Posts

Here are all published articles, sorted by date in descending order.

808 posts total
17 pages total
Subjective functions

Subjective functions

์ด ๋…ผ๋ฌธ์€ ์ธ๊ฐ„ ์ง€๋Šฅ๊ณผ ์ธ๊ณต ์‹œ์Šคํ…œ ๊ฐ„์˜ ์ฐจ์ด๋ฅผ ํƒ์ƒ‰ํ•˜๋ฉด์„œ, ํŠนํžˆ ๋ชฉํ‘œ ์„ค์ • ๊ณผ์ •์— ์ดˆ์ ์„ ๋งž์ถฅ๋‹ˆ๋‹ค. ์ฃผ๊ด€์  ๊ธฐ๋Šฅ์ด๋ผ๋Š” ๊ฐœ๋…์„ ๋„์ž…ํ•จ์œผ๋กœ์จ, ์—์ด์ „ํŠธ ์ž์ฒด์˜ ๋‚ด์žฌ์ ์ธ ํŠน์ง•์— ๊ทผ๊ฑฐํ•œ ๋ชฉํ‘œ ์„ค์ • ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. ์ด๋Š” ์ธ๊ฐ„ ์ง€๋Šฅ์—์„œ ๋ณด์ด๋Š” ์ฆ‰ํฅ์ ์ธ ๋ชฉํ‘œ ํ•ฉ์„ฑ ๋Šฅ๋ ฅ์„ ์ธ๊ณต ์‹œ์Šคํ…œ์—๋„ ๋ถ€์—ฌํ•˜๋ ค๋Š” ๋…ธ๋ ฅ์ž…๋‹ˆ๋‹ค. ๋…ผ๋ฌธ์€ ์˜ˆ์ธก ์˜ค๋ฅ˜๋ฅผ ์ตœ์†Œํ™”ํ•˜๋Š” ๊ฒƒ์„ ์ฃผ๊ด€์  ๊ธฐ๋Šฅ์˜ ํ•œ ํ˜•ํƒœ๋กœ ์„ค๋ช…ํ•˜๋ฉฐ, ์ด๋ฅผ ํ†ตํ•ด ์—์ด์ „ํŠธ๊ฐ€ ์ž์‹ ์˜ ๊ฒฝํ—˜๊ณผ ํ•™์Šต์— ๋”ฐ๋ผ ์ƒˆ๋กœ์šด ๋ชฉํ‘œ๋ฅผ ์„ค์ •ํ•˜๊ณ  ์ถ”๊ตฌํ•  ์ˆ˜ ์žˆ์Œ์„ ์ œ์‹œํ•ฉ๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ์ ‘๊ทผ ๋ฐฉ์‹์€ ์‹ฌ๋ฆฌํ•™์—์„œ์˜ ์ž๊ธฐํšจ๋Šฅ๊ฐ ์ด๋ก ์ด๋‚˜ ์‹ ๊ฒฝ๊ณผํ•™

Towards Fine-Tuning-Based Site Calibration for Knowledge-Guided Machine Learning: A Summary of Results

Towards Fine-Tuning-Based Site Calibration for Knowledge-Guided Machine Learning: A Summary of Results

FTBSC KGML์€ ๋†์ƒํƒœ๊ณ„ ํƒ„์†Œ ์ˆœํ™˜๋Ÿ‰์„ ์ •ํ™•ํ•˜๊ณ  ๋น„์šฉ ํšจ์œจ์ ์œผ๋กœ ์ธก์ •ํ•˜๊ธฐ ์œ„ํ•œ ํ˜์‹ ์ ์ธ ๋จธ์‹ ๋Ÿฌ๋‹ ํ”„๋ ˆ์ž„์›Œํฌ์ž…๋‹ˆ๋‹ค. ๊ธฐ์กด ์ ‘๊ทผ๋ฒ•์˜ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด, ์ด ์—ฐ๊ตฌ๋Š” ์ „์ด ํ•™์Šต๊ณผ ๊ณต๊ฐ„์  ๋ณ€์ด์„ฑ์„ ํ™œ์šฉํ•˜๋Š” ๋ฐฉ๋ฒ•๋ก ์„ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. ํŠนํžˆ, FTBSC KGML์€ ์‚ฌ์ „ ํ›ˆ๋ จ ๋ฐ ๋ฏธ์„ธ ์กฐ์ • ๊ณผ์ •์„ ํ†ตํ•ด ๊ฐ ์ง€์—ญ์˜ ํŠน์„ฑ์— ๋งž์ถฐ ๋ชจ๋ธ์„ ๊ฐœ์„ ํ•˜๊ณ , ์ด๋ฅผ ํ†ตํ•ด ๋ฐ์ดํ„ฐ๊ฐ€ ๋ถ€์กฑํ•œ ์ง€์—ญ์—์„œ๋„ ๋†’์€ ์ •ํ™•๋„๋ฅผ ์œ ์ง€ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์ด ํ”„๋ ˆ์ž„์›Œํฌ๋Š” ์›๊ฒฉ ์ธก์ • GPP, ๊ธฐํ›„ ๋ฐ ํ† ์–‘ ๊ณต๋ณ€๋Ÿ‰๊ณผ ๊ฐ™์€ ๋‹ค์–‘ํ•œ ๋ฐ์ดํ„ฐ ์†Œ์Šค๋ฅผ ํ™œ์šฉํ•˜์—ฌ ๋†์ƒํƒœ๊ณ„์˜ ํƒ„์†Œ ์ˆœํ™˜์„ ํšจ๊ณผ์ ์œผ๋กœ

Learning
Workload Characterization for Branch Predictability

Workload Characterization for Branch Predictability

์ด ๋…ผ๋ฌธ์€ ๋ถ„๊ธฐ ์˜ˆ์ธก์˜ ํ•ต์‹ฌ ๋ฌธ์ œ์ธ ์ •ํ™•๋„ ํ–ฅ์ƒ์„ ์œ„ํ•ด ์›Œํฌ๋กœ๋“œ ํŠน์„ฑํ™” ๋ฐฉ๋ฒ•๋ก ์„ ์ œ์‹œํ•˜๊ณ , ์ด๋ฅผ ํ†ตํ•ด ์ƒˆ๋กœ์šด ๋ถ„์„ ์ง€ํ‘œ๋“ค์„ ๋„์ž…ํ•ฉ๋‹ˆ๋‹ค. '๋ถ„๊ธฐ ์ž‘์—… ์ง‘ํ•ฉ ํฌ๊ธฐ'์™€ '๋ถ„๊ธฐ ์˜ˆ์ธก ๊ฐ€๋Šฅ์„ฑ'์ด๋ผ๋Š” ๋‘ ๊ฐ€์ง€ ๋งค๊ฐœ๋ณ€์ˆ˜๋Š” ํ˜„๋Œ€์ ์ธ ๋ถ„๊ธฐ ์˜ˆ์ธก ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ์„ฑ๋Šฅ์— ์ง์ ‘์ ์œผ๋กœ ์˜ํ–ฅ์„ ๋ฏธ์น˜๋ฉฐ, ์ด๋“ค ๋งค๊ฐœ๋ณ€์ˆ˜๋ฅผ ํ†ตํ•ด ํŠน์ • ์›Œํฌ๋กœ๋“œ๊ฐ€ ์–ด๋–ค ๋ถ„๊ธฐ ์˜ˆ์ธก ๊ธฐ๋ฒ•์— ๋” ์ ํ•ฉํ•œ์ง€ ํŒ๋‹จํ•  ์ˆ˜ ์žˆ๊ฒŒ ๋ฉ๋‹ˆ๋‹ค. ๋…ผ๋ฌธ์€ 2,451๊ฐœ์˜ ์›Œํฌ๋กœ๋“œ ํŠธ๋ ˆ์ด์Šค๋ฅผ ๋ถ„์„ํ•˜์—ฌ ์ด๋Ÿฌํ•œ ์ง€ํ‘œ๋“ค์„ ํ†ตํ•ด ๊ฐ ์›Œํฌ๋กœ๋“œ์˜ ํŠน์„ฑ์„ ํŒŒ์•…ํ•˜๊ณ  ์ด๋ฅผ ํ†ตํ•ด ํ˜„๋Œ€์ ์ธ ๋ถ„๊ธฐ ์˜ˆ์ธก๊ธฐ์˜ ์ •ํ™•๋„์— ๋Œ€ํ•œ ๊นŠ์ด ์žˆ๋Š” ์ดํ•ด

No Image

End-to-End Learning-based Video Streaming Enhancement Pipeline: A Generative AI Approach

ELVIS ์•„ํ‚คํ…์ฒ˜๋Š” ์ „ํ†ต์ ์ธ ์ฝ”๋“œํฌ์™€์˜ ์ฐจ๋ณ„ํ™”๋œ ์ ‘๊ทผ๋ฒ•์œผ๋กœ ์ฃผ๋ชฉํ•  ๋งŒํ•ฉ๋‹ˆ๋‹ค. ์ด ๋…ผ๋ฌธ์€ ์„œ๋ฒ„ ์ธก ์ธ์ฝ”๋”ฉ ์ตœ์ ํ™”์™€ ํด๋ผ์ด์–ธํŠธ ์ธก ์ƒ์„ฑํ˜• ์ธํŽ˜์ธํŒ…์„ ๊ฒฐํ•ฉํ•˜์—ฌ ์ค‘๋ณต ๋ฐ์ดํ„ฐ๋ฅผ ์ œ๊ฑฐํ•˜๊ณ  ์žฌ๊ตฌ์„ฑํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์‹œํ•ฉ๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ์ ‘๊ทผ๋ฒ•์€ ๋Œ€์—ญํญ ์‚ฌ์šฉ์„ ์ค„์ด๋ฉด์„œ๋„ ๋†’์€ ํ™”์งˆ์„ ์œ ์ง€ํ•  ์ˆ˜ ์žˆ๋Š” ์ƒˆ๋กœ์šด ๊ฐ€๋Šฅ์„ฑ์„ ์—ด์–ด์ค๋‹ˆ๋‹ค. ELVIS์˜ ๋ชจ๋“ˆ์‹ ์„ค๊ณ„๋Š” ๋‹ค์–‘ํ•œ ์ฝ”๋“œํฌ, ์ธํŽ˜์ธํŒ… ๋ชจ๋ธ, ํ’ˆ์งˆ ์ง€ํ‘œ๋ฅผ ์‰ฝ๊ฒŒ ํ†ตํ•ฉํ•  ์ˆ˜ ์žˆ๊ฒŒ ํ•˜๋ฉฐ, ์ด๋Š” ๋ฏธ๋ž˜ ๊ธฐ์ˆ  ๋ฐœ์ „์— ๋Œ€ํ•œ ์œ ์—ฐ์„ฑ๊ณผ ํ™•์žฅ์„ฑ์„ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค. ๋˜ํ•œ, ํ˜„์žฌ ๊ธฐ์ˆ ์ด ๋ฒ ์ด์Šค๋ผ์ธ๋ณด๋‹ค ์ตœ๋Œ€ 11 VMAF ์ ์„ ๊ฐœ์„ ํ•œ ๊ฒฐ๊ณผ

Learning
Explainable Preference Learning: a Decision Tree-based Surrogate Model for Preferential Bayesian Optimization

Explainable Preference Learning: a Decision Tree-based Surrogate Model for Preferential Bayesian Optimization

๋ณธ ๋…ผ๋ฌธ์€ ๋ฒ ์ด์ง€์•ˆ ์ตœ์ ํ™”์˜ ํ•œ๊ณ„์ ์„ ๊ทน๋ณตํ•˜๊ณ ์ž ๊ฒฐ์ •ํŠธ๋ฆฌ๋ฅผ ์ƒˆ๋กœ์šด ๋Œ€๋ฆฌ ๋ชจ๋ธ๋กœ ์ œ์‹œํ•œ๋‹ค. ์ด๋Š” ๊ฐ€์šฐ์‹œ์•ˆ ํ”„๋กœ์„ธ์Šค(GP)๋ฅผ ์‚ฌ์šฉํ•˜๋Š” ๊ธฐ์กด ๋ฐฉ๋ฒ•๊ณผ ๋‹ฌ๋ฆฌ ํ•ด์„์„ฑ์ด ๋›ฐ์–ด๋‚˜๋ฉฐ, ์—ฐ์†ํ˜• ๋ฐ ๋ฒ”์ฃผํ˜• ๋ฐ์ดํ„ฐ ์ฒ˜๋ฆฌ ๋Šฅ๋ ฅ์ด ๊ฐ•ํ™”๋˜์–ด ์‹ค์ œ ์ ์šฉ์— ์œ ์šฉํ•˜๋‹ค. ๊ฒฐ์ •ํŠธ๋ฆฌ๋Š” ๋ณต์žกํ•œ ๋ชจ๋ธ์„ ์ดํ•ดํ•˜๊ธฐ ์‰ฝ๊ฒŒ ์‹œ๊ฐํ™”ํ•  ์ˆ˜ ์žˆ์–ด, ์ตœ์ ํ™” ๊ณผ์ •์—์„œ ์–ป์€ ๊ฒฐ๊ณผ๋ฅผ ์ง๊ด€์ ์œผ๋กœ ํ•ด์„ํ•˜๊ณ  ํ™œ์šฉํ•˜๋Š” ๋ฐ ๋„์›€์ด ๋œ๋‹ค. ํŠนํžˆ, ๋ณธ ๋…ผ๋ฌธ์˜ ์‹คํ—˜์—์„œ๋Š” ๋‚ ์นด๋กœ์šด ํ•จ์ˆ˜์— ๋Œ€ํ•œ ์„ฑ๋Šฅ ํ–ฅ์ƒ์ด ํ™•์ธ๋˜์—ˆ์œผ๋ฉฐ, ์ด๋Š” ์‹ค์ œ ์„ธ๊ณ„์—์„œ ์ž์ฃผ ๋ฐœ์ƒํ•˜๋Š” ๋ถˆ๊ทœ์น™์ ์ธ ๋ฐ์ดํ„ฐ ๋ถ„ํฌ์— ํšจ๊ณผ์ ์ผ ์ˆ˜ ์žˆ์Œ์„ ์‹œ์‚ฌํ•œ๋‹ค.

