Posts

Here are all published articles, sorted by date in descending order.

820 posts total
17 pages total
GRC-Net: Gram Residual Co-attention Net for epilepsy prediction

GRC-Net: Gram Residual Co-attention Net for epilepsy prediction

์ด ๋…ผ๋ฌธ์€ ๋‡Œ์ „๋„(EEG) ์‹ ํ˜ธ๋ฅผ ํ™œ์šฉํ•œ ๋ฐœ์ž‘ ์˜ˆ์ธก ๋ชจ๋ธ์˜ ์ •ํ™•์„ฑ์„ ํ–ฅ์ƒ์‹œํ‚ค๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์‹œํ•˜๊ณ  ์žˆ๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ์—์„œ๋Š” EEG ์‹ ํ˜ธ ์ „์ฒด์— ๋Œ€ํ•ด 1์ฐจ์› ์ฒ˜๋ฆฌ๋ฅผ ์ ์šฉํ•ด ์™”์ง€๋งŒ, ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” Gram Matrix ๋ฐฉ๋ฒ•์„ ํ†ตํ•ด ์‹ ํ˜ธ๋ฅผ 3์ฐจ์› ํ‘œํ˜„์œผ๋กœ ๋ณ€ํ™˜ํ•จ์œผ๋กœ์จ, ์‹ ํ˜ธ ๊ฐ„์˜ ๊ด€๊ณ„์™€ ์‹œ๊ฐ„ ์˜์กด์„ฑ์„ ๋™์‹œ์— ๋ชจ๋ธ๋งํ•  ์ˆ˜ ์žˆ๋‹ค. ์ด๋Š” EEG ๋ฐ์ดํ„ฐ ๋‚ด์—์„œ ๋ฐœ๊ฒฌ๋œ ๋กœ์ปฌ๊ณผ ๊ธ€๋กœ๋ฒŒ ์‹ ํ˜ธ ์‚ฌ์ด์˜ ๋ถˆ๊ท ํ˜• ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•œ ๋…ธ๋ ฅ ์ค‘ ํ•˜๋‚˜์ด๋‹ค. ๋˜ํ•œ ๋…ผ๋ฌธ์€ ๊ณต์œ  ์ฃผ์˜(coattention)๋ฅผ ํ™œ์šฉํ•ด ์ „์ฒด์ ์ธ ์‹ ํ˜ธ ํŠน์ง•์„ ํฌ์ฐฉํ•˜๊ณ , Inception ๊ตฌ์กฐ

No Image

HydroDiffusion: Diffusion-Based Probabilistic Streamflow Forecasting with a State Space Backbone

ํ•ด๋„๋””ํ“จ์ „(HydroDiffusion)์€ ํ™•์‚ฐ ๋ชจ๋ธ์„ ํ™œ์šฉํ•œ ์ƒˆ๋กœ์šด ์œ ์†์˜ˆ์ธก ํ”„๋ ˆ์ž„์›Œํฌ๋กœ, ๊ธฐ์กด LSTM ๊ธฐ๋ฐ˜ ๋ชจ๋ธ๋“ค์˜ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ณ ์ž ๊ฐœ๋ฐœ๋˜์—ˆ๋‹ค. ์ด ๋…ผ๋ฌธ์—์„œ๋Š” ํ•ด๋„๋””ํ“จ์ „์ด ์–ด๋–ป๊ฒŒ ์ „์ฒด ๋ฉ€ํ‹ฐ๋ฐ์ด ํŠธ๋ ˆ์ ํ† ๋ฆฌ๋ฅผ ๋™์‹œ์— ์ฒ˜๋ฆฌํ•˜์—ฌ ์‹œ๊ฐ„์  ์ผ๊ด€์„ฑ์„ ๋ณด์žฅํ•˜๊ณ , ์ž๋™ํšŒ๊ท€ ์˜ˆ์ธก์—์„œ ๋ฐœ์ƒํ•˜๋Š” ์˜ค์ฐจ ๋ˆ„์  ๋ฌธ์ œ๋ฅผ ์™„ํ™”ํ•˜๋Š”์ง€ ์„ค๋ช…ํ•œ๋‹ค. ํŠนํžˆ, ํ•ด๋„๋””ํ“จ์ „์€ CAMELS ๋ฐ์ดํ„ฐ์…‹์„ ํ†ตํ•ด 531๊ฐœ์˜ ์ˆ˜๊ณ„์— ๊ฑธ์ณ ํ‰๊ฐ€๋˜์—ˆ์œผ๋ฉฐ, DRUM๊ณผ ๋น„๊ตํ•˜์—ฌ ์šฐ์ˆ˜ํ•œ ์„ฑ๋Šฅ์„ ๋ณด์—ฌ์ฃผ์—ˆ๋‹ค. ์ด๋Ÿฌํ•œ ๊ฒฐ๊ณผ๋Š” ํ•ด๋„๋””ํ“จ์ „์ด ์ค‘๊ธฐ ์œ ์†์˜ˆ์ธก์—์„œ ๊ฐ•๋ ฅํ•œ ๋„๊ตฌ๋กœ ํ™œ์šฉ๋  ์ˆ˜ ์žˆ์Œ์„ ์‹œ์‚ฌํ•˜๋ฉฐ

No Image

Robust and Efficient Penetration-Free Elastodynamics without Barriers

์ด ๋…ผ๋ฌธ์€ ์ธ๊ณต์ง€๋Šฅ(AI) ๊ธฐ์ˆ ์ด ๋ฐ์ดํ„ฐ ๋ถ„์„์„ ํ†ตํ•ด ๋ฏธ๋ž˜ ์˜ˆ์ธก์— ์–ด๋–ป๊ฒŒ ํ™œ์šฉ๋˜๋Š”์ง€๋ฅผ ํƒ๊ตฌํ•œ๋‹ค. AI์™€ ๋จธ์‹ ๋Ÿฌ๋‹ ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ๋ฐœ์ „์€ ๋‹ค์–‘ํ•œ ์‚ฐ์—…์—์„œ ํ˜์‹ ์ ์ธ ๋ณ€ํ™”๋ฅผ ๊ฐ€์ ธ์™”์ง€๋งŒ, ๋™์‹œ์— ์ƒˆ๋กœ์šด ๋„์ „ ๊ณผ์ œ๋„ ์ œ๊ธฐํ•˜๊ณ  ์žˆ๋‹ค. ํŠนํžˆ, ์ด ์—ฐ๊ตฌ๋Š” AI๊ฐ€ ๋ฐ์ดํ„ฐ ๋ถ„์„์„ ํ†ตํ•ด ๋ฏธ๋ž˜ ํŠธ๋ Œ๋“œ๋ฅผ ์˜ˆ์ธกํ•˜๋Š” ๋ฐ ์–ผ๋งˆ๋‚˜ ํšจ๊ณผ์ ์ผ ์ˆ˜ ์žˆ๋Š”์ง€๋ฅผ ํ‰๊ฐ€ํ•œ๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ๋‹ค์–‘ํ•œ ๋จธ์‹ ๋Ÿฌ๋‹ ๋ชจ๋ธ๊ณผ ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ์„ฑ๋Šฅ์„ ๋น„๊ตํ•˜๋ฉฐ, ์‹ค์ œ ์‚ฌ๋ก€์™€ ํ•จ๊ป˜ ๊ทธ ๊ฒฐ๊ณผ๋ฅผ ๋ถ„์„ํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ์—ฐ๊ตฌ๋Š” AI ๊ธฐ์ˆ ์ด ๋”์šฑ ๋ฐœ์ „ํ•จ์— ๋”ฐ๋ผ ๋ฏธ๋ž˜ ์˜ˆ์ธก์˜ ์ •ํ™•๋„๋ฅผ ๋†’์ด๋Š” ๋ฐฉ๋ฒ•๋ก ์„ ์ œ์‹œํ•˜๋Š” ๋™์‹œ์—, ๋ฐ์ด

SoilGen: A Comprehensive Tool for Generating Synthetic Soil Profiles for Geotechnical and Seismic Analysis

SoilGen: A Comprehensive Tool for Generating Synthetic Soil Profiles for Geotechnical and Seismic Analysis

์ง€๋ฐ˜๊ณตํ•™๊ณผ ์ง€์ง„๊ณตํ•™ ๋ถ„์•ผ์—์„œ๋Š” ์ •ํ™•ํ•œ ๋ชจ๋ธ ๊ฐœ๋ฐœ์„ ์œ„ํ•ด ๋Œ€๊ทœ๋ชจ์˜ ์ž˜ ๋ผ๋ฒจ๋ง๋œ ๋ฐ์ดํ„ฐ์…‹์ด ํ•„์ˆ˜์ ์ด๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ด๋Ÿฌํ•œ ๋ฐ์ดํ„ฐ์…‹์€ ๊ณต๊ฐœ์ ์œผ๋กœ ์ด์šฉํ•˜๊ธฐ ์–ด๋ ต๊ณ , ๊ณ ํ’ˆ์งˆ ํ˜„์žฅ ๊ธฐ๋ก์€ ๋Œ€๋ถ€๋ถ„ ์ „๋ฌธ์ ์ธ ์„ฑ๊ฒฉ ๋•Œ๋ฌธ์— ์ ‘๊ทผ์„ฑ์ด ์ œํ•œ์ ์ด๋‹ค. ์ด๋กœ ์ธํ•ด ์—ฐ๊ตฌ์ž๋“ค์€ ๋ฐ์ดํ„ฐ ๋ถ€์กฑ์œผ๋กœ ์ธํ•ด ๋ชจ๋ธ ๊ฐœ๋ฐœ์— ์–ด๋ ค์›€์„ ๊ฒช๊ฒŒ ๋œ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ ์†Œ๊ฐœ๋œ SoilGen ํ”„๋ ˆ์ž„์›Œํฌ๋Š” ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ๋ฌผ๋ฆฌ์ ์œผ๋กœ ์ผ๊ด€๋˜๊ณ  ๋‹ค์ธต์ ์ธ ํ•ฉ์„ฑ ํ† ์ธต์„ ์ƒ์„ฑํ•˜๋Š” ๋ฐฉ๋ฒ•๋ก ์„ ์ œ์‹œํ•œ๋‹ค. SoilGen์€ ๋‹จ์ˆœํžˆ ๋ฌด์ž‘์œ„ํ™”๋œ ๋ฐ์ดํ„ฐ์…‹์„ ์ œ๊ณตํ•˜์ง€ ์•Š๊ณ , ์‹ค์ œ ์ง€๋ฐ˜๊ณตํ•™์  ์†์„ฑ์„ ๊ณ ๋ คํ•˜์—ฌ

Analysis
Stochastic Volatility Modelling with LSTM Networks: A Hybrid Approach for S&P 500 Index Volatility Forecasting

Stochastic Volatility Modelling with LSTM Networks: A Hybrid Approach for S&P 500 Index Volatility Forecasting

๋ณธ ์—ฐ๊ตฌ๋Š” ๊ธˆ์œต ์‹œ์žฅ์—์„œ ๋ณ€๋™์„ฑ ์˜ˆ์ธก์˜ ์ค‘์š”์„ฑ์„ ๊ฐ•์กฐํ•˜๋ฉฐ, ์ด๋ฅผ ์œ„ํ•ด ํ™•๋ฅ ์  ๋ณ€๋™์„ฑ(SV) ๋ชจ๋ธ๊ณผ ์žฅ๋‹จ๊ธฐ ๋ฉ”๋ชจ๋ฆฌ(LSTM) ์‹ ๊ฒฝ๋ง์„ ํ†ตํ•ฉํ•œ ํ•˜์ด๋ธŒ๋ฆฌ๋“œ ๋ชจ๋ธ๋ง ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์•ˆํ•œ๋‹ค. SV ๋ชจ๋ธ์€ ํ†ต๊ณ„์ ์ธ ์ •ํ™•์„ฑ๊ณผ ์ž ์žฌ์ ์ธ ๋ณ€๋™์„ฑ ๋™ํƒœ๋ฅผ ํฌ์ฐฉํ•˜๋Š” ๋Šฅ๋ ฅ์„ ์ œ๊ณตํ•˜๋ฉฐ, ํŠนํžˆ ์˜ˆ์ƒ์น˜ ๋ชปํ•œ ์‚ฌ๊ฑด์— ๋Œ€ํ•œ ๋ฐ˜์‘์—์„œ ์œ ์šฉํ•˜๋‹ค. ํ•œํŽธ, LSTM ๋„คํŠธ์›Œํฌ๋Š” ๊ธˆ์œต ์‹œ๊ณ„์—ด ๋ฐ์ดํ„ฐ์—์„œ ๋ณต์žกํ•˜๊ณ  ๋น„์„ ํ˜• ํŒจํ„ด์„ ๊ฐ์ง€ํ•  ์ˆ˜ ์žˆ๋Š” ๋Šฅ๋ ฅ์ด ์žˆ์–ด, SV ๋ชจ๋ธ์˜ ํ†ต๊ณ„์  ์ •ํ™•์„ฑ๊ณผ ๊ฒฐํ•ฉํ•˜์—ฌ ๋” ์šฐ์ˆ˜ํ•œ ์˜ˆ์ธก ์„ฑ๋Šฅ์„ ์ œ๊ณตํ•œ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” S&P 500 ์ง€์ˆ˜ ์ผ๋ณ„ ๋ฐ์ดํ„ฐ๋ฅผ ์‚ฌ

Network Model
AGAPI-Agents: An Open-Access Agentic AI Platform for Accelerated Materials Design on AtomGPT.org

AGAPI-Agents: An Open-Access Agentic AI Platform for Accelerated Materials Design on AtomGPT.org

AGAPI ํ”Œ๋žซํผ์€ ์ธ๊ณต์ง€๋Šฅ์ด ๊ณผํ•™์  ๋ฐœ๊ฒฌ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ๊ฐ•์กฐํ•˜๋ฉด์„œ, ํŠนํžˆ ์žฌ๋ฃŒ๊ณผํ•™ ๋ถ„์•ผ์—์„œ์˜ ์ œ์•ฝ๋“ค์„ ํ•ด๊ฒฐํ•˜๋ ค๋Š” ์‹œ๋„๋ฅผ ๋ณด์—ฌ์ค๋‹ˆ๋‹ค. ์ด ํ”Œ๋žซํผ์€ ์˜คํ”ˆ ์†Œ์Šค ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(LLMs)๊ณผ ๋‹ค์–‘ํ•œ ์žฌ๋ฃŒ๊ณผํ•™ API ์—”๋“œํฌ์ธํŠธ๋ฅผ ํ†ตํ•ฉํ•˜์—ฌ ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค, ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๋„๊ตฌ, ๋จธ์‹ ๋Ÿฌ๋‹ ๋ชจ๋ธ์„ ํ•˜๋‚˜์˜ ํ”„๋ ˆ์ž„์›Œํฌ๋กœ ์—ฐ๊ฒฐํ•ฉ๋‹ˆ๋‹ค. AGAPI๋Š” ์—์ด์ „ํŠธ ํ”Œ๋ž˜๋„ˆ ์‹คํ–‰์ž ์š”์•ฝ์ž ๊ตฌ์กฐ๋ฅผ ํ™œ์šฉํ•ด ์žฌ๋ฃŒ๊ณผํ•™ ์—ฐ๊ตฌ์—์„œ ๋ฐœ์ƒํ•˜๋Š” ๋ณต์žกํ•œ ์ž‘์—…๋“ค์„ ์ž๋™ํ™”ํ•˜๊ณ  ์ตœ์ ํ™”ํ•ฉ๋‹ˆ๋‹ค. ํŠนํžˆ, AGAPI๋Š” ์žฌ๋ฃŒ ๋ฐ์ดํ„ฐ์˜ ๊ฒ€์ƒ‰๋ถ€ํ„ฐ ๊ทธ๋ž˜ํ”„ ์‹ ๊ฒฝ๋ง์„ ํ†ตํ•œ ์†์„ฑ ์˜ˆ์ธก, ๋จธ์‹ ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜ ํฌ์Šคํ•„๋“œ

