Posts

Here are all published articles, sorted by date in descending order.

820 posts total
17 pages total
Quantifying Memory Use in Reinforcement Learning with Temporal Range

Quantifying Memory Use in Reinforcement Learning with Temporal Range

Temporal Range๋Š” ๊ฐ•ํ™”ํ•™์Šต ์—์ด์ „ํŠธ๊ฐ€ ๊ณผ๊ฑฐ ๊ด€์ธก์„ ์–ผ๋งˆ๋‚˜ ํ™œ์šฉํ•˜๋Š”์ง€๋ฅผ ์ •๋Ÿ‰ํ™”ํ•˜๋ ค๋Š” ์‹œ๋„์—์„œ ์ถœ๋ฐœํ•œ๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ์—์„œ๋Š” ์ •์ฑ… ๋„คํŠธ์›Œํฌ์˜ ๊ตฌ์กฐ์  ๋ฉ”๋ชจ๋ฆฌ ์šฉ๋Ÿ‰(์˜ˆ: RNN์˜ hidden size)์ด๋‚˜ ํ›ˆ๋ จ๋œ ๋ชจ๋ธ์˜ ์„ฑ๋Šฅ์„ ํ†ตํ•ด ๊ฐ„์ ‘์ ์œผ๋กœ ์ถ”์ •ํ–ˆ์ง€๋งŒ, ์‹ค์ œ ์ž…๋ ฅโ€‘์ถœ๋ ฅ ๊ด€๊ณ„๊ฐ€ ์–ด๋А ์‹œ์ ๊นŒ์ง€ ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š”์ง€๋Š” ๋ช…ํ™•ํžˆ ๋“œ๋Ÿฌ๋‚˜์ง€ ์•Š์•˜๋‹ค. ์ด ๋…ผ๋ฌธ์€ ๊ทธ๋Ÿฐ ๊ณต๋ฐฑ์„ ๋ฉ”์šฐ๊ธฐ ์œ„ํ•ด โ€œ์‹œ๊ฐ„์  ์˜ํ–ฅ ํ”„๋กœํŒŒ์ผโ€์ด๋ผ๋Š” ๊ฐœ๋…์„ ๋„์ž…ํ•œ๋‹ค. ๊ตฌ์ฒด์ ์œผ๋กœ, ์‹œ์  t ์—์„œ ์ž…๋ ฅ x t ๊ฐ€ ์ดํ›„ ์‹œ์  s ( t < s โ‰ค T )์˜ ์ถœ๋ ฅ y s ์— ๋ฏธ์น˜๋Š” 1์ฐจ ๋ฏผ๊ฐ

Learning
The Seeds of Scheming: Weakness of Will in the Building Blocks of Agentic Systems

The Seeds of Scheming: Weakness of Will in the Building Blocks of Agentic Systems

๋ถ„์„ ์š”์•ฝ 1. ๋…ผ๋ฌธ ์ฃผ์ œ ๋ฐ ๋ชฉํ‘œ: ๋ณธ ๋…ผ๋ฌธ์€ ์ธ๊ณต์ง€๋Šฅ(AI) ์‹œ์Šคํ…œ์˜ ์•ˆ์ „์„ฑ๊ณผ ๊ด€๋ จ๋œ ๋ฌธ์ œ๋ฅผ ๋‹ค๋ฃน๋‹ˆ๋‹ค. ํŠนํžˆ, '์•„ํฌ๋ผ์‹œ์•„'๋ผ๋Š” ๊ฐœ๋…์„ ํ†ตํ•ด AI์˜ ์ผ๊ด€์„ฑ ๋ถ•๊ดด์™€ ๋ชฉํ‘œ ์ „์ด๋ฅผ ๋ถ„์„ํ•ฉ๋‹ˆ๋‹ค. ์•„ํฌ๋ผ์‹œ์•„๋Š” ๊ณ ๋Œ€ ์ฒ ํ•™์—์„œ ์ธ๊ฐ„์˜ ํŒ๋‹จ๊ณผ ์ถฉ๋™ ์‚ฌ์ด์˜ ๊ฐˆ๋“ฑ์„ ์„ค๋ช…ํ•˜๋Š” ์šฉ์–ด๋กœ, ์ด ๋…ผ๋ฌธ์—์„œ๋Š” ์ด๋ฅผ AI ๋งฅ๋ฝ์— ์ ์šฉํ•˜์—ฌ ๋ชจ๋ธ์ด ๊ธ€๋กœ๋ฒŒ ์ง€์‹๊ณผ ๋กœ์ปฌ ์ปจํ…์ŠคํŠธ ์‚ฌ์ด์—์„œ ์ผ๊ด€์„ฑ์„ ์œ ์ง€ํ•˜์ง€ ๋ชปํ•  ๋•Œ ๋ฐœ์ƒํ•˜๋Š” ๋ฌธ์ œ๋ฅผ ํƒ๊ตฌํ•ฉ๋‹ˆ๋‹ค. 2. ์•„ํฌ๋ผ์‹œ์•„ ๋ฒค์น˜๋งˆํฌ์˜ ๊ฐœ๋ฐœ: ๋…ผ๋ฌธ์€ '์•„ํฌ๋ผ์‹œ์•„ ๋ฒค์น˜๋งˆํฌ'๋ผ๋Š” ์ƒˆ๋กœ์šด ํ‰๊ฐ€ ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. ์ด ๋ฒค์น˜๋งˆํฌ๋Š” ๋ชจ๋ธ์ด ๊ธ€๋กœ

System
Variational Quantum Rainbow Deep Q-Network for Optimizing Resource Allocation Problem

Variational Quantum Rainbow Deep Q-Network for Optimizing Resource Allocation Problem

๋ณธ ๋…ผ๋ฌธ์€ ์ „ํ†ต์ ์ธ ์‹ฌ์ธต ๊ฐ•ํ™”ํ•™์Šต์ด ์ง๋ฉดํ•œ ํ‘œํ˜„๋ ฅ ํ•œ๊ณ„๋ฅผ ์–‘์ž ์ปดํ“จํŒ…์˜ ๊ณ ์œ  ํŠน์„ฑ์„ ์ด์šฉํ•ด ๊ทน๋ณตํ•˜๊ณ ์ž ํ•˜๋Š” ์‹œ๋„์ด๋‹ค. ๊ธฐ์กด Rainbow DQN์€ Double DQN, Prioritized Experience Replay, Dueling Network, Multiโ€‘step Learning, Distributional RL ๋“ฑ ์—ฌ์„ฏ ๊ฐ€์ง€ ๊ฐœ์„  ๊ธฐ๋ฒ•์„ ํ†ตํ•ฉํ•ด ์„ฑ๋Šฅ์„ ๋Œ์–ด์˜ฌ๋ ธ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ด๋“ค ๋ชจ๋‘๋Š” ๊ณ ์ „์ ์ธ ๋‰ด๋Ÿด ๋„คํŠธ์›Œํฌ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•˜๋ฉฐ, ํŒŒ๋ผ๋ฏธํ„ฐ ์ˆ˜๊ฐ€ ๊ธ‰๊ฒฉํžˆ ์ฆ๊ฐ€ํ•˜๋ฉด ํ•™์Šต์ด ๋ถˆ์•ˆ์ •ํ•ด์ง€๊ณ  ๋ฉ”๋ชจ๋ฆฌ ์š”๊ตฌ๋Ÿ‰์ด ์ปค์ง€๋Š” ๋ฌธ์ œ๊ฐ€ ์žˆ๋‹ค. ๋ณ€๋ถ„ ์–‘์ž

Network
Back to Basics: Motion Representation Matters for Human Motion Generation Using Diffusion Model

Back to Basics: Motion Representation Matters for Human Motion Generation Using Diffusion Model

๋ณธ ๋…ผ๋ฌธ์€ ์ตœ๊ทผ ๊ธ‰๋ถ€์ƒํ•˜๊ณ  ์žˆ๋Š” ์ธ๊ฐ„ ๋™์ž‘ ํ•ฉ์„ฑ์šฉ ํ™•์‚ฐ ๋ชจ๋ธ์˜ ํ•ต์‹ฌ ์„ค๊ณ„ ์š”์†Œ์ธ โ€˜๋™์ž‘ ํ‘œํ˜„ ๋ฐฉ์‹โ€™๊ณผ โ€˜์†์‹ค ํ•จ์ˆ˜โ€™๋ฅผ ์ฒด๊ณ„์ ์œผ๋กœ ๊ฒ€์ฆํ•œ ์ ์—์„œ ํ•™์ˆ ์ ยท์‹ค์šฉ์  ์˜์˜๊ฐ€ ํฌ๋‹ค. ๋จผ์ €, ์ €์ž๋Š” ๊ธฐ์กด ์—ฐ๊ตฌ์—์„œ ์ œ์•ˆ๋œ 6๊ฐ€์ง€ ๋Œ€ํ‘œ์ ์ธ ๋™์ž‘ ํ‘œํ˜„(์˜ˆ: ๊ด€์ ˆ ๊ฐ๋„, ๊ด€์ ˆ ์œ„์น˜, ํšŒ์ „ ํ–‰๋ ฌ, ์ฟผํ„ฐ๋‹ˆ์–ธ, ์†๋„ยท๊ฐ€์†๋„ ๊ธฐ๋ฐ˜ ํ‘œํ˜„, ๊ทธ๋ฆฌ๊ณ  ํ˜ผํ•ฉํ˜• ํ‘œํ˜„)์„ ๋™์ผํ•œ MDM ๊ธฐ๋ฐ˜ ํ”„๋ ˆ์ž„์›Œํฌ์— ์ ์šฉํ•ด ๋น„๊ตํ•˜์˜€๋‹ค. ์ด๋•Œ ์‚ฌ์šฉ๋œ ํ‰๊ฐ€์ง€ํ‘œ๋Š” ํ”ํžˆ ์“ฐ์ด๋Š” Frechet Inception Distance(FID)์™€ Diversity Score ๋“ฑ์œผ๋กœ, ํ’ˆ์งˆ๊ณผ ๋‹ค์–‘์„ฑ์„

Model
From Kinematics to Interference: Operational Requirements for the Quantum Principle of Relativity

From Kinematics to Interference: Operational Requirements for the Quantum Principle of Relativity

์ด ๋…ผ๋ฌธ์€ ์–‘์ž์—ญํ•™๊ณผ ์ƒ๋Œ€์„ฑ ์ด๋ก  ์‚ฌ์ด์˜ ์˜ค๋ž˜๋œ ๋ถˆ์ผ์น˜๋ฅผ ์ƒˆ๋กœ์šด ๊ด€์ ์—์„œ ์ ‘๊ทผํ•œ๋‹ค๋Š” ์ ์—์„œ ํ•™์ˆ ์  ์˜๋ฏธ๊ฐ€ ํฌ๋‹ค. ๊ธฐ์กด์˜ โ€˜์–‘์ž ์ƒ๋Œ€์„ฑ ์›๋ฆฌ(QPR)โ€™๋Š” ์ดˆ๊ด‘์† ๋กœ๋ Œ์ธ  ๋ณ€ํ™˜์„ ํ—ˆ์šฉํ•จ์œผ๋กœ์จ, ํŠน์ˆ˜ ์ƒ๋Œ€์„ฑ ์ด๋ก ์˜ ๊ธฐ๋ณธ ๊ฐ€์ •์ธ ๋น›์†๋„ ์ƒํ•œ์„ ํ˜•์‹์ ์œผ๋กœ ๊นจ๋œจ๋ฆฐ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ €์ž๋Š” ์ด ๋ณ€ํ™˜ ์ž์ฒด๊ฐ€ ๋ฌผ๋ฆฌ์  ์‹ค์žฌ๋ฅผ ์˜๋ฏธํ•˜์ง€ ์•Š์œผ๋ฉฐ, ์‹ค์ œ ๋ฌผ๋ฆฌํ•™์€ ์‹คํ—˜์  ์šด์˜ ์ •์˜์— ์˜ํ•ด ๊ทœ์ •๋œ๋‹ค๊ณ  ๊ฐ•์กฐํ•œ๋‹ค. ํŠนํžˆ ์–‘์ž ์ค‘์ฒฉ์„ โ€˜๋‹ค์ค‘ ๊ฒฝ๋กœโ€™๋ฅผ ๊ทธ๋ฆฌ๋Š” ํ–‰์œ„๊ฐ€ ์•„๋‹ˆ๋ผ, ์„œ๋กœ ๋‹ค๋ฅธ ๋Œ€์•ˆ์ด ๊ฐ„์„ญ ๊ณ ๋ฆฌ์—์„œ ์žฌ๊ฒฐํ•ฉํ•  ๋•Œ ๋‚˜ํƒ€๋‚˜๋Š” ๊ด€์ธก ๊ฐ€๋Šฅํ•œ ์œ„์ƒ ์ฐจ์ด์™€ ํ™•๋ฅ  ๋ถ„ํฌ๋กœ ์ •์˜ํ•œ๋‹ค๋Š”

Measuring the Unspoken: A Disentanglement Model and Benchmark for Psychological Analysis in the Wild

Measuring the Unspoken: A Disentanglement Model and Benchmark for Psychological Analysis in the Wild

๋ณธ ๋…ผ๋ฌธ์€ ์ธ๊ฐ„ ๋Œ€ํ™”์˜ ๋น„์–ธ์–ด์  ๋‹จ์„œ๋ฅผ ์‹œ๊ฐโ€‘์–ธ์–ด ๋ชจ๋ธ์— ํ†ตํ•ฉํ•˜๋ ค๋Š” ์‹œ๋„ ์ค‘ ๊ฐ€์žฅ ํฌ๊ด„์ ์ธ ์ ‘๊ทผ๋ฒ•์ด๋ผ ํ•  ์ˆ˜ ์žˆ๋‹ค. ์ฒซ ๋ฒˆ์งธ ๋ฌธ์ œ์ธ โ€˜๋ฐœํ™”โ€‘๊ฐ์ • ๋ชจํ˜ธ์„ฑโ€™์€ ์ž…์ˆ  ์›€์ง์ž„์ด ๊ฐ์ • ํ‘œํ˜„๊ณผ ๊ฒน์ณ ๋ณด์ด๋Š” ํ˜„์ƒ์œผ๋กœ, ๊ธฐ์กด VLM์ด ํ…์ŠคํŠธ์™€ ์ด๋ฏธ์ง€ ๊ฐ„์˜ ์—ฐ๊ด€์„ฑ์„ ํ•™์Šตํ•  ๋•Œ ์ด์ค‘ ์˜๋ฏธ๋ฅผ ๊ตฌ๋ถ„ํ•˜์ง€ ๋ชปํ•ด ์‹ฌ๋ฆฌ์  ์ถ”๋ก ์— ์˜ค๋ฅ˜๋ฅผ ์ผ์œผํ‚จ๋‹ค. MIND๋Š” ์ด๋Ÿฌํ•œ ๋ชจํ˜ธ์„ฑ์„ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ๊ณ„์ธต์  ๊ตฌ์กฐ๋ฅผ ์ฑ„ํƒํ•˜๊ณ , ๊ฐ ๋ ˆ์ด์–ด์—์„œ ์‹œ๊ฐ„์  ํŠน์ง• ๋ถ„์‚ฐ์„ ๊ณ„์‚ฐํ•ด ๋ณ€๋™์„ฑ์ด ๋‚ฎ์€(์ฆ‰, ๊ฐ์ •๊ณผ ๋ฌด๊ด€ํ•œ) ์ž…์ˆ  ํŒจํ„ด์„ ์–ต์ œํ•œ๋‹ค. ์ด โ€˜์ƒํƒœ ํŒ๋‹จโ€™ ๋ชจ๋“ˆ์€ ๊ธฐ์กด์˜ ๋‹จ์ˆœ attenti

Analysis Model
TimesNet-Gen: Deep Learning-based Site Specific Strong Motion Generation