Learning Model
No Image

Incentivizing Tool-augmented Thinking with Images for Medical Image Analysis

์ด ๋…ผ๋ฌธ์€ ์˜๋ฃŒ AI ๋ถ„์•ผ์—์„œ ์ค‘์š”ํ•œ ๋ฐœ์ „์„ ์ œ์‹œํ•˜๊ณ  ์žˆ๋‹ค. Ophiuchus ํ”„๋ ˆ์ž„์›Œํฌ๋Š” MLLMs๊ฐ€ ๋ณต์žกํ•œ ์‹œ๊ฐ์  ์ •๋ณด๋ฅผ ์ฒ˜๋ฆฌํ•˜๋Š” ๋ฐ ํ•„์š”ํ•œ ์„ธ ๊ฐ€์ง€ ํ•ต์‹ฌ ๊ธฐ๋Šฅ์„ ์ œ๊ณตํ•œ๋‹ค: ์ถ”๊ฐ€์ ์ธ ์‹œ๊ฐ์  ์ฆ๊ฑฐ์˜ ํ•„์š”์„ฑ์„ ํŒ๋‹จํ•  ์ˆ˜ ์žˆ๋Š” ๋Šฅ๋ ฅ, ์˜๋ฃŒ ์ด๋ฏธ์ง€ ๋‚ด์—์„œ ์ •ํ™•ํ•˜๊ฒŒ ํƒ์‚ฌํ•ด์•ผ ํ•  ์œ„์น˜๋ฅผ ๊ฒฐ์ •ํ•  ์ˆ˜ ์žˆ๋Š” ๋Šฅ๋ ฅ, ๊ทธ๋ฆฌ๊ณ  ์ด๋“ค ์ •๋ณด๋ฅผ ๋‹ค์ค‘ ๋ชจ๋‹ฌ ์ถ”๋ก  ์ฒด์ธ์— ํ†ตํ•ฉํ•˜๋Š” ๋Šฅ๋ ฅ. ์ด๋Ÿฌํ•œ ๊ธฐ๋Šฅ์€ MLLMs๊ฐ€ ๋ณต์žกํ•œ ์‹œ๊ฐ์  ๋ฐ์ดํ„ฐ๋ฅผ ์ฒ˜๋ฆฌํ•˜๊ณ  ๋ถ„์„ํ•˜๋Š” ๋ฐ ์žˆ์–ด ์ค‘์š”ํ•œ ๋„์•ฝ์„ ์ด๋ฃจ๊ฒŒ ํ•œ๋‹ค. Ophiuchus์˜ ํ•ต์‹ฌ์€ ์„ธ ๋‹จ๊ณ„๋กœ ๊ตฌ์„ฑ๋œ ํ›ˆ๋ จ ์ „๋žต์ด๋‹ค: ์ฒซ์งธ,

Analysis
Model-First Reasoning LLM Agents: Reducing Hallucinations through Explicit Problem Modeling

Model-First Reasoning LLM Agents: Reducing Hallucinations through Explicit Problem Modeling

์ด ๋…ผ๋ฌธ์€ ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(LLMs)์ด ๋ณต์žกํ•œ ๊ณ„ํš ์ž‘์—…์—์„œ ์ œ์•ฝ ์œ„๋ฐ˜, ์ผ๊ด€์„ฑ ์—†๋Š” ์ƒํƒœ ์ถ”์  ๋ฐ ์ทจ์•ฝํ•œ ์†”๋ฃจ์…˜์„ ์ƒ์„ฑํ•˜๋Š” ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด Model First Reasoning(MFR)์ด๋ผ๋Š” ์ƒˆ๋กœ์šด ์ ‘๊ทผ๋ฒ•์„ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. MFR์€ ๋‘ ๋‹จ๊ณ„๋กœ ๊ตฌ์„ฑ๋˜๋Š”๋ฐ, ์ฒซ ๋ฒˆ์งธ ๋‹จ๊ณ„์—์„œ๋Š” LLM์ด ๋ฌธ์ œ์˜ ๊ตฌ์กฐํ™”๋œ ๋ชจ๋ธ์„ ๋ช…์‹œ์ ์œผ๋กœ ๊ตฌ์„ฑํ•˜๊ณ , ๋‘ ๋ฒˆ์งธ ๋‹จ๊ณ„์—์„œ๋Š” ์ด ๋ชจ๋ธ์— ๋Œ€ํ•œ ์ถ”๋ก  ๋ฐ ๊ณ„ํš์„ ์ˆ˜ํ–‰ํ•ฉ๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฐฉ๋ฒ•์€ ์ธ๊ฐ„์˜ ๊ณผํ•™์  ์ถ”๋ก , ๊ณ ์ „ AI ๊ณ„ํš, ๊ทธ๋ฆฌ๊ณ  ์˜์‚ฌ๊ฒฐ์ • ์ธ์ง€ ๋ชจ๋ธ์—์„œ ์˜๊ฐ์„ ๋ฐ›์•„ ์ œ์•ˆ๋˜์—ˆ์Šต๋‹ˆ๋‹ค. ์‹คํ—˜ ๊ฒฐ๊ณผ MFR์€ ๋‹ค์–‘ํ•œ

Model
ReadyPower: A Reliable, Interpretable, and Handy Architectural Power Model Based on Analytical Framework

ReadyPower: A Reliable, Interpretable, and Handy Architectural Power Model Based on Analytical Framework

๋ณธ ๋…ผ๋ฌธ์˜ ํ•ต์‹ฌ์€ ํ˜„๋Œ€ ํ”„๋กœ์„ธ์„œ ์„ค๊ณ„์—์„œ ์ „๋ ฅ ๋ชจ๋ธ๋ง์˜ ์ค‘์š”์„ฑ์„ ๊ฐ•์กฐํ•˜๊ณ , ์ด๋ฅผ ์œ„ํ•ด ๊ณ ์ „์ ์ธ ๋ถ„์„ํ˜• ์•„ํ‚คํ…์ฒ˜ ์ˆ˜์ค€์˜ ์ „๋ ฅ ๋ชจ๋ธ๊ณผ ML ๊ธฐ๋ฐ˜ ์ „๋ ฅ ๋ชจ๋ธ์˜ ํ•œ๊ณ„๋ฅผ ์ง€์ ํ•˜๋ฉฐ ์ƒˆ๋กœ์šด ์ ‘๊ทผ ๋ฐฉ์‹์„ ์ œ์•ˆํ•˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค. ReadyPower ํ”„๋ ˆ์ž„์›Œํฌ๋Š” ๊ธฐ์กด์˜ ๋ฌธ์ œ์ ์„ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ๋‹ค์–‘ํ•œ ์ˆ˜์ค€์˜ ๋งค๊ฐœ๋ณ€์ˆ˜๋ฅผ ๋„์ž…ํ•˜์—ฌ McPAT ๋ถ„์„ ๋ชจ๋ธ์— ํ†ตํ•ฉํ•จ์œผ๋กœ์จ, ๊ณ ์ •๋ฐ€๋„์™€ ์‹ ๋ขฐ์„ฑ์„ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค. ReadyPower์˜ ์ฃผ์š” ์žฅ์ ์€ ์„ธ ๊ฐ€์ง€์ž…๋‹ˆ๋‹ค: ์ฒซ์งธ, ์‹ ๋ขฐ์„ฑ. ReadyPower๋Š” ์‹ค์ œ ํ”„๋กœ์„ธ์„œ ๊ตฌํ˜„๊ณผ ์•„ํ‚คํ…์ฒ˜ ์ˆ˜์ค€์˜ ๋ถ„์„ ๋ชจ๋ธ ๊ฐ„์˜ ๋ถˆ์ผ์น˜๋ฅผ ํ•ด๊ฒฐํ•จ์œผ๋กœ์จ

Framework Model
Reasoning Relay: Evaluating Stability and Interchangeability of Large Language Models in Mathematical Reasoning

Reasoning Relay: Evaluating Stability and Interchangeability of Large Language Models in Mathematical Reasoning

๋ณธ ๋…ผ๋ฌธ์€ ์ถ”๋ก  ์—ฐ์‡„์˜ ์ค‘๊ฐ„ ์‚ฐ์ถœ๋ฌผ์„ ๋‹ค๋ฅธ ๋ชจ๋ธ์ด ์ด์–ด๋ฐ›์„ ์ˆ˜ ์žˆ๋Š”์ง€๋ฅผ ์‹คํ—˜์ ์œผ๋กœ ๊ฒ€์ฆํ•จ์œผ๋กœ์จ, LLM ์—ฐ๊ตฌ ๋ถ„์•ผ์— ์ƒˆ๋กœ์šด ์‹œ๊ฐ์„ ์ œ๊ณตํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ ํ•ต์‹ฌ ๊ธฐ์—ฌ๋Š” โ€˜์ถ”๋ก  ๊ตํ™˜ ๊ฐ€๋Šฅ์„ฑโ€™์ด๋ผ๋Š” ๊ฐœ๋…์„ ์ •์˜ํ•˜๊ณ , ์ด๋ฅผ ์ •๋Ÿ‰ํ™”ํ•˜๊ธฐ ์œ„ํ•œ ํ‰๊ฐ€ ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ๊ตฌ์ถ•ํ•œ ์ ์ด๋‹ค. ์ €์ž๋“ค์€ ํ† ํฐโ€‘๋ ˆ๋ฒจ ๋กœ๊ทธโ€‘ํ™•๋ฅ ์„ ๊ธฐ์ค€์œผ๋กœ ์ถ”๋ก ์„ ์„ธ ๋‹จ๊ณ„(์ดˆ๊ธฐ, ์ค‘๊ฐ„, ํ›„๊ธฐ)๋กœ ํŠธ๋ ์ผ€์ดํŠธํ•˜๊ณ , ๊ฐ ๋‹จ๊ณ„๋งˆ๋‹ค ํ”„๋กœ์„ธ์Šค ๋ณด์ƒ ๋ชจ๋ธ(PRM)์„ ์ ์šฉํ•ด ๋…ผ๋ฆฌ์  ์ผ๊ด€์„ฑ๊ณผ ์ •๋‹ต ์ •ํ™•๋„๋ฅผ ์ธก์ •ํ•œ๋‹ค. ์ด๋•Œ ์‚ฌ์šฉ๋œ ๋‘ ๋ฒ ์ด์Šค ๋ชจ๋ธ์ธ Gemmaโ€‘3โ€‘4Bโ€‘IT์™€ LLaMAโ€‘3.1โ€‘70Bโ€‘In

Model
Semantic Mismatch and Perceptual Degradation: A New Perspective on Image Editing Immunity

Semantic Mismatch and Perceptual Degradation: A New Perspective on Image Editing Immunity

์ด ๋…ผ๋ฌธ์€ ํ…์ŠคํŠธ ์ง€์‹œ ์ด๋ฏธ์ง€ ํŽธ์ง‘์— ๋Œ€ํ•œ ์•…์šฉ ๊ฐ€๋Šฅ์„ฑ๊ณผ ๊ทธ๋กœ ์ธํ•œ ์šฐ๋ ค๋ฅผ ๋‹ค๋ฃจ๋ฉฐ, ์ด๋ฅผ ๋ฐฉ์–ดํ•˜๊ธฐ ์œ„ํ•œ ์ƒˆ๋กœ์šด ์ ‘๊ทผ๋ฒ•์„ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. ๊ธฐ์กด์˜ ๋ฉด์—ญํ™” ์„ฑ๊ณต ํ‰๊ฐ€ ๋ฐฉ๋ฒ•์€ ์ฃผ๋กœ ์‹œ๊ฐ์  ์œ ์‚ฌ์„ฑ์— ์ดˆ์ ์„ ๋งž์ถ”๊ณ  ์žˆ์ง€๋งŒ, ์ด๋Š” ๊ณต๊ฒฉ์ž์˜ ์˜๋„์™€์˜ ์‹œ๋งจํ‹ฑ ๋ถˆ์ผ์น˜๋ผ๋Š” ๋ณธ์งˆ์ ์ธ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜์ง€ ๋ชปํ•œ๋‹ค๋Š” ์ ์—์„œ ํ•œ๊ณ„๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค. ๋…ผ๋ฌธ์—์„œ๋Š” ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด Synergistic Intermediate Feature Manipulation (SIFM) ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. SIFM์€ ์ค‘๊ฐ„ ํ™•์‚ฐ ํŠน์ง•์„ ์ „๋žต์ ์œผ๋กœ ๋ณ€ํ˜•ํ•˜์—ฌ ์›๋ž˜ ํŽธ์ง‘ ๊ฒฝ๋กœ์™€์˜ ์‹œ๋งจํ‹ฑ

TACK Tunnel Data (TTD): A Benchmark Dataset for Deep Learning-Based Defect Detection in Tunnels

TACK Tunnel Data (TTD): A Benchmark Dataset for Deep Learning-Based Defect Detection in Tunnels

๋ณธ ๋…ผ๋ฌธ์€ ํ„ฐ๋„ ๊ฒฐํ•จ ๊ฒ€์‚ฌ๋ฅผ ์œ„ํ•œ ์ƒˆ๋กœ์šด ๋ฐ์ดํ„ฐ์…‹์„ ์†Œ๊ฐœํ•˜๋ฉฐ, ์ด๋Š” ๋”ฅ๋Ÿฌ๋‹ ๋ชจ๋ธ์˜ ํ•™์Šต๊ณผ ์„ฑ๋Šฅ ๊ฐœ์„ ์— ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•ฉ๋‹ˆ๋‹ค. ํ„ฐ๋„์€ ๊ตํ†ต ์ธํ”„๋ผ์˜ ์ฃผ์š” ๊ตฌ์„ฑ ์š”์†Œ๋กœ, ์•ˆ์ „์„ฑ์„ ์œ ์ง€ํ•˜๊ธฐ ์œ„ํ•ด ์ •๊ธฐ์ ์ธ ์ ๊ฒ€์ด ํ•„์ˆ˜์ ์ž…๋‹ˆ๋‹ค. ํ•˜์ง€๋งŒ ์ „ํ†ต์ ์ธ ์ˆ˜๋™ ๊ฒ€์‚ฌ ๋ฐฉ๋ฒ•์€ ์‹œ๊ฐ„ ์†Œ๋ชจ๊ฐ€ ๋งŽ๊ณ  ๋น„์šฉ์ด ๋†’์œผ๋ฉฐ ์ฃผ๊ด€์ ์ด์–ด์„œ ์ œํ•œ์ ์ด ์žˆ์Šต๋‹ˆ๋‹ค. ๋ชจ๋ฐ”์ผ ๋งคํ•‘ ์‹œ์Šคํ…œ๊ณผ ๋”ฅ๋Ÿฌ๋‹์˜ ๋ฐœ์ „์œผ๋กœ ์ž๋™ํ™”๋œ ์‹œ๊ฐ ๊ฒ€์‚ฌ๊ฐ€ ๊ฐ€๋Šฅํ•ด์กŒ์ง€๋งŒ, ์ด๋ฅผ ์œ„ํ•œ ์ถฉ๋ถ„ํ•œ ๋ฐ์ดํ„ฐ์…‹์ด ๋ถ€์กฑํ•˜์—ฌ ๊ทธ ํšจ๊ณผ๊ฐ€ ์ œํ•œ๋˜์–ด ์™”์Šต๋‹ˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ ์†Œ๊ฐœํ•˜๋Š” ์ƒˆ๋กœ์šด ๋ฐ์ดํ„ฐ์…‹์€ ์„ธ ๊ฐ€์ง€ ๋‹ค๋ฅธ ์ข…๋ฅ˜์˜ ํ„ฐ๋„ ๋ผ์ด๋‹์—