AI as a Teaching Partner: Early Lessons from Classroom Codesign with Secondary Teachers

AI as a Teaching Partner: Early Lessons from Classroom Codesign with Secondary Teachers

์ด ์—ฐ๊ตฌ๋Š” ์ธ๊ณต์ง€๋Šฅ(AI)์ด ์‹ค์‹œ๊ฐ„ ๊ต์œก ํ™˜๊ฒฝ์—์„œ ์–ด๋–ป๊ฒŒ ํ†ตํ•ฉ๋˜๊ณ  ํ™œ์šฉ๋˜๋Š”์ง€๋ฅผ ์ƒ์„ธํžˆ ๋ถ„์„ํ•ฉ๋‹ˆ๋‹ค. ํŠนํžˆ, AI๊ฐ€ ์ œ3์˜ ์ฐธ์—ฌ์ž๋กœ์„œ ์ˆ˜์—…์— ๋„์ž…๋˜์—ˆ์œผ๋ฉฐ, ์ด๋กœ ์ธํ•ด ํ”ผ๋“œ๋ฐฑ ์ค‘์žฌ์™€ ํƒ๊ตฌ ์ง€์› ๋“ฑ ๋‹ค์–‘ํ•œ ์—ญํ• ์„ ์ˆ˜ํ–‰ํ•˜๊ฒŒ ๋˜์—ˆ์Šต๋‹ˆ๋‹ค. ์—ฐ๊ตฌ๋Š” 21๋ช…์˜ ๊ต์‚ฌ์™€ ๊ทธ๋“ค์ด ์ง€๋„ํ•˜๋Š” ํ•™์ƒ๋“ค(600์—ฌ ๋ช…)์ด AI ๊ธฐ๋ฐ˜ ํ”Œ๋žซํผ์˜ ๋„ค ๊ฐ€์ง€ ์ฃผ์š” ๊ธฐ๋Šฅ(Teaching Aide, Assessment & AI Grading, AI Tutor, Student Growth Insights)์„ ํ†ตํ•ฉํ•œ ๊ฒฐ๊ณผ๋ฅผ ๋ถ„์„ํ•˜์˜€์Šต๋‹ˆ๋‹ค. ์ด ์—ฐ๊ตฌ๋Š” ๊ต์‚ฌ๋“ค์˜ ์—ญํ• ๊ณผ AI์˜ ํ™œ์šฉ ๋ฐฉ

Back to the Baseline: Examining Baseline Effects on Explainability Metrics

Back to the Baseline: Examining Baseline Effects on Explainability Metrics

๋ณธ ๋…ผ๋ฌธ์€ XAI ํ‰๊ฐ€์—์„œ Attribution ๋ฐฉ๋ฒ•์˜ ์„ฑ๋Šฅ์„ ์ธก์ •ํ•˜๋Š” ๋ฐ ์‚ฌ์šฉ๋˜๋Š” Fidelity ์ง€ํ‘œ์— ๋Œ€ํ•œ ์ค‘์š”ํ•œ ํ•œ๊ณ„์ ์„ ์ œ๊ธฐํ•ฉ๋‹ˆ๋‹ค. ํŠนํžˆ, Insertion๊ณผ Deletion ๊ฐ™์€ ๊ธฐ์ค€ ํ•จ์ˆ˜๋Š”Attribution ๋ฐฉ๋ฒ•์ด ์ž…๋ ฅ ์ด๋ฏธ์ง€์˜ ํ”ฝ์…€์„ ๋ณ€๊ฒฝํ•˜๋Š” ๋ฐฉ์‹์— ๋”ฐ๋ผ ์„ฑ๋Šฅ ์ฐจ์ด๋ฅผ ๋ณด์ผ ์ˆ˜ ์žˆ๋‹ค๋Š” ์ ์ž…๋‹ˆ๋‹ค. ์ด๋Š”Attribution ๋ฐฉ๋ฒ• ์„ ํƒ ์‹œ ํŠน์ • ๋ชจ๋ธ๋งŒ ์šฐ์›”ํ•˜๊ฒŒ ๋งŒ๋“ค ์ˆ˜ ์žˆ์–ด ๊ณต์ •ํ•œ ํ‰๊ฐ€์— ์–ด๋ ค์›€์„ ์ดˆ๋ž˜ํ•ฉ๋‹ˆ๋‹ค. ๋…ผ๋ฌธ์€ ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ๊ธฐ์ค€ ํ•จ์ˆ˜์˜ ๋‘ ๊ฐ€์ง€ ์ด์ƒ์ ์ธ ํŠน์„ฑ์„ ์ œ์‹œํ•ฉ๋‹ˆ๋‹ค: ์ •๋ณด ์ œ๊ฑฐ์™€ ๋ถ„ํฌ ์™ธ(OOD)

Condensation-Concatenation Framework for Dynamic Graph Continual Learning

Condensation-Concatenation Framework for Dynamic Graph Continual Learning

Analysis of the Paper '๋™์  ๊ทธ๋ž˜ํ”„ ์ง€์†ํ•™์Šต์„ ์œ„ํ•œ ์••์ถ• ์—ฐ๊ฒฐ ํ”„๋ ˆ์ž„์›Œํฌ CCC' Abstract: The paper introduces a new framework called CCC (Condensation Concatenation Framework for Dynamic Graph Continual Learning) , which aims to address the limitations of existing graph neural networks (GNNs) in handling dynamic graphs. I

Framework Learning
Mapping AI Risk Mitigations: Evidence Scan and Preliminary AI Risk Mitigation Taxonomy

Mapping AI Risk Mitigations: Evidence Scan and Preliminary AI Risk Mitigation Taxonomy

์ด ๋…ผ๋ฌธ์€ AI ์œ„ํ—˜ ๊ด€๋ฆฌ์— ๋Œ€ํ•œ ์ฒด๊ณ„์ ์ธ ์ ‘๊ทผ๋ฒ•์„ ์ œ์‹œํ•˜๋ฉฐ, ํŠนํžˆ ๋‹ค์–‘ํ•œ ํ”„๋ ˆ์ž„์›Œํฌ์™€ ์šฉ์–ด์˜ ํ˜ผ๋ž€์„ ํ•ด๊ฒฐํ•˜๋ ค๋Š” ์‹œ๋„๋ฅผ ๋ณด์—ฌ์ค๋‹ˆ๋‹ค. ์ €์ž๋“ค์€ 2023๋…„๋ถ€ํ„ฐ 2025๋…„ ์‚ฌ์ด์— ๋ฐœํ–‰๋œ 13๊ฐœ์˜ AI ์œ„ํ—˜ ์™„ํ™” ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ๋ถ„์„ํ•˜์—ฌ, ์ด 831๊ฐ€์ง€์˜ ๋…ํŠนํ•œ ์œ„ํ—˜ ์™„ํ™” ๋ฐฉ๋ฒ•์„ ์ถ”์ถœํ•˜๊ณ  ์ด๋ฅผ ๋ถ„๋ฅ˜์ฒด๊ณ„๋กœ ๊ตฌ์„ฑํ•˜์˜€์Šต๋‹ˆ๋‹ค. ์ด ๋ถ„๋ฅ˜์ฒด๊ณ„๋Š” AI ์‹œ์Šคํ…œ์— ๋Œ€ํ•œ ์ธ๊ฐ„ ๊ฐ๋…, ๊ธฐ์ˆ ์  ๋ณด์•ˆ, ์šด์˜ ํ”„๋กœ์„ธ์Šค, ๊ทธ๋ฆฌ๊ณ  ํˆฌ๋ช…์„ฑ๊ณผ ์ฑ…์ž„์„ฑ์„ ํฌํ•จํ•˜๋Š” ๋„ค ๊ฐ€์ง€ ์ฃผ์š” ๋ฒ”์ฃผ๋กœ ๋‚˜๋‰ฉ๋‹ˆ๋‹ค. ์ด ์—ฐ๊ตฌ์˜ ํ•ต์‹ฌ์€ ๋‹ค์–‘ํ•œ ์šฉ์–ด์™€ ๊ฐœ๋…์„ ์ผ๊ด€๋˜๊ฒŒ ์ •๋ฆฌํ•˜๊ณ  ํ†ตํ•ฉํ•˜๋ ค๋Š” ๋…ธ๋ ฅ์— ์žˆ์Šต๋‹ˆ๋‹ค

No Image

Source mechanism and rupture directivity of small earthquakes in the Changning region, China, using a dense array data

์ด ๋…ผ๋ฌธ์€ ์ค‘๊ตญ ์‹œ์ดจ ๋ถ„์ง€ changning ์ง€์—ญ์—์„œ ์ˆ˜์ง‘๋œ ๊ณ ๋ฐ€๋„ ๋…ธ๋“œ ์ง€์ง„๊ณ„ ๋ฐฐ์—ด ๋ฐ์ดํ„ฐ๋ฅผ ํ™œ์šฉํ•˜์—ฌ, ์†Œ๊ทœ๋ชจ ์ง€์ง„์˜ ํŒŒ์—ด ๊ณผ์ •์„ ์ •๊ตํ•˜๊ฒŒ ๋ถ„์„ํ•˜๋Š” ๋ฐ ์ดˆ์ ์„ ๋งž์ถ”๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์—ฐ๊ตฌํŒ€์€ PhaseNet+์™€ SKHASH๋ผ๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์‚ฌ์šฉํ•ด 1<M<4 ๋ฒ”์œ„์˜ ์—ฌ์ง„๋“ค์˜ ํฌ์ปค์Šค ๋ฉ”์ปค๋‹ˆ์ฆ˜ ์นดํƒˆ๋กœ๊ทธ๋ฅผ ํ–ฅ์ƒ์‹œ์ผฐ์Šต๋‹ˆ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด, ๋‘ ๊ฐœ์˜ M3 ์—ฌ์ง„์—์„œ ๋ฐฉํ–ฅ์„ฑ์— ๋”ฐ๋ฅธ ์ฝ”๋„ˆ ์ฃผํŒŒ์ˆ˜๋ฅผ ๊ด€์ฐฐํ•˜๊ณ  Brune ๋ชจ๋ธ์„ ์‚ฌ์šฉํ•œ ์ŠคํŽ™ํŠธ๋Ÿผ ํ”ผํŒ…์œผ๋กœ ์ผ๋ฐฉ์  ํŒŒ์—ด์ด ํ™•์ธ๋˜์—ˆ์Šต๋‹ˆ๋‹ค. ํŠนํžˆ, ์ด ์—ฐ๊ตฌ๋Š” changning ์ง€์—ญ์˜ ๋ณต์žกํ•œ ๋‹จ๋ฉด ๊ตฌ์กฐ์™€ ์ง€ํ•˜ ์œ ์ฒด ์ฃผ์ž…๊ณผ

Data
Fairness-Regularized Online Optimization with Switching Costs

Fairness-Regularized Online Optimization with Switching Costs

๋ณธ ๋…ผ๋ฌธ์€ ์˜จ๋ผ์ธ ์ตœ์ ํ™” ๋ฌธ์ œ์—์„œ ๊ณต์ •์„ฑ๊ณผ ๋ถ€๋“œ๋Ÿฌ์›€์ด๋ผ๋Š” ๋‘ ๊ฐ€์ง€ ์ค‘์š”ํ•œ ์š”์†Œ๊ฐ€ ๋™์‹œ์— ๊ณ ๋ ค๋˜์ง€ ์•Š๋Š” ํ˜„์ƒ์„ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ์ƒˆ๋กœ์šด ์ ‘๊ทผ๋ฒ•์„ ์ œ์‹œํ•ฉ๋‹ˆ๋‹ค. ํŠนํžˆ, ๊ณต์ •์„ฑ ๊ทœ์ œ์™€ ์Šค์œ„์นญ ๋น„์šฉ์ด ํฌํ•จ๋œ ๋ณต์žกํ•œ ์„ค์ •์—์„œ์˜ ๋„์ „์ ์ธ ๋ฌธ์ œ๋ฅผ ๋‹ค๋ฃน๋‹ˆ๋‹ค. ๋…ผ๋ฌธ์€ ์ด๋Ÿฌํ•œ ๋ฌธ์ œ์— ๋Œ€ํ•œ ๊ทผ๋ณธ์ ์ธ ๋„์ „์„ ์ฆ๋ช…ํ•˜๊ณ , ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•œ FairOBD ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. FairOBD๋Š” ์žฅ๊ธฐ ๊ณต์ •์„ฑ ๋น„์šฉ์„ ์˜จ๋ผ์ธ ๋น„์šฉ ์‹œํ€€์Šค๋กœ ๋ถ„ํ•ดํ•˜๋Š” ๋ฐฉ๋ฒ•์œผ๋กœ, ๋ณด์กฐ ๋ณ€์ˆ˜๋ฅผ ํ™œ์šฉํ•˜์—ฌ ๊ณต์ •ํ•œ ๊ฒฐ๊ณผ๋ฅผ ๋‹ฌ์„ฑํ•˜๋„๋ก ํ–‰๋™์„ ๊ทœ์ œํ•ฉ๋‹ˆ๋‹ค. ์ด ์ ‘๊ทผ๋ฒ•์€ ์Šค์œ„์นญ ๋น„์šฉ์„ ๊ณ ๋ คํ•˜๋ฉด์„œ๋„ ์ตœ์ 

High-Dimensional Data Processing: Benchmarking Machine Learning and Deep Learning Architectures in Local and Distributed Environments

High-Dimensional Data Processing: Benchmarking Machine Learning and Deep Learning Architectures in Local and Distributed Environments

์ข…ํ•ฉ ๋ถ„์„: ๋น…๋ฐ์ดํ„ฐ ๊ต์œก ์‹ค์Šต ๋ณด๊ณ ์„œ 1. ์—ฐ๊ตฌ ๊ฐœ์š”์™€ ๋ฐฉ๋ฒ•๋ก  ๋ณธ ์—ฐ๊ตฌ๋Š” ๋น…๋ฐ์ดํ„ฐ ํ”„๋กœ์ ํŠธ์˜ ํ†ตํ•ฉ์  ์ ‘๊ทผ ๋ฐฉ์‹์„ ์ทจํ•˜๋ฉฐ, ์„ธ ๊ฐ€์ง€ ์‚ฌ๋ก€๋ฅผ ํ†ตํ•ด ๋‹ค์–‘ํ•œ ๋ฐ์ดํ„ฐ ์œ ํ˜•๊ณผ ๊ทœ๋ชจ์— ๋Œ€ํ•œ ๋ถ„์„ ๊ธฐ๋ฒ•์„ ๋‹ค๋ฃน๋‹ˆ๋‹ค. Epsilon ๋ฐ์ดํ„ฐ์…‹ : ์ด์ง„ ๋ถ„๋ฅ˜ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด MLP ๋ชจ๋ธ์„ ์‚ฌ์šฉํ•˜์—ฌ 2000๊ฐœ์˜ ํŠน์ง•๊ณผ 100,000๊ฐœ์˜ ์ธ์Šคํ„ด์Šค๋กœ ํ›ˆ๋ จ๋˜์—ˆ์Šต๋‹ˆ๋‹ค. PyTorch์™€ GPU ๊ฐ€์†(CUDA)์„ ํ™œ์šฉํ•ด 88.98%์˜ ์ •ํ™•๋„๋ฅผ ๋‹ฌ์„ฑํ–ˆ์Šต๋‹ˆ๋‹ค. Rest Mex ๋ฐ์ดํ„ฐ์…‹ : ๋ฉ•์‹œ์ฝ” ๊ด€๊ด‘ ๋ฆฌ๋ทฐ ๋ฐ์ดํ„ฐ์…‹์— ๋Œ€ํ•ด ๊ฐ์ • ๋ถ„์„ ํŒŒ์ดํ”„๋ผ์ธ์„ ๊ตฌํ˜„ํ•˜์˜€์Šต๋‹ˆ๋‹ค.