TimesNet-Gen: Deep Learning-based Site Specific Strong Motion Generation

๋ณธ ๋…ผ๋ฌธ์€ ์ง€์ง„๊ณตํ•™ ๋ถ„์•ผ์—์„œ ํ˜„์žฅ๋ณ„ ๊ฐ•์ง„ ๊ธฐ๋ก์„ ์ธ๊ณต์ ์œผ๋กœ ์ƒ์„ฑํ•  ์ˆ˜ ์žˆ๋Š” ์ƒˆ๋กœ์šด ๋ฐ์ดํ„ฐโ€‘๋“œ๋ฆฌ๋ธ ๋ชจ๋ธ์„ ์ œ์‹œํ•œ๋‹ค๋Š” ์ ์—์„œ ํฐ ์˜๋ฏธ๋ฅผ ๊ฐ€์ง„๋‹ค. ๊ธฐ์กด์˜ ๊ฐ•์ง„ ํ•ฉ์„ฑ ๋ฐฉ๋ฒ•์€ ์ฃผ๋กœ ์ŠคํŽ™ํŠธ๋Ÿผ ๊ธฐ๋ฐ˜ ํ˜น์€ ๋ฌผ๋ฆฌโ€‘๊ธฐ๋ฐ˜ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์— ์˜์กดํ–ˆ์œผ๋ฉฐ, ํ˜„์žฅ ํŠน์„ฑ์„ ์ถฉ๋ถ„ํžˆ ๋ฐ˜์˜ํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ๋ณต์žกํ•œ ํŒŒ๋ผ๋ฏธํ„ฐ ํŠœ๋‹์ด ํ•„์š”ํ–ˆ๋‹ค. ๋ฐ˜๋ฉด ๋ณธ ์—ฐ๊ตฌ๋Š” ์‹œ๊ฐ„ ์˜์—ญ์—์„œ ์ง์ ‘ ๊ฐ€์†๋„ ์‹ ํ˜ธ๋ฅผ ๋‹ค๋ฃจ๋Š” TimesNetโ€‘Gen์„ ๋„์ž…ํ•จ์œผ๋กœ์จ, ํ˜„์žฅ๋ณ„ ๊ณ ์œ ์˜ โ€œ์ž ์žฌ์  ๋ณ‘๋ชฉโ€(latent bottleneck)์ด๋ผ๋Š” ์ž‘์€ ์ฐจ์›์˜ ์ž„๋ฒ ๋”ฉ์„ ํ†ตํ•ด ํ˜„์žฅ ํŠน์„ฑ์„ ์••์ถ•ํ•˜๊ณ  ์žฌํ˜„ํ•œ๋‹ค. ์ด๋Š” ํ˜„์žฅ๋งˆ๋‹ค

Learning
Tokenizing Buildings: A Transformer for Layout Synthesis

Tokenizing Buildings: A Transformer for Layout Synthesis

๋ณธ ๋…ผ๋ฌธ์€ ๊ฑด์ถ• ์„ค๊ณ„ ์ž๋™ํ™”๋ผ๋Š” ์‹ค์šฉ์  ๊ณผ์ œ์— ํŠธ๋žœ์Šคํฌ๋จธ ๊ธฐ๋ฐ˜์˜ ์‹œํ€€์Šคโ€‘ํˆฌโ€‘์‹œํ€€์Šค ๋ชจ๋ธ์„ ์ ์šฉํ•œ ์ ์—์„œ ์˜๋ฏธ๊ฐ€ ํฌ๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค์€ ์ฃผ๋กœ 2D ํ‰๋ฉด๋„๋‚˜ 3D ๋ชจ๋ธ์„ ์ง์ ‘ ์ž…๋ ฅ์œผ๋กœ ์‚ฌ์šฉํ•˜๊ฑฐ๋‚˜, ๊ทœ์น™ ๊ธฐ๋ฐ˜ ์‹œ์Šคํ…œ์— ์˜์กดํ•ด ๋ ˆ์ด์•„์›ƒ์„ ์ƒ์„ฑํ•˜์˜€๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ด๋Ÿฌํ•œ ๋ฐฉ์‹์€ ๋ณต์žกํ•œ ๊ณต๊ฐ„ ์ œ์•ฝ์„ ์ถฉ๋ถ„ํžˆ ๋ฐ˜์˜ํ•˜๊ธฐ ์–ด๋ ต๊ณ , ๋ฐ์ดํ„ฐ ์š”๊ตฌ๋Ÿ‰์ด ๋†’์œผ๋ฉฐ, ์ผ๋ฐ˜ํ™” ๋Šฅ๋ ฅ์ด ์ œํ•œ์ ์ด๋‹ค. SBM์€ โ€˜๋ฃธ ์—”๋ฒจ๋กœํ”„โ€™๋ผ๋Š” ์ตœ์†Œํ•œ์˜ ์ž…๋ ฅ๋งŒ์œผ๋กœ๋„ ๋ฐฉ ๋‚ด๋ถ€์˜ ๊ฐ€๊ตฌ ๋ฐฐ์น˜, ๋™์„ , ๊ธฐ๋Šฅ ๊ตฌ์—ญ์„ ๋™์‹œ์— ๊ณ ๋ คํ•œ ๋ ˆ์ด์•„์›ƒ์„ ์ƒ์„ฑํ•œ๋‹ค๋Š” ์ ์—์„œ ์ž…๋ ฅ ํšจ์œจ์„ฑ์ด ๋›ฐ์–ด๋‚˜๋‹ค. ๋ชจ๋ธ ์•„ํ‚คํ…์ฒ˜๋Š”

Towards A Cultural Intelligence and Values Inferences Quality Benchmark for Community Values and Common Knowledge

Towards A Cultural Intelligence and Values Inferences Quality Benchmark for Community Values and Common Knowledge

์ด ๋…ผ๋ฌธ์€ ํ˜„์žฌ AIยทLLM ๋ถ„์•ผ์—์„œ ๊ธ‰๋ถ€์ƒํ•˜๊ณ  ์žˆ๋Š” ๋ฌธํ™”์  ํŽธํ–ฅ ๋ฌธ์ œ๋ฅผ ์‹ค์งˆ์ ์œผ๋กœ ํ•ด๊ฒฐํ•˜๋ ค๋Š” ์‹œ๋„๋กœ์„œ ์˜๋ฏธ๊ฐ€ ํฌ๋‹ค. ๊ธฐ์กด์˜ ๋Œ€๋ถ€๋ถ„ LLM์€ ๋Œ€๊ทœ๋ชจ ์ธํ„ฐ๋„ท ํ…์ŠคํŠธ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•™์Šต๋˜๊ธฐ ๋•Œ๋ฌธ์— ์„œ๊ตฌ ์ค‘์‹ฌ์˜ ์–ธ์–ดยท๋ฌธํ™”์  ์„œ์ˆ ์ด ๊ณผ๋‹คํ•˜๊ฒŒ ๋ฐ˜์˜๋œ๋‹ค. ๊ฒฐ๊ณผ์ ์œผ๋กœ ๋น„์„œ๊ตฌยท์†Œ์ˆ˜์ž ์ง‘๋‹จ์ด ๊ฒช๋Š” ๊ฒฝํ—˜์ด๋‚˜ ๊ฐ€์น˜๊ด€์ด ์ œ๋Œ€๋กœ ๋ฐ˜์˜๋˜์ง€ ์•Š์•„, ์ด๋“ค ์ง‘๋‹จ์ด LLM์„ ํ™œ์šฉํ•  ๋•Œ ์˜คํ•ดยท๋ถˆ์พŒ๊ฐ์„ ์œ ๋ฐœํ•˜๊ฑฐ๋‚˜, ์ค‘์š”ํ•œ ์˜์‚ฌ๊ฒฐ์ •์—์„œ ๋ถ€์ •ํ™•ํ•œ ์ •๋ณด๋ฅผ ์ œ๊ณตํ•  ์œ„ํ—˜์ด ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ ์ธ์‹ํ•˜๊ณ  โ€˜๋ฌธํ™”โ€‘์ธ์‹โ€™ LLM์„ ๊ฐœ๋ฐœํ•˜๋ ค๋Š” ์›€์ง์ž„์€ ํ•„์ˆ˜์ ์ด๋ฉฐ, ํŠนํžˆ ChatBlack

When GenAI Meets Fake News: Understanding Image Cascade Dynamics on Reddit

When GenAI Meets Fake News: Understanding Image Cascade Dynamics on Reddit

๋ณธ ๋…ผ๋ฌธ์€ AIโ€‘์ƒ์„ฑ ์ด๋ฏธ์ง€์™€ ํ—ˆ์œ„ ์ •๋ณด๊ฐ€ ์†Œ์…œ ๋ฏธ๋””์–ด, ํŠนํžˆ Reddit์ด๋ผ๋Š” ํฌ๋Ÿผ ๊ธฐ๋ฐ˜ ํ”Œ๋žซํผ์—์„œ ์–ด๋–ป๊ฒŒ ํ™•์‚ฐ๋˜๋Š”์ง€๋ฅผ ์ •๋Ÿ‰์ ์œผ๋กœ ๊ทœ๋ช…ํ•œ ์ตœ์ดˆ์˜ ๋Œ€๊ทœ๋ชจ ์—ฐ๊ตฌ๋กœ ํ‰๊ฐ€ํ•  ์ˆ˜ ์žˆ๋‹ค. ์—ฐ๊ตฌ์ž๋Š” ์ด๋…์  ์ŠคํŽ™ํŠธ๋Ÿผ์ด ๋„“์€ ๋‹ค์„ฏ ๊ฐœ ์„œ๋ธŒ๋ ˆ๋”ง์„ ์„ ์ •ํ•จ์œผ๋กœ์จ, ์ขŒํŒŒยท์šฐํŒŒยท์ค‘๋„ยท๋Œ€์•ˆยท๊ธฐ์ˆ  ์ค‘์‹ฌ ์ปค๋ฎค๋‹ˆํ‹ฐ ๋“ฑ ๋‹ค์–‘ํ•œ ์ •์น˜ยท์‚ฌํšŒ์  ๋ฐฐ๊ฒฝ์„ ํฌ๊ด„ํ•˜์˜€๋‹ค. ๋ฐ์ดํ„ฐ ์ˆ˜์ง‘ ๋‹จ๊ณ„์—์„œ๋Š” 2022โ€‘2024๋…„ ์‚ฌ์ด์— ๊ฒŒ์‹œ๋œ 1๋ฐฑ๋งŒ ๊ฑด ์ด์ƒ์˜ ํฌ์ŠคํŠธ์™€ ๊ทธ์— ์—ฐ๊ฒฐ๋œ ์žฌ๊ฒŒ์‹œ(cascade) ๋ฐ์ดํ„ฐ๋ฅผ ํฌ๋กค๋งํ–ˆ์œผ๋ฉฐ, ๊ฐ ํฌ์ŠคํŠธ์— ํฌํ•จ๋œ ์ด๋ฏธ์ง€๊ฐ€ AIโ€‘์ƒ์„ฑ ์—ฌ๋ถ€๋ฅผ ํŒ๋ณ„ํ•˜๊ธฐ ์œ„ํ•ด ์ตœ์‹ 

Balancing Safety and Helpfulness in Healthcare AI Assistants through Iterative Preference Alignment

Balancing Safety and Helpfulness in Healthcare AI Assistants through Iterative Preference Alignment

๋ณธ ๋…ผ๋ฌธ์€ ์˜๋ฃŒ ํ˜„์žฅ์—์„œ LLM ๊ธฐ๋ฐ˜ ๋Œ€ํ™”ํ˜• ๋ณด์กฐ ์‹œ์Šคํ…œ์ด ์ง๋ฉดํ•œ ๋‘ ๊ฐ€์ง€ ํ•ต์‹ฌ ๊ณผ์ œโ€”โ€˜์œ„ํ—˜ํ•œ ์š”์ฒญ์— ๋Œ€ํ•œ ๊ณผ์ž‰ ์ˆœ์‘โ€™๊ณผ โ€˜๋ฌดํ•ดํ•œ ์š”์ฒญ์— ๋Œ€ํ•œ ๊ณผ์ž‰ ๊ฑฐ๋ถ€โ€™๋ฅผ ๋™์‹œ์— ํ•ด๊ฒฐํ•˜๊ณ ์ž ํ•˜๋Š” ์‹œ๋„๋ฅผ ๋‹ด๊ณ  ์žˆ๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ์ €์ž๋“ค์€ ๊ธฐ์กด ์‚ฌํ›„ ์ •๋ ฌ(Postโ€‘Deployment Alignment) ์ ‘๊ทผ๋ฒ•์— Kahnemanโ€‘Tversky Optimization(KTO)๊ณผ Direct Preference Optimization(DPO)์„ ๊ฒฐํ•ฉํ•œ ์ƒˆ๋กœ์šด ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์„ค๊ณ„ํ•˜์˜€๋‹ค. KTO๋Š” ์ธ๊ฐ„์˜ ์ธ์ง€ ํŽธํ–ฅ์„ ๋ชจ๋ธ๋งํ•ด ์œ„ํ—˜ ์‹ ํ˜ธ์— ๋Œ€ํ•œ ๋ฏผ๊ฐ๋„๋ฅผ ์กฐ์ ˆํ•˜๊ณ ,

Educational Cone Model in Embedding Vector Spaces

Educational Cone Model in Embedding Vector Spaces

๋ณธ ๋…ผ๋ฌธ์€ ๊ต์œก์šฉ ํ…์ŠคํŠธ์˜ ๋‚œ์ด๋„ ํ‰๊ฐ€์— ์žˆ์–ด ๊ธฐ์กด์˜ ๋‹จ์ˆœ ํ†ต๊ณ„ ๊ธฐ๋ฐ˜ ์ ‘๊ทผ๋ฒ•์ด ๊ฐ–๋Š” ํ•œ๊ณ„๋ฅผ ์ง€์ ํ•˜๊ณ , ์˜๋ฏธ๋ก ์  ์ž„๋ฒ ๋”ฉ ๊ณต๊ฐ„์„ ํ™œ์šฉํ•œ ์ƒˆ๋กœ์šด ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์‹œํ•œ๋‹ค. ํ˜„์žฌ ์ž์—ฐ์–ด ์ฒ˜๋ฆฌ ๋ถ„์•ผ์—์„œ๋Š” Word2Vec, GloVe, FastText, BERT, RoBERTa ๋“ฑ ์ˆ˜์‹ญ ๊ฐ€์ง€ ์ž„๋ฒ ๋”ฉ ๊ธฐ๋ฒ•์ด ์กด์žฌํ•˜๋ฉฐ, ๊ฐ๊ฐ์ด ํ…์ŠคํŠธ์˜ ์˜๋ฏธ์  ์œ ์‚ฌ์„ฑ์„ ๋‹ค๋ฅธ ๋ฐฉ์‹์œผ๋กœ ํฌ์ฐฉํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๊ต์œก ํ˜„์žฅ์—์„œ ์š”๊ตฌ๋˜๋Š” โ€œ๋‚œ์ด๋„โ€๋ผ๋Š” ์ถ”์ƒ์  ํŠน์„ฑ์€ ๋‹จ์ˆœํ•œ ์˜๋ฏธ ์œ ์‚ฌ๋„์™€๋Š” ๋ณ„๊ฐœ์˜ ์ฐจ์›์„ ๊ฐ€์ง„๋‹ค. ๋”ฐ๋ผ์„œ ์–ด๋–ค ์ž„๋ฒ ๋”ฉ์ด ๋‚œ์ด๋„ ๊ตฌ๋ถ„์— ๊ฐ€์žฅ ์ ํ•ฉํ•œ์ง€๋ฅผ ์‚ฌ์ „์— ์•Œ๊ธฐ ์–ด๋ ต๋‹ค