Learning Data Detection
Thermodynamic Focusing for Inference-Time Search: Practical Methods for Target-Conditioned Sampling and Prompted Inference

Thermodynamic Focusing for Inference-Time Search: Practical Methods for Target-Conditioned Sampling and Prompted Inference

์ด ๋…ผ๋ฌธ์€ โ€œํฌ๊ท€ํ•˜์ง€๋งŒ ๊ฐ€์น˜ ์žˆ๋Š” ์†”๋ฃจ์…˜์„ ์ฐพ๋Š” ๋ฌธ์ œโ€๋ฅผ ๊ธฐ์กด์˜ ํƒ์ƒ‰โ€‘์ตœ์ ํ™” ์ ‘๊ทผ๋ฒ•๊ณผ๋Š” ๋‹ค๋ฅธ ๊ด€์ ์—์„œ ์ ‘๊ทผํ•œ๋‹ค๋Š” ์ ์—์„œ ์˜๋ฏธ๊ฐ€ ํฌ๋‹ค. ์ „ํ†ต์ ์ธ ๋ฐฉ๋ฒ•์€ ๋ณดํ†ต ๋ชฉํ‘œ ํ•จ์ˆ˜๋ฅผ ์ง์ ‘ ์ตœ์ ํ™”ํ•˜๊ฑฐ๋‚˜, ๊ฐ•ํ™” ํ•™์Šต์—์„œ๋Š” ๋ณด์ƒ์„ ์ตœ๋Œ€ํ™”ํ•˜๋„๋ก ์ •์ฑ…์„ ํ•™์Šตํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ํ›„๋ณด ๊ณต๊ฐ„์ด ์ฒœ๋ฌธํ•™์ ์œผ๋กœ ํด ๊ฒฝ์šฐ, ํŠนํžˆ ๋ชฉํ‘œ๊ฐ€ ํฌ๋ฐ•ํ•˜๊ฒŒ ๋ถ„ํฌํ•˜๊ฑฐ๋‚˜ ์ œ์•ฝ ์กฐ๊ฑด์ด ๋ณต์žกํ•˜๊ฒŒ ์–ฝํ˜€ ์žˆ์„ ๋•Œ, ์ด๋Ÿฌํ•œ ๋ฐฉ์‹์€ ์ƒ˜ํ”Œ ํšจ์œจ์„ฑ์ด ๊ธ‰๊ฒฉํžˆ ๋–จ์–ด์ง„๋‹ค. ICFA๋Š” ์ด๋Ÿฌํ•œ ์ƒํ™ฉ์„ โ€œ๋ชฉํ‘œโ€‘์กฐ๊ฑด๋ถ€ ์žฌ๊ฐ€์ค‘โ€์ด๋ผ๋Š” ๊ฐœ๋…์œผ๋กœ ์žฌ๊ตฌ์„ฑํ•œ๋‹ค. ๊ตฌ์ฒด์ ์œผ๋กœ, ๋จผ์ € ๊ธฐ์กด์˜ ์ œ์•ˆ ์ƒ˜ํ”Œ๋Ÿฌ(์˜ˆ: ์–ธ์–ด ๋ชจ๋ธ, ๋ฌด์ž‘์œ„

No Image

TiCard: Deployable EXPLAIN-only Residual Learning for Cardinality Estimation

์ด ๋…ผ๋ฌธ์€ ์นด๋””๋„๋ฆฌํ‹ฐ ์ถ”์ • ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด TiCard๋ผ๋Š” ์ƒˆ๋กœ์šด ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์†Œ๊ฐœํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์นด๋””๋„๋ฆฌํ‹ฐ ์ถ”์ •์€ ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค ์ฟผ๋ฆฌ ์ตœ์ ํ™”์—์„œ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•˜์ง€๋งŒ, ๊ธฐ์กด์˜ ๋ฐฉ๋ฒ•๋“ค์€ ์ƒ๊ด€๊ด€๊ณ„๋ฅผ ๊ณ ๋ คํ•˜์ง€ ๋ชปํ•˜๊ฑฐ๋‚˜ ํŠน์ • ์ž‘์—… ๋ถ€ํ•˜์— ๋งž๋Š” ๋ณ„๋„์˜ ํ›ˆ๋ จ ํŒŒ์ดํ”„๋ผ์ธ๊ณผ ํ†ตํ•ฉ์ด ํ•„์š”ํ•˜๋‹ค๋Š” ๋ฌธ์ œ์ ์ด ์žˆ์Šต๋‹ˆ๋‹ค. TiCard๋Š” ์ด๋Ÿฌํ•œ ์ œ์•ฝ์„ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค์˜ ์›๋ž˜ ์ถ”์ •๊ธฐ๋ฅผ ๋ณด์™„ํ•˜๋Š” ๋ฐฉ์‹์œผ๋กœ ์„ค๊ณ„๋˜์—ˆ์Šต๋‹ˆ๋‹ค. TiCard๋Š” ๋‘ ๊ฐ€์ง€ ์ฃผ์š” ๊ตฌ์„ฑ ์š”์†Œ๋ฅผ ์‚ฌ์šฉํ•ฉ๋‹ˆ๋‹ค: ๊ทธ๋ ˆ๋””์–ธํŠธ ๋ถ€์ŠคํŒ… ํšŒ๊ท€๊ธฐ(Gradient Boosting Regressor

Learning
TimeLens: Rethinking Video Temporal Grounding with Multimodal LLMs

TimeLens: Rethinking Video Temporal Grounding with Multimodal LLMs

Timeโ€‘Lens ๋…ผ๋ฌธ์€ ๋น„๋””์˜ค ์‹œ๊ฐ„ ์ •๋ ฌ(VTG)์ด๋ผ๋Š” ๋น„๊ต์  ์ข์€ ์˜์—ญ์— ์ดˆ์ ์„ ๋งž์ถ”๋ฉด์„œ๋„, ํ˜„์žฌ ๋ฉ€ํ‹ฐ๋ชจ๋‹ฌ ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(MLLM) ์—ฐ๊ตฌ์—์„œ ๊ฐ„๊ณผ๋˜๊ณ  ์žˆ๋Š” ๋‘ ๊ฐ€์ง€ ํ•ต์‹ฌ ์š”์†Œโ€”๋ฐ์ดํ„ฐ ํ’ˆ์งˆ๊ณผ ์•Œ๊ณ ๋ฆฌ์ฆ˜ ์„ค๊ณ„โ€”๋ฅผ ์ฒด๊ณ„์ ์œผ๋กœ ์กฐ๋ช…ํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ ๊ธฐ์—ฌ๋Š” ๊ธฐ์กด VTG ๋ฒค์น˜๋งˆํฌ๊ฐ€ ๊ฐ–๋Š” โ€˜๋ผ๋ฒจ ๋…ธ์ด์ฆˆโ€™์™€ โ€˜์ฃผ์„ ๋ถˆ์ผ์น˜โ€™ ๋ฌธ์ œ๋ฅผ ์ •๋Ÿ‰์ ์œผ๋กœ ๋ถ„์„ํ•˜๊ณ , ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ์žฌ์ฃผ์„ ์ž‘์—…์„ ์ˆ˜ํ–‰ํ•œ TimeLensโ€‘Bench์ด๋‹ค. ์žฌ์ฃผ์„ ๊ณผ์ •์—์„œ๋Š” ์‹œ๊ฐ„ ๊ตฌ๊ฐ„์˜ ๊ฒฝ๊ณ„ ์ •ํ™•๋„, ์–ธ์–ด ํ‘œํ˜„์˜ ์ผ๊ด€์„ฑ, ๊ทธ๋ฆฌ๊ณ  ์‹œ๊ฐโ€‘์–ธ์–ด ์—ฐ๊ด€์„ฑ ๋“ฑ์„ ์—„๊ฒฉํžˆ ๊ฒ€์ฆํ–ˆ์œผ๋ฉฐ, ๊ทธ ๊ฒฐ

No Image

Towards Explainable Quantum AI: Informing the Encoder Selection of Quantum Neural Networks via Visualization

์ด ๋…ผ๋ฌธ์€ ์–‘์ž ์‹ ๊ฒฝ๋ง(QNNs) ๊ฐœ๋ฐœ์—์„œ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•˜๋Š” ์ธ์ฝ”๋” ์„ ํƒ์— ์ดˆ์ ์„ ๋งž์ถ”๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. QNNs๋Š” ์–‘์ž ์ปดํ“จํŒ…๊ณผ ๋‰ด๋Ÿด ๋„คํŠธ์›Œํฌ ์•„ํ‚คํ…์ฒ˜๋ฅผ ๊ฒฐํ•ฉํ•œ ๊ฒƒ์œผ๋กœ, ๊ณ ์ฐจ์› ๋ฐ์ดํ„ฐ์™€ ์–ฝํž˜๋œ ๋ฐ์ดํ„ฐ์˜ ์ฒ˜๋ฆฌ ์†๋„ ํ–ฅ์ƒ ๋ฐ ํšจ์œจ์„ฑ์„ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ ์ ˆํ•œ ์ธ์ฝ”๋” ์„ ํƒ์€ ์‹œ์Šคํ…œ์ ์ธ ์ง€์นจ ๋ถ€์กฑ๊ณผ ์‹คํ—˜์  ์ ‘๊ทผ ๋ฐฉ์‹ ๋•Œ๋ฌธ์— ์–ด๋ ค์›€์„ ๊ฒช๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ด ๋…ผ๋ฌธ์—์„œ๋Š” ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด XQAI Eyes๋ผ๋Š” ์ƒˆ๋กœ์šด ์‹œ๊ฐํ™” ๋„๊ตฌ๋ฅผ ์ œ์•ˆํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. XQAI Eyes๋Š” QNN ๊ฐœ๋ฐœ์ž๊ฐ€ ํด๋ž˜์‹ ๋ฐ์ดํ„ฐ ํŠน์ง•๊ณผ ํ•ด๋‹น ์–‘์ž ์ƒํƒœ ์‚ฌ์ด์˜ ๋น„๊ต๋ฅผ

Network
Understanding and Improving Hyperbolic Deep Reinforcement Learning

Understanding and Improving Hyperbolic Deep Reinforcement Learning

๋ณธ ๋…ผ๋ฌธ์€ ๊ฐ•ํ™”ํ•™์Šต(Reinforcement Learning, RL) ์—์ด์ „ํŠธ์˜ ์„ฑ๋Šฅ ํ–ฅ์ƒ์„ ์œ„ํ•ด ํ•˜์ดํผ๋ณผ๋ฆญ ํŠน์ง• ๊ณต๊ฐ„์„ ํ™œ์šฉํ•˜๋Š” ๋ฐฉ๋ฒ•์— ๋Œ€ํ•ด ๊นŠ๊ฒŒ ๋ถ„์„ํ•˜๊ณ  ์žˆ๋‹ค. ํŠนํžˆ, ํฌ์•™์นด๋ ˆ ๊ณต(Poincarรฉ Ball)๊ณผ ํ•˜์ดํผ๋ณผ๋กœ์ด๋“œ(Hyperboloid) ๋ชจ๋ธ์—์„œ ํ•ต์‹ฌ ์—ฐ์‚ฐ๋“ค์˜ ๊ทธ๋ž˜๋””์–ธํŠธ๋ฅผ ๋ถ„์„ํ•จ์œผ๋กœ์จ, ํฐ ๋…ธ๋ฆ„(embedding norm)์€ ๊ทธ๋ž˜๋””์–ธํŠธ ๊ธฐ๋ฐ˜ ํ›ˆ๋ จ์„ ๋ถˆ์•ˆ์ •ํ•˜๊ฒŒ ๋งŒ๋“ค๊ณ  ๊ทผ์ ‘ ์ •์ฑ… ์ตœ์ ํ™”(Proximal Policy Optimization, PPO)์˜ ์‹ ๋ขฐ ์˜์—ญ ์œ„๋ฐ˜(trust region violation)์„ ์ดˆ๋ž˜ํ•œ๋‹ค๋Š” ๊ฒƒ

Learning
Beyond Procedural Compliance: Human Oversight as a Dimension of Well-being Efficacy in AI Governance

Beyond Procedural Compliance: Human Oversight as a Dimension of Well-being Efficacy in AI Governance