Data Learning
HLS4PC: A Parametrizable Framework For Accelerating Point-Based 3D Point Cloud Models on FPGA

HLS4PC: A Parametrizable Framework For Accelerating Point-Based 3D Point Cloud Models on FPGA

์ด ๋…ผ๋ฌธ์€ ๊ณ ์† ์ฒ˜๋ฆฌ๋ฅผ ์œ„ํ•ด FPGA ๊ธฐ๋ฐ˜์˜ HLS4PC ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์‹œํ•˜๊ณ , ์ด๋ฅผ ํ†ตํ•ด 3D ํฌ์ธํŠธ ํด๋ผ์šฐ๋“œ ๋ชจ๋ธ์˜ ํšจ์œจ์ ์ธ ์ฒ˜๋ฆฌ๋ฅผ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•ฉ๋‹ˆ๋‹ค. ํŠนํžˆ, PointMLP Elite ๋ชจ๋ธ์— ๋Œ€ํ•œ ๋‹ค์–‘ํ•œ ์••์ถ• ๊ธฐ๋ฒ•์„ ์ ์šฉํ•˜์—ฌ ๋ณต์žก์„ฑ์„ ์ค„์ด๋ฉด์„œ๋„ ์ •ํ™•๋„ ํ•˜๋ฝ์„ ์ตœ์†Œํ™”ํ•˜๋Š” PointMLP Lite ๋ณ€ํ˜•์„ ๊ฐœ๋ฐœํ•˜์˜€์Šต๋‹ˆ๋‹ค. ์ด๋Š” 3D ํฌ์ธํŠธ ํด๋ผ์šฐ๋“œ ๋ฐ์ดํ„ฐ์˜ ํŠน์„ฑ์ƒ GPU์—์„œ ๋ฐœ์ƒํ•˜๋Š” ๊ณ„์‚ฐ ๋ฐ ๋ฉ”๋ชจ๋ฆฌ ์š”๊ตฌ ์‚ฌํ•ญ์˜ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ณ , ์‹ค์‹œ๊ฐ„ ์„ฑ๋Šฅ์„ ํ–ฅ์ƒ์‹œํ‚ค๋Š”๋ฐ ๊ธฐ์—ฌํ•ฉ๋‹ˆ๋‹ค. ๋˜ํ•œ, FPGA ๊ฐ€์†ํ™”๋ฅผ ํ†ตํ•ด CPU์™€ GPU์— ๋น„ํ•ด ๋†’์€ ์ฒ˜๋ฆฌ๋Ÿ‰์„

Model Framework
In-Context Multi-Objective Optimization

In-Context Multi-Objective Optimization

์ด ๋…ผ๋ฌธ์€ ํŠธ๋žœ์Šคํฌ๋จธ ์•„ํ‚คํ…์ฒ˜๋ฅผ ํ™œ์šฉํ•œ TAMO๋ผ๋Š” ์ƒˆ๋กœ์šด ๋‹ค๋ชฉ์  ์ตœ์ ํ™” ๋ฐฉ๋ฒ•์„ ์ œ์‹œํ•ฉ๋‹ˆ๋‹ค. ์ „ํ†ต์ ์œผ๋กœ, ๋‹ค๋ชฉ์  ๋ฒ ์ด์ง€์•ˆ ์ตœ์ ํ™”๋Š” ๊ฐ ๋ฌธ์ œ์— ๋งž๊ฒŒ ๋Œ€๋ฆฌ ๋ชจ๋ธ๊ณผ ํš๋“ ํ•จ์ˆ˜๋ฅผ ํŠน๋ณ„ํžˆ ์„ ํƒํ•ด์•ผ ํ•˜๋ฉฐ, ์ด ๊ณผ์ •์€ ์‹œ๊ฐ„๊ณผ ์ž์›์„ ๋งŽ์ด ์†Œ๋ชจํ•˜๋Š” ๊ฒƒ์œผ๋กœ ์•Œ๋ ค์ ธ ์žˆ์Šต๋‹ˆ๋‹ค. ํŠนํžˆ ๋ณ‘๋ ฌ ๋˜๋Š” ์‹œ๊ฐ„ ๋ฏผ๊ฐํ•œ ํ™˜๊ฒฝ์—์„œ๋Š” ์ด๋Ÿฌํ•œ ์žฌ์ ํ•ฉ ์˜ค๋ฒ„ํ—ค๋“œ๊ฐ€ ํฐ ๋ฌธ์ œ์ž…๋‹ˆ๋‹ค. TAMO๋Š” ์ด๋Ÿฌํ•œ ์ œ์•ฝ์„ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด ํŠธ๋žœ์Šคํฌ๋จธ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๋‹ค์–‘ํ•œ ์ž…๋ ฅ ๋ฐ ๋ชฉํ‘œ ์ฐจ์›์—์„œ ์ž‘๋™ํ•  ์ˆ˜ ์žˆ๋„๋ก ์„ค๊ณ„๋˜์—ˆ์Šต๋‹ˆ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด TAMO๋Š” ์‚ฌ์ „ ํ•™์Šต๋œ ๋ชจ๋ธ์„ ์ƒˆ๋กœ์šด ๋ฌธ์ œ์— ์ ์šฉํ•˜๋Š” ๋ฐ ํ•„์š”

Robust Crop Planning under Uncertainty: Aligning Economic Optimality with Agronomic Sustainability

Robust Crop Planning under Uncertainty: Aligning Economic Optimality with Agronomic Sustainability

์ด ๋…ผ๋ฌธ์€ ๋‹ค์ธต ๊ฐ•์ธ์„ฑ ์ž‘๋ฌผ ๊ณ„ํš ํ”„๋ ˆ์ž„์›Œํฌ(MLRCPF)๋ฅผ ์ œ์•ˆํ•˜์—ฌ ๋†์—… ๊ณ„ํš์˜ ๋ณต์žกํ•œ ๋ฌธ์ œ๋“ค์„ ํ•ด๊ฒฐํ•˜๊ณ ์ž ํ•ฉ๋‹ˆ๋‹ค. ๊ธฐ์กด ๋ฐฉ๋ฒ•๋“ค์€ ์ •์ ์ธ ๊ฒฐ์ •๋ก ์  ๋ฐฉ์‹์œผ๋กœ ์ž‘๋ฌผ ๋ฐฐ์น˜๋ฅผ ์ตœ์ ํ™”ํ•˜๋ฏ€๋กœ, ์‹œ์žฅ๊ณผ ๊ธฐํ›„ ๋ณ€๋™์— ๋Œ€ํ•œ ํƒ„๋ ฅ์„ฑ์„ ๋ณด์žฅํ•˜์ง€ ๋ชปํ•ฉ๋‹ˆ๋‹ค. MLRCPF๋Š” ๊ณต๊ฐ„์  ์ด์งˆ์„ฑ, ์‹œ๊ฐ„์  ๋†์—… ์ข…์†์„ฑ ๋ฐ ํ™˜๊ฒฝ ๋ถˆํ™•์‹ค์„ฑ์„ ๊ณ ๋ คํ•˜์—ฌ ์ด๋Ÿฌํ•œ ๋ฌธ์ œ์ ์„ ํ•ด๊ฒฐํ•˜๊ณ ์ž ํ•ฉ๋‹ˆ๋‹ค. ๋…ผ๋ฌธ์€ ์ž‘๋ฌผ ๊ฐ„ ์ƒํ˜ธ์ž‘์šฉ์„ ๊ตฌ์กฐํ™”๋œ ์ƒํ˜ธ์ž‘์šฉ ํ–‰๋ ฌ๋กœ ํ‘œํ˜„ํ•˜๋ฉฐ, ์ด๋ฅผ ์ƒํƒœ ์ „์ด ๋…ผ๋ฆฌ ๋‚ด์— ํ†ตํ•ฉํ•ฉ๋‹ˆ๋‹ค. ๋˜ํ•œ ๋ถ„ํฌ ๊ฐ•๊ฑด ์ตœ์ ํ™” ๊ณ„์ธต์„ ์‚ฌ์šฉํ•ด ๋ฐ์ดํ„ฐ ๊ธฐ๋ฐ˜ ๋ชจํ˜ธ ์ง‘ํ•ฉ์œผ๋กœ ์ •์˜๋œ ์ตœ์•…์˜ ์œ„ํ—˜

SoccerMaster: A Vision Foundation Model for Soccer Understanding

SoccerMaster: A Vision Foundation Model for Soccer Understanding

์ถ•๊ตฌ ๋งˆ์Šคํ„ฐ๋Š” ์ถ•๊ตฌ ๊ด€๋ จ ์ด๋ฏธ์ง€์™€ ๋™์˜์ƒ ์ž๋ฃŒ๋ฅผ ํ™œ์šฉํ•˜์—ฌ ๋‹ค์–‘ํ•œ ์ถ•๊ตฌ ๊ด€๋ จ ์ž‘์—…์„ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ๋Š” ํ†ตํ•ฉ ๋น„์ „ ๋ชจ๋ธ์ž…๋‹ˆ๋‹ค. ์ด ๋ชจ๋ธ์€ ์ฃผ์„ ์ƒ์„ฑ, ๊ฐ์ง€, ์ถ”์ , ๋ถ„๋ฅ˜ ๋“ฑ๊ณผ ๊ฐ™์€ ์—ฌ๋Ÿฌ ๊ฐ€์ง€ ์ถ•๊ตฌ ์ดํ•ด ์ž‘์—…์— ์ ์šฉ๋  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. SoccerMaster๋Š” ์ถ•๊ตฌ ์ฝ˜ํ…์ธ ์˜ ๋‹ค์–‘์„ฑ์„ ํ™œ์šฉํ•จ์œผ๋กœ์จ, ์ถ•๊ตฌ ๊ด€๋ จ ๋ฐ์ดํ„ฐ๋กœ๋ถ€ํ„ฐ ์–ป์„ ์ˆ˜ ์žˆ๋Š” ์ •๋ณด๋ฅผ ์ตœ๋Œ€ํ•œ ํ™œ์šฉํ•˜์—ฌ ๋ณด๋‹ค ์ •ํ™•ํ•˜๊ณ  ํšจ๊ณผ์ ์ธ ๊ฒฐ๊ณผ๋ฅผ ๋„์ถœํ•ฉ๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ๋ชจ๋ธ์€ ์ถ•๊ตฌ ๋ถ„์„, ์„ ์ˆ˜ ํ‰๊ฐ€, ๊ฒฝ๊ธฐ ์ „๋žต ๋“ฑ ๋‹ค์–‘ํ•œ ์˜์—ญ์—์„œ ํ™œ์šฉ๋  ์ˆ˜ ์žˆ์œผ๋ฉฐ, ํŠนํžˆ ์‹ค์‹œ๊ฐ„ ์ฃผ์„ ์ƒ์„ฑ๊ณผ ๊ฐ™์€ ๋น ๋ฅธ ์˜์‚ฌ๊ฒฐ์ •์ด ํ•„์š”ํ•œ ์ƒ

Model
No Image

Trustworthy Orchestration Artificial Intelligence by the Ten Criteria with Control-Plane Governance

๋ณธ ๋…ผ๋ฌธ์€ AI ์‹œ์Šคํ…œ์˜ ์ฑ…์ž„์„ฑ๊ณผ ์‹ ๋ขฐ์„ฑ์„ ๋†’์ด๊ธฐ ์œ„ํ•œ ํ†ตํ•ฉ ๊ด€๋ฆฌ ์•„ํ‚คํ…์ฒ˜๋ฅผ ์ œ์‹œํ•œ๋‹ค. ๊ธฐ์กด์˜ AI๋Š” ์ฃผ๋กœ AI ๊ฐ„ ์กฐ์ •์— ์ดˆ์ ์„ ๋งž์ถ”์—ˆ์ง€๋งŒ, ์ด ์—ฐ๊ตฌ์—์„œ๋Š” ์ „์ฒด AI ๊ตฌ์„ฑ ์š”์†Œ์™€ ์ธ๊ฐ„ ์ฐธ์—ฌ์ž๋ฅผ ํฌ๊ด„ํ•˜๋Š” ๋ณด๋‹ค ํฌ๊ด„์ ์ธ ์ ‘๊ทผ ๋ฐฉ์‹์„ ์ œ์•ˆํ•˜๊ณ  ์žˆ๋‹ค. ํŠนํžˆ '์‹ ๋ขฐํ•  ์ˆ˜ ์žˆ๋Š” ์กฐ์ • AI๋ฅผ ์œ„ํ•œ 10๊ฐœ ๊ธฐ์ค€'์€ ์ด๋Ÿฌํ•œ ๋ชฉํ‘œ๋ฅผ ๋‹ฌ์„ฑํ•˜๊ธฐ ์œ„ํ•ด ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•œ๋‹ค. ์ด ๋…ผ๋ฌธ์˜ ํ•ต์‹ฌ ๊ฐœ๋… ์ค‘ ํ•˜๋‚˜๋Š” 'ํ†ตํ•ฉ ๊ด€๋ฆฌ ์•„ํ‚คํ…์ฒ˜'์ด๋‹ค. ์ด๋Š” ์ธ๊ฐ„ ์ž…๋ ฅ, ์˜๋ฏธ๋ก ์  ์ผ๊ด€์„ฑ, ๊ฐ์‚ฌ ๋ฐ ์ฆ๊ฑฐ์˜ ์ •ํ•ฉ์„ฑ์„ ํ†ตํ•ฉํ•œ ๋‹จ์ผ ๊ด€๋ฆฌ ํŒจ๋„๋กœ ๊ตฌ์„ฑ๋˜์–ด ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ์ ‘๊ทผ ๋ฐฉ์‹์€

Advancing LLM-Based Security Automation with Customized Group Relative Policy Optimization for Zero-Touch Networks

Advancing LLM-Based Security Automation with Customized Group Relative Policy Optimization for Zero-Touch Networks

๋ณธ ๋…ผ๋ฌธ์€ ์ฐจ์„ธ๋Œ€ 6G ํ†ต์‹ ๋ง์—์„œ ํ•ต์‹ฌ์ ์ธ ๋ณด์•ˆ ๊ณผ์ œ๋ฅผ ๋‘ ๋‹จ๊ณ„๋กœ ๋ช…ํ™•ํžˆ ๊ตฌ๋ถ„ํ•˜๊ณ , ๊ฐ๊ฐ์— ๋Œ€ํ•œ ํ˜์‹ ์ ์ธ ํ•ด๊ฒฐ์ฑ…์„ ์ œ์‹œํ•œ๋‹ค๋Š” ์ ์—์„œ ํ•™์ˆ ์ ยท์‹ค์šฉ์  ์˜์˜๊ฐ€ ํฌ๋‹ค. ์ฒซ ๋ฒˆ์งธ ๊ณผ์ œ๋Š” โ€œ๋ณด์•ˆ ์ „๋žต์˜ ์ „์ฃผ๊ธฐ ์ž๋™ํ™”โ€์ด๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค์€ ์ฃผ๋กœ ์นจ์ž… ํƒ์ง€ยท์ฐจ๋‹จ๊ณผ ๊ฐ™์€ ๊ฐœ๋ณ„ ๊ธฐ๋Šฅ์— ์ดˆ์ ์„ ๋งž์ถ”์—ˆ์œผ๋ฉฐ, ์ „๋žต ์ˆ˜๋ฆฝ๋ถ€ํ„ฐ ๊ฒ€์ฆ, ์—…๋ฐ์ดํŠธ๊นŒ์ง€์˜ ์—ฐ์†์ ์ธ ํ๋ฆ„์„ ์ž๋™ํ™”ํ•˜๋Š” ์ฒด๊ณ„๋Š” ๋ถ€์žฌํ–ˆ๋‹ค. ์—ฌ๊ธฐ์„œ ์ €์ž๋“ค์€ ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(LLM)์„ ํ™œ์šฉํ•ด ์ธ๊ฐ„ ์ „๋ฌธ๊ฐ€๊ฐ€ ์ˆ˜ํ–‰ํ•˜๋˜ ์ „๋žต ์ƒ์„ฑ ๊ณผ์ •์„ ์ž๋™ํ™”ํ•˜๊ณ , ์ด๋ฅผ ๋„คํŠธ์›Œํฌ ์˜ค์ผ€์ŠคํŠธ๋ ˆ์ด์…˜ ์—”์ง„๊ณผ ์—ฐ๋™์‹œ์ผœ ์‹ค์‹œ๊ฐ„ ๋Œ€์‘๊นŒ์ง€ ํ™•์žฅ

