHE) ๊ฐ๋งˆ์„  ๋ฐฉ์ถœ์›์„ ํƒ์ƒ‰ํ•˜๋Š” ๋ฐ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•˜๋Š” ์ฒจ๋‹จ ๋ง์›๊ฒฝ ๋ฐฐ์—ด์ž…๋‹ˆ๋‹ค. ์ด ์‹œ์Šคํ…œ์€ ์€ํ•˜๊ณ„ ํ‰๋ฉด ์กฐ์‚ฌ๋ฅผ ํ†ตํ•ด 60๊ฐœ ์ด์ƒ์˜ ๊ณ ์—๋„ˆ์ง€ ๊ฐ๋งˆ์„  ์›์ฒœ์„ ๋ฐœ๊ฒฌํ•ด ์™”์Šต๋‹ˆ๋‹ค. ํŠนํžˆ, GPS ํ•ต์‹ฌ ์ง€์—ญ์—์„œ Crab ๋„ค๋ถ€๋ณด๋‹ค 2% ์ด์ƒ ๋†’์€ ๊ฐ๋„์„ฑ์„ ๋‹ฌ์„ฑํ•œ ๊ฒƒ์€ H.E.S.S.์˜ ์„ฑ๋Šฅ์„ ์ž…์ฆํ•˜๋Š” ์ค‘์š”ํ•œ ๊ฒฐ๊ณผ์ž…๋‹ˆ๋‹ค. 2. ๋ฐ์ดํ„ฐ ์ˆ˜์ง‘ ๋ฐ ๋ถ„์„ ๋ฐฉ๋ฒ• HESS J1831 098์— ๋Œ€ํ•œ ๋ฐ์ดํ„ฐ๋Š” ๋‹ค์–‘ํ•œ ์‹œ๊ฐ„๋Œ€์— ์ˆ˜์ง‘๋˜์—ˆ

Astrophysics
Observations of the Crab pulsar with the MAGIC telescopes

Observations of the Crab pulsar with the MAGIC telescopes

: ๊ฒŒ์ผ๋ก  ํŽ„์‚ฌ์˜ ์—๋„ˆ์ง€ ์ŠคํŽ™ํŠธ๋Ÿผ ๋ถ„์„์€ ์ฒœ๋ฌธํ•™์—์„œ ์ค‘์š”ํ•œ ์ด์Šˆ ์ค‘ ํ•˜๋‚˜์ž…๋‹ˆ๋‹ค. ํŠนํžˆ, ๊ณ ์—๋„ˆ์ง€ ๊ฐ๋งˆ์„  ์˜์—ญ์—์„œ์˜ ๊ด€์ธก์€ ํŽ„์‚ฌ ๋ฐฉ์ถœ ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ์ดํ•ดํ•˜๋Š” ๋ฐ ๊ฒฐ์ •์ ์ธ ์—ญํ• ์„ ํ•ฉ๋‹ˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” MAGIC ๋ง์›๊ฒฝ๊ณผ Fermi LAT ์œ„์„ฑ ๊ธฐ๋ฐ˜ ๊ฐ์ง€๊ธฐ๋ฅผ ์ด์šฉํ•ด ๊ฒŒ์ผ๋ก  ํŽ„์‚ฌ์˜ ์—๋„ˆ์ง€ ์ŠคํŽ™ํŠธ๋Ÿผ์„ ๋ถ„์„ํ•˜๊ณ , ์ด๋ฅผ ํ†ตํ•ด ๋‹ค์–‘ํ•œ ํŽ„์‚ฌ ๋ฐฉ์ถœ ๋ชจ๋ธ์„ ๊ฒ€์ฆํ–ˆ์Šต๋‹ˆ๋‹ค. ๊ฒŒ์ผ๋ก  ํŽ„์‚ฌ๋Š” 1054๋…„ A.D.์— ๋ฐœ์ƒํ•œ ์ดˆ์‹ ์„ฑ ํญ๋ฐœ ์ดํ›„ ๋‚จ์•„์žˆ๋Š” ์ฒœ์ฒด๋กœ, ์ค‘์‹ฌ์—๋Š” B0531+21์ด๋ผ๋Š” ๊ฐ•๋ ฅํ•œ ํŽ„์‚ฌ๊ฐ€ ์œ„์น˜ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ด ํŽ„์‚ฌ๋Š” ๋ผ๋””์˜คํŒŒ๋ถ€ํ„ฐ ๊ณ ์—๋„ˆ์ง€ ๊ฐ๋งˆ์„ ๊นŒ์ง€

Astrophysics
Orbit Mode observation Technique Developed for VERITAS

Orbit Mode observation Technique Developed for VERITAS

: VERITAS ๋ง์›๊ฒฝ์€ ๋งค์šฐ ์—๋„ˆ์ง€๊ฐ€ ๋†’์€ ๊ฐ๋งˆ์„ ์„ ํƒ์ง€ํ•˜๋Š” ๋ฐ ์‚ฌ์šฉ๋˜๋Š” ์ฒด๋ Œ์ฝ”ํ”„ ๋ง์›๊ฒฝ์œผ๋กœ, ๋ฏธ๊ตญ ์• ๋ฆฌ์กฐ๋‚˜์ฃผ์— ์œ„์น˜ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ด ๋ง์›๊ฒฝ์€ 100 GeV์—์„œ 30 TeV ์‚ฌ์ด์˜ ์—๋„ˆ์ง€๋ฅผ ๊ฐ€์ง„ ๊ฐ๋งˆ์„ ์„ ํƒ์ง€ํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ, ๊ทธ ์ •ํ™•๋„์™€ ๋ถ„ํ•ด๋Šฅ์€ ๋งค์šฐ ๋†’์Šต๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ๊ณ ์„ฑ๋Šฅ ๋•๋ถ„์— VERITAS๋Š” ์šฐ์ฃผ์—์„œ ๋ฐœ์ƒํ•˜๋Š” ๋‹ค์–‘ํ•œ ํ˜„์ƒ์„ ์—ฐ๊ตฌํ•˜๋Š”๋ฐ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ด ๋…ผ๋ฌธ์—์„œ๋Š” ์ด ๋ง์›๊ฒฝ์˜ ์ƒˆ๋กœ์šด ๊ด€์ธก ๋ชจ๋“œ์ธ '๊ถค๋„' ๋ชจ๋“œ๋ฅผ ์†Œ๊ฐœํ•˜๊ณ , ๊ทธ ํšจ๊ณผ์™€ ์ ์šฉ ๊ฐ€๋Šฅ์„ฑ์— ๋Œ€ํ•ด ์„ค๋ช…ํ•ฉ๋‹ˆ๋‹ค. ๊ธฐ์กด์˜ ์ง„๋™ ๋ชจ๋“œ์—์„œ๋Š” ๋ง์›๊ฒฝ์˜ ์ค‘์‹ฌ์ด ๊ณ ์ •

Astrophysics

< Category Statistics (Total: 829) >

Electrical Engineering and Systems Science
7
General
272
General Relativity
9
HEP-EX
7
HEP-PH
12
HEP-TH
7
MATH-PH
4
NUCL-TH
1
Quantum Physics
12

Start searching

Enter keywords to search articles

โ†‘โ†“
โ†ต
ESC
โŒ˜K Shortcut