์ด ๋…ผ๋ฌธ์€ AI ์œค๋ฆฌ์™€ ์ธ๊ฐ„๊ฐ๋… ์‚ฌ์ด์˜ ์—ฐ๊ฒฐ๊ณ ๋ฆฌ๋ฅผ ํƒ์ƒ‰ํ•˜๋ฉฐ, ๊ทธ ์ค‘์š”์„ฑ์„ ๊ฐ•์กฐํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. EU AI Act๋ฅผ ํฌํ•จํ•œ ์—ฌ๋Ÿฌ ์ง€์นจ๊ณผ ๋ฒ•๋ฅ ๋“ค์ด ์ธ๊ฐ„๊ฐ๋…์— ๋Œ€ํ•œ ๋ช…ํ™•ํ•œ ์ •์˜๋‚˜ ๊ตฌ์ฒด์ ์ธ ๋ฐœ์ „ ๋ฐฉํ–ฅ์„ ์ œ์‹œํ•˜์ง€ ๋ชปํ•˜๋Š” ์ƒํ™ฉ์—์„œ, ์ €์ž๋“ค์€ ์ด ๊ฐœ๋…์„ '๋ฒˆ์˜ ํšจ๋Šฅ์„ฑ' ํ”„๋ ˆ์ž„์›Œํฌ ๋‚ด์—์„œ ์žฌ์ •์˜ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ๋ฒˆ์˜ ํšจ๋Šฅ์„ฑ์€ AI ๋ฆฌํ„ฐ๋Ÿฌ์‹œ์™€ ์œค๋ฆฌ์  ํŒ๋‹จ๋ ฅ์„ ํฌํ•จํ•˜๋ฉฐ, ์ธ๊ฐ„์˜ ํ•„์š”๋ฅผ ์ธ์‹ํ•˜๋ฉด์„œ๋„ ๊ทธ ์ค‘ ์ผ๋ถ€๊ฐ€ ์ถฉ๋Œํ•˜๊ฑฐ๋‚˜ ํ•ด๋กญ๊ฒŒ ๋  ์ˆ˜ ์žˆ๋‹ค๋Š” ์ ์„ ์ธ์ •ํ•˜๋Š” ํฌ๊ด„์ ์ธ ์ ‘๊ทผ๋ฒ•์ž…๋‹ˆ๋‹ค. ๋…ผ๋ฌธ์€ ๋˜ํ•œ ์‚ฌ๋žŒ๋“ค์ด ์ž์‹ ์˜ ์š•๊ตฌ๋‚˜ ๋‘๋ ค์›€์„ AI ์‹œ์Šคํ…œ์— ํˆฌ์˜ํ•  ๊ฐ€๋Šฅ์„ฑ์„

Can LLMs Understand What We Cannot Say? Measuring Multilevel Alignment Through Abortion Stigma Across Cognitive, Interpersonal, and Structural Levels

Can LLMs Understand What We Cannot Say? Measuring Multilevel Alignment Through Abortion Stigma Across Cognitive, Interpersonal, and Structural Levels

์ด ๋…ผ๋ฌธ์€ ์ธ๊ณต์ง€๋Šฅ ์œค๋ฆฌ์™€ ์ธ๊ฐ„โ€‘์ปดํ“จํ„ฐ ์ƒํ˜ธ์ž‘์šฉ ๋ถ„์•ผ์—์„œ ๋งค์šฐ ์‹œ์˜์ ์ ˆํ•œ ์งˆ๋ฌธ์„ ์ œ๊ธฐํ•œ๋‹ค. ๋‚™ํƒœ์™€ ๊ฐ™์ด ์‚ฌํšŒ์ ยท๋ฌธํ™”์  ๊ฐˆ๋“ฑ์ด ์‹ฌํ•œ ์ฃผ์ œ๋Š” ๊ฐœ์ธ์˜ ๋‚ด๋ฉด์  ํŒ๋‹จ, ์ฃผ๋ณ€์ธ๊ณผ์˜ ๊ด€๊ณ„, ๊ทธ๋ฆฌ๊ณ  ์‚ฌํšŒ ๊ตฌ์กฐ์  ์••๋ ฅ์ด๋ผ๋Š” ์„ธ ์ธต์œ„์—์„œ ๋ณตํ•ฉ์ ์œผ๋กœ ์ž‘๋™ํ•œ๋‹ค. ์ €์ž๋“ค์€ ์ด๋Ÿฌํ•œ ๋‹ค์ธต์  ๊ตฌ์กฐ๋ฅผ ์ •๋Ÿ‰ํ™”ํ•œ ILAS(Individual Level Abortion Stigma Scale)๋ฅผ ๊ธฐ์ค€์œผ๋กœ, GPTโ€‘4, Claude, Llama 2 ๋“ฑ ํ˜„์žฌ ๊ฐ€์žฅ ๋„๋ฆฌ ์‚ฌ์šฉ๋˜๋Š” ๋‹ค์„ฏ ๊ฐœ LLM์„ 627๋ช…์˜ ๊ฐ€์ƒ ํŽ˜๋ฅด์†Œ๋‚˜์— ์ ์šฉํ•ด ์ฒด๊ณ„์ ์ธ ์‹คํ—˜์„ ์„ค๊ณ„ํ–ˆ๋‹ค. ์ฒซ ๋ฒˆ์งธ ํ•ต์‹ฌ

No Image

Context Branching for LLM Conversations: A Version Control Approach to Exploratory Programming

์ด ๋…ผ๋ฌธ์€ ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(LLMs)์˜ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด ContextBranch๋ผ๋Š” ์ƒˆ๋กœ์šด ์‹œ์Šคํ…œ์„ ์ œ์‹œํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. LLMs๋Š” ์—ฌ๋Ÿฌ ์ฐจ๋ก€์— ๊ฑธ์นœ ๋Œ€ํ™”์—์„œ ์„ฑ๋Šฅ์ด ํฌ๊ฒŒ ์ €ํ•˜๋˜๋ฉฐ, ์ด๋กœ ์ธํ•ด ๊ฐœ๋ฐœ์ž๊ฐ€ ๋‹ค์–‘ํ•œ ์ ‘๊ทผ ๋ฐฉ์‹์„ ํƒ์ƒ‰ํ•˜๋Š” ๋ฐ ์–ด๋ ค์›€์„ ๊ฒช์Šต๋‹ˆ๋‹ค. ContextBranch๋Š” ์ฒดํฌํฌ์ธํŠธ, ๋ถ„๊ธฐ, ์ „ํ™˜, ์ฃผ์ž…์ด๋ผ๋Š” ๋„ค ๊ฐ€์ง€ ํ•ต์‹ฌ ๊ธฐ๋Šฅ์„ ์ œ๊ณตํ•˜์—ฌ ์‚ฌ์šฉ์ž๊ฐ€ ๋Œ€ํ™” ์ƒํƒœ๋ฅผ ์บก์ฒ˜ํ•˜๊ณ  ๊ณ ๋ฆฝ๋œ ํ™˜๊ฒฝ์—์„œ ๋‹ค์–‘ํ•œ ์ ‘๊ทผ ๋ฐฉ์‹์„ ํƒ์ƒ‰ํ•˜๋ฉฐ ํ†ตํ•ฉํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•ฉ๋‹ˆ๋‹ค. ์‹คํ—˜ ๊ฒฐ๊ณผ, ContextBranch๋Š” ์„ ํ˜• ๋Œ€ํ™”๋ณด๋‹ค 2.5% ๋” ๋†’์€ ์‘๋‹ต ํ’ˆ์งˆ์„

No Image

Embedding-Based Rankings of Educational Resources based on Learning Outcome Alignment: Benchmarking, Expert Validation, and Learner Performance

๋ณธ ๋…ผ๋ฌธ์€ ๊ต์œก ๊ธฐ์ˆ  ๋ถ„์•ผ์—์„œ โ€˜ํ•™์Šต ๋ชฉํ‘œ์™€ ๊ต์œก ์ž๋ฃŒ ๊ฐ„ ์ •๋ ฌ(alignment)โ€™์ด๋ผ๋Š” ํ•ต์‹ฌ ๋ฌธ์ œ๋ฅผ ์ž๋™ํ™”ํ•˜๋ ค๋Š” ์‹œ๋„๋กœ์„œ, ํ…์ŠคํŠธ ์ž„๋ฒ ๋”ฉ ๋ชจ๋ธ์„ ํ™œ์šฉํ•œ ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์‹œํ•œ๋‹ค. ์—ฐ๊ตฌ๋Š” ํฌ๊ฒŒ ์„ธ ๋‹จ๊ณ„๋กœ ๊ตฌ์„ฑ๋œ๋‹ค. ์ฒซ ๋ฒˆ์งธ ๋‹จ๊ณ„์—์„œ๋Š” ์ธ๊ฐ„์ด ์ง์ ‘ ๋งŒ๋“  ๊ต์œก ์ž๋ฃŒ๋ฅผ ๊ธฐ์ค€ ๋ฐ์ดํ„ฐ์…‹์œผ๋กœ ํ™œ์šฉํ•ด ์—ฌ๋Ÿฌ LLM ๊ธฐ๋ฐ˜ ์ž„๋ฒ ๋”ฉ ๋ชจ๋ธ(Voyage, OpenAIโ€‘Ada ๋“ฑ)์„ ๋น„๊ต ํ‰๊ฐ€ํ•˜์˜€๋‹ค. ์—ฌ๊ธฐ์„œ โ€˜์ •๋ ฌโ€™์€ ํ•™์Šต ๋ชฉํ‘œ์™€ ์ž๋ฃŒ ๋‚ด์šฉ ์‚ฌ์ด์˜ ์˜๋ฏธ์  ์œ ์‚ฌ์„ฑ์„ ์ˆ˜์น˜ํ™”ํ•œ ์ ์ˆ˜๋กœ ์ •์˜๋˜๋ฉฐ, ์ธ๊ฐ„ ํ‰๊ฐ€์ž๋“ค์˜ ๋ผ๋ฒจ๋ง์„ ์ •๋‹ต์œผ๋กœ ์‚ผ์•„ ๋ชจ๋ธ์˜ ์ •ํ™•๋„๋ฅผ ์ธก์ •ํ•˜์˜€๋‹ค.

Learning
Generative AI for Video Translation: A Scalable Architecture for Multilingual Video Conferencing

Generative AI for Video Translation: A Scalable Architecture for Multilingual Video Conferencing

๋ณธ ๋…ผ๋ฌธ์ด ๋‹ค๋ฃจ๋Š” ํ•ต์‹ฌ ๋ฌธ์ œ๋Š” โ€œ์‹ค์‹œ๊ฐ„โ€์ด๋ผ๋Š” ์—„๊ฒฉํ•œ ์‹œ๊ฐ„ ์ œ์•ฝ ํ•˜์— ๋ณต์ˆ˜์˜ ์ƒ์„ฑํ˜• AI ๋ชจ๋ธ์„ ์—ฐ์†์ ์œผ๋กœ ์‹คํ–‰ํ•ด์•ผ ํ•˜๋Š” ์ƒํ™ฉ์—์„œ ๋ฐœ์ƒํ•˜๋Š” ์‹œ์Šคํ…œ ๋ ˆ๋ฒจ์˜ ๋ณ‘๋ชฉ ํ˜„์ƒ์ด๋‹ค. ์ „ํ†ต์ ์ธ ํŒŒ์ดํ”„๋ผ์ธ ๋ฐฉ์‹์€ ๊ฐ ํ”„๋ ˆ์ž„ ํ˜น์€ ์˜์ƒ ์„ธ๊ทธ๋จผํŠธ์— ๋Œ€ํ•ด ์Œ์„ฑ ์ธ์‹, ๋ฒˆ์—ญ, ํ…์ŠคํŠธโ€‘ํˆฌโ€‘์Šคํ”ผ์น˜, ์˜์ƒ ํ•ฉ์„ฑ ๋“ฑ ์—ฌ๋Ÿฌ ๋ชจ๋ธ์„ ์ˆœ์ฐจ์ ์œผ๋กœ ํ˜ธ์ถœํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ์ˆœ์ฐจ ํ˜ธ์ถœ์€ ๋ชจ๋ธ๋งˆ๋‹ค ์ˆ˜๋ฐฑ ๋ฐ€๋ฆฌ์ดˆ์—์„œ ์ˆ˜์ดˆ์— ์ด๋ฅด๋Š” ์ถ”๋ก  ์ง€์—ฐ์„ ์œ ๋ฐœํ•˜๊ณ , ํŠนํžˆ ๋‹ค์ค‘ ์‚ฌ์šฉ์ž๊ฐ€ ๋™์‹œ์— ์ฐธ์—ฌํ•˜๋Š” ํ™”์ƒ ํšŒ์˜์—์„œ๋Š” ๊ฐ ์‚ฌ์šฉ์ž์˜ ์ŠคํŠธ๋ฆผ์— ๋Œ€ํ•ด ๋™์ผํ•œ ํŒŒ์ดํ”„๋ผ์ธ์„ ๋…๋ฆฝ์ ์œผ๋กœ ์ ์šฉํ•ด์•ผ ํ•˜๋ฏ€๋กœ ์ „์ฒด ์—ฐ

Qonvolution: Towards Learning High-Frequency Signals with Queried Convolution

Qonvolution: Towards Learning High-Frequency Signals with Queried Convolution

๋ณธ ๋…ผ๋ฌธ์€ ๊ณ ์ฃผํŒŒ ์‹ ํ˜ธ ํ•™์Šต์˜ ์–ด๋ ค์›€์„ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด Qonvolutions์ด๋ผ๋Š” ์ƒˆ๋กœ์šด ์ ‘๊ทผ๋ฒ•์„ ์ œ์‹œํ•ฉ๋‹ˆ๋‹ค. ์ด ๋ฐฉ๋ฒ•์€ ๊ธฐ์กด์˜ ์‹ ๊ฒฝ๋ง์ด ๊ณ ์ฃผํŒŒ ์ •๋ณด๋ฅผ ์ฒ˜๋ฆฌํ•˜๋Š” ๋ฐ ์–ด๋ ค์›€์„ ๊ฒช๋Š” ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ณ ์ž ์ €์ฃผํŒŒ ์‹ ํ˜ธ์™€ ์ฟผ๋ฆฌ(์˜ˆ: ์ขŒํ‘œ)๋ฅผ ํ•ฉ์„ฑํ•˜์—ฌ ๊ณ ์ฃผํŒŒ ์‹ ํ˜ธ๋ฅผ ๋” ์ž˜ ํ•™์Šตํ•  ์ˆ˜ ์žˆ๊ฒŒ ํ•ฉ๋‹ˆ๋‹ค. Qonvolutions์€ ๊ฐ„๋‹จํ•œ ๋ฐฉ๋ฒ•์ž„์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ , 1D ํšŒ๊ท€, 2D ์ดˆํ•ด์ƒ๋„, 2D ์ด๋ฏธ์ง€ ํšŒ๊ท€ ๋ฐ ์ƒˆ๋กœ์šด ์‹œ์  ํ•ฉ์„ฑ(NVS)๊ณผ ๊ฐ™์€ ๋‹ค์–‘ํ•œ ์ž‘์—…์—์„œ ์šฐ์ˆ˜ํ•œ ์„ฑ๋Šฅ์„ ๋ณด์—ฌ์ค๋‹ˆ๋‹ค. ํŠนํžˆ NVS์—์„œ๋Š” ๊ฐ€์šฐ์‹œ์•ˆ ์ŠคํŒŸํŒ…๊ณผ ๊ฒฐํ•ฉํ•˜์—ฌ ์‹ค์ œ ๋ณต์žกํ•œ ์žฅ๋ฉด์—์„œ๋„ ๋ผ