Network
Architectures for Building Agentic AI

Architectures for Building Agentic AI

์ด ๋…ผ๋ฌธ์ด ์ œ์‹œํ•˜๋Š” ํ•ต์‹ฌ ๋…ผ์ง€๋Š” โ€œ์‹ ๋ขฐ์„ฑ์€ ๋ชจ๋ธ ์ž์ฒด๊ฐ€ ์•„๋‹ˆ๋ผ ์‹œ์Šคํ…œ์˜ ๊ตฌ์กฐ์— ๋‹ฌ๋ ค ์žˆ๋‹คโ€๋Š” ์ ์ด๋‹ค. ์—์ด์ „ํŠธํ˜• AI๋ฅผ ๋‹จ์ˆœํžˆ ๋Œ€๊ทœ๋ชจ ์–ธ์–ด ๋ชจ๋ธ์ด๋‚˜ ์ด๋ฏธ์ง€ ์ƒ์„ฑ ๋ชจ๋ธ์˜ ์ง‘ํ•ฉ์œผ๋กœ ๋ณด๋Š” ๊ด€์ ์—์„œ ๋ฒ—์–ด๋‚˜, ๋ชฉํ‘œโ€‘๊ด€๋ฆฌ์ž, ํ”Œ๋ž˜๋„ˆ, ๋„๊ตฌโ€‘๋ผ์šฐํ„ฐ, ์‹คํ–‰๊ธฐ, ๋ฉ”๋ชจ๋ฆฌ, ๊ฒ€์ฆ๊ธฐ, ์•ˆ์ „โ€‘๋ชจ๋‹ˆํ„ฐ, ํ…”๋ ˆ๋ฉ”ํŠธ๋ฆฌ ๋“ฑ์œผ๋กœ ๋ช…ํ™•ํžˆ ๊ตฌ๋ถ„๋œ ๋ชจ๋“ˆ๋“ค๋กœ ๊ตฌ์„ฑ๋œ โ€˜์•„ํ‚คํ…์ฒ˜โ€™๋ฅผ ๊ฐ•์กฐํ•œ๋‹ค. ๊ฐ ๋ชจ๋“ˆ์€ ์Šคํ‚ค๋งˆโ€‘์ œํ•œ ์ธํ„ฐํŽ˜์ด์Šค ๋ฅผ ํ†ตํ•ด์„œ๋งŒ ํ†ต์‹ ํ•˜๋„๋ก ์„ค๊ณ„๋˜๋ฉฐ, ์ด๋Š” ์ž…๋ ฅยท์ถœ๋ ฅ ํ˜•์‹์ด ์‚ฌ์ „์— ์ •์˜๋œ JSON ์Šคํ‚ค๋งˆ ๋“ฑ์œผ๋กœ ๊ฒ€์ฆ๋จ์„ ์˜๋ฏธํ•œ๋‹ค. ์ด๋ ‡๊ฒŒ ํ•˜๋ฉด ๋ชจ๋ธ์ด ์˜ˆ๊ธฐ์น˜ ์•Š์€ ํ˜•ํƒœ

Color encoding in Latent Space of Stable Diffusion Models

Color encoding in Latent Space of Stable Diffusion Models

๋ณธ ๋…ผ๋ฌธ์€ ์ตœ์‹  ํ™•์‚ฐ ๋ชจ๋ธ์ธ Stable Diffusion์˜ ๋‚ด๋ถ€ ํ‘œํ˜„ ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ์ƒ‰์ฑ„๋ผ๋Š” ๊ตฌ์ฒด์ ์ธ ์ง€๊ฐ ์†์„ฑ์— ์ดˆ์ ์„ ๋งž์ถ”์–ด ํŒŒํ—ค์นœ๋‹ค. ์—ฐ๊ตฌ์ž๋Š” ๋จผ์ € ์ƒ‰์ƒ๊ณผ ํ˜•ํƒœ๊ฐ€ ๋ช…ํ™•ํžˆ ๊ตฌ๋ถ„๋œ ํ•ฉ์„ฑ ์ด๋ฏธ์ง€ ๋ฐ์ดํ„ฐ์…‹์„ ์ œ์ž‘ํ•˜์˜€๋‹ค. ์ด ๋ฐ์ดํ„ฐ์…‹์€ ์ƒ‰์ƒ๋งŒ์„ ๋ณ€ํ˜•์‹œํ‚ค๋Š” ๋ฒ„์ „๊ณผ ํ˜•ํƒœ๋งŒ์„ ๋ณ€ํ˜•์‹œํ‚ค๋Š” ๋ฒ„์ „์œผ๋กœ ๊ตฌ์„ฑ๋ผ ์žˆ์–ด, ๊ฐ ์†์„ฑ์ด ์ž ์žฌ ๊ณต๊ฐ„์— ์–ด๋–ป๊ฒŒ ๋งคํ•‘๋˜๋Š”์ง€๋ฅผ ๋…๋ฆฝ์ ์œผ๋กœ ์ธก์ •ํ•  ์ˆ˜ ์žˆ๋‹ค. ์ž ์žฌ ํ‘œํ˜„์„ ๋ถ„์„ํ•˜๊ธฐ ์œ„ํ•ด ์ €์ž๋Š” Stable Diffusion์˜ UNet ์ธ์ฝ”๋” ๋‹จ๊ณ„์—์„œ ์ถ”์ถœํ•œ ์ค‘๊ฐ„ ํŠน์ง• ๋งต์„ ๋ฒกํ„ฐํ™”ํ•˜๊ณ , ์ „์ฒด ๋ฐ์ดํ„ฐ์…‹์— ๋Œ€ํ•ด ์ฃผ์„ฑ๋ถ„ ๋ถ„์„(PC

Model
Comparative Evaluation of Explainable Machine Learning Versus Linear Regression for Predicting County-Level Lung Cancer Mortality Rate in the United States

Comparative Evaluation of Explainable Machine Learning Versus Linear Regression for Predicting County-Level Lung Cancer Mortality Rate in the United States

์ด ์—ฐ๊ตฌ๋Š” ๋ฏธ๊ตญ์—์„œ ํ์•”(LC) ์‚ฌ๋ง๋ฅ  ์˜ˆ์ธก์— ๊ธฐ๊ณ„ํ•™์Šต ๋ชจ๋ธ์˜ ์ ์šฉ์„ ํ†ตํ•ด ์–ป์€ ๊ฒฐ๊ณผ๋ฅผ ๋ณด๊ณ ํ•˜๊ณ  ์žˆ๋‹ค. ํŠนํžˆ, ๋žœ๋ค ํฌ๋ ˆ์ŠคํŠธ(RF), ๊ทธ๋ž˜๋””์–ธํŠธ ๋ถ€์ŠคํŒ… ํšŒ๊ท€(GBR), ๊ทธ๋ฆฌ๊ณ  ์„ ํ˜• ํšŒ๊ท€(LR) ์„ธ ๊ฐ€์ง€ ๋ชจ๋ธ์„ ์‚ฌ์šฉํ•˜์—ฌ LC ์‚ฌ๋ง๋ฅ  ์˜ˆ์ธก ์„ฑ๋Šฅ์„ ํ‰๊ฐ€ํ•˜์˜€๋‹ค. ์—ฐ๊ตฌ์—์„œ RF ๋ชจ๋ธ์ด GBR๊ณผ LR๋ณด๋‹ค ์šฐ์ˆ˜ํ•œ ์„ฑ๋Šฅ์„ ๋ณด์—ฌ์ฃผ์—ˆ์œผ๋ฉฐ, R squared ๊ฐ’ 41.9%, RMSE 12.8์„ ๋‹ฌ์„ฑํ–ˆ๋‹ค๋Š” ์ ์€ ์ฃผ๋ชฉํ•  ๋งŒํ•˜๋‹ค. SHAP ๋ถ„์„์„ ํ†ตํ•ด ํก์—ฐ๋ฅ ์ด ๊ฐ€์žฅ ์ค‘์š”ํ•œ ์˜ˆ์ธก ๋ณ€์ˆ˜๋กœ ๋‚˜ํƒ€๋‚ฌ๊ณ , ์ด์–ด ์ง‘๊ฐ’ ์ค‘์•™๊ฐ’๊ณผ ํžˆ์ŠคํŒจ๋‹‰ ์ธ๊ตฌ ๋น„์œจ์ด ์ค‘์š”ํ•˜๊ฒŒ ์ž‘์šฉํ•œ๋‹ค๋Š”

Learning
CourtPressGER: A German Court Decision to Press Release Summarization Dataset

CourtPressGER: A German Court Decision to Press Release Summarization Dataset

๋ณธ ๋…ผ๋ฌธ์€ ๋ฒ•๋ฅ  ๋ถ„์•ผ์—์„œ ์ผ๋ฐ˜ ๋Œ€์ค‘์—๊ฒŒ ํŒ๊ฒฐ์„ ์ „๋‹ฌํ•˜๋Š” โ€˜๋ณด๋„์ž๋ฃŒโ€™๋ผ๋Š” ํŠน์ˆ˜ํ•œ ํ…์ŠคํŠธ ์žฅ๋ฅด์— ์ดˆ์ ์„ ๋งž์ถ˜ ์ตœ์ดˆ์˜ ๋Œ€๊ทœ๋ชจ ๋ฐ์ดํ„ฐ์…‹๊ณผ ๋ฒค์น˜๋งˆํฌ๋ฅผ ์ œ์‹œํ•œ๋‹ค๋Š” ์ ์—์„œ ํ•™์ˆ ์ ยท์‹ค์šฉ์  ์˜์˜๊ฐ€ ํฌ๋‹ค. ๊ธฐ์กด NLP ์—ฐ๊ตฌ๋Š” ์ฃผ๋กœ ํŒ๊ฒฐ๋ฌธ ์ž์ฒด์˜ ๊ตฌ์กฐ์  ์š”์•ฝ์ด๋‚˜ ๋ฒ•๋ฅ ์šฉ์–ด ์ถ”์ถœ ๋“ฑ์— ๋จธ๋ฌผ๋ €์œผ๋ฉฐ, ์‹œ๋ฏผ์ด ์ดํ•ดํ•˜๊ธฐ ์‰ฌ์šด ํ˜•ํƒœ์˜ ์ปค๋ฎค๋‹ˆ์ผ€์ด์…˜์„ ๋‹ค๋ฃจ์ง€๋Š” ์•Š์•˜๋‹ค. ๋”ฐ๋ผ์„œ CourtPressGER์€ โ€˜ํŒ๊ฒฐ๋ฌธโ€‘๋ณด๋„์ž๋ฃŒโ€‘ํ”„๋กฌํ”„ํŠธโ€™๋ผ๋Š” ์‚ผ์ค‘ ํŠธ๋ฆฌํ”Œ ๊ตฌ์กฐ๋ฅผ ํ†ตํ•ด, ์›๋ฌธ๊ณผ ์ธ๊ฐ„์ด ๋งŒ๋“  ์š”์•ฝ(๋ณด๋„์ž๋ฃŒ) ์‚ฌ์ด์˜ ์ •๋ฐ€ํ•œ ์ •๋ ฌ์„ ์ œ๊ณตํ•œ๋‹ค. ์ด๋Š” LLM์ด ๋‹จ์ˆœํžˆ ์š”์•ฝ์„ ๋„˜์–ด, ๋ฒ•์ 

Data
Near-Linear and Parameterized Approximations for Maximum Cliques in Disk Graphs

Near-Linear and Parameterized Approximations for Maximum Cliques in Disk Graphs

์ด ๋…ผ๋ฌธ์€ ๋””์Šคํฌ ๊ทธ๋ž˜ํ”„์—์„œ ์ตœ๋Œ€ ํด๋ฆฌํฌ ๋ฌธ์ œ์— ๋Œ€ํ•œ ๊ทผ์‚ฌ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ œ์‹œํ•˜๋ฉฐ, ํŠนํžˆ ๋‹จ์œ„ ๋””์Šคํฌ ๊ทธ๋ž˜ํ”„์™€ ๋‹ค์ค‘ ๋ฐ˜๊ฒฝ ๋””์Šคํฌ ๊ทธ๋ž˜ํ”„์˜ ๊ฒฝ์šฐ๋ฅผ ๊ณ ๋ คํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ด ๋ฌธ์ œ๋Š” ๊ทธ๋ž˜ํ”„ ์ด๋ก ์—์„œ ์ค‘์š”ํ•œ ์œ„์น˜๋ฅผ ์ฐจ์ง€ํ•˜๋ฉฐ, ํŠนํžˆ ํ†ต์‹  ๋„คํŠธ์›Œํฌ๋‚˜ ์„ผ์„œ ๋„คํŠธ์›Œํฌ์™€ ๊ฐ™์€ ์‹ค์ œ ์‹œ์Šคํ…œ์—์„œ ํ™œ์šฉ๋  ์ˆ˜ ์žˆ๋Š” ์ค‘์š”ํ•œ ์‘์šฉ ๋ถ„์•ผ์ž…๋‹ˆ๋‹ค. ๋…ผ๋ฌธ์€ ๋‹จ์œ„ ๋””์Šคํฌ ๊ทธ๋ž˜ํ”„์— ๋Œ€ํ•œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ๊ฐœ์„ ํ•˜์—ฌ O(n/ฮต^2) ๊ธฐ๋Œ€ ์‹œ๊ฐ„ ๋‚ด์— (1 ฮต) ๊ทผ์‚ฌ ์ตœ๋Œ€ ํด๋ฆฌํฌ๋ฅผ ์ฐพ๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์‹œํ•ฉ๋‹ˆ๋‹ค. ์ด๋Š” ๊ธฐ์กด์˜ ์ •ํ™•ํ•œ ํ•ด๊ฒฐ์ฑ…๋ณด๋‹ค ํ›จ์”ฌ ๋น ๋ฅด๋ฉฐ, ํŠนํžˆ ํฐ ๊ทธ๋ž˜ํ”„์—์„œ ์ค‘์š”ํ•œ ์„ฑ๋Šฅ ๊ฐœ์„ ์ž…