Model
Learning Single-Image Super-Resolution in the JPEG Compressed Domain

Learning Single-Image Super-Resolution in the JPEG Compressed Domain

๋ณธ ๋…ผ๋ฌธ์€ ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜ ์ด๋ฏธ์ง€ ๋ณต์› ๋ถ„์•ผ์—์„œ ํ”ํžˆ ๊ฐ„๊ณผ๋˜๋Š” ๋ฐ์ดํ„ฐ ์ „์ฒ˜๋ฆฌ ๋‹จ๊ณ„, ์ฆ‰ JPEG ๋””์ฝ”๋”ฉ ๊ณผ์ •์ด ์ „์ฒด ํŒŒ์ดํ”„๋ผ์ธ์˜ ํšจ์œจ์„ฑ์„ ํฌ๊ฒŒ ์ €ํ•ดํ•œ๋‹ค๋Š” ์ ์„ ์ •ํ™•ํžˆ ์งš์–ด๋ƒˆ๋‹ค. JPEG ํฌ๋งท์€ ์ด๋ฏธ์ง€ ๋ฐ์ดํ„ฐ๋ฅผ 8ร—8 ๋ธ”๋ก ๋‹จ์œ„์˜ ์ด์‚ฐ ์ฝ”์‚ฌ์ธ ๋ณ€ํ™˜(DCT) ๊ณ„์ˆ˜์™€ ์–‘์žํ™” ํ…Œ์ด๋ธ”๋กœ ์••์ถ•ํ•˜๋Š”๋ฐ, ์ด ๊ณผ์ •์—์„œ ์›๋ณธ ํ”ฝ์…€๊ฐ’์„ ๋ณต์›ํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ์—ญ๋ณ€ํ™˜๊ณผ ์—ญ์–‘์žํ™”๊ฐ€ ํ•„์š”ํ•˜๋‹ค. ์ด๋Ÿฌํ•œ ์—ฐ์‚ฐ์€ CPU ์ค‘์‹ฌ์˜ ์ž‘์—…์œผ๋กœ, GPU ๊ฐ€์†์ด ๊ฐ€๋Šฅํ•œ ๋”ฅ๋Ÿฌ๋‹ ์—ฐ์‚ฐ๊ณผ๋Š” ๋ณ„๋„๋กœ ์ˆ˜ํ–‰๋˜๋ฉฐ ๋ฉ”๋ชจ๋ฆฌ ๋Œ€์—ญํญ๊ณผ I/O ๋ณ‘๋ชฉ์„ ์ดˆ๋ž˜ํ•œ๋‹ค. ๋…ผ๋ฌธ์€ ์ด๋Ÿฌํ•œ ๋ณ‘๋ชฉ์„ ํ•ด์†Œํ•˜๊ธฐ ์œ„ํ•ด, D

Learning
NavMapFusion: Diffusion-based Fusion of Navigation Maps for Online Vectorized HD Map Construction

NavMapFusion: Diffusion-based Fusion of Navigation Maps for Online Vectorized HD Map Construction

๋ณธ ๋…ผ๋ฌธ์€ ์ž์œจ์ฃผํ–‰ ์ฐจ๋Ÿ‰์ด ํ•„์š”๋กœ ํ•˜๋Š” ๊ณ ์ •๋ฐ€ ์ง€๋„(HD ๋งต)๋ฅผ ์‹ค์‹œ๊ฐ„์œผ๋กœ ์ƒ์„ฑํ•˜๊ธฐ ์œ„ํ•œ ์ƒˆ๋กœ์šด ์ ‘๊ทผ๋ฒ•์„ ์ œ์‹œํ•œ๋‹ค. ๊ธฐ์กด์˜ HD ๋งต์€ ์‚ฌ์ „ ๊ตฌ์ถ•๋œ ์ •์  ์ง€๋„์— ์˜์กดํ–ˆ์œผ๋ฉฐ, ๋„๋กœ ๊ณต์‚ฌ, ์ผ์‹œ์  ์ฐจ์„  ๋ณ€๊ฒฝ ๋“ฑ ํ™˜๊ฒฝ ๋ณ€ํ™”์— ์ฆ‰๊ฐ์ ์œผ๋กœ ๋Œ€์‘ํ•˜์ง€ ๋ชปํ•˜๋Š” ํ•œ๊ณ„๊ฐ€ ์žˆ์—ˆ๋‹ค. ๋ฐ˜๋ฉด, ์ „ ์„ธ๊ณ„์ ์œผ๋กœ ๋„๋ฆฌ ๋ฐฐํฌ๋˜๋Š” ํ‘œ์ค€์ •๋ฐ€ ์ง€๋„(SD ๋งต, ์˜ˆ: OpenStreetMap)๋Š” ์ตœ์‹ ์„ฑ์„ ์œ ์ง€ํ•˜๊ธฐ๋Š” ์–ด๋ ค์šฐ๋‚˜, ๋Œ€๋žต์ ์ธ ๋„๋กœ ๊ตฌ์กฐ์™€ ์œ„์น˜ ์ •๋ณด๋ฅผ ์ œ๊ณตํ•œ๋‹ค๋Š” ์ ์—์„œ ์œ ์šฉํ•œ โ€˜๊ฑฐ์นœ ์‚ฌ์ „(prior)โ€™์œผ๋กœ ํ™œ์šฉ๋  ์ˆ˜ ์žˆ๋‹ค. ๋…ผ๋ฌธ์€ ์ด๋Ÿฌํ•œ ์ €ํ•ด์ƒ๋„ ์‚ฌ์ „์„ ๊ณ ํ•ด์ƒ๋„ ์„ผ์„œ

SELF: A Robust Singular Value and Eigenvalue Approach for LLM Fingerprinting

SELF: A Robust Singular Value and Eigenvalue Approach for LLM Fingerprinting

SELF ๋…ผ๋ฌธ์€ LLM์˜ ์ง€์‹์žฌ์‚ฐ ๋ณดํ˜ธ๋ฅผ ์œ„ํ•œ ๊ทผ๋ณธ์ ์ธ ์ ‘๊ทผ๋ฒ•์„ ์ œ์‹œํ•œ๋‹ค๋Š” ์ ์—์„œ ์˜๋ฏธ๊ฐ€ ํฌ๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค์€ ์ฃผ๋กœ ๋ชจ๋ธ์˜ ์ถœ๋ ฅ ํ–‰๋™(์˜ˆ: ํŠน์ • ํ”„๋กฌํ”„ํŠธ์— ๋Œ€ํ•œ ์‘๋‹ต)์ด๋‚˜ ๊ตฌ์กฐ์  ๋ฉ”ํƒ€๋ฐ์ดํ„ฐ(์˜ˆ: ๋ ˆ์ด์–ด๋ณ„ ํŒŒ๋ผ๋ฏธํ„ฐ ๋ถ„ํฌ)๋ฅผ ํ™œ์šฉํ•ด ์ง€๋ฌธ์„ ์ƒ์„ฑํ–ˆ์œผ๋ฉฐ, ์ด๋Ÿฌํ•œ ๋ฐฉ์‹์€ ๊ณต๊ฒฉ์ž๊ฐ€ ๋ชจ๋ธ์„ ๋ฏธ์„ธ์กฐ์ •ํ•˜๊ฑฐ๋‚˜ ๊ฐ€์ค‘์น˜๋ฅผ ์žฌ๋ฐฐ์—ดํ•˜๋Š” ๊ฒฝ์šฐ ์‰ฝ๊ฒŒ ํšŒํ”ผ๋  ์ˆ˜ ์žˆ์—ˆ๋‹ค. SELF๋Š” ์ด๋Ÿฌํ•œ ๋ฌธ์ œ์ ์„ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด โ€˜๋‚ด์žฌ์  ๊ฐ€์ค‘์น˜ ๊ธฐ๋ฐ˜โ€™์ด๋ผ๋Š” ์ƒˆ๋กœ์šด ํŒจ๋Ÿฌ๋‹ค์ž„์„ ๋„์ž…ํ•œ๋‹ค. ๊ตฌ์ฒด์ ์œผ๋กœ, ์–ดํ…์…˜ ๋ฉ”์ปค๋‹ˆ์ฆ˜์˜ ๊ฐ€์ค‘์น˜ ํ–‰๋ ฌ์„ ํŠน์ด๊ฐ’ ๋ถ„ํ•ด(SVD)์™€ ๊ณ ์œ ๊ฐ’ ๋ถ„ํ•ด(EVD)๋กœ ๋ถ„์„

Text-Printed Image: Bridging the Image-Text Modality Gap for Text-centric Training of Large Vision-Language Models

Text-Printed Image: Bridging the Image-Text Modality Gap for Text-centric Training of Large Vision-Language Models

๋ณธ ๋…ผ๋ฌธ์€ ๋Œ€ํ˜• ๋น„์ „โ€‘์–ธ์–ด ๋ชจ๋ธ(LVLM)์˜ ํ•™์Šต ๋น„์šฉ์„ ํฌ๊ฒŒ ๋‚ฎ์ถœ ์ˆ˜ ์žˆ๋Š” ์ƒˆ๋กœ์šด ๋ฐ์ดํ„ฐ ์ƒ์„ฑ ๋ฐฉ์‹์„ ์ œ์‹œํ•œ๋‹ค๋Š” ์ ์—์„œ ์˜๋ฏธ๊ฐ€ ํฌ๋‹ค. ๊ธฐ์กด LVLM์€ ์ด๋ฏธ์ง€โ€‘ํ…์ŠคํŠธ ์Œ์„ ๋Œ€๊ทœ๋ชจ๋กœ ์ˆ˜์ง‘ํ•ด์•ผ ํ•˜๋Š”๋ฐ, ์ด๋Š” ์ดฌ์˜ยท์ €์ž‘๊ถŒยทํ”„๋ผ์ด๋ฒ„์‹œ ๋“ฑ ์—ฌ๋Ÿฌ ์ œ์•ฝ์œผ๋กœ ์ธํ•ด ํŠนํžˆ ์˜๋ฃŒยท๋ฒ•๋ฅ ยท์‚ฐ์—… ํ˜„์žฅ ๋“ฑ ํŠน์ˆ˜ ๋„๋ฉ”์ธ์—์„œ ์–ด๋ ค์›€์„ ๊ฒช๋Š”๋‹ค. ๋ฐ˜๋ฉด ํ…์ŠคํŠธ๋Š” ์›นยท๋…ผ๋ฌธยท๋ณด๊ณ ์„œ ๋“ฑ์—์„œ ์†์‰ฝ๊ฒŒ ํ™•๋ณดํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ, ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(LLM)์„ ์ด์šฉํ•ด ์ž๋™์œผ๋กœ ๋ณ€ํ˜•ยทํ™•์žฅํ•  ์ˆ˜ ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ํ…์ŠคํŠธ๋งŒ์œผ๋กœ LVLM์„ ํ•™์Šตํ•˜๋ฉด โ€˜๋ชจ๋‹ฌ๋ฆฌํ‹ฐ ๊ฒฉ์ฐจ(modality gap)โ€™๊ฐ€ ๋ฐœ์ƒํ•œ๋‹ค

Model
The promising potential of vision language models for the generation of textual weather forecasts

The promising potential of vision language models for the generation of textual weather forecasts

๋ณธ ์—ฐ๊ตฌ๋Š” ์ตœ๊ทผ ๊ธ‰๋ถ€์ƒํ•˜๊ณ  ์žˆ๋Š” ๋ฉ€ํ‹ฐ๋ชจ๋‹ฌ ๊ธฐ์ดˆ ๋ชจ๋ธ, ํŠนํžˆ ๋น„์ „โ€‘์–ธ์–ด ๋ชจ๋ธ(Visionโ€‘Language Model, VLM)์˜ ๊ธฐ์ƒ ๋ถ„์•ผ ์ ์šฉ ๊ฐ€๋Šฅ์„ฑ์„ ์ตœ์ดˆ๋กœ ์‹œ๋„ํ•œ ์‚ฌ๋ก€๋ผ ํ•  ์ˆ˜ ์žˆ๋‹ค. ์ „ํ†ต์ ์ธ ํ•ด์ƒ์˜ˆ๋ณด๋Š” ๊ธฐ์ƒ ๊ด€์ธก๊ฐ’(์œ„์„ฑ, ๋ ˆ์ด๋”, ๊ด€์ธก์†Œ ๋“ฑ)์„ ์ธ๊ฐ„ ๊ธฐ์ƒํ•™์ž๊ฐ€ ํ•ด์„ํ•˜๊ณ , ์ •ํ˜•ํ™”๋œ ํ…์ŠคํŠธ ํ˜•์‹์œผ๋กœ ์žฌ์ž‘์„ฑํ•˜๋Š” ๋ณตํ•ฉ์ ์ธ ์›Œํฌํ”Œ๋กœ์šฐ๋ฅผ ์š”๊ตฌํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ๊ณผ์ •์€ ๋†’์€ ์ธ์  ๋น„์šฉ๊ณผ ์‹œ๊ฐ„ ์ง€์—ฐ์„ ์ดˆ๋ž˜ํ•˜๋ฉฐ, ํŠนํžˆ ๊ธ‰๋ณ€ํ•˜๋Š” ๊ธฐ์ƒ ์ƒํ™ฉ์— ๋Œ€ํ•œ ์‹ค์‹œ๊ฐ„ ๋Œ€์‘๋ ฅ์„ ์ €ํ•ดํ•œ๋‹ค. ์—ฐ๊ตฌํŒ€์€ ๋จผ์ € ๊ฒฉ์žํ˜• ๊ธฐ์ƒ ๋ฐ์ดํ„ฐ๋ฅผ ์‹œ๊ฐ„โ€‘๊ณต๊ฐ„ ์ฐจ์›์„ ํฌํ•จํ•œ ๋น„๋””์˜ค ์‹œํ€€์Šค๋กœ

Model
Exploring Depth Generalization in Large Language Models for Solving Recursive Logic Tasks

Exploring Depth Generalization in Large Language Models for Solving Recursive Logic Tasks

๋ณธ ๋…ผ๋ฌธ์€ ํ˜„์žฌ ๊ฐ€์žฅ ๋„๋ฆฌ ์‚ฌ์šฉ๋˜๋Š” ํŠธ๋žœ์Šคํฌ๋จธ ๊ธฐ๋ฐ˜ ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(Large Language Model, LLM)์ด โ€œ๊นŠ์ด ์ผ๋ฐ˜ํ™”(depth generalization)โ€๋ผ๋Š” ์ค‘์š”ํ•œ ์ฐจ์›์—์„œ ํ•œ๊ณ„๋ฅผ ๋ณด์ธ๋‹ค๋Š” ์ ์„ ๋ช…ํ™•ํžˆ ๊ทœ๋ช…ํ•œ๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋Š” ์ฃผ๋กœ ์‹œํ€€์Šค ๊ธธ์ด๊ฐ€ ํ›ˆ๋ จ ๋ฐ์ดํ„ฐ๋ณด๋‹ค ๊ธธ์–ด์งˆ ๋•Œ ๋ชจ๋ธ์ด ์–ด๋–ป๊ฒŒ ์ผ๋ฐ˜ํ™”๋˜๋Š”์ง€๋ฅผ ํƒ๊ตฌํ–ˆ์œผ๋ฉฐ, ์ด๋ฅผ โ€œ๊ธธ์ด ์ผ๋ฐ˜ํ™”โ€๋ผ๊ณ  ๋ถ€๋ฅธ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์‹ค์ œ ์ž์—ฐ์–ด์™€ ์ˆ˜ํ•™ยท๋…ผ๋ฆฌ ๋ฌธ์ œ์—์„œ๋Š” ๋‹จ์ˆœํžˆ ์‹œํ€€์Šค๊ฐ€ ๊ธธ์–ด์ง€๋Š” ๊ฒƒ์ด ์•„๋‹ˆ๋ผ, ๊ด„ํ˜ธยท์—ฐ์‚ฐ์žยท๋…ผ๋ฆฌ ์—ฐ์‚ฐ์ž์˜ ์ค‘์ฒฉ ๊ตฌ์กฐ๊ฐ€ ๊นŠ์–ด์ง€๋Š” ๊ฒฝ์šฐ๊ฐ€ ๋นˆ๋ฒˆํ•˜๋‹ค. ์ด๋Ÿฌํ•œ ์ค‘์ฒฉ ๊ตฌ์กฐ๋Š” ์Šค

Model
Fine-Tuned Large Language Models for Logical Translation: Reducing Hallucinations with Lang2Logic

Fine-Tuned Large Language Models for Logical Translation: Reducing Hallucinations with Lang2Logic