Learning
No Image

Reproducibility and Standardization in gem5 Resources v25.0

๋ณธ ๋…ผ๋ฌธ์€ ํ˜„์žฌ ์ปดํ“จํ„ฐ ์•„ํ‚คํ…์ฒ˜ ์—ฐ๊ตฌ์—์„œ ๋„๋ฆฌ ์‚ฌ์šฉ๋˜๋Š” ์ „ ์‹œ์Šคํ…œ ์‹œ๋ฎฌ๋ ˆ์ดํ„ฐ์ธ gem5๊ฐ€ ์ง๋ฉดํ•œ ์žฌํ˜„์„ฑ ๋ฌธ์ œ๋ฅผ ์ฒด๊ณ„์ ์œผ๋กœ ์ง„๋‹จํ•˜๊ณ , ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•œ ์‹ค์งˆ์ ์ธ ๊ฐœ์„ ์•ˆ์„ ์ œ์‹œํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ ๋ฌธ์ œ๋Š” ๋””์Šคํฌ ์ด๋ฏธ์ง€์™€ ์ปค๋„, ๋ฒค์น˜๋งˆํฌ ๋“ฑ ํ•„์ˆ˜ ์•„ํ‹ฐํŒฉํŠธ๋ฅผ ๊ฐœ๋ณ„ ์—ฐ๊ตฌ์ž๊ฐ€ ์ง์ ‘ ๊ตฌ์ถ•ํ•ด์•ผ ํ•˜๋Š” ๋น„ํšจ์œจ์„ฑ์ด๋‹ค. ํŠนํžˆ ISA๋งˆ๋‹ค ์ด๋ฏธ์ง€ ์ƒ์„ฑ ์ ˆ์ฐจ๊ฐ€ ๋‹ฌ๋ผ ํ˜‘์—…๊ณผ ๊ณต์œ ๊ฐ€ ์–ด๋ ค์› ์œผ๋ฉฐ, ์ด๋ฏธ์ง€ ํ’ˆ์งˆ ๊ฒ€์ฆ์ด ๋ถ€์กฑํ•ด ๊ฒฐ๊ณผ์˜ ์‹ ๋ขฐ์„ฑ์ด ์ €ํ•˜๋  ์œ„ํ—˜์ด ์žˆ์—ˆ๋‹ค. ์ €์ž๋“ค์€ Packer๋ผ๋Š” ์ž๋™ํ™” ๋„๊ตฌ๋ฅผ ๋„์ž…ํ•ด x86, ARM, RISCโ€‘V ์„ธ ISA์— ๋Œ€ํ•ด ๋™์ผํ•œ ์›Œํฌ

Rethinking Leveraging Pre-Trained Multi-Layer Representations for Speaker Verification

Rethinking Leveraging Pre-Trained Multi-Layer Representations for Speaker Verification

๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” Layer Attentive Pooling (LAP)์ด๋ผ๋Š” ์ƒˆ๋กœ์šด ์ ‘๊ทผ๋ฒ•์„ ์ œ์•ˆํ•˜๊ณ , ์ด๋ฅผ ํ†ตํ•ด ์‚ฌ์ „ ํ•™์Šต๋œ Transformer ๋ชจ๋ธ๋กœ๋ถ€ํ„ฐ ์–ป์€ ๊ณ„์ธต๋ณ„ ์ถœ๋ ฅ์„ ํšจ๊ณผ์ ์œผ๋กœ ํ†ตํ•ฉํ•˜๋Š” ๋ฐฉ๋ฒ•๋ก ์„ ๊ฐœ๋ฐœํ–ˆ๋‹ค. LAP์˜ ํ•ต์‹ฌ ์•„์ด๋””์–ด๋Š” ๊ฐ ๊ณ„์ธต์˜ ์ค‘์š”์„ฑ์„ ์‹œ๊ฐ„ ๋™์ ์œผ๋กœ ํ‰๊ฐ€ํ•˜๊ณ , ์ด์— ๋”ฐ๋ผ ์ตœ๋Œ€ ํ’€๋ง(max pooling)์„ ์‚ฌ์šฉํ•˜์—ฌ ํŠน์ง•๋“ค์„ ํ†ตํ•ฉํ•˜๋Š” ๊ฒƒ์ด๋‹ค. ์ด ์ ‘๊ทผ๋ฒ•์€ ๊ธฐ์กด์˜ ์ •์  ๊ฐ€์ค‘ ํ‰๊ท  ๋ฐฉ๋ฒ•๋ณด๋‹ค ๋” ์œ ์—ฐํ•˜๊ฒŒ ํ™”์ž ํŠน์„ฑ์˜ ๋ณ€ํ™”๋ฅผ ํฌ์ฐฉํ•  ์ˆ˜ ์žˆ๋Š” ์žฅ์ ์„ ๊ฐ€์ง€๊ณ  ์žˆ๋‹ค. ๋˜ํ•œ, ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” LAP๊ณผ Attentive Stat

Socratic Students: Teaching Language Models to Learn by Asking Questions

Socratic Students: Teaching Language Models to Learn by Asking Questions

๋ณธ ๋…ผ๋ฌธ์€ โ€œ์งˆ๋ฌธโ€์ด๋ผ๋Š” ํ–‰๋™์„ LLM์˜ ํ•ต์‹ฌ ๋Šฅ๋ ฅ์œผ๋กœ ์žฌ์ •์˜ํ•˜๊ณ , ์ด๋ฅผ ํ•™์Šต ๊ฐ€๋Šฅํ•œ ์ •์ฑ…์œผ๋กœ ์ „ํ™˜ํ•˜๋Š” ํ˜์‹ ์ ์ธ ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์‹œํ•œ๋‹ค. ์ „ํ†ต์ ์ธ LLM ํ™œ์šฉ ๋ฐฉ์‹์€ ์ฃผ์–ด์ง„ ํ”„๋กฌํ”„ํŠธ์— ๋Œ€ํ•ด ๊ฐ€๋Šฅํ•œ ํ•œ ์ •ํ™•ํ•œ ๋‹ต์„ ์ƒ์„ฑํ•˜๋Š” ๋ฐ ์ดˆ์ ์„ ๋งž์ถ”์ง€๋งŒ, ์‹ค์ œ ๊ณ ์œ„ํ—˜ ์‘์šฉ์—์„œ๋Š” ์‚ฌ์šฉ์ž๊ฐ€ ์ œ๊ณตํ•œ ์ •๋ณด๊ฐ€ ๋ถˆ์™„์ „ํ•˜๊ฑฐ๋‚˜ ๋ชจํ˜ธํ•  ๋•Œ ์ถ”๊ฐ€์ ์ธ ์งˆ์˜๊ฐ€ ํ•„์š”ํ•˜๋‹ค. ์ด๋Ÿฌํ•œ ์ƒํ™ฉ์„ ๋ชจ๋ธ์ด ์Šค์Šค๋กœ ์ธ์‹ํ•˜๊ณ , ๊ต์‚ฌ ๋ชจ๋ธ(๋ณด๋‹ค ๊ฐ•๋ ฅํ•œ LLM)์—๊ฒŒ ๋ณด์™„ ์ •๋ณด๋ฅผ ์š”์ฒญํ•˜๋„๋ก ํ•™์Šต์‹œํ‚ค๋Š” ๊ฒƒ์ด ํ•ต์‹ฌ ์•„์ด๋””์–ด์ด๋‹ค. ODQS๋Š” ๋‘ ๋‹จ๊ณ„ ํ•™์Šต ํŒŒ์ดํ”„๋ผ์ธ์„ ์‚ฌ์šฉํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ ๋‹จ๊ณ„๋Š”

Model
TraPO: A Semi-Supervised Reinforcement Learning Framework for Boosting LLM Reasoning

TraPO: A Semi-Supervised Reinforcement Learning Framework for Boosting LLM Reasoning

๋ณธ ๋…ผ๋ฌธ์€ ๊ฐ•ํ™”ํ•™์Šต๊ณผ ์ค€๊ฐ๋… ํ•™์Šต์„ ๊ฒฐํ•ฉํ•˜์—ฌ ๋Œ€๊ทœ๋ชจ ์ถ”๋ก  ๋ชจ๋ธ(LRMs)์„ ํšจ์œจ์ ์œผ๋กœ ํ›ˆ๋ จํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ํŠนํžˆ, TRAPO ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ํ†ตํ•ด ์†Œ๋Ÿ‰์˜ ๋ผ๋ฒจ๋ง ๋ฐ์ดํ„ฐ์™€ ๋งŽ์€ ๋น„๋ผ๋ฒจ ๋ฐ์ดํ„ฐ๋ฅผ ํ™œ์šฉํ•ด ๋ชจ๋ธ์„ ์•ˆ์ •ํ™”์‹œํ‚ค๊ณ , ์ด๋ฅผ ํ†ตํ•ด ๋†’์€ ์ •ํ™•๋„์™€ ๊ฐ•๋ ฅํ•œ ์ผ๋ฐ˜ํ™” ์„ฑ๋Šฅ์„ ๋‹ฌ์„ฑํ•  ์ˆ˜ ์žˆ์Œ์„ ๋ณด์—ฌ์ฃผ์—ˆ์Šต๋‹ˆ๋‹ค. ์ด ์—ฐ๊ตฌ๋Š” ๊ธฐ์กด ๋ฌด๊ฐ๋… RLVR ๋ฐฉ๋ฒ•๋“ค์ด ํ›ˆ๋ จ ํ›„๊ธฐ ๋‹จ๊ณ„์—์„œ ์ผ๊ด€์„ฑ์„ ์œ ์ง€ํ•˜์ง€ ๋ชปํ•˜๊ณ  ๋ชจ๋ธ ๋ถ•๊ดด๋ฅผ ๊ฒช๋Š” ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๋Š” ๋ฐ ์ค‘์ ์„ ๋‘๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. TRAPO ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ํ•™์Šต ๊ฒฝ๋กœ ์œ ์‚ฌ์„ฑ ๋ถ„์„์„ ํ†ตํ•ด ์‹ ๋ขฐํ•  ์ˆ˜ ์žˆ๋Š” ๋น„๋ผ๋ฒจ ์ƒ˜ํ”Œ์„

Framework Learning
A Disproof of Large Language Model Consciousness: The Necessity of Continual Learning for Consciousness

A Disproof of Large Language Model Consciousness: The Necessity of Continual Learning for Consciousness

๋ณธ ๋…ผ๋ฌธ์€ ํ˜„๋Œ€ ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(LLMs)์˜ ์˜์‹ ๊ฐ€๋Šฅ์„ฑ์— ๋Œ€ํ•œ ์ฒ ํ•™์ ์ด๊ณ  ๊ณผํ•™์ ์ธ ์ ‘๊ทผ๋ฒ•์„ ์ œ์‹œํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ €์ž๋Š” ์ฆ๋ช… ๋ถˆ๊ฐ€๋Šฅ์„ฑ๊ณผ ๋น„์ž๋ช…์„ฑ์„ ์ถฉ์กฑํ•˜๋Š” ์ด๋ก ์ด ์žˆ์–ด์•ผ ํ•œ๋‹ค๋Š” ์š”๊ตฌ ์‚ฌํ•ญ์„ ๊ฐ•์กฐํ•˜๋ฉฐ, ์ด๋ฅผ ํ†ตํ•ด ํ˜„๋Œ€ LLMs์˜ ์˜์‹ ๊ฐ€๋Šฅ์„ฑ์„ ๊ฒ€์ฆํ•ฉ๋‹ˆ๋‹ค. ๋…ผ๋ฌธ์€ ๊ธฐ์กด์˜ ์ธ๊ณผ ๊ตฌ์กฐ์™€ ๊ธฐ๋Šฅ์— ๊ธฐ๋ฐ˜ํ•œ ์˜์‹ ์ด๋ก ๋“ค์ด ์ด๋Ÿฌํ•œ ์š”๊ตฌ ์กฐ๊ฑด์„ ๋งŒ์กฑํ•˜์ง€ ๋ชปํ•œ๋‹ค๋Š” ์ ์„ ์ง€์ ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. LLMs๋Š” ์ž…๋ ฅ/์ถœ๋ ฅ ๊ธฐ๋Šฅ ์ธก๋ฉด์—์„œ ํŠน์ • ์‹œ์Šคํ…œ๋“ค๊ณผ ๋™๋“ฑํ•˜๊ธฐ ๋•Œ๋ฌธ์—, ๊ทธ๋“ค์— ๋Œ€ํ•œ ์˜์‹ ๊ฐ€๋Šฅ์„ฑ์€ ์ฆ๋ช… ๋ถˆ๊ฐ€๋Šฅ์„ฑ๊ณผ ๋น„์ž๋ช…์„ฑ์„ ์ถฉ์กฑํ•˜๋Š” ์ด๋ก ์ด ์กด์žฌํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜

Learning Model
Algorithmic Criminal Liability in Greenwashing: Comparing India, United States, and European Union

Algorithmic Criminal Liability in Greenwashing: Comparing India, United States, and European Union