Representation Invariance and Allocation: When Subgroup Balance Matters

Representation Invariance and Allocation: When Subgroup Balance Matters

๋ณธ ์—ฐ๊ตฌ๋Š” ์ธ๊ตฌํ†ต๊ณ„ํ•™์  ๋‹ค์–‘์„ฑ์„ ๋ฐ˜์˜ํ•œ ๋ฐ์ดํ„ฐ์…‹ ๊ตฌ์ถ•์ด ๋จธ์‹ ๋Ÿฌ๋‹ ๋ชจ๋ธ์˜ ๊ณต์ •์„ฑ๊ณผ ์ผ๋ฐ˜ํ™”์— ํ•ต์‹ฌ์ ์ธ ์—ญํ• ์„ ํ•œ๋‹ค๋Š” ์ „์ œ์—์„œ ์ถœ๋ฐœํ•œ๋‹ค. ์ „ํ†ต์ ์œผ๋กœ๋Š” ๊ฐ ์„œ๋ธŒ๊ทธ๋ฃน์ด ํ›ˆ๋ จ ๋ฐ์ดํ„ฐ์— ๊ท ๋“ฑํ•˜๊ฒŒ ํฌํ•จ๋  ๋•Œ ๋ชจ๋ธ์ด ๋ชจ๋“  ์ง‘๋‹จ์— ๋Œ€ํ•ด ์ตœ์ ์˜ ์„ฑ๋Šฅ์„ ๋ณด์ธ๋‹ค๊ณ  ๋ฏฟ์–ด ์™”์œผ๋ฉฐ, ์ด๋ฅผ ์œ„ํ•ด ๋ฐ์ดํ„ฐ ์ˆ˜์ง‘ ๋‹จ๊ณ„์—์„œ โ€˜๋ฐธ๋Ÿฐ์‹ฑ(balancing)โ€™ ์ž‘์—…์ด ํ•„์ˆ˜์ ์ด๋ผ๊ณ  ์—ฌ๊ฒจ์กŒ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ตœ๊ทผ ๋ช‡๋ช‡ ์‹คํ—˜์—์„œ๋Š” ์˜คํžˆ๋ ค ๋ถˆ๊ท ํ˜•ํ•œ ๋ฐ์ดํ„ฐ๊ฐ€ ํŠน์ • ์„œ๋ธŒ๊ทธ๋ฃน์˜ ์„ฑ๋Šฅ์„ ๋Œ์–ด์˜ฌ๋ฆฌ๊ฑฐ๋‚˜, ์ „์ฒด ์„œ๋ธŒ๊ทธ๋ฃน์ด ํ›ˆ๋ จ์— ์ „ํ˜€ ํฌํ•จ๋˜์ง€ ์•Š์•„๋„ ํ•ด๋‹น ์„œ๋ธŒ๊ทธ๋ฃน์— ๋Œ€ํ•œ ์˜ˆ์ธก ์ •ํ™•๋„๊ฐ€ ํฌ๊ฒŒ ์ €ํ•˜๋˜์ง€ ์•Š

The Complex-Step Integral Transform

The Complex-Step Integral Transform

๋ณธ ๋…ผ๋ฌธ์€ ๊ธฐ์กด์˜ Hilbert ๋ณ€ํ™˜์ด ์‹ ํ˜ธ์˜ ์œ„์ƒ ์ •๋ณด๋ฅผ ์ถ”์ถœํ•˜๊ณ  ๋ฏธ๋ถ„ ์—ฐ์‚ฐ๊ณผ ์—ฐ๊ฒฐ๋œ๋‹ค๋Š” ์‚ฌ์‹ค์„ ์ถœ๋ฐœ์ ์œผ๋กœ ์‚ผ์•„, ๋ณต์†Œ์ˆ˜ ์Šคํ… ์ฐจ๋ถ„๋ฒ•(complexโ€‘step differentiation)์˜ ํ•ต์‹ฌ ์•„์ด๋””์–ด๋ฅผ ์ ๋ถ„ ๋ณ€ํ™˜ ํ˜•ํƒœ๋กœ ํ™•์žฅํ•œ๋‹ค๋Š” ์ ์—์„œ ํ˜์‹ ์ ์ด๋‹ค. ๋ณต์†Œ์ˆ˜ ์Šคํ…์„ ์‹ค์ˆ˜์™€ ํ—ˆ์ˆ˜ ๋‘ ์ถ•์œผ๋กœ ๋…๋ฆฝ์ ์œผ๋กœ ์กฐ์ •ํ•จ์œผ๋กœ์จ, ๋ณ€ํ™˜ ๊ณผ์ •์—์„œ ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ๋Š” ์ˆ˜์น˜ ์˜ค์ฐจ๋ฅผ ์ตœ์†Œํ™”ํ•˜๊ณ  ๋™์‹œ์— ๊ณ ์ฃผํŒŒ ์žก์Œ์„ ํšจ๊ณผ์ ์œผ๋กœ ์–ต์ œํ•œ๋‹ค๋Š” ๋ฉ”์ปค๋‹ˆ์ฆ˜์€ ํŠนํžˆ ์ŠคํŽ™ํŠธ๋Ÿผ ๊ธฐ๋ฐ˜ ์ˆ˜์น˜ ๋ฏธ๋ถ„์—์„œ ํฐ ์žฅ์ ์„ ์ œ๊ณตํ•œ๋‹ค. ์ŠคํŽ™ํŠธ๋Ÿผ ๋ถ„์„์—์„œ๋Š” CSIT๊ฐ€ ์ž…๋ ฅ ์‹ ํ˜ธ์˜ ํ‘ธ๋ฆฌ์— ์ŠคํŽ™ํŠธ

No Image

What Kind of Reasoning (if any) is an LLM actually doing? On the Stochastic Nature and Abductive Appearance of Large Language Models

์ด ๋…ผ๋ฌธ์€ ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(LLMs)์—์„œ ํ† ํฐ ์™„์„ฑ ๊ธฐ๋ฐ˜์˜ ์ถ”๋ก  ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ํƒ๊ตฌํ•˜๋ฉฐ, ํŠนํžˆ ์ด๋Ÿฌํ•œ LLMs์ด ํ•™์Šต๋œ ์—ฐ๊ด€์„ฑ์„ ํ†ตํ•ด ์ƒ์„ฑ๋˜๋Š” ํ…์ŠคํŠธ์™€ ์ธ๊ฐ„์˜ ์ถ”์ธก์  ์ถ”๋ก (abductive reasoning) ์‚ฌ์ด์˜ ์œ ์‚ฌ์„ฑ์„ ๋ถ„์„ํ•œ๋‹ค. ๋…ผ๋ฌธ์€ LLMs๊ฐ€ ์ง์ ‘์ ์ธ ์ง„๋ฆฌ๋‚˜ ์˜๋ฏธ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•˜์ง€ ์•Š๊ณ ๋„ ๊ฐ€๋Šฅ์„ฑ์ด ์žˆ๋Š” ๊ฐ€์„ค์„ ์ œ์‹œํ•˜๊ณ , ์ƒ์‹์  ์ถ”๋ก ์„ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ํ•˜๋ฉฐ, ์„ค๋ช…์ ์ธ ๋‹ต๋ณ€์„ ์ œ๊ณตํ•˜๋Š” ๋ฐฉ์‹์„ ํ†ตํ•ด ๊ทธ๋“ค์˜ ์ถœ๋ ฅ์ด ์‹ค์ œ ์ถ”์ธก์  ์ถ”๋ก ๊ณผ ์œ ์‚ฌํ•˜๊ฒŒ ๋ณด์ผ ์ˆ˜ ์žˆ๋‹ค๋Š” ์ ์— ์ฃผ๋ชฉํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ๋ชจ๋ธ์˜ ํ™•๋ฅ ์  ํ•ต์‹ฌ๊ณผ ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜์—์„œ ๋‚˜ํƒ€๋‚˜๋Š” ์ถ”์ธก์  ์ถ”๋ก ์˜

Model
Are generative AI text annotations systematically biased?

Are generative AI text annotations systematically biased?

๋ณธ ๋…ผ๋ฌธ์€ ์ƒ์„ฑํ˜• ๋Œ€๊ทœ๋ชจ ์–ธ์–ด ๋ชจ๋ธ(GLLM)์ด ์ž๋™ ์ฝ˜ํ…์ธ  ๋ถ„์„์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ๋‹ค๊ฐ๋„๋กœ ์กฐ๋ช…ํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ๋กœ, GPTโ€‘4์™€ ๊ฐ™์€ ์ตœ์‹  ๋ชจ๋ธ์ด ์‚ฌ์ „ ํ•™์Šต(preโ€‘training) ๋‹จ๊ณ„์—์„œ ๋ฐฉ๋Œ€ํ•œ ์›น ํ…์ŠคํŠธ๋ฅผ ํ•™์Šตํ•จ์œผ๋กœ์จ ์ธ๊ฐ„ ์ˆ˜์ค€์— ๊ทผ์ ‘ํ•˜๋Š” ์–ธ์–ด ์ดํ•ด ๋Šฅ๋ ฅ์„ ํš๋“ํ•œ๋‹ค๋Š” ์ ์„ ๊ฐ•์กฐํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ์‚ฌ์ „ ์ง€์‹์€ ์ „ํ†ต์ ์ธ ์ง€๋„ํ•™์Šต ๋ฐฉ์‹์ด ์š”๊ตฌํ•˜๋Š” ๋Œ€๋Ÿ‰์˜ ๋ผ๋ฒจ๋ง ๋ฐ์ดํ„ฐ์™€ ๋น„๊ตํ–ˆ์„ ๋•Œ, ์†Œ์ˆ˜์˜ ์ƒ˜ํ”Œ๋งŒ์œผ๋กœ๋„ ๋†’์€ ์„ฑ๋Šฅ์„ ๋Œ์–ด๋‚ผ ์ˆ˜ ์žˆ๊ฒŒ ๋งŒ๋“ ๋‹ค. ๋…ผ๋ฌธ์€ ์‹ค์ œ ์‹คํ—˜์„ ํ†ตํ•ด ํ…์ŠคํŠธ ๋ถ„๋ฅ˜, ๊ฐ์„ฑ ๋ถ„์„, ์ฃผ์ œ ๋ชจ๋ธ๋ง, ์ž๋™ ์š”์•ฝ ๋“ฑ ๋„ค ๊ฐ€์ง€ ๋Œ€ํ‘œ์ ์ธ ์ž‘

System
New Constructions of SSPDs and their Applications

New Constructions of SSPDs and their Applications

๋ฐ˜๋ถ„๋ฆฌ ์Œ ๋ถ„ํ•ด(SSPD)๋Š” ๊ฑฐ๋ฆฌ ๊ธฐ๋ฐ˜ ์•Œ๊ณ ๋ฆฌ์ฆ˜, ํŠนํžˆ ๊ทผ์ ‘ ํƒ์ƒ‰, ๋ฒ”์œ„ ๊ฒ€์ƒ‰ ๋ฐ ๊ทธ๋ž˜ํ”„ ์ŠคํŒŒ๋‹์— ํ•ต์‹ฌ์ ์ธ ์ „์ฒ˜๋ฆฌ ๊ตฌ์กฐ์ด๋‹ค. ๊ธฐ์กด์˜ SSPD ๊ตฌํ˜„์€ ๋ณดํ†ต ๊ฐ ์ ์ด O(log n)๊ฐœ์˜ ์Œ์— ํฌํ•จ๋˜๋Š” ํ˜•ํƒœ์˜€์œผ๋ฉฐ, ์ฐจ์› d๊ฐ€ ์ฆ๊ฐ€ํ•จ์— ๋”ฐ๋ผ ๋ณต์žก๋„๊ฐ€ ๊ธ‰๊ฒฉํžˆ ์•…ํ™”๋˜๋Š” ๋ฌธ์ œ๊ฐ€ ์žˆ์—ˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์€ โ€œ๊ฐ ์ ์ด ๋ช‡ ๊ฐœ์˜ ์Œ์—๋งŒ ์ฐธ์—ฌํ•œ๋‹คโ€๋Š” ๊ฐ•๋ ฅํ•œ ํฌ์†Œ์„ฑ ์กฐ๊ฑด์„ ๋งŒ์กฑํ•˜๋ฉด์„œ๋„ ์ „์ฒด ์Œ์˜ ๊ฐœ์ˆ˜๋ฅผ ฮ˜(n) ์ˆ˜์ค€์œผ๋กœ ์œ ์ง€ํ•˜๋Š” ์ตœ์  ๊ตฌ์„ฑ์„ ์ œ์‹œํ•œ๋‹ค. ์ด๋Š” ํŠนํžˆ ๋ฐฐ์œจ ์ฐจ์›(doubling dimension)์ด ๋‚ฎ์€ ๋ฉ”ํŠธ๋ฆญ ๊ณต๊ฐ„โ€”์˜ˆ๋ฅผ ๋“ค์–ด, ์ €์ฐจ์› ์œ ํด๋ฆฌ๋“œ ๊ณต๊ฐ„

Understanding Mental States in Active and Autonomous Driving with EEG

Understanding Mental States in Active and Autonomous Driving with EEG

๋ณธ ๋…ผ๋ฌธ์€ ์šด์ „ ์ƒํ™ฉ์— ๋”ฐ๋ผ ๋‡ŒํŒŒ ์‹ ํ˜ธ๊ฐ€ ์–ด๋–ป๊ฒŒ ๋‹ฌ๋ผ์ง€๋Š”์ง€๋ฅผ ์ •๋Ÿ‰์ ์œผ๋กœ ๊ทœ๋ช…ํ•จ์œผ๋กœ์จ, ์ธ๊ฐ„โ€‘์ฐจ๋Ÿ‰ ์ธํ„ฐํŽ˜์ด์Šค ์„ค๊ณ„์— ์ค‘์š”ํ•œ ํ†ต์ฐฐ์„ ์ œ๊ณตํ•œ๋‹ค. ์‹คํ—˜ ์„ค๊ณ„๋Š” 31๋ช…์˜ ํ”ผํ—˜์ž๋ฅผ ๋Œ€์ƒ์œผ๋กœ ๋™์ผํ•œ ์šด์ „ ๊ณผ์ œ๋ฅผ ๋Šฅ๋™ ์ฃผํ–‰๊ณผ ์ž์œจ ์ฃผํ–‰ ๋‘ ์กฐ๊ฑด์—์„œ ์ˆ˜ํ–‰ํ•˜๊ฒŒ ํ•˜์—ฌ, ๊ณผ์ œ ๋ณต์žก๋„(์ €ยท์ค‘ยท๊ณ )๋ณ„๋กœ EEG ๋ฐ์ดํ„ฐ๋ฅผ ์ˆ˜์ง‘ํ•˜์˜€๋‹ค. ๋ฐ์ดํ„ฐ ์ „์ฒ˜๋ฆฌ ๋‹จ๊ณ„์—์„œ๋Š” ๋ˆˆ๊นœ๋นก์ž„ยท๊ทผ์œก ์žก์Œ ๋“ฑ์„ ICA ๊ธฐ๋ฐ˜์œผ๋กœ ์ œ๊ฑฐํ•˜๊ณ , 64์ฑ„๋„ ์‹œ์Šคํ…œ์„ ์ด์šฉํ•ด ์ „๋‘์—ฝยท๋‘์ •์—ฝยทํ›„๋‘์—ฝ ๋“ฑ ์ฃผ์š” ์˜์—ญ์˜ ์ „๋ ฅ ์ŠคํŽ™ํŠธ๋Ÿผ์„ ๋ถ„์„ํ•˜์˜€๋‹ค. ์ธ์ง€ ๋ถ€ํ•˜์™€ ํ”ผ๋กœ๋Š” ์ฃผํŒŒ์ˆ˜ ๋ฐด๋“œ ํŒŒ์›Œ(ฮธ, ฮฑ, ฮฒ)์™€ ๋ณตํ•ฉ

Meta Hierarchical Reinforcement Learning for Scalable Resource Management in O-RAN

Meta Hierarchical Reinforcement Learning for Scalable Resource Management in O-RAN