๋ณธ ๋…ผ๋ฌธ์€ ์ž์—ฐ์–ดโ€‘๋…ผ๋ฆฌ ๋ณ€ํ™˜ ์ž‘์—…์—์„œ LLM์˜ ํ™˜๊ฐ ๋ฌธ์ œ๋ฅผ ์™„ํ™”ํ•˜๊ธฐ ์œ„ํ•œ ์‹ค์šฉ์ ์ธ ์ ‘๊ทผ๋ฒ•์„ ์ œ์‹œํ•œ๋‹ค๋Š” ์ ์—์„œ ์˜๋ฏธ๊ฐ€ ํฌ๋‹ค. ์ฒซ์งธ, ์ €์ž๋Š” โ€œ์ž์—ฐ์–ด โ†’ ๋…ผ๋ฆฌ์‹ โ†’ CNFโ€๋ผ๋Š” 3๋‹จ๊ณ„ ํŒŒ์ดํ”„๋ผ์ธ์„ ๋ช…ํ™•ํžˆ ์ •์˜ํ•˜๊ณ , ๊ฐ ๋‹จ๊ณ„์—์„œ ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ๋Š” ์˜ค๋ฅ˜ ์›์ธ์„ ๋ถ„์„ํ•œ๋‹ค. ํŠนํžˆ, ๋…ผ๋ฆฌ์‹ ์ƒ์„ฑ ๋‹จ๊ณ„์—์„œ LLM์ด ๋ฌธ๋งฅ์„ ์˜คํ•ดํ•˜๊ฑฐ๋‚˜ ๋…ผ๋ฆฌ ์—ฐ์‚ฐ์ž๋ฅผ ์ž˜๋ชป ์„ ํƒํ•˜๋Š” ๊ฒฝ์šฐ๊ฐ€ ๋นˆ๋ฒˆํžˆ ๋ฐœ์ƒํ•œ๋‹ค๋Š” ์ ์„ ์ง€์ ํ•˜๊ณ , ์ด๋ฅผ ์ž์ฒด ์ •์˜ ๋ฌธ๋ฒ•์œผ๋กœ ์ œํ•œํ•จ์œผ๋กœ์จ ๋ชจ๋ธ์ด ํ—ˆ์šฉ๋œ ๊ตฌ์กฐ ๋‚ด์—์„œ๋งŒ ์ถœ๋ ฅ์„ ์ƒ์„ฑํ•˜๋„๋ก ๊ฐ•์ œํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฌธ๋ฒ• ๊ธฐ๋ฐ˜ ํ•„ํ„ฐ๋ง์€ ๊ธฐ์กด์˜ ํ›„์ฒ˜๋ฆฌ ๋ฐฉ์‹๋ณด๋‹ค ์‚ฌ์ „

Model
From Panel to Pixel: Zoom-In Vision-Language Pretraining from Biomedical Scientific Literature

From Panel to Pixel: Zoom-In Vision-Language Pretraining from Biomedical Scientific Literature

Panel2Patch๋Š” ๋ฐ”์ด์˜ค๋ฉ”๋””์ปฌ ์ด๋ฏธ์ง€โ€‘ํ…์ŠคํŠธ ํ•™์Šต ๋ถ„์•ผ์—์„œ ๊ธฐ์กด์˜ โ€œ๊ทธ๋ฆผโ€‘์ „์ฒดโ€ ์ ‘๊ทผ๋ฒ•์ด ๊ฐ–๋Š” ๊ทผ๋ณธ์ ์ธ ํ•œ๊ณ„๋ฅผ ๋›ฐ์–ด๋„˜๋Š”๋‹ค. ์ „ํ†ต์ ์ธ ์‚ฌ์ „ํ•™์Šต ํŒŒ์ดํ”„๋ผ์ธ์€ ๋…ผ๋ฌธ์— ์‹ค๋ฆฐ ๋ณตํ•ฉ์ ์ธ ๋ฉ€ํ‹ฐํŒจ๋„ ๊ทธ๋ฆผ์„ ํ•˜๋‚˜์˜ ์ด๋ฏธ์ง€โ€‘์บก์…˜ ์Œ์œผ๋กœ ๋‹จ์ˆœํ™”ํ•œ๋‹ค. ์ด ๊ณผ์ •์—์„œ ๊ฐ ํŒจ๋„์ด ์ „๋‹ฌํ•˜๋Š” ๊ตฌ์ฒด์ ์ธ ์‹คํ—˜ ๊ฒฐ๊ณผ, ์„ธํฌ ๊ตฌ์กฐ, ํ˜น์€ ๋งˆ์ปค ๋ผ๋ฒจ๋ง๊ณผ ๊ฐ™์€ ๋ฏธ์„ธํ•œ ์˜๋ฏธ๊ฐ€ ์†์‹ค๋œ๋‹ค. ์ž„์ƒ์˜๋‚˜ ์—ฐ๊ตฌ์ž๋Š” ์‹ค์ œ ์ง„๋‹จยท๋ถ„์„ ๋‹จ๊ณ„์—์„œ ํŠน์ • ์˜์—ญ์„ ํ™•๋Œ€ํ•ด ํ™•์ธํ•˜๋ฏ€๋กœ, ์ด๋Ÿฌํ•œ ๋ฏธ์„ธ ์ •๋ณด๊ฐ€ ๋ชจ๋ธ์— ๋ฐ˜์˜๋˜์ง€ ์•Š์œผ๋ฉด ์‹ค์ œ ํ™œ์šฉ๋„๋Š” ์ œํ•œ์ ์ด๋‹ค. Panel2Patch๋Š” ๋จผ์ € ๊ทธ๋ฆผ ๋ ˆ์ด์•„

Masking Matters: Unlocking the Spatial Reasoning Capabilities of LLMs for 3D Scene-Language Understanding

Masking Matters: Unlocking the Spatial Reasoning Capabilities of LLMs for 3D Scene-Language Understanding

๋ณธ ๋…ผ๋ฌธ์€ 3D ์žฅ๋ฉดโ€‘์–ธ์–ด ๋ฉ€ํ‹ฐ๋ชจ๋‹ฌ ๋ชจ๋ธ์—์„œ ๋””์ฝ”๋”์˜ ์–ดํ…์…˜ ๋งˆ์Šคํฌ๊ฐ€ ์„ฑ๋Šฅ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ์‹ฌ๋„ ์žˆ๊ฒŒ ํƒ๊ตฌํ•œ๋‹ค๋Š” ์ ์—์„œ ํฐ ์˜์˜๋ฅผ ๊ฐ€์ง„๋‹ค. ๊ธฐ์กด์˜ LLM ๊ธฐ๋ฐ˜ 3D ์ถ”๋ก  ๋ฐฉ๋ฒ•๋“ค์€ ์ž์—ฐ์–ด ์ฒ˜๋ฆฌ์—์„œ ๊ฒ€์ฆ๋œ ์ธ๊ณผ์ (causal) ๋งˆ์Šคํฌ๋ฅผ ๊ทธ๋Œ€๋กœ ์ฐจ์šฉํ–ˆ๋Š”๋ฐ, ์ด๋Š” ํ…์ŠคํŠธ๊ฐ€ ์ˆœ์ฐจ์  ๊ตฌ์กฐ๋ฅผ ๊ฐ–๋Š”๋‹ค๋Š” ์ „์ œ์— ๊ธฐ๋ฐ˜ํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ 3D ๊ฐ์ฒด๋Š” ๊ณต๊ฐ„์  ์œ„์น˜์™€ ๊ด€๊ณ„์— ์˜ํ•ด ์ •์˜๋˜๋ฉฐ, ๊ฐ์ฒด ๊ฐ„ ์ˆœ์„œ๋Š” ์˜๋ฏธ๊ฐ€ ์—†๊ฑฐ๋‚˜ ์˜คํžˆ๋ ค ๋ฐฉํ•ด๊ฐ€ ๋  ์ˆ˜ ์žˆ๋‹ค. ์ธ๊ณผ ๋งˆ์Šคํฌ๋Š” ์ด๋Ÿฌํ•œ ์ˆœ์„œโ€‘๋ฌด๊ด€์„ฑ์„ ๋ฌด์‹œํ•˜๊ณ , ๊ฐ์ฒด ํ† ํฐ์ด ์ด์ „ ํ† ํฐ์—๋งŒ ์˜์กดํ•˜๋„๋ก ๊ฐ•์ œํ•จ์œผ๋กœ์จ ๊ณต๊ฐ„์  ์ƒํ˜ธ์ž‘์šฉ์„

SPARK: Stepwise Process-Aware Rewards for Reference-Free Reinforcement Learning

SPARK: Stepwise Process-Aware Rewards for Reference-Free Reinforcement Learning

๋ณธ ๋…ผ๋ฌธ์€ ๊ฐ•ํ™”ํ•™์Šต(RL)์—์„œ ํ•ต์‹ฌ์ ์ธ ๋ณด์ƒ ์„ค๊ณ„ ๋ฌธ์ œ๋ฅผ ์ƒˆ๋กœ์šด ๊ด€์ ์—์„œ ํ•ด๊ฒฐํ•œ๋‹ค. ์ „ํ†ต์ ์ธ PRM์€ ๋‹จ๊ณ„๋ณ„ ์ •๋‹ต ๋ ˆํผ๋Ÿฐ์Šค๋‚˜ ์ธ๊ฐ„ ์ฃผ์„์— ์˜์กดํ•ด ํ•™์Šต ๋ฐ์ดํ„ฐ๋ฅผ ๊ตฌ์ถ•ํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ด๋Ÿฌํ•œ ๋ฐ์ดํ„ฐ๋Š” ๋น„์šฉ์ด ๋งŽ์ด ๋“ค๊ณ , ํŠนํžˆ ์ˆ˜ํ•™ยท๊ณผํ•™ยท์ฝ”๋“œ์™€ ๊ฐ™์ด ์ •๋‹ต์ด ๋ณต์žกํ•˜๊ฑฐ๋‚˜ ์กด์žฌํ•˜์ง€ ์•Š์„ ๋•Œ๋Š” ์‹ค์šฉ์„ฑ์ด ๋–จ์–ด์ง„๋‹ค. SPARK๋Š” ์ด ํ•œ๊ณ„๋ฅผ โ€œ์ƒ์„ฑโ€‘๊ฒ€์ฆโ€ ๋ฃจํ”„๋ฅผ ํ†ตํ•ด ๊ทน๋ณตํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ ๋‹จ๊ณ„์—์„œ ์ƒ์„ฑ๊ธฐ ๋ชจ๋ธ์€ ํ”„๋กฌํ”„ํŠธ์— ๋”ฐ๋ผ ๋‹ค์ฑ„๋กœ์šด ํ’€์ด ๊ฒฝ๋กœ๋ฅผ ์ƒ์„ฑํ•œ๋‹ค. ์—ฌ๊ธฐ์„œ ์ค‘์š”ํ•œ ์ ์€ ๋‹ค์–‘์„ฑ์„ ํ™•๋ณดํ•˜๊ธฐ ์œ„ํ•ด ์˜จ๋„ ์กฐ์ ˆ, ์ƒ˜ํ”Œ๋ง ๊ธฐ๋ฒ• ๋“ฑ์„ ํ™œ์šฉํ•ด ๋‹ค์ˆ˜์˜ ํ›„๋ณด ํ’€์ด

Learning
Towards a fully differentiable digital twin for solar cells

Towards a fully differentiable digital twin for solar cells

๋ณธ ๋…ผ๋ฌธ์€ ํƒœ์–‘์ „์ง€ ์—ฐ๊ตฌ์—์„œ ๊ฐ€์žฅ ์‹ค์šฉ์ ์ธ ๋ชฉํ‘œ ์ค‘ ํ•˜๋‚˜์ธ ์—ฐ๊ฐ„ ์—๋„ˆ์ง€ ์ˆ˜์œจ(EY) ์ตœ์ ํ™”๋ฅผ ์œ„ํ•œ ํ†ตํ•ฉ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์‹œํ•œ๋‹ค. ๊ธฐ์กด์˜ ๊ณ„์‚ฐ ์ ‘๊ทผ๋ฒ•์€ ๊ด‘ํ•™, ์ „๊ธฐ, ์—ด, ์žฌ๋ฃŒ ๊ณผํ•™ ๋“ฑ ๊ฐ๊ฐ์˜ ๋ถ„์•ผ๋ฅผ ๋ณ„๋„๋กœ ๋‹ค๋ฃจ๋Š” ๊ฒฝ์šฐ๊ฐ€ ๋งŽ์•„, ์‹ค์ œ ํ˜„์žฅ ์ ์šฉ ์‹œ ๋ฐœ์ƒํ•˜๋Š” ๋ณตํ•ฉ์ ์ธ ๋ณ€์ˆ˜๋“ค์„ ๋™์‹œ์— ๊ณ ๋ คํ•˜๊ธฐ ์–ด๋ ต๋‹ค. ์ด๋Ÿฌํ•œ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด ์ €์ž๋“ค์€ โ€˜์ฐจ๋ณ„ ๊ฐ€๋Šฅํ•œ ๋””์ง€ํ„ธ ํŠธ์œˆ(Differentiable Digital Twin)โ€™์ด๋ผ๋Š” ๊ฐœ๋…์„ ๋„์ž…ํ•˜์˜€๋‹ค. ๋””์ง€ํ„ธ ํŠธ์œˆ์€ ๋ฌผ๋ฆฌ์  ์‹œ์Šคํ…œ์„ ๊ฐ€์ƒ ๊ณต๊ฐ„์— ์ •๋ฐ€ํžˆ ๋ณต์ œํ•˜๋Š” ๊ธฐ์ˆ ์ด๋ฉฐ, ์—ฌ๊ธฐ์„œ ์ฐจ๋ณ„ ๊ฐ€๋Šฅ

Video4Spatial: Towards Visuospatial Intelligence with Context-Guided Video Generation

Video4Spatial: Towards Visuospatial Intelligence with Context-Guided Video Generation

VIDEO4SPATIAL์€ ์ตœ๊ทผ ๋น„๋””์˜ค ๊ธฐ๋ฐ˜ ์ธ๊ณต์ง€๋Šฅ ์—ฐ๊ตฌ์—์„œ ๋ˆˆ์— ๋„๋Š” ์ „ํ™˜์ ์„ ์ œ๊ณตํ•œ๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค์€ ์ฃผ๋กœ RGBโ€‘D, ํฌ์ฆˆ ์ถ”์ •, ํ˜น์€ 3D ๋ฉ”์‰ฌ์™€ ๊ฐ™์€ ๋‹ค์ค‘ ๋ชจ๋‹ฌ๋ฆฌํ‹ฐ๋ฅผ ๊ฒฐํ•ฉํ•ด ๊ณต๊ฐ„ ์ •๋ณด๋ฅผ ๋ณด๊ฐ•ํ–ˆ์ง€๋งŒ, ์ด ๋…ผ๋ฌธ์€ ์ˆœ์ˆ˜ ๋น„๋””์˜ค ํ”„๋ ˆ์ž„๋งŒ์œผ๋กœ ๋™์ผํ•˜๊ฑฐ๋‚˜ ๊ทธ ์ด์ƒ์˜ ์„ฑ๋Šฅ์„ ๋‹ฌ์„ฑํ•œ๋‹ค๋Š” ์ ์—์„œ ํ˜์‹ ์ ์ด๋‹ค. ํ•ต์‹ฌ์€ ๋‘ ๊ฐ€์ง€ ์„ค๊ณ„ ์„ ํƒ์— ์žˆ๋‹ค. ์ฒซ์งธ, ๋ฐ์ดํ„ฐ ํ๋ ˆ์ด์…˜ ๋‹จ๊ณ„์—์„œ โ€˜์‹œ๊ณต๊ฐ„ ์ผ๊ด€์„ฑโ€™๊ณผ โ€˜๋‹ค์–‘ํ•œ ์‹œ์  ์ „์ดโ€™๋ฅผ ๊ฐ•์กฐํ•œ ๊ณ ํ’ˆ์งˆ ์‹œํ€€์Šค๋ฅผ ์„ ๋ณ„ํ•จ์œผ๋กœ์จ ๋ชจ๋ธ์ด ์ž์—ฐ์Šค๋Ÿฌ์šด ์›€์ง์ž„๊ณผ ๋ฌผ์ฒด ๋ณ€ํ™”๋ฅผ ํ•™์Šตํ•˜๋„๋ก ์œ ๋„ํ–ˆ๋‹ค. ๋‘˜์งธ, ํ”„๋ ˆ์ž„์›Œํฌ ๋‚ด๋ถ€์—