๋ณธ ๋…ผ๋ฌธ์€ AI ๊ธฐ๋ฐ˜์˜ ๋…น์ƒ‰์„ธํƒ์ด ๊ธฐ์—… ์ง€์† ๊ฐ€๋Šฅ์„ฑ ๊ด€๋ฆฌ์—์„œ ์ค‘์š”ํ•œ ๋„์ „ ๊ณผ์ œ์ž„์„ ๊ฐ•์กฐํ•˜๊ณ  ์žˆ๋‹ค. ๋…น์ƒ‰์„ธํƒ์€ ํ™˜๊ฒฝ ๊ณต์‹œ์˜ ๋ถˆํˆฌ๋ช…์„ฑ์„ ๊ฐ€์ค‘์‹œํ‚ค๊ณ , ๊ทœ์ œ ๊ฐ๋…์„ ๋ฐฉํ•ดํ•œ๋‹ค. ์—ฐ๊ตฌ๋Š” ์ธ๋„, ๋ฏธ๊ตญ, EU๋ฅผ ๋Œ€์ƒ์œผ๋กœ AI ๋งค๊ฐœ ๋…น์ƒ‰์„ธํƒ์— ๋Œ€ํ•œ ๋ฒ”์ฃ„ ์ฑ…์ž„์„ ๋น„๊ต ๋ถ„์„ํ•˜์—ฌ, ๊ธฐ์กด ๋ฒ•๋ฅ ์ด ์ธ๊ฐ„ ์˜๋„๋ฅผ ์ „์ œ๋กœ ํ•˜์—ฌ ์•Œ๊ณ ๋ฆฌ์ฆ˜ ์‹œ์Šคํ…œ์—์„œ ๋ฐœ์ƒํ•œ ์†์ž„์ˆ˜์— ๋Œ€ํ•ด ๋ถˆํ•ฉ๋ฆฌํ•˜๊ฒŒ ์ ์šฉ๋˜๊ณ  ์žˆ์Œ์„ ๋“œ๋Ÿฌ๋‚ธ๋‹ค. ์ด๋Š” ํ˜„ํ–‰ ์‚ฌ๊ธฐ ๋ฐ ํ™˜๊ฒฝ ๊ด€๋ จ ๋ฒ•๋ฅ ๋“ค์ด AI๊ฐ€ ์ƒ์„ฑํ•˜๋Š” ์˜คํ•ด๋ฅผ ์ฒ˜๋ฆฌํ•  ์ˆ˜ ์—†๊ฒŒ ๋งŒ๋“œ๋Š” ๋ฌธ์ œ์ ์„ ๋ณด์—ฌ์ค€๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ๊ธฐ์กด ํŒ๋ก€, ๋ฒ•๋ น, ๊ทœ์ œ ์ง€์นจ์„ ์ฒด๊ณ„์ ์œผ๋กœ

No Image

Co-Exploration and Co-Exploitation via Shared Structure in Multi-Task Bandits

๋ณธ ๋…ผ๋ฌธ์€ ๋ถ€๋ถ„์ ์œผ๋กœ ๊ด€์ฐฐ๋˜๋Š” ์ปจํ…์ŠคํŠธ์™€ ์ž ์žฌ ๋ณ€์ˆ˜์— ์˜ํ•ด ์œ ๋„๋˜๋Š” ์˜์กด์„ฑ์„ ๊ณ ๋ คํ•œ ์ƒˆ๋กœ์šด ๋ฒ ์ด์ง€์•ˆ ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์‹œํ•ฉ๋‹ˆ๋‹ค. ์ด ์ ‘๊ทผ๋ฒ•์˜ ํ•ต์‹ฌ์€ ๋ชจ๋“  ์ž‘์—…์—์„œ ์ˆ˜์ง‘๋œ ๋ฐ์ดํ„ฐ๋ฅผ ํ†ตํ•ฉํ•˜์—ฌ ์ „์—ญ์ ์ธ ๊ฒฐํ•ฉ ๋ถ„ํฌ๋ฅผ ํ•™์Šตํ•˜๋ฉด์„œ, ๊ฐ๊ฐ์˜ ์‚ฌ์šฉ์ž ๋˜๋Š” ์ž‘์—…์— ๋งž๋Š” ๊ฐœ์ธํ™”๋œ ์ถ”๋ก ์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค. ๋…ผ๋ฌธ์—์„œ๋Š” ๋‘ ๊ฐ€์ง€ ์ฃผ์š” ๋ถˆํ™•์‹ค์„ฑ ์š”์ธ, ์ฆ‰ ํŒ”๊ณผ ์ž‘์—… ๊ฐ„์˜ ์ž ์žฌ์  ๋ณด์ƒ ์˜์กด์„ฑ์—์„œ ๋ฐœ์ƒํ•˜๋Š” ๊ตฌ์กฐ์  ๋ถˆํ™•์‹ค์„ฑ ๋ฐ ๋ถ€์กฑํ•œ ์ปจํ…์ŠคํŠธ์™€ ์ œํ•œ๋œ ์ƒํ˜ธ์ž‘์šฉ ์—ญ์‚ฌ๋กœ ์ธํ•ด ๋ฐœ์ƒํ•˜๋Š” ์‚ฌ์šฉ์ž๋ณ„ ๋ถˆํ™•์‹ค์„ฑ์„ ์‹๋ณ„ํ•˜๊ณ  ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•œ ๋ฐฉ๋ฒ•์„ ์ œ์‹œํ•ฉ๋‹ˆ๋‹ค. ๋…ผ๋ฌธ์˜ ์ฃผ

No Image

CoRe3D: Collaborative Reasoning as a Foundation for 3D Intelligence

CoRe3D๋Š” 3D ์ดํ•ด์™€ ์ƒ์„ฑ์˜ ํ†ตํ•ฉ์  ์ถ”๋ก  ํ”„๋ ˆ์ž„์›Œํฌ๋กœ, ๊ธฐ์กด์˜ ๋‹ค๋ชจ๋‹ฌ ๋ชจ๋ธ์—์„œ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•˜๋Š” ๋ช…์‹œ์ ์ธ ์ถ”๋ก  ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ 3D ์˜์—ญ์— ํ™•์žฅํ•˜๋Š” ๊ฒƒ์„ ๋ชฉํ‘œ๋กœ ํ•œ๋‹ค. ์ด ์—ฐ๊ตฌ๋Š” ์–ธ์–ด์™€ ๋น„์ „ ์ž‘์—…์—์„œ ํšจ๊ณผ์ ์œผ๋กœ ์ž…์ฆ๋œ ์ถ”๋ก  ์ค‘์‹ฌ ์ ‘๊ทผ๋ฒ•์ด ์•„์ง ์ถฉ๋ถ„ํžˆ ๊ฐœ๋ฐœ๋˜์ง€ ์•Š์€ 3D ๋ถ„์•ผ์—์„œ๋„ ์œ ์‚ฌํ•œ ์„ฑ๊ณผ๋ฅผ ๋‚ผ ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ฐ€์„ค์„ ์ œ์‹œํ•œ๋‹ค. CoRe3D์˜ ํ•ต์‹ฌ์€ ๊ณต๊ฐ„์  ๊ทผ๊ฑฐ๋ฅผ ๊ฐ–์ถ˜ ์ถ”๋ก  ํ‘œํ˜„์œผ๋กœ, ์ด๋ฅผ ํ†ตํ•ด ๋ชจ๋ธ์€ 3D ์ž ์žฌ ๊ณต๊ฐ„์„ ์ง€์—ญํ™”๋œ ์˜์—ญ์œผ๋กœ ๋ถ„ํ•ดํ•˜๊ณ , ์ด๋Ÿฌํ•œ ๋ถ„ํ•ด๋œ ๋ถ€๋ถ„๋“ค์— ๋Œ€ํ•ด ์กฐํ•ฉ์ ์ด๊ณ  ์ ˆ์ฐจ์ ์ธ ๋ฐฉ์‹์œผ๋กœ ๊ธฐํ•˜ํ•™์  ํŠน์„ฑ์„ ์ถ”๋ก ํ•  ์ˆ˜ ์žˆ

Diffusion Model-Based Posterior Sampling in Full Waveform Inversion

Diffusion Model-Based Posterior Sampling in Full Waveform Inversion

์ด ๋…ผ๋ฌธ์€ ๋ฒ ์ด์ง€์•ˆ ์ „ํŒŒํ˜• ์—ญ์‚ฐ(FWI) ๊ธฐ๋ฒ•์„ ์ด์šฉํ•ด ์ง€ํ•˜ ๋ชจ๋ธ์˜ ๋ถˆํ™•์‹ค์„ฑ์„ ํšจ๊ณผ์ ์œผ๋กœ ์ฒ˜๋ฆฌํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์‹œํ•˜๊ณ  ์žˆ๋‹ค. ํŠนํžˆ, ๋Œ€๊ทœ๋ชจ ํ˜„์žฅ ์กฐ์‚ฌ์—์„œ ์‹ค์šฉ์ ์ด์ง€ ์•Š๋‹ค๋Š” ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ํ™•์‚ฐ ๊ธฐ๋ฐ˜ ์‚ฌํ›„ ํ‘œ๋ณธ ์ถ”์ถœ๊ณผ ๋™์‹œ ์†Œ์Šค FWI ๋ฐ์ดํ„ฐ๋ฅผ ๊ฒฐํ•ฉํ•œ ์ƒˆ๋กœ์šด ์ ‘๊ทผ ๋ฐฉ์‹์„ ์ œ์•ˆํ•œ๋‹ค. ์ด ๋ฐฉ๋ฒ•์€ ๊ฐ ๋‹จ๊ณ„์—์„œ ํŒŒ ๋ฐฉ์ •์‹ ํ•ด์˜ ์ˆ˜๋ฅผ ์ค„์ด๊ณ , ๋ชจ๋ธ ๊ณต๊ฐ„์—์„œ ์Šคํ† ์บ์Šคํ‹ฑ ์ •๊ตํ™” ๋‹จ๊ณ„๋ฅผ ์ ์šฉํ•˜์—ฌ ๊ณ„์‚ฐ ๋น„์šฉ์„ ํฌ๊ฒŒ ๊ฐ์†Œ์‹œํ‚ค๋ฉด์„œ๋„ ๋†’์€ ์ •ํ™•์„ฑ์„ ์œ ์ง€ํ•  ์ˆ˜ ์žˆ๋‹ค. ๋˜ํ•œ, ์†๋„ ํŒจ์น˜์™€ ๋ณผ๋ฅจ์— ๋Œ€ํ•œ ์กฐ๊ฑด ์—†๋Š” ํ™•์‚ฐ ์‚ฌ์ „ ํ›ˆ๋ จ์„ ํ†ตํ•ด ์†Œ์Šค ๊ด€๋ จ ์ˆ˜์น˜์  ์˜ค๋ฅ˜

Model
EXFormer: A Multi-Scale Trend-Aware Transformer with Dynamic Variable Selection for Foreign Exchange Returns Prediction

EXFormer: A Multi-Scale Trend-Aware Transformer with Dynamic Variable Selection for Foreign Exchange Returns Prediction

์ด ๋…ผ๋ฌธ์€ ๊ตญ์ œ ๊ธˆ์œต์—์„œ ์˜ค๋žซ๋™์•ˆ ํ•ด๊ฒฐ๋˜์ง€ ์•Š์•˜๋˜ ๋ฌธ์ œ์ธ ๋งค์ผ์˜ ํ™˜์œจ ๋ณ€๋™๋ฅ  ์˜ˆ์ธก์— ์ดˆ์ ์„ ๋งž์ถ”๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ด ์—ฐ๊ตฌ๋Š” EXFormer์ด๋ผ๋Š” ์ƒˆ๋กœ์šด Transformer ๊ธฐ๋ฐ˜ ์•„ํ‚คํ…์ฒ˜๋ฅผ ์ œ์‹œํ•˜๋ฉฐ, ์ด๋ฅผ ํ†ตํ•ด ๋‹ค์–‘ํ•œ ์‹œ์žฅ ์š”์ธ๋“ค์— ์˜ํ•ด ์ฃผ๋„๋˜๊ณ  ๊ณ ์ฃผํŒŒ ๋ณ€๋™์„ฑ์„ ๋ณด์ด๋Š” ํ™˜์œจ ๋ณ€๋™๋ฅ ์„ ํšจ๊ณผ์ ์œผ๋กœ ์˜ˆ์ธกํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•ฉ๋‹ˆ๋‹ค. ํŠนํžˆ, ์ด ๋…ผ๋ฌธ์€ ๋‹ค์ค‘ ์Šค์ผ€์ผ ์ถ”์„ธ ์ธ์‹ ์ž๊ธฐ ์ฃผ์˜ ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ๋„์ž…ํ•˜์—ฌ ์„œ๋กœ ๋‹ค๋ฅธ ์ˆ˜์šฉ ํ•„๋“œ๋ฅผ ๊ฐ€์ง„ ๋ณ‘๋ ฌ ์ปจ๋ณผ๋ฃจ์…˜ ๋ธŒ๋žœ์น˜๋ฅผ ์‚ฌ์šฉํ•ด ๋กœ์ปฌ ๊ธฐ์šธ๊ธฐ์— ๋”ฐ๋ผ ๊ด€์ฐฐ ๊ฐ’์„ ์ •๋ ฌํ•ฉ๋‹ˆ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ์žฅ๊ธฐ ์ข…์†์„ฑ์„ ์œ ์ง€ํ•˜๋ฉด์„œ๋„ ์‹œ์žฅ ์ƒ

Explainable AI as a Double-Edged Sword in Dermatology: The Impact on Clinicians versus The Public

Explainable AI as a Double-Edged Sword in Dermatology: The Impact on Clinicians versus The Public

๋ณธ ๋…ผ๋ฌธ์€ ์ธ๊ณต์ง€๋Šฅ(AI)์ด ์˜๋ฃŒ ๋ถ„์•ผ์— ๋ฏธ์น˜๋Š” ๋ณต์žกํ•œ ์˜ํ–ฅ์„ ํƒ๊ตฌํ•˜๊ณ  ์žˆ๋‹ค. ํŠนํžˆ, ์„ค๋ช… ๊ฐ€๋Šฅํ•œ AI(XAI)์˜ ๋„์ž…์ด ์ง„๋‹จ ์ •ํ™•๋„์™€ ์˜์‚ฌ๊ฒฐ์ • ๊ณผ์ •์— ์–ด๋–ค ํšจ๊ณผ๋ฅผ ๋ฏธ์น˜๋Š”์ง€๋ฅผ ์‚ดํŽด๋ณด์•˜๋‹ค. ์—ฐ๊ตฌ์—์„œ๋Š” ์ผ๋ฐ˜์ธ๊ณผ ๋‚ด๊ณผ ์˜์‚ฌ ๋‘ ๊ทธ๋ฃน์„ ๋Œ€์ƒ์œผ๋กœ ์‹คํ—˜์„ ์ง„ํ–‰ํ•˜์˜€์œผ๋ฉฐ, ์ด๋ฅผ ํ†ตํ•ด XAI๊ฐ€ ์‚ฌ์šฉ์ž๋“ค์˜ ์ „๋ฌธ์„ฑ๊ณผ AI ์ œ์•ˆ์˜ ํƒ€์ด๋ฐ์— ๋”ฐ๋ผ ๋‹ค์–‘ํ•œ ๊ฒฐ๊ณผ๋ฅผ ๋ณด์—ฌ์ฃผ๋Š” ๊ฒƒ์„ ํ™•์ธํ•˜์˜€๋‹ค. ์—ฐ๊ตฌ๊ฒฐ๊ณผ, ํ”ผ๋ถ€ ํ†ค ๊ฐ„ ๊ท ํ˜•์„ ๋งž์ถค์œผ๋กœ์จ AI ์ง€์›์€ ์ง„๋‹จ ์ •ํ™•๋„๋ฅผ ๋†’์ด๊ณ  ๋ถˆ๊ท ํ˜•์„ ์ค„์ด๋Š” ํšจ๊ณผ๊ฐ€ ์žˆ์—ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ LLMs์„ ํ†ตํ•œ ์„ค๋ช…์€ ์ผ๋ฐ˜ ์‚ฌ์šฉ์ž์™€ ๋‚ด๊ณผ ์˜์‚ฌ ์‚ฌ์ด์—์„œ