๋ณธ ๋…ผ๋ฌธ์€ Oโ€‘RAN ํ™˜๊ฒฝ์—์„œ ์ž์› ํ• ๋‹น๊ณผ ๋„คํŠธ์›Œํฌ ์Šฌ๋ผ์ด์‹ฑ์„ ๋™์‹œ์— ์ตœ์ ํ™”ํ•˜๊ธฐ ์œ„ํ•œ ์ƒˆ๋กœ์šด ํ•™์Šต ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์‹œํ•œ๋‹ค๋Š” ์ ์—์„œ ํ•™์ˆ ์ ยท์‹ค๋ฌด์  ์˜์˜๊ฐ€ ํฌ๋‹ค. ์ฒซ ๋ฒˆ์งธ๋กœ, ๊ธฐ์กด ๋ฉ”ํƒ€โ€‘๊ฐ•ํ™”ํ•™์Šต(Metaโ€‘RL) ์—ฐ๊ตฌ๋“ค์€ ์ฃผ๋กœ ๋‹จ์ผ ๋ ˆ๋ฒจ ์ •์ฑ…์„ ํ•™์Šตํ•˜๋Š” ๋ฐ ๊ทธ์ณค์œผ๋ฉฐ, ๋ณต์žกํ•œ Oโ€‘RAN ์‹œ์Šคํ…œ์ฒ˜๋Ÿผ ๋‹ค์ค‘ ๊ณ„์ธต์˜ ์˜์‚ฌ๊ฒฐ์ • ๊ตฌ์กฐ๋ฅผ ๋ฐ˜์˜ํ•˜์ง€ ๋ชปํ–ˆ๋‹ค. ์ €์ž๋Š” ์ด๋ฅผ ๋ณด์™„ํ•˜๊ธฐ ์œ„ํ•ด ๊ณ ์ˆ˜์ค€ โ€˜์ž์› ํ• ๋‹น ์ปจํŠธ๋กค๋Ÿฌโ€™์™€ ์ €์ˆ˜์ค€ โ€˜์Šฌ๋ผ์ด์Šค ๋‚ด๋ถ€ ์Šค์ผ€์ค„๋Ÿฌโ€™๋ผ๋Š” ๋‘ ๊ฐœ์˜ ์—์ด์ „ํŠธ๋ฅผ ๊ณ„์ธต์ ์œผ๋กœ ๋ฐฐ์น˜ํ•˜๊ณ , ๊ฐ๊ฐ์ด ๋…๋ฆฝ์ ์ธ ๊ฐ•ํ™”ํ•™์Šต ๊ณผ์ •์„ ์ˆ˜ํ–‰ํ•˜๋„๋ก ์„ค๊ณ„ํ•˜์˜€๋‹ค. ์ด๋Ÿฌํ•œ

Learning
VFM-VLM: Vision Foundation Model and Vision Language Model based Visual Comparison for 3D Pose Estimation

VFM-VLM: Vision Foundation Model and Vision Language Model based Visual Comparison for 3D Pose Estimation

๋ณธ ์—ฐ๊ตฌ๋Š” ์ตœ๊ทผ ๊ธ‰๋ถ€์ƒํ•œ ๋น„์ „ ํŒŒ์šด๋ฐ์ด์…˜ ๋ชจ๋ธ(VFM)๊ณผ ๋น„์ „โ€‘์–ธ์–ด ๋ชจ๋ธ(VLM)์ด ๋กœ๋ด‡ ์กฐ์ž‘, ํŠนํžˆ ์†โ€‘๋ฌผ์ฒด ๊ทธ๋ฆฝ ์ƒํ™ฉ์—์„œ 6D ๊ฐ์ฒด ํฌ์ฆˆ ์ถ”์ •์— ์–ด๋–ป๊ฒŒ ๋‹ค๋ฅธ ๊ฐ•์ ์„ ๋ฐœํœ˜ํ•˜๋Š”์ง€๋ฅผ ์ฒด๊ณ„์ ์œผ๋กœ ๋น„๊ตํ•œ๋‹ค. CLIP์€ ๋Œ€๊ทœ๋ชจ ์ด๋ฏธ์ง€โ€‘ํ…์ŠคํŠธ ์Œ์œผ๋กœ ์‚ฌ์ „ ํ•™์Šต๋œ ๋ฉ€ํ‹ฐ๋ชจ๋‹ฌ ๋ชจ๋ธ๋กœ, ์–ธ์–ด์™€ ์‹œ๊ฐ ์ •๋ณด๋ฅผ ์ •๋ ฌํ•จ์œผ๋กœ์จ โ€œ์ปตโ€, โ€œํ•ธ๋“คโ€ ๋“ฑ ๊ฐ์ฒด์˜ ์˜๋ฏธ์  ์นดํ…Œ๊ณ ๋ฆฌ๋ฅผ ๊ฐ•๋ ฅํžˆ ์ธ์‹ํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ์˜๋ฏธ์  ์ดํ•ด๋Š” ๋ณต์žกํ•œ ์žฅ๋ฉด์—์„œ ๊ฐ์ฒด๋ฅผ ์ •ํ™•ํžˆ ๊ตฌ๋ถ„ํ•˜๊ณ , ์ธ๊ฐ„์ด ์ œ๊ณตํ•˜๋Š” ์ž์—ฐ์–ด ๋ช…๋ น๊ณผ์˜ ๋งคํ•‘์„ ์šฉ์ดํ•˜๊ฒŒ ๋งŒ๋“ ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ CLIP์˜ ํŠน์ง•์€ ์ฃผ๋กœ ์ „์—ญ์ ์ธ ํ† ํฐ ์ž„๋ฒ 

Model
A Unifying Human-Centered AI Fairness Framework

A Unifying Human-Centered AI Fairness Framework

๋ณธ ๋…ผ๋ฌธ์€ AI ์‹œ์Šคํ…œ์˜ ๊ณต์ •์„ฑ์„ ๋‹ค๋ฃจ๋Š” ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค์˜ ํ•œ๊ณ„๋ฅผ ์ •ํ™•ํžˆ ์งš์–ด๋‚ธ๋‹ค. ํ˜„์žฌ๊นŒ์ง€ ๋Œ€๋ถ€๋ถ„์˜ ์—ฐ๊ตฌ๋Š” ํ•˜๋‚˜์˜ ๊ณต์ •์„ฑ ์ง€ํ‘œโ€”์˜ˆ๋ฅผ ๋“ค์–ด ๊ทธ๋ฃน ๊ณต์ •์„ฑ ํ˜น์€ ๊ฐœ๋ณ„ ๊ณต์ •์„ฑโ€”์— ์ดˆ์ ์„ ๋งž์ถ”์–ด ํ•ด๋‹น ์ง€ํ‘œ๋ฅผ ์ตœ์ ํ™”ํ•˜๋ ค๋Š” ์ ‘๊ทผ์„ ์ทจํ–ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์‹ค์ œ ์‚ฌํšŒ์ ยท๋ฒ•์  ๋งฅ๋ฝ์—์„œ๋Š” ์—ฌ๋Ÿฌ ๊ณต์ •์„ฑ ๊ฐœ๋…์ด ๋™์‹œ์— ์ถฉ๋Œํ•˜๊ณ , ์ดํ•ด๊ด€๊ณ„์ž๋งˆ๋‹ค ์ค‘์‹œํ•˜๋Š” ๊ฐ€์น˜๊ฐ€ ๋‹ค๋ฅด๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด ์‚ฌ๋ฒ• ๋ถ„์•ผ์—์„œ๋Š” โ€˜๋™๋“ฑ ๊ธฐํšŒ(EOP)โ€™์™€ โ€˜๊ฒฐ๊ณผ ํ‰๋“ฑโ€™ ์‚ฌ์ด์— ๋šœ๋ ทํ•œ ๊ธด์žฅ์ด ์กด์žฌํ•˜๊ณ , ์˜๋ฃŒ ๋ถ„์•ผ์—์„œ๋Š” ํ™˜์ž ๊ทธ๋ฃน ๊ฐ„์˜ ์ ‘๊ทผ์„ฑ ์ฐจ์ด๋ฅผ ์ตœ์†Œํ™”ํ•˜๋ ค๋Š” ๋™์‹œ์— ์น˜๋ฃŒ ํšจ์œจ์„ฑ์„ ์œ ์ง€ํ•ด์•ผ ํ•˜๋Š” ๋ณตํ•ฉ์ 

Framework
Adaptive Test-Time Training for Predicting Need for Invasive Mechanical Ventilation in Multi-Center Cohorts

Adaptive Test-Time Training for Predicting Need for Invasive Mechanical Ventilation in Multi-Center Cohorts

AdaTTT ๋…ผ๋ฌธ์€ ์ž„์ƒ ํ˜„์žฅ์—์„œ ๊ธ‰๊ฒฉํžˆ ๋ณ€ํ•˜๋Š” ๋ฐ์ดํ„ฐ ๋ถ„ํฌ๋ฅผ ๊ณ ๋ คํ•œ ํ…Œ์ŠคํŠธโ€‘ํƒ€์ž„ ์ ์‘ ๋ฐฉ๋ฒ•์„ ์ œ์‹œํ•จ์œผ๋กœ์จ, ๊ธฐ์กด TTT ์ ‘๊ทผ๋ฒ•์˜ ํ•œ๊ณ„๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ๋ณด์™„ํ•œ๋‹ค๋Š” ์ ์—์„œ ํฐ ์˜์˜๋ฅผ ๊ฐ€์ง„๋‹ค. ์ฒซ ๋ฒˆ์งธ ๊ฐ•์ ์€ ์ด๋ก ์  ๊ธฐ์—ฌ์ด๋‹ค. ์ €์ž๋“ค์€ ๋ฉ”์ธ ํƒœ์Šคํฌ(IMV ์˜ˆ์ธก)์™€ ๋ณด์กฐ ํƒœ์Šคํฌ(์žฌ๊ตฌ์„ฑยท๋งˆ์Šคํฌ๋“œ ํ”ผ์ฒ˜ ๋ชจ๋ธ๋ง) ์‚ฌ์ด์˜ ์ƒํ˜ธ ์ •๋ณด๋Ÿ‰์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ…Œ์ŠคํŠธ ๋‹จ๊ณ„ ์˜ค๋ฅ˜์˜ ์ƒํ•œ์„ ๋„์ถœํ–ˆ์œผ๋ฉฐ, ์ด๋Š” ๋ชจ๋ธ์ด ์–ผ๋งˆ๋‚˜ ์ž˜ ์ผ๋ฐ˜ํ™”๋  ์ˆ˜ ์žˆ๋Š”์ง€๋ฅผ ์ •๋Ÿ‰์ ์œผ๋กœ ํ‰๊ฐ€ํ•  ์ˆ˜ ์žˆ๋Š” ํ‹€์„ ์ œ๊ณตํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ์ •๋ณดโ€‘์ด๋ก ์  ๋ถ„์„์€ ์‹คํ—˜์  ๊ฒฐ๊ณผ์™€ ๊ฒฐํ•ฉ๋ผ, ๋ณด์กฐ ํƒœ์Šคํฌ๊ฐ€ ๋ฉ”์ธ ํƒœ์Šคํฌ์™€

Resource-Bounded Type Theory: Compositional Cost Analysis via Graded Modalities

Resource-Bounded Type Theory: Compositional Cost Analysis via Graded Modalities

์ด ๋…ผ๋ฌธ์€ ํ”„๋กœ๊ทธ๋žจ์˜ ์ž์› ์‚ฌ์šฉ์„ ์ •ํ˜•์ ์œผ๋กœ ๊ฒ€์ฆํ•˜๋ ค๋Š” ์—ฐ๊ตฌ ํ๋ฆ„์— ์ค‘์š”ํ•œ ๊ธฐ์—ฌ๋ฅผ ํ•œ๋‹ค. ๊ฐ€์žฅ ๋ˆˆ์— ๋„๋Š” ์ ์€ ์ž์› ๊ฒฝ๊ณ„๋ฅผ ์ถ”์ƒ ๊ฒฉ์ž (L, โชฏ, โŠ•, โŠ”, โŠฅ) ๋กœ ์ผ๋ฐ˜ํ™”ํ•จ์œผ๋กœ์จ, ์ „ํ†ต์ ์ธ ์‹œ๊ฐ„ ๋ณต์žก๋„ ๋ถ„์„์„ ๋„˜์–ด ๋ฉ”๋ชจ๋ฆฌ, ๊ฐ€์Šค, ํ˜น์€ ๋„๋ฉ”์ธโ€‘ํŠนํ™” ๋น„์šฉ๊นŒ์ง€ ํ•˜๋‚˜์˜ ํ˜•์‹ ์ฒด๊ณ„ ์•ˆ์—์„œ ๋‹ค๋ฃฐ ์ˆ˜ ์žˆ๊ฒŒ ๋งŒ๋“  ๊ฒƒ์ด๋‹ค. ์ด๋Ÿฌํ•œ ์ถ”์ƒํ™”๋Š” ๊ธฐ์กด์˜ ๋น„์šฉ ๋ชจ๋ธ์ด ์„œ๋กœ ๋…๋ฆฝ์ ์œผ๋กœ ์„ค๊ณ„๋˜๋Š” ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ณ , ๋™์ผํ•œ ํƒ€์ž… ์‹œ์Šคํ…œ์„ ์žฌ์‚ฌ์šฉํ•ด ๋‹ค์–‘ํ•œ ๋น„์šฉ์„ ๋™์‹œ์— ์ถ”๋ก ํ•  ์ˆ˜ ์žˆ๊ฒŒ ํ•œ๋‹ค๋Š” ์‹ค์šฉ์  ์žฅ์ ์„ ์ œ๊ณตํ•œ๋‹ค. ๋…ผ๋ฌธ์ด ๋„์ž…ํ•œ ๋“ฑ๊ธ‰ ๊ฐ€๋Šฅ์„ฑ ๋ชจ๋‹ฌ๋ฆฌํ‹ฐ โ–ก r ์€

Analysis
3DID: Direct 3D Inverse Design for Aerodynamics with Physics-Aware Optimization

3DID: Direct 3D Inverse Design for Aerodynamics with Physics-Aware Optimization

๋ณธ ์—ฐ๊ตฌ๋Š” 3์ฐจ์› ์—ญ์„ค๊ณ„ ๋ถ„์•ผ์—์„œ ๊ฐ€์žฅ ๊ทผ๋ณธ์ ์ธ ๋ณ‘๋ชฉ ํ˜„์ƒ์ธ โ€œ์„ค๊ณ„ ๊ณต๊ฐ„์˜ ํญ๋ฐœ์  ์ฆ๊ฐ€โ€ ๋ฌธ์ œ๋ฅผ ๊ทผ๋ณธ์ ์œผ๋กœ ํ•ด๊ฒฐํ•˜๋ ค๋Š” ์‹œ๋„๋กœ ํ‰๊ฐ€ํ•  ์ˆ˜ ์žˆ๋‹ค. ์ „ํ†ต์ ์ธ ๊ทธ๋ฆฌ๋“œ ํƒ์ƒ‰์ด๋‚˜ ๋ฒ ์ด์ฆˆ ์ตœ์ ํ™”์™€ ๊ฐ™์€ ์ „ํ†ต์  ๋ฐฉ๋ฒ•์€ ์ฐจ์› ์ˆ˜๊ฐ€ ๋Š˜์–ด๋‚ ์ˆ˜๋ก ๊ณ„์‚ฐ ๋ณต์žก๋„๊ฐ€ ์ง€์ˆ˜์ ์œผ๋กœ ์ฆ๊ฐ€ํ•ด ์‹ค์šฉ์ ์ธ ์ ์šฉ์ด ์–ด๋ ค์›Œ์ง„๋‹ค. ์ตœ๊ทผ ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜ ์ ‘๊ทผ๋ฒ•์€ ์ž ์žฌ ๊ณต๊ฐ„์„ ์ด์šฉํ•ด ํƒ์ƒ‰ ์ฐจ์›์„ ํฌ๊ฒŒ ์ถ•์†Œํ–ˆ์ง€๋งŒ, ๋Œ€๋ถ€๋ถ„ 2D ํˆฌ์˜์„ ์‚ฌ์šฉํ•˜๊ฑฐ๋‚˜ ๊ธฐ์กด 3D ๋ชจ๋ธ์„ ๋ฏธ์„ธ ์กฐ์ •ํ•˜๋Š” ๋ฐฉ์‹์— ๋จธ๋ฌผ๋Ÿฌ ์‹ค์ œ 3D ํ˜•ํƒœ์˜ ์ž์œ ๋กœ์šด ์ƒ์„ฑ ๋Šฅ๋ ฅ์„ ์ œํ•œํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ํ•œ๊ณ„๋Š” ํŠนํžˆ ๋ณตํ•ฉ ๋ฌผ๋ฆฌ ํ˜„์ƒ์ด ์–ฝํžŒ ์„ค๊ณ„