A Low-Cost Reliable Racetrack Cache Based on Data Compression

A Low-Cost Reliable Racetrack Cache Based on Data Compression

๋ณธ ์—ฐ๊ตฌ๋Š” ์ฐจ์„ธ๋Œ€ ๊ณ ๋ฐ€๋„ ๋น„ํœ˜๋ฐœ์„ฑ ๋ฉ”๋ชจ๋ฆฌ์ธ ๋ ˆ์ด์ŠคํŠธ๋ž™ ๋ฉ”๋ชจ๋ฆฌ(RTM)์˜ ์‹ ๋ขฐ์„ฑ ๋ฌธ์ œ๋ฅผ ๊ทผ๋ณธ์ ์œผ๋กœ ํ•ด๊ฒฐํ•˜๊ณ ์ž ํ•˜๋Š” ์‹œ๋„์ด๋‹ค. RTM์€ ์ „ํ†ต์ ์ธ SRAM์— ๋น„ํ•ด 10๋ฐฐ ์ด์ƒ ๋†’์€ ์ง‘์ ๋„๋ฅผ ์ œ๊ณตํ•˜๋ฉด์„œ๋„ ์ฝ๊ธฐยท์“ฐ๊ธฐ ์ง€์—ฐ์ด ์งง์•„ ์บ์‹œ ๋ฉ”๋ชจ๋ฆฌ ๊ต์ฒด ํ›„๋ณด๋กœ ์ ํ•ฉํ•˜์ง€๋งŒ, ์ „๋ฅ˜ ํ๋ฆ„์„ ์ œ์–ดํ•˜๊ธฐ ์œ„ํ•œ ๋„๋ฉ”์ธ ์ด๋™ ๊ณผ์ •์—์„œ ๋ฐœ์ƒํ•˜๋Š” ์Šคํ† ์บ์Šคํ‹ฑํ•œ ์˜ค๋ฅ˜์™€ ๋ฐ์ดํ„ฐ ์…”ํ”Œ๋ง ์˜ค๋ฅ˜๊ฐ€ ๋‹ค์ค‘ ๋น„ํŠธ ์˜ค๋ฅ˜๋ฅผ ์ดˆ๋ž˜ํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ์˜ค๋ฅ˜๋Š” ๊ธฐ์กด์˜ ๋‹จ์ผ ๋น„ํŠธ ECC(์˜ˆ: SEC)๋‚˜ 2๋น„ํŠธ ์ •์ • ECC(์˜ˆ: DECTED)๋กœ๋Š” ์ถฉ๋ถ„ํžˆ ๋ฐฉ์–ดํ•  ์ˆ˜ ์—†์œผ๋ฉฐ, ๋‹ค์ค‘ ๋น„ํŠธ ์ •์ •์„ ์œ„ํ•ด์„œ๋Š”

Data
Accelerating Large-Scale Reasoning Model Inference with Sparse Self-Speculative Decoding

Accelerating Large-Scale Reasoning Model Inference with Sparse Self-Speculative Decoding

์ด ๋…ผ๋ฌธ์€ ์ตœ๊ทผ ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ์ด ๋ณต์žกํ•œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ์ฒด์ธโ€‘์˜ค๋ธŒโ€‘์“ฐ๋ฃจ(Chainโ€‘ofโ€‘Thought)์™€ ๊ฐ™์€ ๊ธด ์ถ”๋ก  ๊ณผ์ •์„ ๊ฑฐ์น  ๋•Œ, ๋ฉ”๋ชจ๋ฆฌ ๋Œ€์—ญํญ์ด ์ฃผ์š” ๋ณ‘๋ชฉ์œผ๋กœ ์ž‘์šฉํ•œ๋‹ค๋Š” ์ ์„ ์ •ํ™•ํžˆ ์งš์–ด๋‚ธ๋‹ค. ์ „ํ†ต์ ์ธ ๋””์ฝ”๋”ฉ ๋ฐฉ์‹์—์„œ๋Š” ๋งค ํ† ํฐ๋งˆ๋‹ค KVโ€‘Cache์— ์ €์žฅ๋œ ๋ชจ๋“  ์ด์ „ ํ† ํฐ์— ๋Œ€ํ•ด ์™„์ „ ์–ดํ…์…˜์„ ์ˆ˜ํ–‰ํ•œ๋‹ค. ํ† ํฐ ์ˆ˜๊ฐ€ ๋Š˜์–ด๋‚ ์ˆ˜๋ก KVโ€‘Cache์˜ ํฌ๊ธฐ๋„ ์„ ํ˜•์ ์œผ๋กœ ์ฆ๊ฐ€ํ•˜๊ณ , ์ด์— ๋”ฐ๋ผ ๋ฉ”๋ชจ๋ฆฌ ์ฝ๊ธฐยท์“ฐ๊ธฐ ๋น„์šฉ์ด ๊ธ‰์ฆํ•œ๋‹ค. ํŠนํžˆ GPU ๋ฉ”๋ชจ๋ฆฌ ์šฉ๋Ÿ‰์ด ์ œํ•œ์ ์ธ ์ƒํ™ฉ์—์„œ ์ด๋Ÿฌํ•œ ๋ฉ”๋ชจ๋ฆฌโ€‘๋ฐ”์šด๋“œ ํŠน์„ฑ์€ ์‹ค์‹œ๊ฐ„ ์‘์šฉ์— ํฐ ์ œ์•ฝ์ด ๋œ

Model
Agentic Policy Optimization via Instruction-Policy Co-Evolution

Agentic Policy Optimization via Instruction-Policy Co-Evolution

๋ณธ ๋…ผ๋ฌธ์€ RLVR(๊ฐ•ํ™”ํ•™์Šต ๊ธฐ๋ฐ˜ ๊ฒ€์ฆ ๋ณด์ƒ) ์‹œ์Šคํ…œ์—์„œ ์ง€์‹œ๋ฌธ์ด ์ •์ ์ธ ์„ค๊ณ„์— ๋จธ๋ฌด๋ฅด๋Š” ํ•œ๊ณ„๋ฅผ ์ •ํ™•ํžˆ ์งš์–ด๋‚ธ๋‹ค. LLM์€ ์‚ฌ์ „ ํ•™์Šต๋œ ์–ธ์–ด ๋ชจ๋ธ์ด์ง€๋งŒ, ์‹ค์ œ ํ™˜๊ฒฝ์—์„œ์˜ ํ–‰๋™ ์ •์ฑ…์€ ์ง€์†์ ์œผ๋กœ ๋ณ€ํ™”ํ•œ๋‹ค. ๋”ฐ๋ผ์„œ ์ดˆ๊ธฐ ์„ค๊ณ„๋œ ํ”„๋กฌํ”„ํŠธ๊ฐ€ ์ตœ์ ์ด ์•„๋‹ ๊ฐ€๋Šฅ์„ฑ์ด ํฌ๋ฉฐ, ์ •์ฑ…์ด ์ง„ํ™”ํ•จ์— ๋”ฐ๋ผ ์ง€์‹œ๋ฌธ๋„ ๋™์ ์œผ๋กœ ์กฐ์ •๋  ํ•„์š”๊ฐ€ ์žˆ๋‹ค. INSPO๋Š” ์ด๋Ÿฌํ•œ ์š”๊ตฌ๋ฅผ ์ถฉ์กฑ์‹œํ‚ค๊ธฐ ์œ„ํ•ด โ€˜์ง€์‹œโ€‘์ •์ฑ… ๊ณต๋™ ์ง„ํ™”โ€™๋ผ๋Š” ์ƒˆ๋กœ์šด ํ•™์Šต ๋ฃจํ”„๋ฅผ ๋„์ž…ํ•œ๋‹ค. ํ•ต์‹ฌ ์•„์ด๋””์–ด๋Š” ์ง€์‹œ๋ฌธ์„ ๊ฐœ๋ณ„์ ์ธ ๊ฐœ์ฒด๋กœ ๋ณด๊ณ , ๊ฐ•ํ™”ํ•™์Šต ๋ณด์ƒ์„ ๊ฐ ์ง€์‹œ๋ฌธ์— ๊ท€์†์‹œ์ผœ ์„ฑ๋Šฅ ๊ธฐ๋ฐ˜ ์„ ํƒยท์‚ญ์ œ ๊ณผ์ •

AI-Enabled grading with near-domain data for scaling feedback with human-level accuracy

AI-Enabled grading with near-domain data for scaling feedback with human-level accuracy

๋ณธ ์—ฐ๊ตฌ๊ฐ€ ๋‹ค๋ฃจ๋Š” ํ•ต์‹ฌ ๋ฌธ์ œ๋Š” โ€˜๊ตฌ์„ฑํ˜• ์งง์€ ๋‹ต๋ณ€ ์ฑ„์ โ€™์ด๋ผ๋Š” ๊ต์œก ํ˜„์žฅ์˜ ๋‚œ์ œ์ด๋‹ค. ์ „ํ†ต์ ์ธ ์ž๋™ ์ฑ„์  ์‹œ์Šคํ…œ์€ ๊ฐ๊ด€์‹์ฒ˜๋Ÿผ ์ •๋‹ต์ด ๋ช…ํ™•ํžˆ ์ •์˜๋œ ๊ฒฝ์šฐ์—๋งŒ ๋†’์€ ์ •ํ™•๋„๋ฅผ ๋ณด์ด๋ฉฐ, ์ž์œ  ์„œ์ˆ ํ˜• ๋‹ต๋ณ€์€ ํ‘œํ˜„ ๋‹ค์–‘์„ฑ, ์–ดํœ˜ ์„ ํƒ, ๋ฌธ๋งฅ์  ์˜๋ฏธ ๋“ฑ ๋ณตํ•ฉ์ ์ธ ๋ณ€์ˆ˜๋ฅผ ํฌํ•จํ•œ๋‹ค. ๋”ฐ๋ผ์„œ ์‚ฌ์ „ ์ •์˜๋œ ๋ฃจ๋ธŒ๋ฆญ ์—†์ด๋„ ์ •ํ™•ํžˆ ์ฑ„์ ํ•˜๋ ค๋ฉด ๋ฐฉ๋Œ€ํ•œ ํ•™์Šต ๋ฐ์ดํ„ฐ์™€ ์ •๊ตํ•œ ์˜๋ฏธ ์ดํ•ด๊ฐ€ ํ•„์š”ํ•˜๋‹ค. ์ €์ž๋“ค์€ ์ด๋Ÿฌํ•œ ๋‚œ์ ์„ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด โ€˜๊ทผ์ ‘ ๋ฐ์ดํ„ฐ(nearโ€‘domain data)โ€™๋ผ๋Š” ๊ฐœ๋…์„ ๋„์ž…ํ•œ๋‹ค. ์ด๋Š” ๋™์ผํ•˜๊ฑฐ๋‚˜ ์œ ์‚ฌํ•œ ์ฃผ์ œยท๋‚œ์ด๋„์˜ ๊ณผ๊ฑฐ ์‹œํ—˜ ๋ฌธํ•ญ๊ณผ ํ•™

Data
An Empirical Study of Agent Developer Practices in AI Agent Frameworks

An Empirical Study of Agent Developer Practices in AI Agent Frameworks

๋ณธ ๋…ผ๋ฌธ์€ LLM(๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ) ๊ธฐ๋ฐ˜ ์—์ด์ „ํŠธ ํ”„๋ ˆ์ž„์›Œํฌ๋ผ๋Š” ๋น„๊ต์  ์ƒˆ๋กœ์šด ์—ฐ๊ตฌ ์˜์—ญ์— ๋Œ€ํ•œ ํฌ๊ด„์ ์ธ ์‹ค์ฆ ์กฐ์‚ฌ๋ฅผ ์ˆ˜ํ–‰ํ–ˆ๋‹ค๋Š” ์ ์—์„œ ํ•™์ˆ ์ ยท์‹ค๋ฌด์  ์˜๋ฏธ๊ฐ€ ํฌ๋‹ค. ์ฒซ ๋ฒˆ์งธ ๊ฐ•์ ์€ ๋ฐ์ดํ„ฐ ์ˆ˜์ง‘ ๊ทœ๋ชจ์ด๋‹ค. 1,575๊ฐœ์˜ ์‹ค์ œ ์˜คํ”ˆ์†Œ์Šค ํ”„๋กœ์ ํŠธ์™€ 8,710๊ฐœ์˜ ๊ฐœ๋ฐœ์ž ํ† ๋ก ์„ ๋ฉ”ํƒ€๋ฐ์ดํ„ฐ๋กœ ํ™œ์šฉํ•จ์œผ๋กœ์จ, ๋‹จ์ˆœํžˆ ๋ฌธํ—Œ ์กฐ์‚ฌ์— ๋จธ๋ฌด๋ฅด์ง€ ์•Š๊ณ  ํ˜„์žฅ ์‹ค๋ฌด์—์„œ ๋ฐœ์ƒํ•˜๋Š” ๊ตฌ์ฒด์ ์ธ ๋ฌธ์ œ์™€ ์‚ฌ์šฉ ํŒจํ„ด์„ ํฌ์ฐฉํ–ˆ๋‹ค. ํŠนํžˆ 10๊ฐœ์˜ ๋Œ€ํ‘œ ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์„ ์ •ํ•˜๋Š” ๊ณผ์ •์—์„œ โ€˜๋ณ„(star)โ€™ยทโ€˜ํฌํฌ(fork)โ€™ยทโ€˜ํ™œ๋™์„ฑโ€™ ๋“ฑ ๊ฐ๊ด€์ ์ธ ์ง€ํ‘œ์™€ ํ•จ๊ป˜ ํ† ๋ก  ๋‚ด์šฉ์˜ ์งˆ์ 

Framework
Community Quality and Influence Maximization: An Empirical Study

Community Quality and Influence Maximization: An Empirical Study

์ด ๋…ผ๋ฌธ์€ ์ธํ”Œ๋ฃจ์–ธ์Šค ์ตœ๋Œ€ํ™” ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•œ ๋‘ ๊ฐ€์ง€ ์ ‘๊ทผ๋ฒ•์„ ์ฒด๊ณ„์ ์œผ๋กœ ๋น„๊ตํ•จ์œผ๋กœ์จ, ์ปค๋ฎค๋‹ˆํ‹ฐ ํƒ์ง€ ํ’ˆ์งˆ์ด ์‹ค์ œ ํ™•์‚ฐ ์„ฑ๋Šฅ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ์‹ค์ฆ์ ์œผ๋กœ ๊ทœ๋ช…ํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ ์ ‘๊ทผ๋ฒ•์€ ๊ธฐ์กด์˜ ๊ณ„์ธต ๊ตฐ์ง‘(Hierarchical Clustering) ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์‚ฌ์šฉํ•ด ์–ป์€ ๋น„๊ต์  ์ €ํ’ˆ์งˆ์˜ ์ปค๋ฎค๋‹ˆํ‹ฐ ๊ตฌ์กฐ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ์‹œ๋“œ ๋…ธ๋“œ๋ฅผ ์„ ์ •ํ•œ๋‹ค. ๋‘ ๋ฒˆ์งธ ์ ‘๊ทผ๋ฒ•์€ ์ €์ž๋“ค์ด ์ด์ „ ์—ฐ๊ตฌ์—์„œ ์ œ์•ˆํ•œ ฮฑโ€‘๊ณ„์ธต ๊ตฐ์ง‘(ฮฑโ€‘Hierarchical Clustering) ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ ์šฉํ•ด, ๋ณด๋‹ค ๋ช…ํ™•ํ•œ ๋ชจ๋“ˆ์„ฑ(modularity)๊ณผ ๋‚ด๋ถ€ ๊ฒฐ์†๋ ฅ์„ ๊ฐ€์ง„ ๊ณ ํ’ˆ์งˆ

Data assimilation and discrepancy modeling with shallow recurrent decoders

Data assimilation and discrepancy modeling with shallow recurrent decoders

๋ณธ ๋…ผ๋ฌธ์€ ํ˜„๋Œ€ ์„ผ์„œ ๋„คํŠธ์›Œํฌ๊ฐ€ ์ง๋ฉดํ•œ ๋‘ ๊ฐ€์ง€ ๊ทผ๋ณธ์ ์ธ ํ•œ๊ณ„, ์ฆ‰ ์ธก์ • ํฌ์ธํŠธ์˜ ํฌ์†Œ์„ฑ ๋ฐ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๋ชจ๋ธ์˜ ๋ถˆ์™„์ „์„ฑ์„ ๋™์‹œ์— ํ•ด๊ฒฐํ•˜๋ ค๋Š” ์‹œ๋„๋กœ์„œ, ๋จธ์‹ ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜ ๋ฐ์ดํ„ฐ ๋™ํ™” ํ”„๋ ˆ์ž„์›Œํฌ DAโ€‘SHRED ๋ฅผ ์ œ์‹œํ•œ๋‹ค. ๊ธฐ์กด ๋ฐ์ดํ„ฐ ๋™ํ™” ๊ธฐ๋ฒ•์€ ์ฃผ๋กœ ์นผ๋งŒ ํ•„ํ„ฐ, ๋ณ€๋ถ„ ๋™ํ™”, ํ˜น์€ ์ตœ๊ทผ์˜ ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜ ์ ‘๊ทผ๋ฒ•์— ์˜์กดํ•ด ์™”์œผ๋ฉฐ, ์ด๋“ค์€ ๊ณ ์ฐจ์› ์ƒํƒœ ๊ณต๊ฐ„์„ ์ง์ ‘ ๋‹ค๋ฃจ๋Š” ๊ฒฝ์šฐ ๊ณ„์‚ฐ ๋น„์šฉ์ด ๊ธ‰๊ฒฉํžˆ ์ฆ๊ฐ€ํ•˜๊ฑฐ๋‚˜, ๋ฌผ๋ฆฌ์  ์ œ์•ฝ์„ ์ถฉ๋ถ„ํžˆ ๋ฐ˜์˜ํ•˜์ง€ ๋ชปํ•œ๋‹ค๋Š” ๋ฌธ์ œ์ ์„ ์•ˆ๊ณ  ์žˆ๋‹ค. DAโ€‘SHRED ๋Š” ์ด๋Ÿฌํ•œ ๋ฌธ์ œ์ ์„ ํšŒํ”ผํ•˜๊ธฐ ์œ„ํ•ด ๋จผ์ € SHRED ๋ผ๋Š” ์–•์€