Explainable Artificial Intelligence for Economic Time Series: A Comprehensive Review and a Systematic Taxonomy of Methods and Concepts

Explainable Artificial Intelligence for Economic Time Series: A Comprehensive Review and a Systematic Taxonomy of Methods and Concepts

์ด ๋…ผ๋ฌธ์€ ๊ณ„์‚ฐ๊ฒฝ์ œํ•™์—์„œ ํ•ด์„๊ฐ€๋Šฅ ์ธ๊ณต์ง€๋Šฅ(XAI)์˜ ์ค‘์š”์„ฑ์„ ๊ฐ•์กฐํ•˜๋ฉฐ, ํŠนํžˆ ๊ธฐ๊ณ„ ํ•™์Šต ์˜ˆ์ธก์ž๊ฐ€ ๊ณ ์ „์ ์ธ ๊ฒฝ์ œํ•™์  ๋ชจ๋ธ์„ ๋Šฅ๊ฐ€ํ•  ์ˆ˜ ์žˆ์ง€๋งŒ ๊ทธ ๋‚ด๋ถ€ ์ž‘๋™ ์›๋ฆฌ๊ฐ€ ๋ถˆํˆฌ๋ช…ํ•˜๋‹ค๋Š” ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด XAI์— ๋Œ€ํ•œ ๊ด€์‹ฌ์ด ์ฆ๊ฐ€ํ•˜๊ณ  ์žˆ์Œ์„ ์„ค๋ช…ํ•ฉ๋‹ˆ๋‹ค. ๋…ผ๋ฌธ์€ ์‹œ๊ฐ„ ์‹œ๋ฆฌ์ฆˆ ๋ฐ์ดํ„ฐ์˜ ํŠน์„ฑ, ์ฆ‰ ์ž๊ธฐ์ƒ๊ด€์„ฑ, ๋น„์ •์ƒ์„ฑ, ๊ณ„์ ˆ์„ฑ, ํ˜ผํ•ฉ ์ฃผ๊ธฐ, ๊ทธ๋ฆฌ๊ณ  ์ œ๋„ ๋ณ€ํ™” ๋“ฑ์ด ํ‘œ์ค€์ ์ธ ์„ค๋ช… ๊ธฐ๋ฒ•์„ ๋ถˆ์•ˆ์ •ํ•˜๊ฑฐ๋‚˜ ๊ฒฝ์ œ์ ์œผ๋กœ ์„ค๋“๋ ฅ ์—†๊ฒŒ ๋งŒ๋“ค ์ˆ˜ ์žˆ๋‹ค๋Š” ์ ์— ์ฃผ๋ชฉํ•ฉ๋‹ˆ๋‹ค. ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ๋…ผ๋ฌธ์€ XAI ๋ฐฉ๋ฒ•๋ก ์„ ์„ธ ๊ฐ€์ง€ ๋ฒ”์ฃผ๋กœ ๋ถ„๋ฅ˜ํ•˜๊ณ , ๊ฐ ๋ฒ”์ฃผ์˜ ํŠน์ง•๊ณผ ์‹œ๊ฐ„

System
No Image

Federated Learning with Feedback Alignment

์ด ๋…ผ๋ฌธ์€ ์—ฐ๋ฐฉํ•™์Šต(Federated Learning, FL)์—์„œ ๋ฐœ์ƒํ•˜๋Š” ๋ฐ์ดํ„ฐ ์ด์งˆ์„ฑ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•œ ์ƒˆ๋กœ์šด ์ ‘๊ทผ๋ฒ•์ธ FLFA(Federated Learning with Feedback Alignment)์— ๋Œ€ํ•ด ์„ค๋ช…ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์—ฐ๋ฐฉํ•™์Šต์€ ํด๋ผ์ด์–ธํŠธ ๊ฐ„์˜ ๋ฐ์ดํ„ฐ ํ”„๋ผ์ด๋ฒ„์‹œ๋ฅผ ๋ณด์žฅํ•˜๋ฉด์„œ๋„ ํ˜‘์—… ํ•™์Šต์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•˜๋Š” ๊ธฐ์ˆ ์ž…๋‹ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๊ฐ ํด๋ผ์ด์–ธํŠธ์˜ ๋ฐ์ดํ„ฐ๊ฐ€ ๋…๋ฆฝ์ ์ด๊ณ  ๋™์ผํ•œ ๋ถ„ํฌ(IID)๊ฐ€ ์•„๋‹Œ ๊ฒฝ์šฐ, ์ฆ‰ ๋น„IID์ธ ๊ฒฝ์šฐ์—๋Š” ๋กœ์ปฌ ๋ชจ๋ธ๊ณผ ์ „์—ญ ๋ชจ๋ธ ๊ฐ„์— ์ˆ˜๋ ด์ด ์–ด๋ ค์›Œ์ง€๋ฉฐ ์ด๋ฅผ ๋กœ์ปฌ ๋“œ๋ฆฌํ”„ํŠธ ํ˜„์ƒ์ด๋ผ๊ณ  ํ•ฉ๋‹ˆ๋‹ค. FLFA๋Š”

Learning
No Image

Forgetful but Faithful: A Cognitive Memory Architecture and Benchmark for Privacy-Aware Generative Agents

์ด ๋…ผ๋ฌธ์€ ์ƒ์„ฑ์  ์—์ด์ „ํŠธ๊ฐ€ ์žฅ๊ธฐ ๊ธฐ์–ต์„ ๊ด€๋ฆฌํ•˜๋ฉด์„œ ํšจ์œจ์„ฑ, ํ”„๋ผ์ด๋ฒ„์‹œ ๋ฐ ๋น„์šฉ ์ œ์•ฝ ์กฐ๊ฑด์„ ์ถฉ์กฑํ•˜๋Š” ๋ฐฉ๋ฒ•์— ๋Œ€ํ•ด ๊นŠ๊ฒŒ ํƒ๊ตฌํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. Memory Aware Retention Schema (MaRS)๋Š” ์ด๋ฒคํŠธ, ์˜๋ฏธ๋ก ์ , ์‚ฌํšŒ์ , ์ž‘์—… ๊ธฐ์–ต๋“ค์„ ํƒ€์ž…ํ™”ํ•˜๊ณ  ์ถœ์ฒ˜๋ฅผ ์ถ”์ ํ•˜๋ฉฐ ํšจ์œจ์ ์ธ ๊ฒ€์ƒ‰์„ ์œ„ํ•œ ์—ฌ๋Ÿฌ ์ธ๋ฑ์Šค๋ฅผ ์ œ๊ณตํ•˜๋Š” ๊ตฌ์กฐ์ž…๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ๊ธฐ๋ฐ˜ ์œ„์— ์ œ์•ˆ๋œ 6๊ฐ€์ง€ ์žŠ์Œ ์ •์ฑ…์€ ๊ฐ๊ฐ์˜ ๋ณต์žก๋„ ๋ถ„์„๊ณผ ๊ฐ๋„์— ๋”ฐ๋ฅธ ๋ณด์กด์„ฑ์„ ์ œ๊ณตํ•˜๋ฉฐ, ์„ ํƒ์ ์œผ๋กœ ์ฐจ๋ณ„์  ํ”„๋ผ์ด๋ฒ„์‹œ๋ฅผ ๋ณด์žฅํ•ฉ๋‹ˆ๋‹ค. ๋…ผ๋ฌธ์—์„œ ์†Œ๊ฐœํ•œ FiFA ๋ฒค์น˜๋งˆํฌ๋Š” ์„œ์‚ฌ ์ผ๊ด€์„ฑ, ๋ชฉํ‘œ ์™„๋ฃŒ,

Human-Inspired Learning for Large Language Models via Obvious Record and Maximum-Entropy Method Discovery

Human-Inspired Learning for Large Language Models via Obvious Record and Maximum-Entropy Method Discovery

์ด ๋…ผ๋ฌธ์€ ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(LLMs)์˜ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด ์ธ๊ฐ„ ํ•™์Šต ๊ณผ์ •์—์„œ ์˜๊ฐ์„ ์–ป๋Š” ์ƒˆ๋กœ์šด ์ ‘๊ทผ๋ฒ•์„ ์ œ์•ˆํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. LLMs์€ ํฐ ๊ทœ๋ชจ์˜ ๋ฐ์ดํ„ฐ๋กœ๋ถ€ํ„ฐ ์ผ๋ฐ˜์ ์ธ ํŒจํ„ด์„ ์ถ”์ถœํ•˜๋Š” ๋ฐ ํƒ์›”ํ•˜์ง€๋งŒ, ํฌ๊ท€ํ•˜๊ฑฐ๋‚˜ ์ €์ž์› ์ƒํ™ฉ์—์„œ๋Š” ์ด๋Ÿฌํ•œ ํŒจํ„ด์ด ๋ฐ์ดํ„ฐ ๋‚ด์— ์ถฉ๋ถ„ํžˆ ๋‚˜ํƒ€๋‚˜์ง€ ์•Š์•„ ์˜ˆ์ธก ๋Šฅ๋ ฅ์ด ์ œํ•œ๋ฉ๋‹ˆ๋‹ค. ์ด ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ๋…ผ๋ฌธ์€ ๋‘ ๊ฐ€์ง€ ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ํ†ตํ•ฉํ•˜๋Š” ์ธ๊ฐ„ ์˜๊ฐ ํ•™์Šต ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค: ์ฒซ ๋ฒˆ์งธ๋กœ, '๋ช…์‹œ์  ๊ธฐ๋ก'์€ ์›์ธ ๊ฒฐ๊ณผ ๋˜๋Š” ์งˆ๋ฌธ ํ•ด๊ฒฐ์ฑ… ๊ด€๊ณ„๋ฅผ ์ƒ์ง•์  ๋ฉ”๋ชจ๋ฆฌ์— ์ €์žฅํ•˜์—ฌ ๋‹จ์ผ ๋˜๋Š” ๋ถˆ๊ทœ์น™ํ•œ ๊ฒฝํ—˜์—์„œ๋„ ์ง€์†์ ์ธ

Learning Model
Information-Consistent Language Model Recommendations through Group Relative Policy Optimization

Information-Consistent Language Model Recommendations through Group Relative Policy Optimization

๋ณธ ๋…ผ๋ฌธ์€ ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(LLMs)์˜ ์ผ๊ด€์„ฑ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•œ ์ƒˆ๋กœ์šด ์ ‘๊ทผ ๋ฐฉ์‹์„ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. LLMs๋Š” ๋‹ค์–‘ํ•œ ๋น„์ฆˆ๋‹ˆ์Šค ๋ถ„์•ผ์—์„œ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•˜์ง€๋งŒ, ์‚ฌ์šฉ์ž์—๊ฒŒ ์ผ๊ด€๋œ ์ •๋ณด๋ฅผ ์ œ๊ณตํ•˜๋Š” ๋ฐ ์–ด๋ ค์›€์ด ์žˆ์Šต๋‹ˆ๋‹ค. ์ด๋Š” ํŠนํžˆ ๊ธฐ์—… ํ™˜๊ฒฝ์—์„œ ์ค‘์š”ํ•˜๋ฉฐ, HR ์ž…๋ฌธ, ๊ณ ๊ฐ ์ง€์›, ์ •์ฑ… ๊ณต๊ฐœ ๋“ฑ๊ณผ ๊ฐ™์€ ์‹œ๋‚˜๋ฆฌ์˜ค์—์„œ๋Š” ์ •๋ณด์˜ ์•ˆ์ •์„ฑ์ด ํ•„์ˆ˜์ ์ž…๋‹ˆ๋‹ค. ๊ธฐ์กด ์ ‘๊ทผ ๋ฐฉ์‹์€ ์‚ฌ์‹ค์„ฑ ํ–ฅ์ƒ์ด๋‚˜ ํ™•๋ฅ ์„ฑ์„ ์ค„์ด๋Š” ๋ฐ ์ค‘์ ์„ ๋‘์ง€๋งŒ, ์˜๋ฏธ์ ์œผ๋กœ ๋™๋“ฑํ•œ ํ”„๋กฌํ”„ํŠธ ๊ฐ„์˜ ์ผ๊ด€์„ฑ์„ ๋ณด์žฅํ•˜์ง€๋Š” ๋ชปํ•ฉ๋‹ˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ ์ œ์•ˆํ•˜๋Š” ๋ฐฉ๋ฒ•์€ ๊ทธ๋ฃน ์ƒ๋Œ€ ์ •์ฑ… ์ตœ์ ํ™”(GRPO)

Model
Lemon: A Unified and Scalable 3D Multimodal Model for Universal Spatial Understanding

Lemon: A Unified and Scalable 3D Multimodal Model for Universal Spatial Understanding