Detrended cross-correlations and their random matrix limit: an example from the cryptocurrency market

Detrended cross-correlations and their random matrix limit: an example from the cryptocurrency market

๋ณธ ๋…ผ๋ฌธ์€ ๋ณต์žก๊ณ„ ๋ถ„์„์—์„œ ํ”ํžˆ ๋งˆ์ฃผ์น˜๋Š” ์„ธ ๊ฐ€์ง€ ํ•ต์‹ฌ ๋‚œ์ œโ€”๋น„์ •์ƒ์„ฑ, ์žฅ๊ธฐ ์˜์กด์„ฑ(๋กฑ ๋ฉ”๋ชจ๋ฆฌ), ๊ทธ๋ฆฌ๊ณ  ํ—ค๋น„ํ…Œ์ผ ๋ถ„ํฌโ€”๋ฅผ ๋™์‹œ์— ๊ณ ๋ คํ•œ ์ƒˆ๋กœ์šด ์ƒ๊ด€ํ–‰๋ ฌ ๊ตฌ์ถ• ๋ฐฉ๋ฒ•์„ ์ œ์‹œํ•œ๋‹ค๋Š” ์ ์—์„œ ํ•™๋ฌธ์  ์˜์˜๊ฐ€ ํฌ๋‹ค. ๊ธฐ์กด์˜ ๊ณต๋ถ„์‚ฐ ํ–‰๋ ฌ์€ ํ‰๊ท ๊ณผ ๋ถ„์‚ฐ์„ ์ „์ œ๋กœ ํ•˜์—ฌ ๋น„์ •์ƒ์ ์ธ ํŠธ๋ Œ๋“œ๋‚˜ ๋น„์„ ํ˜• ๋ณ€๋™์„ ์ œ๋Œ€๋กœ ํฌ์ฐฉํ•˜์ง€ ๋ชปํ•œ๋‹ค. ์ €์ž๋“ค์€ ๋‹ค์ค‘ํ”„๋ž™ํƒˆ ๋น„์ •์ƒ ๊ต์ฐจ์ƒ๊ด€๊ณ„์ˆ˜ ฯ r์„ ๋„์ž…ํ•จ์œผ๋กœ์จ, ์‹œ๊ณ„์—ด์„ ๋‹ค์ค‘์Šค์ผ€์ผ๋กœ ๋ถ„ํ•ดํ•˜๊ณ  ๊ฐ ์Šค์ผ€์ผ์—์„œ ํŠน์ • ์ง„ํญ ๋ฒ”์œ„์˜ ๋ณ€๋™๋งŒ์„ ๊ฐ•์กฐํ•˜๋„๋ก ์„ค๊ณ„ํ•˜์˜€๋‹ค. ์—ฌ๊ธฐ์„œ r์€ ๋ณ€๋™์˜ ํฌ๊ธฐ๋ฅผ ์กฐ์ ˆํ•˜๋Š” ์ฐจ์ˆ˜ ๋งค๊ฐœ๋ณ€์ˆ˜๋กœ, r > 0์ด๋ฉด

Protecting Bystander Privacy via Selective Hearing in Audio LLMs

Protecting Bystander Privacy via Selective Hearing in Audio LLMs

๋ณธ ๋…ผ๋ฌธ์€ ์˜ค๋””์˜ค ๊ธฐ๋ฐ˜ ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ์ด ์‹ค์ œ ์„œ๋น„์Šค ํ™˜๊ฒฝ์—์„œ ๋งˆ์ฃผํ•˜๊ฒŒ ๋˜๋Š” โ€˜๋ถ€์ˆ˜ ์ฒญ์ทจโ€™ ๋ฌธ์ œ๋ฅผ ์ •๋Ÿ‰ํ™”ํ•˜๊ณ  ํ•ด๊ฒฐ์ฑ…์„ ์ œ์‹œํ•œ๋‹ค๋Š” ์ ์—์„œ ๋งค์šฐ ์‹œ์˜์ ์ ˆํ•˜๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค์€ ์ฃผ๋กœ ๋ชจ๋ธ์˜ ์ „๋ฐ˜์ ์ธ ์Œ์„ฑ ์ธ์‹ยท์ดํ•ด ๋Šฅ๋ ฅ์— ์ดˆ์ ์„ ๋งž์ถ”์—ˆ์œผ๋ฉฐ, ์ฃผ๋ณ€ ์‚ฌ๋žŒ๋“ค์˜ ์Œ์„ฑ์„ ๋ฌด์‹ฌ์ฝ” ์ˆ˜์ง‘ยท์ฒ˜๋ฆฌํ•˜๋Š” ํ”„๋ผ์ด๋ฒ„์‹œ ์œ„ํ—˜์„ ๊ฐ„๊ณผํ•ด ์™”๋‹ค. ์ด๋Ÿฌํ•œ ๊ณต๋ฐฑ์„ ๋ฉ”์šฐ๊ธฐ ์œ„ํ•ด ์ €์ž๋“ค์€ ๋‘ ๊ฐ€์ง€ ํ•ต์‹ฌ ๊ธฐ์—ฌ๋ฅผ ํ•œ๋‹ค. ์ฒซ์งธ, SHโ€‘Bench๋ผ๋Š” ์ƒˆ๋กœ์šด ๋ฒค์น˜๋งˆํฌ๋ฅผ ๊ตฌ์ถ•ํ–ˆ๋‹ค. ์ด ๋ฒค์น˜๋งˆํฌ๋Š” 3,968๊ฐœ์˜ ๋‹ค์ค‘ ํ™”์ž ์˜ค๋””์˜ค ๋ฏน์Šค๋ฅผ ํฌํ•จํ•˜๊ณ , ์‹ค์ œ ํ˜„์žฅ ๋…น์Œ๊ณผ ํ•ฉ์„ฑ ๋ฐ์ดํ„ฐ๋ฅผ ๊ท ํ˜• ์žˆ๊ฒŒ

SUGAR: A Sweeter Spot for Generative Unlearning of Many Identities

SUGAR: A Sweeter Spot for Generative Unlearning of Many Identities

๋ณธ ๋…ผ๋ฌธ์€ ์ƒ์„ฑ ๋ชจ๋ธ์˜ โ€˜์–ธ๋Ÿฌ๋‹(unlearning)โ€™์ด๋ผ๋Š” ๋น„๊ต์  ์ƒˆ๋กœ์šด ์—ฐ๊ตฌ ์˜์—ญ์— ์‹ค์šฉ์ ์ธ ํ•ด๊ฒฐ์ฑ…์„ ์ œ์‹œํ•œ๋‹ค๋Š” ์ ์—์„œ ํฐ ์˜๋ฏธ๋ฅผ ๊ฐ€์ง„๋‹ค. ๊ธฐ์กด์˜ ์ƒ์„ฑ ๋ชจ๋ธ์€ ๋Œ€๊ทœ๋ชจ ๋ฐ์ดํ„ฐ์…‹์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•™์Šต๋˜๋ฉฐ, ํ•œ ๋ฒˆ ํ•™์Šต๋œ ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ์ˆ˜์ •ํ•˜๊ฑฐ๋‚˜ ํŠน์ • ์ƒ˜ํ”Œ์„ ์ œ๊ฑฐํ•˜๋ ค๋ฉด ์ „์ฒด ๋ชจ๋ธ์„ ์žฌํ•™์Šตํ•ด์•ผ ํ•˜๋Š” ๋น„ํšจ์œจ์ ์ธ ๊ตฌ์กฐ๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ์—ˆ๋‹ค. ํŠนํžˆ ์–ผ๊ตด ํ•ฉ์„ฑ์ฒ˜๋Ÿผ ๊ฐœ์ธ ์‹๋ณ„์ด ๊ฐ€๋Šฅํ•œ ๋ฐ์ดํ„ฐ๋ฅผ ๋‹ค๋ฃจ๋Š” ๊ฒฝ์šฐ, ๋ฒ•์ ยท์œค๋ฆฌ์  ์š”๊ตฌ์— ๋”ฐ๋ผ ํŠน์ • ์ธ๋ฌผ์˜ ๋ฐ์ดํ„ฐ๋ฅผ ์ฆ‰์‹œ ์‚ญ์ œํ•  ํ•„์š”๊ฐ€ ์žˆ๋‹ค. SUGAR๋Š” ์ด๋Ÿฌํ•œ ์š”๊ตฌ๋ฅผ ์ถฉ์กฑ์‹œํ‚ค๊ธฐ ์œ„ํ•ด ๋‘ ๊ฐ€์ง€ ํ•ต์‹ฌ ์•„์ด๋””์–ด๋ฅผ ๋„์ž…ํ•œ๋‹ค.

Learning
A fast algorithm for the Hecke representation of the braid group, and applications to the computation of the HOMFLY-PT polynomial and the search for interesting braids

A fast algorithm for the Hecke representation of the braid group, and applications to the computation of the HOMFLY-PT polynomial and the search for interesting braids

์ด ๋…ผ๋ฌธ์€ ํ˜„๋Œ€ ๊ฒฐ์ ˆ ์ด๋ก ๊ณผ ๊ณ„์‚ฐ ๋ณต์žก๋„ ์ด๋ก ์„ ์—ฐ๊ฒฐํ•˜๋Š” ๊ต๋Ÿ‰ ์—ญํ• ์„ ํ•œ๋‹ค. ํ•ต์‹ฌ ์•„์ด๋””์–ด๋Š” Hecke ๋Œ€์ˆ˜์˜ ํ‘œํ˜„๋ก ์  ๊ตฌ์กฐ๊ฐ€ ๋ธŒ๋ ˆ์ด๋“œ ๊ตฐ์˜ ์›์†Œ๋ฅผ ํ–‰๋ ฌ๋กœ ๋ณ€ํ™˜ํ•  ๋•Œ ๋ฐœ์ƒํ•˜๋Š” ์—ฐ์‚ฐ์  ๊ฐ•์ง์„ฑ์„ ์ด์šฉํ•ด, ๊ธฐ์กด ๊ตฌํ˜„๋ณด๋‹ค ํ›จ์”ฌ ๋น ๋ฅธ ๊ณ„์‚ฐ ๋ฃจํ‹ด์„ ๋งŒ๋“ ๋‹ค๋Š” ์ ์ด๋‹ค. ์ €์ž๋“ค์€ ๋จผ์ € ๋ธŒ๋ ˆ์ด๋“œ ๊ตฐ Bโ‚™์˜ ์ƒ์„ฑ์ž ฯƒแตข์— ๋Œ€ํ•ด Hecke ๋Œ€์ˆ˜ Hโ‚™(q) ์˜ ํ‘œ์ค€ ํ‘œํ˜„์„ ๋ช…์‹œํ•˜๊ณ , ์ด๋•Œ ๋ฐœ์ƒํ•˜๋Š” ๊ตํ™˜ ๊ด€๊ณ„์™€ ์ œ๊ณฑ ๊ด€๊ณ„๋ฅผ ์ด์šฉํ•ด ํ–‰๋ ฌ ๊ณฑ์…ˆ์˜ ์ฐจ์›์„ ์ตœ์†Œํ™”ํ•œ๋‹ค. ํŠนํžˆ, Garside ์ •๊ทœํ˜•์„ ํ™œ์šฉํ•ด ๋ธŒ๋ ˆ์ด๋“œ ๋‹จ์–ด๋ฅผ ์ตœ์†Œ ๊ธธ์ด์˜ ์ •๊ทœ ํ˜•ํƒœ๋กœ ๋ณ€ํ™˜ํ•จ์œผ๋กœ์จ ์ค‘๋ณต

A Systematic Framework for Enterprise Knowledge Retrieval: Leveraging LLM-Generated Metadata to Enhance RAG Systems

A Systematic Framework for Enterprise Knowledge Retrieval: Leveraging LLM-Generated Metadata to Enhance RAG Systems

๋ณธ ๋…ผ๋ฌธ์€ ๊ธฐ์—…์šฉ ์ง€์‹ ๊ด€๋ฆฌ ์‹œ์Šคํ…œ์—์„œ ํ”ํžˆ ๊ฒช๋Š” โ€œ์ •๋ณด ๊ฒ€์ƒ‰ ๋ณ‘๋ชฉโ€ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ๋ฉ”ํƒ€๋ฐ์ดํ„ฐ๋ฅผ ์ž๋™์œผ๋กœ ์ƒ์„ฑยทํ™œ์šฉํ•˜๋Š” ์ƒˆ๋กœ์šด ํŒŒ์ดํ”„๋ผ์ธ์„ ์ œ์•ˆํ•œ๋‹ค. ๋จผ์ €, ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ์„ ์ด์šฉํ•ด ๊ฐ ๋ฌธ์„œ ์กฐ๊ฐ์— ๋Œ€ํ•ด ์ฃผ์ œ, ํ‚ค์›Œ๋“œ, ์š”์•ฝ, ๊ด€๊ณ„ ๋“ฑ ๋‹ค์ฐจ์› ๋ฉ”ํƒ€๋ฐ์ดํ„ฐ๋ฅผ ์ถ”์ถœํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฉ”ํƒ€๋ฐ์ดํ„ฐ๋Š” ๊ธฐ์กด ํ…์ŠคํŠธ ์ž„๋ฒ ๋”ฉ์— ์ถ”๊ฐ€์ ์ธ ์‹œ๊ทธ๋„์„ ์ œ๊ณตํ•จ์œผ๋กœ์จ, ๋™์ผํ•œ ์˜๋ฏธ๋ฅผ ๊ณต์œ ํ•˜๋Š” ๋ฌธ์„œ ๊ฐ„์˜ ๊ฑฐ๋ฆฌ ๊ณ„์‚ฐ์„ ๋ณด๋‹ค ์ •๊ตํ•˜๊ฒŒ ๋งŒ๋“ ๋‹ค. ์ฒญํ‚น ์ „๋žต์€ ์„ธ ๊ฐ€์ง€๋กœ ๊ตฌ๋ถ„๋œ๋‹ค. โ‘  ์˜๋ฏธ ๊ธฐ๋ฐ˜ ์ฒญํ‚น์€ ๋ฌธ๋งฅ์  ์œ ์‚ฌ์„ฑ์„ ๊ธฐ์ค€์œผ๋กœ ๋ฌธ์„œ๋ฅผ ๋™์ ์œผ๋กœ ๋ถ„ํ• ํ•ด ์˜๋ฏธ ๋‹จ์œ„๊ฐ€ ๋ณด์กด

Framework Data System
A Unified Theory of Sparse Dictionary Learning in Mechanistic Interpretability: Piecewise Biconvexity and Spurious Minima

A Unified Theory of Sparse Dictionary Learning in Mechanistic Interpretability: Piecewise Biconvexity and Spurious Minima