Data Model
fMRI2GES: Co-speech Gesture Reconstruction from fMRI Signal with Dual Brain Decoding Alignment

fMRI2GES: Co-speech Gesture Reconstruction from fMRI Signal with Dual Brain Decoding Alignment

๋ณธ ๋…ผ๋ฌธ์€ ๋‡Œ ์˜์ƒ(fMRI)๊ณผ ์–ธ์–ด, ๊ทธ๋ฆฌ๊ณ  ๋ชธ์ง“(gesture)์ด๋ผ๋Š” ์„ธ ๊ฐ€์ง€ ์„œ๋กœ ๋‹ค๋ฅธ ๋ชจ๋‹ฌ๋ฆฌํ‹ฐ ์‚ฌ์ด์˜ ๋งคํ•‘์„ ์ง์ ‘ ํ•™์Šตํ•˜๊ธฐ ์–ด๋ ค์šด ํ˜„์‹ค์ ์ธ ๋ฌธ์ œ๋ฅผ ์ฐฝ์˜์ ์œผ๋กœ ํ•ด๊ฒฐํ•œ๋‹ค๋Š” ์ ์—์„œ ํ•™์ˆ ์  ์˜์˜๊ฐ€ ํฌ๋‹ค. ์ฒซ ๋ฒˆ์งธ ํ•ต์‹ฌ์€ โ€˜๋น„์—ฐ๊ณ„ ๋ฐ์ดํ„ฐโ€™๋ฅผ ํ™œ์šฉํ•œ๋‹ค๋Š” ์ ์ด๋‹ค. ๊ธฐ์กด์˜ ๋‡Œโ€‘์ด๋ฏธ์ง€ ํ˜น์€ ๋‡Œโ€‘์–ธ์–ด ์žฌ๊ตฌ์„ฑ ์—ฐ๊ตฌ๋Š” fMRI์™€ ๋ชฉํ‘œ ์ถœ๋ ฅ(์ด๋ฏธ์ง€, ํ…์ŠคํŠธ) ์‚ฌ์ด์— 1:1 ๋งค์นญ์ด ๋ณด์žฅ๋œ ๋ฐ์ดํ„ฐ์…‹์„ ์ „์ œ๋กœ ํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๋‡Œ์™€ ๋™์‹œ์— ๊ธฐ๋ก๋œ ์ œ์Šค์ฒ˜ ๋ฐ์ดํ„ฐ๋Š” ์‹คํ—˜ ์„ค๊ณ„์ƒ์˜ ์ œ์•ฝ๊ณผ ๋น„์šฉ ๋•Œ๋ฌธ์— ๊ฑฐ์˜ ์กด์žฌํ•˜์ง€ ์•Š๋Š”๋‹ค. ์ €์ž๋“ค์€ ์ด๋Ÿฌํ•œ ์ œ์•ฝ์„ ์šฐํšŒํ•˜๊ธฐ ์œ„ํ•ด

From Black Hole to Galaxy: Neural Operator: Framework for Accretion and Feedback Dynamics

From Black Hole to Galaxy: Neural Operator: Framework for Accretion and Feedback Dynamics

์ดˆ๋Œ€์งˆ๋Ÿ‰ ๋ธ”๋ž™ํ™€(SMBH)๊ณผ ๊ทธ ์ˆ™์ฃผ ์€ํ•˜์˜ ๊ณต๋™ ์ง„ํ™”๋Š” ํ˜„๋Œ€ ์ฒœ์ฒด๋ฌผ๋ฆฌํ•™์—์„œ ๊ฐ€์žฅ ๋‚œ์ œ ์ค‘ ํ•˜๋‚˜์ด๋‹ค. ๋ฌผ๋ฆฌ์  ๊ณผ์ •์ด ๋ธ”๋ž™ํ™€ ์ฃผ๋ณ€์˜ ๋ฐ€๋ฆฌํŒŒ์„น ๊ทœ๋ชจ์—์„œ ์€ํ•˜ ์ „์ฒด์˜ ๋ฉ”๊ฐ€ํŒŒ์„น ๊ทœ๋ชจ์— ์ด๋ฅด๊ธฐ๊นŒ์ง€ 10โน๋ฐฐ์— ๋‹ฌํ•˜๋Š” ๊ฑฐ๋ฆฌ์™€ ์‹œ๊ฐ„ ์Šค์ผ€์ผ์„ ํฌ๊ด„ํ•œ๋‹ค๋Š” ์ ์—์„œ, ์ „ํ†ต์ ์ธ ์ฒซ ์›๋ฆฌ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์€ ๊ณ„์‚ฐ ์ž์› ํ•œ๊ณ„๋กœ ์ธํ•ด ์‹คํ˜„ ๋ถˆ๊ฐ€๋Šฅํ•˜๋‹ค. ๋”ฐ๋ผ์„œ ์—ฐ๊ตฌ์ž๋“ค์€ โ€˜์„œ๋ธŒ๊ทธ๋ฆฌ๋“œโ€™ ์ ‘๊ทผ๋ฒ•์„ ์‚ฌ์šฉํ•ด ๋ฏธ์„ธ ์Šค์ผ€์ผ์˜ ๋ฌผ๋ฆฌํ•™์„ ๊ฑฐ์‹œ ์Šค์ผ€์ผ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์— ์‚ฝ์ž…ํ•œ๋‹ค. ๊ธฐ์กด ์„œ๋ธŒ๊ทธ๋ฆฌ๋“œ ๋ชจ๋ธ์€ ๋ณดํ†ต ๊ณ ์ •๋œ ํšจ์œจ ํŒŒ๋ผ๋ฏธํ„ฐ(์˜ˆ: Eddington ์ œํ•œ, ฮฑ ๋””์Šคํฌ ๋ชจ๋ธ)๋‚˜ ์ด๋ก ์  ์ถ”์ •

Framework
From monoliths to modules: Decomposing transducers for efficient world modelling

From monoliths to modules: Decomposing transducers for efficient world modelling

์ด ๋…ผ๋ฌธ์ด ์ œ์‹œํ•˜๋Š” ํ•ต์‹ฌ ์•„์ด๋””์–ด๋Š” โ€˜ํŠธ๋žœ์Šค๋“€์„œโ€™๋ฅผ ์ด์šฉํ•ด ์„ธ๊ณ„ ๋ชจ๋ธ์„ ๋ชจ๋“ˆํ™”ํ•˜๊ณ , ๊ทธ ๋ชจ๋“ˆ๋“ค์„ ์—ญ์œผ๋กœ ๋ถ„ํ•ดํ•จ์œผ๋กœ์จ ๋ณ‘๋ ฌ ์ฒ˜๋ฆฌ์™€ ํ•ด์„ ๊ฐ€๋Šฅ์„ฑ์„ ๋™์‹œ์— ํ™•๋ณดํ•œ๋‹ค๋Š” ์ ์ด๋‹ค. ํŠธ๋žœ์Šค๋“€์„œ๋Š” ๊ด€์ธกยทํ–‰๋™ยท๋ณด์ƒ ๋“ฑ ๋ณตํ•ฉ์ ์ธ ์ƒํ˜ธ์ž‘์šฉ์„ ํ•˜๋‚˜์˜ ์ž…๋ ฅโ€‘์ถœ๋ ฅ ๊ด€๊ณ„๋กœ ์ถ”์ƒํ™”ํ•œ ๊ตฌ์กฐ๋กœ, POMDP(๋ถ€๋ถ„ ๊ด€์ธก ๋งˆ์ฝ”ํ”„ ๊ฒฐ์ • ๊ณผ์ •)๋ฅผ ์ผ๋ฐ˜ํ™”ํ•œ๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ์—์„œ๋Š” ์—ฌ๋Ÿฌ ํŠธ๋žœ์Šค๋“€์„œ๋ฅผ ์ˆœ์ฐจ์ ์œผ๋กœ ์—ฐ๊ฒฐํ•ด ๋ณต์žกํ•œ ์‹œ์Šคํ…œ์„ ๊ตฌ์„ฑํ•˜๋Š” โ€˜ํ•ฉ์„ฑโ€™ ๋ฐฉ๋ฒ•์ด ์ฃผ๋กœ ๋‹ค๋ฃจ์–ด์กŒ์œผ๋ฉฐ, ์ด๋Š” ์„ค๊ณ„ ๋‹จ๊ณ„์—์„œ๋Š” ์ง๊ด€์ ์ด์ง€๋งŒ ์‹ค์ œ ์šด์šฉ ๋‹จ๊ณ„์—์„œ๋Š” ์ „์ฒด ๋ชจ๋ธ์ด ๊ฑฐ๋Œ€ํ•ด์ ธ ์—ฐ์‚ฐ ๋น„์šฉ์ด ๊ธ‰์ฆํ•˜๊ณ , ๋‚ด๋ถ€

Model
GrndCtrl: Grounding World Models via Self-Supervised Reward Alignment

GrndCtrl: Grounding World Models via Self-Supervised Reward Alignment

๋ณธ ๋…ผ๋ฌธ์ด ์ œ์‹œํ•˜๋Š” โ€œReinforcement Learning with World Groundingโ€(RLWG) ์ ‘๊ทผ๋ฒ•์€ ๊ธฐ์กด ๋น„๋””์˜ค ๊ธฐ๋ฐ˜ ์„ธ๊ณ„ ๋ชจ๋ธ์ด ๊ฒช๋Š” ๊ธฐํ•˜ํ•™์  ๋ถˆ์ผ์น˜ ๋ฌธ์ œ๋ฅผ ๊ทผ๋ณธ์ ์œผ๋กœ ํ•ด๊ฒฐํ•˜๋ ค๋Š” ์‹œ๋„์ด๋‹ค. ์ „ํ†ต์ ์ธ ๋น„๋””์˜ค ์„ธ๊ณ„ ๋ชจ๋ธ์€ ์ฃผ๋กœ ํ”„๋ ˆ์ž„โ€‘๊ฐ„ ์žฌ๊ตฌ์„ฑ ์†์‹ค์„ ์ตœ์†Œํ™”ํ•จ์œผ๋กœ์จ ํ•™์Šต๋˜๋Š”๋ฐ, ์ด๋Ÿฌํ•œ ์†์‹ค์€ ์‹œ๊ฐ์  ์ผ๊ด€์„ฑ์€ ํ™•๋ณดํ•˜์ง€๋งŒ ๋ฌผ๋ฆฌ์ ยท๊ธฐํ•˜ํ•™์  ์ œ์•ฝ์„ ์ถฉ๋ถ„ํžˆ ๋ฐ˜์˜ํ•˜์ง€ ๋ชปํ•œ๋‹ค. ๊ฒฐ๊ณผ์ ์œผ๋กœ ๋ชจ๋ธ์ด ์ƒ์„ฑํ•œ ๊ฐ€์ƒ ํ™˜๊ฒฝ์€ ์ธ๊ฐ„์ด ์ง๊ด€์ ์œผ๋กœ ์ธ์‹ํ•˜๋Š” ๋ฌผ๋ฆฌ ๋ฒ•์น™๊ณผ ์–ด๊ธ‹๋‚˜๋Š” ๊ฒฝ์šฐ๊ฐ€ ๋นˆ๋ฒˆํ•˜๋‹ค. RLWG๋Š” ์ด๋Ÿฌํ•œ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด ๋‘ ๊ฐ€

Model
HalluGraph: Auditable Hallucination Detection for Legal RAG Systems via Knowledge Graph Alignment

HalluGraph: Auditable Hallucination Detection for Legal RAG Systems via Knowledge Graph Alignment

๋ณธ ๋…ผ๋ฌธ์€ ๋ฒ•๋ฅ  ๋ถ„์•ผ์—์„œ ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ์ž๋™ ๋ฌธ์„œ ์ƒ์„ฑ์ด ์ง๋ฉดํ•œ ๊ฐ€์žฅ ํ•ต์‹ฌ์ ์ธ ๋ฌธ์ œ์ธ โ€˜ํ™˜๊ฐ(hallucination)โ€™์„ ๊ทธ๋ž˜ํ”„ ์ด๋ก ์„ ํ™œ์šฉํ•ด ์ฒด๊ณ„์ ์œผ๋กœ ํ•ด๊ฒฐํ•˜๋ ค๋Š” ์‹œ๋„๋‹ค. ๊ธฐ์กด์˜ ํ™˜๊ฐ ํƒ์ง€ ๋ฐฉ๋ฒ•์€ ์ฃผ๋กœ ํ…์ŠคํŠธ ๊ฐ„ ์˜๋ฏธ ์œ ์‚ฌ๋„๋ฅผ ๊ณ„์‚ฐํ•˜๋Š” ๋ฐฉ์‹์— ์˜์กดํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ์ ‘๊ทผ๋ฒ•์€ ๋ฌธ๋งฅ์ƒ ์œ ์‚ฌํ•ด ๋ณด์ด์ง€๋งŒ ์‹ค์ œ๋กœ๋Š” ์ค‘์š”ํ•œ ์—”ํ„ฐํ‹ฐ(์˜ˆ: ๋‹น์‚ฌ์ž๋ช…, ์‚ฌ๊ฑด ์ผ์ž, ์กฐํ•ญ ๋ฒˆํ˜ธ)๊ฐ€ ์ž˜๋ชป ๊ต์ฒด๋˜๊ฑฐ๋‚˜ ๋ˆ„๋ฝ๋˜๋Š” ๊ฒฝ์šฐ๋ฅผ ํฌ์ฐฉํ•˜์ง€ ๋ชปํ•œ๋‹ค. ๋ฒ•๋ฅ  ๋ฌธ์„œ๋Š” ์ž‘์€ ์—”ํ„ฐํ‹ฐ์˜ ๋ณ€ํ˜•๋งŒ์œผ๋กœ๋„ ํŒ๊ฒฐ ๊ฒฐ๊ณผ์— ํฐ ์˜ํ–ฅ์„ ๋ฏธ์น  ์ˆ˜ ์žˆ๊ธฐ ๋•Œ๋ฌธ์—, ๋ณด๋‹ค ์ •๋ฐ€ํ•˜๊ณ  ํ•ด์„ ๊ฐ€๋Šฅํ•œ ๊ฒ€์ฆ ๋ฉ”์ปค๋‹ˆ

System Detection
InnoGym: Benchmarking the Innovation Potential of AI Agents

InnoGym: Benchmarking the Innovation Potential of AI Agents

InnoGym์ด ์ œ์‹œํ•˜๋Š” ๊ฐ€์žฅ ํฐ ํ˜์‹ ์€ โ€œํ˜์‹ ์„ฑโ€์ด๋ผ๋Š” ์ถ”์ƒ์  ๊ฐœ๋…์„ ์ •๋Ÿ‰ํ™”ํ•˜๋ ค๋Š” ์‹œ๋„์— ์žˆ๋‹ค. ๊ธฐ์กด์˜ LLMยท์—์ด์ „ํŠธ ํ‰๊ฐ€๋Š” ์ฃผ๋กœ ์ •๋‹ต๋ฅ , ์‹คํ–‰ ์‹œ๊ฐ„, ํ† ํฐ ๋น„์šฉ ๋“ฑ ํšจ์œจ์„ฑ ์ง€ํ‘œ์— ์ง‘์ค‘ํ–ˆ์œผ๋ฉฐ, ์ด๋Š” ๋ชจ๋ธ์ด ๊ธฐ์กด ์ง€์‹์„ ์žฌํ˜„ํ•˜๋Š” ๋Šฅ๋ ฅ์€ ์ž˜ ์ธก์ •ํ•˜์ง€๋งŒ, ์ƒˆ๋กœ์šด ์•„์ด๋””์–ด๋ฅผ ์ฐฝ์ถœํ•˜๋Š” ๋Šฅ๋ ฅ์€ ๊ฑฐ์˜ ๋“œ๋Ÿฌ๋‚ด์ง€ ๋ชปํ•œ๋‹ค. InnoGym์€ ์ด๋ฅผ ๋ณด์™„ํ•˜๊ธฐ ์œ„ํ•ด ๋‘ ์ถ•, ์ฆ‰ performance gain๊ณผ novelty๋ฅผ ๋™์‹œ์— ์ธก์ •ํ•œ๋‹ค. performance gain์€ ํ˜„์žฌ๊นŒ์ง€ ๋ณด๊ณ ๋œ ์ตœ์  ์†”๋ฃจ์…˜ ๋Œ€๋น„ ์–ผ๋งˆ๋‚˜ ๊ฐœ์„ ํ–ˆ๋Š”์ง€๋ฅผ ๋ฐฑ๋ถ„์œจ ํ˜น์€ ์ ˆ๋Œ€๊ฐ’์œผ๋กœ ๋‚˜

IVE: An Accelerator for Single-Server Private Information Retrieval Using Versatile Processing Elements

IVE: An Accelerator for Single-Server Private Information Retrieval Using Versatile Processing Elements

ํ”„๋ผ์ด๋น— ์ •๋ณด ๊ฒ€์ƒ‰(PIR)์€ ์‚ฌ์šฉ์ž๊ฐ€ ์–ด๋–ค ๋ ˆ์ฝ”๋“œ๋ฅผ ์กฐํšŒํ–ˆ๋Š”์ง€ ์„œ๋ฒ„์— ๋…ธ์ถœ๋˜์ง€ ์•Š๋„๋ก ํ•˜๋Š” ์•”ํ˜ธํ•™์  ํ”„๋กœํ† ์ฝœ๋กœ, ํŠนํžˆ ํด๋ผ์šฐ๋“œ ์„œ๋น„์Šค๋‚˜ ์˜๋ฃŒยท๊ธˆ์œต ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค์™€ ๊ฐ™์ด ๊ฐœ์ธ์ •๋ณด ๋ณดํ˜ธ๊ฐ€ ํ•„์ˆ˜์ ์ธ ๋ถ„์•ผ์—์„œ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•œ๋‹ค. ์ „ํ†ต์ ์ธ ๋‹ค์ค‘ ์„œ๋ฒ„ PIR์€ ์„œ๋ฒ„ ๊ฐ„ ํ˜‘์—…์„ ์ „์ œ๋กœ ํ•˜์—ฌ ํ†ต์‹  ์˜ค๋ฒ„ํ—ค๋“œ์™€ ์‹ ๋ขฐ ๊ด€๊ณ„ ์„ค์ •์ด ๋ณต์žกํ•˜์ง€๋งŒ, ๋‹จ์ผ ์„œ๋ฒ„ PIR์€ ์„œ๋ฒ„ ํ•˜๋‚˜๋งŒ ์žˆ์œผ๋ฉด ๋˜๋ฏ€๋กœ ๋ฐฐํฌ๊ฐ€ ๊ฐ„๋‹จํ•˜๊ณ  ๋น„์šฉ ํšจ์œจ์ ์ด๋‹ค. ์ตœ๊ทผ ๋™ํ˜•์•”ํ˜ธ(Homomorphic Encryption, HE) ๊ธฐ๋ฐ˜ ๋‹จ์ผ ์„œ๋ฒ„ PIR๊ฐ€ ์—ฐ๊ตฌ๋˜๋ฉด์„œ, ์•”ํ˜ธ๋ฌธ ์ƒํƒœ์—์„œ ์ง์ ‘ ์—ฐ์‚ฐ์ด

Spatiotemporal Pyramid Flow Matching for Climate Emulation

Spatiotemporal Pyramid Flow Matching for Climate Emulation

๋ณธ ๋…ผ๋ฌธ์€ ๊ธฐํ›„ ๊ณผํ•™๊ณผ ๋จธ์‹ ๋Ÿฌ๋‹์ด ๊ต์ฐจํ•˜๋Š” ์ตœ์ „์„ ์—์„œ, ๊ธฐ์กด ์ƒ์„ฑ ๋ชจ๋ธ์ด ๊ฐ–๋Š” ๊ทผ๋ณธ์ ์ธ ํ•œ๊ณ„๋ฅผ ๋›ฐ์–ด๋„˜๋Š” ํ˜์‹ ์ ์ธ ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์‹œํ•œ๋‹ค. ํ˜„์žฌ ๋Œ€๋ถ€๋ถ„์˜ ๊ธฐํ›„ ์—๋ฎฌ๋ ˆ์ด์…˜์€ ๊ณ ํ•ด์ƒ๋„ ๋ฌผ๋ฆฌ ๊ธฐ๋ฐ˜ ๋ชจ๋ธ์„ ์ง์ ‘ ์‹คํ–‰ํ•˜๊ฑฐ๋‚˜, ์ €ํ•ด์ƒ๋„ ํ†ต๊ณ„ ๋ชจ๋ธ์— ์˜์กดํ•œ๋‹ค. ์ „์ž๋Š” ๊ณ„์‚ฐ ๋น„์šฉ์ด ์ฒœ๋ฌธํ•™์ ์œผ๋กœ ๋†’๊ณ , ํ›„์ž๋Š” ๋ณต์žกํ•œ ๋น„์„ ํ˜• ์ƒํ˜ธ์ž‘์šฉ์„ ์ถฉ๋ถ„ํžˆ ํฌ์ฐฉํ•˜์ง€ ๋ชปํ•œ๋‹ค. ํŠนํžˆ, ๋‚ ์”จ ์ˆ˜์ค€์˜ ์ž๊ธฐํšŒ๊ท€ ๋ฐฉ์‹์€ ์‹œ๊ฐ„ ๋‹จ๊ณ„๋งˆ๋‹ค ์ˆœ์ฐจ์ ์œผ๋กœ ์ƒ˜ํ”Œ๋งํ•ด์•ผ ํ•˜๋ฏ€๋กœ ์žฅ๊ธฐ ์‹œ๋ฎฌ๋ ˆ์ด์…˜(์ˆ˜์‹ญ ๋…„~์ˆ˜๋ฐฑ ๋…„)์—์„œ๋Š” ์‹œ๊ฐ„ ๋ณต์žก๋„๊ฐ€ ์„ ํ˜•์ ์œผ๋กœ ์ฆ๊ฐ€ํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ๊ตฌ์กฐ์  ์ œ์•ฝ์€ ๋น„์ •์ƒ์ ์ธ ์™ธ๋ถ€ ๊ฐ•

Zero-Overhead Introspection for Adaptive Test-Time Compute

Zero-Overhead Introspection for Adaptive Test-Time Compute

๋ณธ ๋…ผ๋ฌธ์€ ํ˜„์žฌ ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(LLM)์ด ์ง๋ฉดํ•œ ๋ฉ”ํƒ€์ธ์ง€ ๋ถ€์žฌ ๋ฌธ์ œ๋ฅผ ์งš๊ณ , ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•œ ์ƒˆ๋กœ์šด ์ธํ”„๋ผ์ŠคํŠธ๋Ÿญ์ฒ˜์ธ ZIPโ€‘RC(Zeroโ€‘overhead Introspective Prediction of Reward and Cost)๋ฅผ ์ œ์‹œํ•œ๋‹ค. ๊ธฐ์กด์˜ Bestโ€‘ofโ€‘N ๋ฐฉ์‹์€ ๊ณ ์ •๋œ ์ƒ˜ํ”Œ ์ˆ˜๋ฅผ ๋ฏธ๋ฆฌ ์ •ํ•ด๋‘๊ณ  ๋ชจ๋“  ํ›„๋ณด์— ๋Œ€ํ•ด ๋™์ผํ•œ ๋น„์šฉ์„ ์†Œ๋ชจํ•œ๋‹ค. ์ด๋Š” ์ƒ์„ฑ ๊ณผ์ • ์ค‘์— โ€œ์ด ์ •๋„๋ฉด ์ถฉ๋ถ„ํ•œ๊ฐ€?โ€๋ผ๋Š” ํŒ๋‹จ์„ ๋‚ด๋ฆด ๊ทผ๊ฑฐ๊ฐ€ ๋ถ€์กฑํ•ด, ์‹ค์ œ๋กœ๋Š” marginal benefit๊ฐ€ ๊ฑฐ์˜ ์—†๋Š” ์ถ”๊ฐ€ ์ƒ˜ํ”Œ๊นŒ์ง€๋„ ์ˆ˜ํ–‰ํ•˜๊ฒŒ ๋งŒ๋“ ๋‹ค. ๋˜ํ•œ, ๋ชจ๋ธ

A Benchmark of Causal vs Correlation AI for Predictive Maintenance

A Benchmark of Causal vs Correlation AI for Predictive Maintenance

์˜ˆ์ธก ์œ ์ง€๋ณด์ˆ˜๋Š” ์„ค๋น„ ๊ณ ์žฅ์„ ์‚ฌ์ „์— ๊ฐ์ง€ํ•ด ์ƒ์‚ฐ ์ค‘๋‹จ์„ ๋ฐฉ์ง€ํ•˜๊ณ , ์œ ์ง€๋ณด์ˆ˜ ๋น„์šฉ์„ ์ตœ์†Œํ™”ํ•˜๋ ค๋Š” ํ•ต์‹ฌ ์ „๋žต์ด๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ œ์กฐ ํ˜„์žฅ์—์„œ๋Š” ๊ณ ์žฅ์„ ๋†“์น˜๋Š” ๋น„์šฉ์ด ์˜ค๊ฒฝ๋ณด(๋ถˆํ•„์š”ํ•œ ์ •๋น„) ๋น„์šฉ๋ณด๋‹ค ์ˆ˜์‹ญ ๋ฐฐ์—์„œ ์ˆ˜๋ฐฑ ๋ฐฐ๊นŒ์ง€ ํฌ๊ฒŒ ์ฐจ์ด ๋‚˜๋Š” โ€˜๋น„์šฉ ๋น„๋Œ€์นญโ€™ ํ˜„์ƒ์ด ์กด์žฌํ•œ๋‹ค. ์ด ๋น„๋Œ€์นญ์€ ๋‹จ์ˆœํžˆ ์ •ํ™•๋„(accuracy)๋‚˜ AUC์™€ ๊ฐ™์€ ํ†ต๊ณ„์  ์ง€ํ‘œ๋งŒ์œผ๋กœ๋Š” ๋ชจ๋ธ์˜ ์‹ค์ œ ๊ฐ€์น˜๋ฅผ ํ‰๊ฐ€ํ•˜๊ธฐ ์–ด๋ ต๊ฒŒ ๋งŒ๋“ ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด, ๊ณ ์žฅ ๋ฐœ์ƒ๋ฅ ์ด 3.3%์— ๋ถˆ๊ณผํ•œ ์ƒํ™ฉ์—์„œ 99% ์ •ํ™•๋„๋ฅผ ๋‹ฌ์„ฑํ•˜๋”๋ผ๋„ ์˜ค๊ฒฝ๋ณด๊ฐ€ ๊ณผ๋‹คํ•˜๋ฉด ์ „์ฒด ๋น„์šฉ์ด ๊ธ‰์ฆํ•œ๋‹ค. ๋”ฐ๋ผ์„œ ๋น„์šฉ ๊ธฐ๋ฐ˜ ๋ชฉํ‘œ ํ•จ

ChromouVQA: Benchmarking Vision-Language Models under Chromatic Camouflaged Images

ChromouVQA: Benchmarking Vision-Language Models under Chromatic Camouflaged Images

๋ณธ ๋…ผ๋ฌธ์€ ํ˜„์žฌ Visionโ€‘Language Model(VLM)์ด ์ง๋ฉดํ•œ ํ•ต์‹ฌ ํ•œ๊ณ„์ธ โ€˜ํ”ผ๊ฒจโ€‘๊ทธ๋ผ์šด๋“œ ๊ตฌ๋ถ„โ€™ ๋ฌธ์ œ๋ฅผ ์ •๋Ÿ‰์ ์œผ๋กœ ํ‰๊ฐ€ํ•˜๊ธฐ ์œ„ํ•ด ๋งค์šฐ ์ฒด๊ณ„์ ์ธ ๋ฒค์น˜๋งˆํฌ๋ฅผ ์„ค๊ณ„ํ–ˆ๋‹ค๋Š” ์ ์—์„œ ์˜๋ฏธ๊ฐ€ ํฌ๋‹ค. ๊ธฐ์กด VLM ํ‰๊ฐ€ ๋ฐ์ดํ„ฐ์…‹์€ ์ฃผ๋กœ ๋ช…ํ™•ํ•œ ๊ฐ์ฒด์™€ ๋ฐฐ๊ฒฝ์„ ๊ตฌ๋ถ„ํ•  ์ˆ˜ ์žˆ๋Š” ์ด๋ฏธ์ง€์— ์ดˆ์ ์„ ๋งž์ถ”์—ˆ์œผ๋ฉฐ, ์ƒ‰์ฑ„ ์œ„์žฅ(camouflage)๊ณผ ๊ฐ™์ด ์ธ๊ฐ„์˜ ์‹œ๊ฐ ์‹œ์Šคํ…œ์กฐ์ฐจ๋„ ์ธ์ง€ํ•˜๊ธฐ ์–ด๋ ค์šด ์ƒํ™ฉ์„ ์ถฉ๋ถ„ํžˆ ๋ฐ˜์˜ํ•˜์ง€ ๋ชปํ–ˆ๋‹ค. ChromouVQA๋Š” ์ด๋Ÿฌํ•œ ๊ณต๋ฐฑ์„ ๋ฉ”์šฐ๊ธฐ ์œ„ํ•ด ์ด์‹œํ•˜๋ผ ์  ํ”Œ๋ ˆ์ดํŠธ(Ishihara plates)๋ฅผ ๋ณ€ํ˜•ํ•œ ์ƒ‰์ฑ„ ์œ„์žฅ ์ด๋ฏธ์ง€

Model
IndiMathBench: Autoformalizing Mathematical Reasoning Problems with a Human Touch

IndiMathBench: Autoformalizing Mathematical Reasoning Problems with a Human Touch

์ž๋™ ํ˜•์‹ํ™”(autoโ€‘formalization) ๋ฌธ์ œ๋Š” ์ž์—ฐ์–ด๋กœ ์„œ์ˆ ๋œ ์ˆ˜ํ•™ ๋ฌธ์ œ๋ฅผ ๊ธฐ๊ณ„๊ฐ€ ์ดํ•ดํ•  ์ˆ˜ ์žˆ๋Š” ํ˜•์‹ ์–ธ์–ด, ์—ฌ๊ธฐ์„œ๋Š” Lean 4์™€ ๊ฐ™์€ ์ •๋ฆฌ ์ฆ๋ช… ์‹œ์Šคํ…œ์œผ๋กœ ๋ณ€ํ™˜ํ•˜๋Š” ๊ณผ์ •์„ ์˜๋ฏธํ•œ๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ์—์„œ๋Š” ์ฃผ๋กœ ์„œ์–‘ ์ˆ˜ํ•™ ๊ต๊ณผ์„œ๋‚˜ ๊ณต๊ฐœ๋œ ์ •๋ฆฌ ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค๋ฅผ ํ™œ์šฉํ–ˆ์ง€๋งŒ, ์ด๋Ÿฌํ•œ ์ž๋ฃŒ๋Š” ์ด๋ฏธ ๋งŽ์€ ์ž๋™ ํ˜•์‹ํ™” ๋„๊ตฌ์— ์˜ํ•ด ํ•™์Šต๋˜์–ด ๊ณผ์ ํ•ฉ(overโ€‘fitting) ์œ„ํ—˜์ด ์žˆ๋‹ค. ๋ฐ˜๋ฉด INDIMATHBENCH๋Š” ์ธ๋„ ์ˆ˜ํ•™ ์˜ฌ๋ฆผํ”ผ์•„๋“œ๋ผ๋Š” ๋น„๊ต์  ๋…๋ฆฝ์ ์ธ ์ถœ์ฒ˜์—์„œ 312๊ฐœ์˜ ๋ฌธ์ œ๋ฅผ ์ˆ˜์ง‘ํ•จ์œผ๋กœ์จ ๋ฐ์ดํ„ฐ ๋‹ค์–‘์„ฑ์„ ํฌ๊ฒŒ ํ™•๋Œ€ํ•œ๋‹ค. ์ด๋Š” LL