์ด ๋…ผ๋ฌธ์€ ์ตœ๊ทผ ์ธ๊ณต์ง€๋Šฅ ๋ชจ๋ธ์ด ๋ณต์žกํ•œ ๊ฐœ๋…์„ ์–ด๋–ป๊ฒŒ ๋‚ด๋ถ€ ํ‘œํ˜„์— ๋‹ด๋Š”์ง€๋ฅผ ํƒ๊ตฌํ•˜๋Š” ๊ธฐ๊ณ„์  ํ•ด์„(mechanistic interpretability) ๋ถ„์•ผ์˜ ํ•ต์‹ฌ ๋ฌธ์ œ์— ์ ‘๊ทผํ•œ๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค์€ ์‹ ๊ฒฝ๋ง์ด ์˜๋ฏธ ์žˆ๋Š” ๊ฐœ๋…์„ ๊ณ ์ฐจ์› ํ‘œํ˜„ ๊ณต๊ฐ„์˜ ์„ ํ˜• ๋ฐฉํ–ฅ์œผ๋กœ ์ €์žฅํ•˜๊ณ , ์—ฌ๋Ÿฌ ๊ฐœ๋…์ด ๋™์ผํ•œ ๋‰ด๋Ÿฐ ์ง‘ํ•ฉ์— ๊ฒน์ณ์„œ(superposition) ๋‚˜ํƒ€๋‚œ๋‹ค๊ณ  ์ฃผ์žฅํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ํ˜„์ƒ์„ ํ•ด์†Œํ•˜๊ธฐ ์œ„ํ•ด ์—ฐ๊ตฌ์ž๋“ค์€ ํฌ์†Œ ์‚ฌ์ „ํ•™์Šต(Sparse Dictionary Learning, SDL)์ด๋ผ๋Š” ๋ฐฉ๋ฒ•๋ก ์„ ๋„์ž…ํ–ˆ์œผ๋ฉฐ, ์—ฌ๊ธฐ์—๋Š” ํฌ์†Œ ์ž๋™์ธ์ฝ”๋”(sparse aut

Learning
China Regional 3km Downscaling Based on Residual Corrective Diffusion Model

China Regional 3km Downscaling Based on Residual Corrective Diffusion Model

๋ณธ ์—ฐ๊ตฌ๋Š” ์ˆ˜์น˜์˜ˆ๋ณด ๋ถ„์•ผ์—์„œ ๊ณ ํ•ด์ƒ๋„ ์˜ˆ๋ณด๋ฅผ ์‹ค์‹œ๊ฐ„์œผ๋กœ ์ œ๊ณตํ•˜๊ธฐ ์œ„ํ•œ ํ•ต์‹ฌ ๊ธฐ์ˆ ์ธ ํ†ต๊ณ„์  ๋‹ค์šด์Šค์ผ€์ผ๋ง์„ ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜ ํ™•์‚ฐ ๋ชจ๋ธ์— ์ ์šฉํ•œ ์ ์—์„œ ํฐ ์˜์˜๋ฅผ ๊ฐ€์ง„๋‹ค. ๊ธฐ์กด์˜ CorrDiff ํ”„๋ ˆ์ž„์›Œํฌ๋Š” ์ฃผ๋กœ ํ‘œ๋ฉด ๋ณ€์ˆ˜์™€ ์ œํ•œ๋œ ์ง€์—ญ์— ์ดˆ์ ์„ ๋งž์ถ”์—ˆ์œผ๋‚˜, ๋ณธ ๋…ผ๋ฌธ์€ ์ ์šฉ ์˜์—ญ์„ ์•ฝ 40๋ฐฐ ํ™•๋Œ€ํ•˜์—ฌ ์ค‘๊ตญ ์ „์—ญ์„ ํฌ๊ด„ํ•˜๊ณ , 6๊ฐœ์˜ ๊ธฐ์•• ๋ ˆ๋ฒจ์— ํ•ด๋‹นํ•˜๋Š” ๊ณ ์ธต ๋ณ€์ˆ˜๊นŒ์ง€ ํฌํ•จํ•จ์œผ๋กœ์จ ๋ชจ๋ธ์˜ ์ผ๋ฐ˜ํ™” ๋Šฅ๋ ฅ์„ ํฌ๊ฒŒ ๊ฐ•ํ™”ํ•˜์˜€๋‹ค. ์ด๋Š” ๋Œ€๊ธฐ ํ˜„์ƒ์ด ์ˆ˜์ง์ ์œผ๋กœ๋„ ๋ณต์žกํ•˜๊ฒŒ ์–ฝํ˜€ ์žˆ์Œ์„ ๊ณ ๋ คํ•œ ์„ค๊ณ„๋กœ, ํŠนํžˆ ๊ฐ•์ˆ˜ยท๋Œ€๋ฅ˜ยท์ œํŠธ ์ŠคํŠธ๋ฆผ ๋“ฑ ๊ณ ์ธต ๋™์—ญํ•™์„ ์ •ํ™•ํžˆ ์žฌํ˜„

Model
Evolutionary System 2 Reasoning: An Empirical Proof

Evolutionary System 2 Reasoning: An Empirical Proof

๋ณธ ๋…ผ๋ฌธ์€ ํ˜„์žฌ ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ์ด ๋ณด์—ฌ์ฃผ๋Š” โ€œํŠน์ • ์ž‘์—…์— ๋Œ€ํ•œ ๋›ฐ์–ด๋‚œ ์„ฑ๋Šฅโ€๊ณผ โ€œ์ผ๋ฐ˜์ ์ธ ์ง€๋Šฅ, ํŠนํžˆ ์‹œ์Šคํ…œ 2์™€ ์—ฐ๊ด€๋œ ๋А๋ฆฐ ์‚ฌ๊ณ  ๋Šฅ๋ ฅโ€ ์‚ฌ์ด์˜ ๊ฒฉ์ฐจ๋ฅผ ๋ช…ํ™•ํžˆ ์งš์–ด๋‚ธ๋‹ค. ์‹œ์Šคํ…œ 2๋Š” ์ธ๊ฐ„์ด ๋ณต์žกํ•œ ๋…ผ๋ฆฌ์  ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•  ๋•Œ ์˜์‹์ ์œผ๋กœ ์ˆ˜ํ–‰ํ•˜๋Š” ๊ณ ์ฐจ์›์  ์‚ฌ๊ณ  ๊ณผ์ •์„ ์˜๋ฏธํ•œ๋‹ค. ๊ธฐ์กด LLM์€ ๋Œ€๊ทœ๋ชจ ๋ฐ์ดํ„ฐ์— ๊ธฐ๋ฐ˜ํ•œ ํŒจํ„ด ํ•™์Šต์„ ํ†ตํ•ด ๋น ๋ฅธ ์‹œ์Šคํ…œ 1 ์Šคํƒ€์ผ์˜ ์‘๋‹ต์„ ์ œ๊ณตํ•˜์ง€๋งŒ, ๋…ผ๋ฆฌ์  ์ผ๊ด€์„ฑ์ด๋‚˜ ๋‹ค๋‹จ๊ณ„ ์ถ”๋ก ์ด ์š”๊ตฌ๋˜๋Š” ์ƒํ™ฉ์—์„œ๋Š” ์˜ค๋ฅ˜๊ฐ€ ๋นˆ๋ฒˆํžˆ ๋ฐœ์ƒํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด ์ €์ž๋“ค์€ ์ง„ํ™”๋ก ์  ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ์ฐจ์šฉํ•œ ERO ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ

System
Mechanistic Interpretability of Antibody Language Models Using SAEs

Mechanistic Interpretability of Antibody Language Models Using SAEs

๋ณธ ๋…ผ๋ฌธ์€ ๋‹จ๋ฐฑ์งˆ ์–ธ์–ด ๋ชจ๋ธ, ํŠนํžˆ ํ•ญ์ฒด ์„œ์—ด์„ ์ƒ์„ฑํ•˜๋„๋ก ์„ค๊ณ„๋œ pIgGen์— ๋Œ€ํ•œ ๋ฉ”์ปค๋‹ˆ์ฆ˜์  ํ•ด์„์„ ๋ชฉํ‘œ๋กœ ํ•œ๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ๋‘ ์ข…๋ฅ˜์˜ ํฌ์†Œ ์˜คํ† ์ธ์ฝ”๋”, ์ฆ‰ TopK SAE์™€ Ordered SAE๋ฅผ ๋„์ž…ํ•˜์˜€๋‹ค. TopK SAE๋Š” ๊ฐ ๋ ˆ์ด์–ด์—์„œ ๊ฐ€์žฅ ํฐ K๊ฐœ์˜ ํ™œ์„ฑ๊ฐ’๋งŒ์„ ๋ณด์กดํ•จ์œผ๋กœ์จ ํฌ์†Œ์„ฑ์„ ๊ฐ•์ œํ•˜๊ณ , ์ด๋ฅผ ํ†ตํ•ด ์ž ์žฌ ๊ณต๊ฐ„์˜ ๊ฐœ๋ณ„ ์ฐจ์›์ด ํŠน์ • ์ƒ๋ฌผํ•™์  ํŠน์„ฑ๊ณผ ๊ฐ•ํ•˜๊ฒŒ ์—ฐ๊ด€๋˜๋Š”์ง€๋ฅผ ํƒ์ƒ‰ํ•œ๋‹ค. ์‹คํ—˜์—์„œ๋Š” ํŠน์ • ๋‰ด๋Ÿฐ(๋˜๋Š” ๋‰ด๋Ÿฐ ์ง‘ํ•ฉ)์ด ํ•ญ์ฒด์˜ CDR(Complementarity Determining Region) ๊ธธ์ด, ์นœํ™”๋„, ํ˜น์€ ํŠน

Model
On Dynamic Programming Theory for Leader-Follower Stochastic Games

On Dynamic Programming Theory for Leader-Follower Stochastic Games

๋ณธ ์—ฐ๊ตฌ๋Š” ๊ธฐ์กด์˜ ๋ฆฌ๋”โ€‘ํŒ”๋กœ์›Œ ์Šคํ† ์ผ€์Šคํ‹ฑ ๊ฒŒ์ž„ ์ด๋ก ์— ์ค‘์š”ํ•œ ๊ตฌ์กฐ์  ์ง„์ „์„ ์ œ๊ณตํ•œ๋‹ค. ์ผ๋ฐ˜ํ•ฉ ๊ฒŒ์ž„์€ ๋‘ ์—์ด์ „ํŠธ๊ฐ€ ์„œ๋กœ ๋‹ค๋ฅธ ๋ณด์ƒ ํ•จ์ˆ˜๋ฅผ ๊ฐ–๋Š” ์ƒํ™ฉ์„ ์˜๋ฏธํ•˜๋Š”๋ฐ, ์—ฌ๊ธฐ์„œ ๋ฆฌ๋”๋Š” ์ž์‹ ์˜ ์ •์ฑ…์„ ์‚ฌ์ „์— ๊ณ ์ •ํ•˜๊ณ  ํŒ”๋กœ์›Œ๋Š” ๊ทธ์— ๋Œ€ํ•œ ์ตœ์  ๋ฐ˜์‘์„ ์„ ํƒํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ๋น„๋Œ€์นญ ์•ฝ์† ๊ตฌ์กฐ๋Š” ์‹ค์„ธ๊ณ„์˜ ๋ณด์•ˆ ๋ฐฐ์น˜, ๋„คํŠธ์›Œํฌ ๋ฐฉ์–ด, ์ž์› ํ• ๋‹น ๋“ฑ์—์„œ ํ”ํžˆ ๋‚˜ํƒ€๋‚œ๋‹ค. ๊ธฐ์กด ์ ‘๊ทผ๋ฒ•์€ ์ฃผ๋กœ ์™„์ „ ์ •๋ณด ํ˜น์€ ์ œํ•œ๋œ ์ •์ฑ… ๊ณต๊ฐ„์„ ๊ฐ€์ •ํ•˜๊ณ , ํŒ”๋กœ์›Œ์˜ ๋ฐ˜์‘์„ ๊ทผ์‚ฌํ•˜๊ฑฐ๋‚˜ ์ œํ•œ๋œ ํ˜•ํƒœ์˜ ๊ท ํ˜•๋งŒ์„ ๊ณ„์‚ฐํ–ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ด๋Ÿฌํ•œ ๋ฐฉ๋ฒ•์€ ์‹ ๋ขฐ ๊ฐ€๋Šฅํ•œ ์ง‘ํ•ฉ(credible set

On Sparse Representations of 3-Manifolds

On Sparse Representations of 3-Manifolds

์ด ๋…ผ๋ฌธ์€ 3โ€‘๋‹ค์–‘์ฒด ์œ„์ƒํ•™์—์„œ ๊ฐ€์žฅ ์‹ค์šฉ์ ์ธ ๋ฐ์ดํ„ฐ ๊ตฌ์กฐ์ธ ์‚ผ๊ฐ๋ถ„ํ• ์„ ๋‹ค๋ฃจ๋ฉด์„œ, ๊ทธ๋ž˜ํ”„ ์ด๋ก ์˜ ํ•ต์‹ฌ ๊ฐœ๋…์ธ ํŠธ๋ฆฌํญ์„ ์ค‘์‹ฌ์œผ๋กœ ์•Œ๊ณ ๋ฆฌ์ฆ˜์  ํšจ์œจ์„ฑ์„ ๊ทน๋Œ€ํ™”ํ•œ๋‹ค๋Š” ์ ์—์„œ ํฐ ์˜๋ฏธ๋ฅผ ๊ฐ€์ง„๋‹ค. ํŠธ๋ฆฌํญ์€ ๊ทธ๋ž˜ํ”„๊ฐ€ ํŠธ๋ฆฌ์™€ ์–ผ๋งˆ๋‚˜ ์œ ์‚ฌํ•œ์ง€๋ฅผ ์ •๋Ÿ‰ํ™”ํ•˜๋Š” ํŒŒ๋ผ๋ฏธํ„ฐ์ด๋ฉฐ, ํŠธ๋ฆฌํญ์ด ์ž‘์„์ˆ˜๋ก ๋™์  ๊ณ„ํš๋ฒ•์ด๋‚˜ ์ƒ‰์น  ์•Œ๊ณ ๋ฆฌ์ฆ˜ ๊ฐ™์€ ์ „ํ†ต์ ์ธ FPT ๊ธฐ๋ฒ•์„ ์ ์šฉํ•˜๊ธฐ ์šฉ์ดํ•˜๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ์—์„œ๋Š” ์‚ผ๊ฐ๋ถ„ํ•  ์ž์ฒด์˜ ํŠธ๋ฆฌํญ์„ ์ด์šฉํ•ด ๋‹ค์–‘ํ•œ ์œ„์ƒํ•™์  ๋ฌธ์ œ(์˜ˆ: ๋งค๋‹ˆํด๋“œ ๋™ํ˜•ํŒ๋ณ„, ์ฝ”ํ๋ผ ๋ณตํ•ฉ์ฒด ๊ณ„์‚ฐ ๋“ฑ)๋ฅผ FPT๋กœ ํ•ด๊ฒฐํ–ˆ์ง€๋งŒ, ํžˆ์–ด๋กœ๋“œ ๋ถ„ํ• ์ด๋ผ๋Š” ์ „ํ˜€ ๋‹ค๋ฅธ ํ‘œํ˜„์œผ๋กœ ๋ณ€ํ™˜

< Category Statistics (Total: 822) >

Electrical Engineering and Systems Science
7
General
272
General Relativity
9
HEP-EX
7
HEP-PH
12
HEP-TH
7
MATH-PH
4
NUCL-TH
1
Quantum Physics
12

Start searching

Enter keywords to search articles

โ†‘โ†“
โ†ต
ESC
โŒ˜K Shortcut