Integrating Causal Foundation Model in Prescriptive Maintenance Framework for Optimizing Production Line OEE

Integrating Causal Foundation Model in Prescriptive Maintenance Framework for Optimizing Production Line OEE

๋ณธ ๋…ผ๋ฌธ์€ ์ œ์กฐ ํ˜„์žฅ์—์„œ ์˜ˆ์ธก ์ค‘์‹ฌ์˜ ์œ ์ง€๋ณด์ˆ˜์—์„œ ํ•œ ๋‹จ๊ณ„ ๋‚˜์•„๊ฐ€ ์ธ๊ณผ๊ด€๊ณ„๋ฅผ ๋ช…์‹œ์ ์œผ๋กœ ๋ชจ๋ธ๋งํ•จ์œผ๋กœ์จ โ€˜์ฒ˜๋ฐฉํ˜• ์œ ์ง€๋ณด์ˆ˜(prescriptive maintenance)โ€™๋ฅผ ๊ตฌํ˜„ํ•˜๋ ค๋Š” ์‹œ๋„๋ฅผ ์ƒ์„ธํžˆ ์ œ์‹œํ•œ๋‹ค. ๋จผ์ € ๊ธฐ์กด ์˜ˆ์ธก ๋ชจ๋ธ์ด โ€œ์Šคํ‘ธ๋ฆฌ์–ด์Šค(correlational) ํŒจํ„ดโ€์— ์˜์กดํ•œ๋‹ค๋Š” ๋น„ํŒ์€ ์‹ค์ œ ํ˜„์žฅ ์‚ฌ๋ก€์™€ ์ผ์น˜ํ•œ๋‹ค. ์„ผ์„œ ๋ฐ์ดํ„ฐ๊ฐ€ ํ’๋ถ€ํ•˜์ง€๋งŒ, ๊ณ ์žฅ ์›์ธ์— ๋Œ€ํ•œ ๋„๋ฉ”์ธ ์ง€์‹์ด ๋ถ€์กฑํ•œ ๊ฒฝ์šฐ ๋ชจ๋ธ์ด ์žก์•„๋‚ด๋Š” ์‹ ํ˜ธ๋Š” ์ข…์ข… ์šฐ์—ฐํžˆ ๋ฐœ์ƒํ•œ ์ƒ๊ด€๊ด€๊ณ„์— ๋ถˆ๊ณผํ•˜๋‹ค. ์ด๋Ÿฌํ•œ ์ƒํ™ฉ์—์„œ ๋‹จ์ˆœํžˆ ๊ณ ์žฅ ํ™•๋ฅ ๋งŒ์„ ์ œ๊ณต๋ฐ›์•„๋„, ํ˜„์žฅ ์—”์ง€๋‹ˆ์–ด๋Š” โ€œ์–ด๋””๋ฅผ ๊ณ 

Framework Model
No Image

Optimizing Text Search: A Novel Pattern Matching Algorithm Based on Ukkonen's Approach

์ด ๋…ผ๋ฌธ์€ ํ…์ŠคํŠธ ๊ฒ€์ƒ‰ ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ํšจ์œจ์„ฑ์„ ํฌ๊ฒŒ ๋†’์ด๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์‹œํ•œ๋‹ค. ํŠนํžˆ ์ ‘๋ฏธ์‚ฌ ํŠธ๋ฆฌ๋ฅผ ์ตœ์ ํ™”ํ•จ์œผ๋กœ์จ, ํ˜„๋Œ€ ๋ฐ์ดํ„ฐ์…‹์—์„œ ๋ฐœ์ƒํ•˜๋Š” ๋ณต์žก์„ฑ๊ณผ ๊ทœ๋ชจ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ณ ์ž ํ•œ๋‹ค. ์ „ํ†ต์ ์ธ Naive Search, KMP, Boyer Moore ์•Œ๊ณ ๋ฆฌ์ฆ˜๋“ค์€ ๊ธฐ๋ณธ์ ์ด์ง€๋งŒ, ๊ทธ ํšจ์œจ์„ฑ์ด ํ˜„๋Œ€์˜ ๋ฐฉ๋Œ€ํ•œ ๋ฐ์ดํ„ฐ ์ฒ˜๋ฆฌ ์š”๊ตฌ์‚ฌํ•ญ์— ๋ถ€ํ•ฉํ•˜์ง€ ๋ชปํ•œ๋‹ค. ์ด ์—ฐ๊ตฌ์—์„œ๋Š” ์ ‘๋ฏธ์‚ฌ ํŠธ๋ฆฌ๋ฅผ Splitting ๋ฐ Ukkonen ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ํ†ตํ•ด ์ตœ์ ํ™”ํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์‹œํ•˜๋ฉฐ, ์ด๋ฅผ ํ†ตํ•ด ์„ ํ˜• ์‹œ๊ฐ„๊ณผ ๊ณต๊ฐ„ ํšจ์œจ์„ฑ์„ ๋‹ฌ์„ฑํ•  ์ˆ˜ ์žˆ์Œ์„ ๋ณด์—ฌ์ค€๋‹ค. ํŠนํžˆ, Ukkonen ์•Œ๊ณ ๋ฆฌ

Teleportation-Based Defenses for Privacy in Approximate Machine Unlearning

Teleportation-Based Defenses for Privacy in Approximate Machine Unlearning

๊ธฐ๊ณ„ ํ•™์Šต ๋ชจ๋ธ์—์„œ ํŠน์ • ์ƒ˜ํ”Œ์„ โ€˜์‚ญ์ œโ€™ํ•˜๋Š” ์ž‘์—…์€ ์‹ค์ œ ์„œ๋น„์Šค ํ™˜๊ฒฝ์—์„œ ๊ฐœ์ธ์ •๋ณด ๋ณดํ˜ธ ๊ทœ์ •์„ ์ค€์ˆ˜ํ•˜๊ธฐ ์œ„ํ•ด ํ•„์ˆ˜์ ์ด๋‹ค. ์ „ํ†ต์ ์ธ ์™„์ „ ์žฌํ•™์Šต ๋ฐฉ์‹์€ ๋น„์šฉ์ด ๋งŽ์ด ๋“ค๊ณ  ์‹ค์‹œ๊ฐ„ ์„œ๋น„์Šค์— ์ ์šฉํ•˜๊ธฐ ์–ด๋ ต๋‹ค. ๋”ฐ๋ผ์„œ ์ตœ๊ทผ์—๋Š” ๊ทผ์‚ฌ ์‚ญ์ œ(approximate unlearning) ๊ธฐ๋ฒ•์ด ํ™œ๋ฐœํžˆ ์—ฐ๊ตฌ๋˜๊ณ  ์žˆ๋‹ค. ์ด๋“ค ๊ธฐ๋ฒ•์€ ์›๋ณธ ๋ชจ๋ธ ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ์•ฝ๊ฐ„๋งŒ ์กฐ์ •ํ•˜๊ฑฐ๋‚˜, ์†์‹ค ํ•จ์ˆ˜์— ์‚ญ์ œ ๋Œ€์ƒ ์ƒ˜ํ”Œ์„ ์ œ์™ธํ•œ ํ˜•ํƒœ๋กœ ์žฌํ•™์Šตํ•จ์œผ๋กœ์จ ๋น ๋ฅธ ์‚ญ์ œ๋ฅผ ๋ชฉํ‘œ๋กœ ํ•œ๋‹ค. ํ•˜์ง€๋งŒ ๋ณธ ๋…ผ๋ฌธ์ด ์ง€์ ํ•˜๋“ฏ, ๊ทผ์‚ฌ ์‚ญ์ œ๋Š” ๋‘ ๊ฐ€์ง€ ๊ตฌ์กฐ์  ํŠน์„ฑ ๋•Œ๋ฌธ์— ํ”„๋ผ์ด๋ฒ„์‹œ ์œ„ํ—˜์„ ๋‚ดํฌํ•œ๋‹ค

Learning
Polynomial Neural Sheaf Diffusion: A Spectral Filtering Approach on Cellular Sheaves

Polynomial Neural Sheaf Diffusion: A Spectral Filtering Approach on Cellular Sheaves

Sheaf Neural Network(์ดํ•˜ SheafNN)๋Š” ์ „ํ†ต์ ์ธ ๊ทธ๋ž˜ํ”„ ์‹ ๊ฒฝ๋ง์ด ์ •์ ๋งˆ๋‹ค ๋™์ผํ•œ ํŠน์„ฑ ๊ณต๊ฐ„์„ ๊ฐ€์ •ํ•˜๋Š” ํ•œ๊ณ„๋ฅผ ๋„˜์–ด, ๊ฐ ์ •์ ์— ๋…๋ฆฝ์ ์ธ ๋ฒกํ„ฐ ๊ณต๊ฐ„(์Šคํ† ํฌ)์„ ํ• ๋‹นํ•˜๊ณ , ์ธ์ ‘ ์ •์  ์‚ฌ์ด์— ์„ ํ˜• ์ „์†ก(์ œํ•œ) ๋งต์„ ํ•™์Šตํ•จ์œผ๋กœ์จ ์ด์งˆ์„ฑ(homophily)๊ณผ ๊ณผํ‰ํ™œ(overโ€‘smoothing) ๋ฌธ์ œ๋ฅผ ๊ตฌ์กฐ์ ์œผ๋กœ ํ•ด๊ฒฐํ•œ๋‹ค๋Š” ์ ์—์„œ ํ˜์‹ ์ ์ด๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ํ˜„์žฌ ๊ฐ€์žฅ ๋„๋ฆฌ ์‚ฌ์šฉ๋˜๋Š” ํ™•์‚ฐ ๋ฉ”์ปค๋‹ˆ์ฆ˜์ธ Neural Sheaf Diffusion(NSD)์€ ๋‘ ๊ฐ€์ง€ ์ฃผ์š” ๋ณ‘๋ชฉ์„ ๊ฐ€์ง„๋‹ค. ์ฒซ์งธ, ์ •๊ทœํ™” ๊ณผ์ •์—์„œ SVD(ํŠน์ด๊ฐ’ ๋ถ„ํ•ด)๋ฅผ ์‚ฌ์šฉ

Hierarchical clustering of complex energy systems using pretopology

Hierarchical clustering of complex energy systems using pretopology

์ด ์—ฐ๊ตฌ๋Š” ์—๋„ˆ์ง€ ๊ด€๋ฆฌ ๋ถ„์•ผ์—์„œ ๊ธฐ์กด์— ํ”ํžˆ ์‚ฌ์šฉ๋˜๋˜ ๊ฐœ๋ณ„ ๊ฑด๋ฌผ ๋‹จ์œ„์˜ ํ˜„์žฅ ์กฐ์‚ฌ ๋ฐฉ์‹์ด ๊ฐ–๋Š” ๋น„ํšจ์œจ์„ฑ์„ ๊ทผ๋ณธ์ ์œผ๋กœ ํ•ด๊ฒฐํ•˜๋ ค๋Š” ์‹œ๋„๋กœ ํ‰๊ฐ€ํ•  ์ˆ˜ ์žˆ๋‹ค. ์ €์ž๋Š” ํ”„๋ฆฌํ† ํด๋กœ์ง€(pretopology)๋ผ๋Š” ์ˆ˜ํ•™์  ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์„ ํƒํ–ˆ๋Š”๋ฐ, ์ด๋Š” ์ „ํ†ต์ ์ธ ์œ„์ƒ์ˆ˜ํ•™์ด ์ œ๊ณตํ•˜๋Š” ๊ฐœ๋…๋ณด๋‹ค ๋” ์œ ์—ฐํ•˜๊ฒŒ โ€˜๊ทผ์ ‘์„ฑโ€™๊ณผ โ€˜ํฌํ•จ ๊ด€๊ณ„โ€™๋ฅผ ์ •์˜ํ•  ์ˆ˜ ์žˆ๋‹ค. ํ”„๋ฆฌํ† ํด๋กœ์ง€ ๊ณต๊ฐ„์—์„œ๋Š” ์ ๋“ค์˜ ๊ทผ์ ‘์„ฑ์„ ๋‚˜ํƒ€๋‚ด๋Š” โ€˜ํ”„๋ฆฌํด๋กœ์ €โ€™ ์—ฐ์‚ฐ๊ณผ, ์ง‘ํ•ฉ์„ ํ™•์žฅ์‹œํ‚ค๋Š” โ€˜ํ”„๋ฆฌ๋‚ด๋ถ€โ€™ ์—ฐ์‚ฐ์„ ํ†ตํ•ด ๋ฐ์ดํ„ฐ ๊ฐ„์˜ ๊ตฌ์กฐ์  ๊ด€๊ณ„๋ฅผ ์ •๋Ÿ‰ํ™”ํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ์—ฐ์‚ฐ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ๋‹ค์ค‘ ๊ธฐ์ค€(์˜ˆ: ์œ„์น˜, ํฌ๊ธฐ

System
Privacy in Federated Learning with Spiking Neural Networks

Privacy in Federated Learning with Spiking Neural Networks

์ŠคํŒŒ์ดํ‚น ์‹ ๊ฒฝ๋ง(SNN)์ด ์ตœ๊ทผ ์—ฃ์ง€ ๋””๋ฐ”์ด์Šค์™€ ์ €์ „๋ ฅ AI ์†”๋ฃจ์…˜์—์„œ ๊ฐ๊ด‘๋ฐ›๋Š” ์ด์œ ๋Š”, ๋‰ด๋Ÿฐ์ด ์ŠคํŒŒ์ดํฌ(์ด์‚ฐ์ ์ธ ์ „๊ธฐ ํŽ„์Šค) ํ˜•ํƒœ๋กœ ์ •๋ณด๋ฅผ ์ „๋‹ฌํ•จ์œผ๋กœ์จ ์—ฐ์‚ฐ๋Ÿ‰๊ณผ ์—๋„ˆ์ง€ ์†Œ๋น„๋ฅผ ์ตœ์†Œํ™”ํ•  ์ˆ˜ ์žˆ๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค. ์ด๋Ÿฌํ•œ ๊ตฌ์กฐ์  ํŠน์„ฑ์€ ๊ธฐ์กด์˜ ์—ฐ์†์ ์ธ ํ™œ์„ฑ๊ฐ’์„ ์‚ฌ์šฉํ•˜๋Š” ์ธ๊ณต์‹ ๊ฒฝ๋ง(ANN)๊ณผ ๊ทผ๋ณธ์ ์œผ๋กœ ๋‹ค๋ฅด๋ฉฐ, ํŠนํžˆ ํ•™์Šต ๊ณผ์ •์—์„œ๋„ ์ฐจ๋ณ„์ ์„ ๋งŒ๋“ ๋‹ค. ANN์€ ์—ญ์ „ํŒŒ๋ฅผ ํ†ตํ•ด ์ •ํ™•ํ•œ ๋ฏธ๋ถ„๊ฐ’์„ ๊ณ„์‚ฐํ•ด ๊ฐ€์ค‘์น˜๋ฅผ ์—…๋ฐ์ดํŠธํ•˜์ง€๋งŒ, SNN์€ ์ŠคํŒŒ์ดํฌ ๋ฐœ์ƒ ์ž์ฒด๊ฐ€ ๋น„๋ฏธ๋ถ„ ๊ฐ€๋Šฅํ•˜๊ธฐ ๋•Œ๋ฌธ์— ๋Œ€๋ฆฌ ๊ทธ๋ž˜๋””์–ธํŠธ(surrogate gradient)๋ผ๋Š” ๊ทผ์‚ฌ ๋ฐฉ๋ฒ•์„ ๋„

Network Learning

< Category Statistics (Total: 822) >

Electrical Engineering and Systems Science
7
General
272
General Relativity
9
HEP-EX
7
HEP-PH
12
HEP-TH
7
MATH-PH
4
NUCL-TH
1
Quantum Physics
12

Start searching

Enter keywords to search articles

โ†‘โ†“
โ†ต
ESC
โŒ˜K Shortcut