์ด ๋…ผ๋ฌธ์€ ๋Œ€๊ทœ๋ชจ ๋‹ค์ค‘ ๋ชจ๋‹ฌ ๋ชจ๋ธ(LMMs)์˜ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ณ , ํŠนํžˆ 3D ๋ฐ์ดํ„ฐ ์ดํ•ด์— ํ•„์š”ํ•œ ์ƒˆ๋กœ์šด ์ ‘๊ทผ๋ฒ•์„ ์ œ์‹œํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. Lemon์ด๋ผ๋Š” ์ด๋ฆ„์˜ ๋ชจ๋ธ์€ ๊ธฐ์กด์˜ ๋ถ„๋ฆฌ๋œ ์•„ํ‚คํ…์ฒ˜์™€ ๋‹ฌ๋ฆฌ ํ†ตํ•ฉ ๋ณ€ํ˜• ์•„ํ‚คํ…์ฒ˜๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์  ํด๋ผ์šฐ๋“œ ๋ฐ์ดํ„ฐ์™€ ์–ธ์–ด ํ† ํฐ์„ ๋™์‹œ์— ์ฒ˜๋ฆฌํ•˜๋Š” ๋Šฅ๋ ฅ์„ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค. ์ด ์ ‘๊ทผ๋ฒ•์€ ์ค‘๋ณต๋˜๋Š” ์ธ์ฝ”๋”๋ฅผ ์ œ๊ฑฐํ•˜๊ณ , ํŒŒ๋ผ๋ฏธํ„ฐ ํšจ์œจ์„ฑ์„ ๋†’์ด๋ฉฐ, ๋ชจ๋ธ์˜ ํ™•์žฅ์„ ๋” ํšจ๊ณผ์ ์œผ๋กœ ์ง€์›ํ•จ์œผ๋กœ์จ ๊ธฐ์กด์˜ ๋ฌธ์ œ์ ์„ ํ•ด๊ฒฐํ•ฉ๋‹ˆ๋‹ค. ๋˜ํ•œ, Lemon์€ 3D ๋ฐ์ดํ„ฐ์˜ ํŠน์„ฑ์— ๋งž๊ฒŒ ๊ตฌ์กฐํ™”๋œ ํŒจ์น˜ํ™” ๋ฐ ํ† ํฐํ™” ๋ฐฉ์‹์„ ๊ฐœ๋ฐœํ•˜์—ฌ ๊ณต๊ฐ„์  ๋งฅ๋ฝ์„ ์œ 

Model
No Image

PerNodeDrop: A Method Balancing Specialized Subnets and Regularization in Deep Neural Networks

๋”ฅ ๋‰ด๋Ÿด ๋„คํŠธ์›Œํฌ๋Š” ๋ณต์žกํ•œ ํŒจํ„ด์„ ํ•™์Šตํ•˜๋Š” ๋ฐ ๋งค์šฐ ํšจ๊ณผ์ ์ด์ง€๋งŒ, ์ด ๊ณผ์ •์—์„œ ์œ ํ•ดํ•œ ๊ณต์ ์‘์ด ๋ฐœ์ƒํ•˜์—ฌ ์ผ๋ฐ˜ํ™” ์„ฑ๋Šฅ์ด ์ €ํ•˜๋˜๋Š” ๋ฌธ์ œ๋ฅผ ์•ˆ๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ๋“œ๋กญ์•„์›ƒ๊ณผ ๋“œ๋กญ์ปค๋„ฅํŠธ์™€ ๊ฐ™์€ ๊ธฐ์กด์˜ ๋…ธ์ด์ฆˆ ๊ธฐ๋ฐ˜ ์ •๊ทœํ™” ๋ฐฉ๋ฒ•์€ ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ๋ฌด์ž‘์œ„ ๋ณ€๋™์„ ์ฃผ์ž…ํ•˜์ง€๋งŒ, ์ด๋“ค ๋ฐฉ๋ฒ•์€ ์ธต์ด๋‚˜ ๋ฐฐ์น˜ ๋‹จ์œ„๋กœ ๊ท ์ผํ•œ ๋…ธ์ด์ฆˆ๋ฅผ ์ ์šฉํ•˜๋ฏ€๋กœ ์œ ์šฉํ•œ ๊ณต์ ์‘๊นŒ์ง€ ์–ต์ œํ•˜๋Š” ๋ถ€์ž‘์šฉ์ด ์žˆ์Šต๋‹ˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” PerNodeDrop์ด๋ผ๋Š” ์ƒˆ๋กœ์šด ์ •๊ทœํ™” ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. PerNodeDrop์€ ์ƒ˜ํ”Œ๋ณ„, ๋…ธ๋“œ๋ณ„๋กœ ๋ณ€๋™์„ฑ์„ ์ฃผ์ž…ํ•จ์œผ๋กœ์จ ๊ธฐ์กด์˜ ๊ท ์ผํ•œ ๋…ธ์ด์ฆˆ ์ ์šฉ

Network
PRIVEE: Privacy-Preserving Vertical Federated Learning Against Feature Inference Attacks

PRIVEE: Privacy-Preserving Vertical Federated Learning Against Feature Inference Attacks

์ด ๋…ผ๋ฌธ์€ ์ˆ˜์ง์—ฐ๋ฐฉํ•™์Šต(VFL)์—์„œ ๋ฐœ์ƒํ•˜๋Š” ํŠน์ง• ์ถ”๋ก  ๊ณต๊ฒฉ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•œ ์ƒˆ๋กœ์šด ๋ฐฉ์–ด ๋ฉ”์ปค๋‹ˆ์ฆ˜์ธ PRIVEE๋ฅผ ์ œ์•ˆํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. VFL์€ ์„œ๋กœ ๋‹ค๋ฅธ ๋ฐ์ดํ„ฐ์…‹์„ ๊ฐ€์ง„ ์—ฌ๋Ÿฌ ์กฐ์ง๋“ค์ด ๊ณต๋™์˜ ์‚ฌ์šฉ์ž ์ƒ˜ํ”Œ์— ๋Œ€ํ•ด ํ•™์Šตํ•  ์ˆ˜ ์žˆ๋Š” ๋ฐฉ๋ฒ•์œผ๋กœ, ํŠนํžˆ ๊ฐœ์ธ ์ •๋ณด ๋ณดํ˜ธ๊ฐ€ ์ค‘์š”ํ•œ ๋ถ„์•ผ์—์„œ ์œ ์šฉํ•˜๊ฒŒ ํ™œ์šฉ๋  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ด๋Ÿฌํ•œ ํ˜‘์—… ๊ณผ์ •์—์„œ๋Š” ๊ณต๊ฒฉ์ž๊ฐ€ ๋ชจ๋ธ์˜ ์˜ˆ์ธก ํ™•๋ฅ ์„ ์ด์šฉํ•ด ๋‹ค๋ฅธ ์ฐธ์—ฌ์ž์˜ ๋ฐ์ดํ„ฐ๋ฅผ ์žฌ๊ตฌ์„ฑํ•˜๋Š” ํŠน์ง• ์ถ”๋ก  ๊ณต๊ฒฉ์— ๋…ธ์ถœ๋  ์œ„ํ—˜์ด ์žˆ์Šต๋‹ˆ๋‹ค. PRIVEE๋Š” ์ด ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ์‹ ๋ขฐ๋„ ์ ์ˆ˜๋ฅผ ์•”ํ˜ธํ™”ํ•˜์—ฌ ๊ณต์œ ํ•จ์œผ๋กœ์จ, ๊ณต

Learning
Quantum Implicit Neural Representations for 3D Scene Reconstruction and Novel View Synthesis

Quantum Implicit Neural Representations for 3D Scene Reconstruction and Novel View Synthesis

๋ณธ ๋…ผ๋ฌธ์€ 3D ์žฅ๋ฉด ๋ณต์›์—์„œ ๊ณ ์ „์ ์ธ ์•”์‹œ์  ์‹ ๊ฒฝ ํ‘œํ˜„(INRs)์˜ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด ์–‘์ž ์ปดํ“จํŒ… ๊ธฐ์ˆ ์„ ๋„์ž…ํ•œ ํ˜์‹ ์ ์ธ ์ ‘๊ทผ๋ฒ•์„ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. ํŠนํžˆ, Q NeRF๋Š” Nerfacto๋ผ๋Š” ํ˜„์กดํ•˜๋Š” 3D ๋ Œ๋”๋ง ํ”„๋ ˆ์ž„์›Œํฌ์— QIREN ๋ชจ๋“ˆ์„ ํ†ตํ•ฉํ•˜์—ฌ ๊ณ ์ฃผํŒŒ์ˆ˜ ์„ธ๋ถ€ ์‚ฌํ•ญ์˜ ํ‘œํ˜„๋ ฅ์„ ํ–ฅ์ƒ์‹œํ‚ค๊ณ ์ž ํ•ฉ๋‹ˆ๋‹ค. ์ด ์ ‘๊ทผ๋ฒ•์€ ์–‘์ž ํšŒ๋กœ๊ฐ€ ๋‚ด์žฌ์ ์œผ๋กœ ๊ฐ€์ง„ ํ‘ธ๋ฆฌ์— ๊ตฌ์กฐ๋ฅผ ํ™œ์šฉํ•จ์œผ๋กœ์จ, ๊ณ ์ „์ ์ธ ์‹ ๊ฒฝ๋ง์ด ๊ฒช๋Š” ์ŠคํŽ™ํŠธ๋Ÿผ ํŽธํ–ฅ์„ฑ์„ ์™„ํ™”ํ•˜๋Š” ๋ฐ ํšจ๊ณผ์ ์ž…๋‹ˆ๋‹ค. ๋…ผ๋ฌธ์—์„œ ์ œ์‹œ๋œ ํ•˜์ด๋ธŒ๋ฆฌ๋“œ ์–‘์ž ํด๋ž˜์‹ ๋ชจ๋ธ์€ ๊ธฐ์กด์˜ ํด๋ž˜์‹ ๋ชจ๋ธ๊ณผ ๋น„๊ตํ•˜์—ฌ PSNR, SSIM

No Image

SAGA: Open-World Mobile Manipulation via Structured Affordance Grounding

๋ณธ ๋…ผ๋ฌธ์€ SAGA๋ผ๋Š” ์ƒˆ๋กœ์šด ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์†Œ๊ฐœํ•˜๋ฉฐ, ์ด๋Š” ๋‹ค์–‘ํ•œ ํ™˜๊ฒฝ๊ณผ ์ž‘์—… ๋ชฉํ‘œ์— ๊ฑธ์ณ ์ผ๋ฐ˜ํ™”ํ•  ์ˆ˜ ์žˆ๋Š” ์œ ์—ฐํ•˜๊ณ  ์ ์‘๋ ฅ ์žˆ๋Š” ์‹œ๊ฐ ๋ชจํ„ฐ ์ œ์–ด๋ฅผ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค. ํ•ต์‹ฌ ์•„์ด๋””์–ด๋Š” ๊ณ ์ˆ˜์ค€์˜ ์˜๋ฏธ์  ์˜๋„์™€ ์ €์ˆ˜์ค€์˜ ์‹œ๊ฐ ๋ชจํ„ฐ ์ œ์–ด๋ฅผ ๋ถ„๋ฆฌํ•˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ๋Šฅ๋™์„ฑ ๊ธฐ๋ฐ˜ ์ž‘์—… ํ‘œํ˜„์„ ์‚ฌ์šฉํ•˜์—ฌ ๋ณต์žกํ•œ ํ–‰๋™์„ ํ†ต์ผ๋˜๊ณ  ๊ตฌ์กฐํ™”๋œ ํ˜•ํƒœ๋กœ ๋‚˜ํƒ€๋ƒ…๋‹ˆ๋‹ค. ๋‹ค์ค‘ ๋ชจ๋‹ฌ ๊ธฐ์ดˆ ๋ชจ๋ธ์„ ํ™œ์šฉํ•˜์—ฌ SAGA๋Š” ๋กœ๋ด‡์˜ ์‹œ๊ฐ์  ๊ด€์ฐฐ์— 3D ๋Šฅ๋™์„ฑ ํžˆํŠธ๋งต์œผ๋กœ ๊ทผ๊ฑฐ๋ฅผ ๋‘์–ด, ์ž‘์—… ๊ด€๋ จ ์—”ํ‹ฐํ‹ฐ๋ฅผ ๊ฐ•์กฐํ•˜๊ณ  ์ผ๋ฐ˜ํ™”๋ฅผ ๋ฐฉํ•ดํ•  ์ˆ˜ ์žˆ๋Š” ๋ถ€์ˆ˜์ ์ธ ์™ธ๊ด€ ๋ณ€์ด๋ฅผ ์ถ”์ƒํ™”ํ•ฉ๋‹ˆ๋‹ค. ์ด

Scone: Bridging Composition and Distinction in Subject-Driven Image Generation via Unified Understanding-Generation Modeling

Scone: Bridging Composition and Distinction in Subject-Driven Image Generation via Unified Understanding-Generation Modeling

์ด ๋…ผ๋ฌธ์€ ์ฃผ์ œ ์ค‘์‹ฌ ์ด๋ฏธ์ง€ ์ƒ์„ฑ ๋ถ„์•ผ์—์„œ ์ค‘์š”ํ•œ ์ด์Šˆ๋ฅผ ๋‹ค๋ฃจ๊ณ  ์žˆ๋‹ค. ํŠนํžˆ, ๋‹จ์ผ ์ฃผ์ œ์—์„œ ๋‹ค์ค‘ ์ฃผ์ œ๋กœ์˜ ์ „ํ™˜ ๊ณผ์ •์—์„œ ๋ฐœ์ƒํ•˜๋Š” ๊ตฌ๋ถ„๋ ฅ ๋ถ€์กฑ ๋ฌธ์ œ์— ์ง‘์ค‘ํ•œ๋‹ค. Scone์ด๋ผ๋Š” ์ƒˆ๋กœ์šด ์ ‘๊ทผ๋ฒ•์„ ์ œ์‹œํ•จ์œผ๋กœ์จ, ์ด ๋…ผ๋ฌธ์€ ์ด๋ฏธ์ง€ ์ƒ์„ฑ ๋ชจ๋ธ์ด ๋ณต์žกํ•œ ์‹œ๋‚˜๋ฆฌ์˜ค์—์„œ๋„ ํšจ๊ณผ์ ์œผ๋กœ ์ž‘๋™ํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•˜๋Š” ๋ฐ ์ค‘์ ์„ ๋‘๊ณ  ์žˆ๋‹ค. Scone์˜ ํ•ต์‹ฌ ์•„์ด๋””์–ด๋Š” ์ดํ•ด ์ „๋ฌธ๊ฐ€์™€ ์ƒ์„ฑ ์ „๋ฌธ๊ฐ€ ์‚ฌ์ด์— ์˜๋ฏธ์ ์ธ ๋‹ค๋ฆฌ๋ฅผ ๋งŒ๋“œ๋Š” ๊ฒƒ์ด๋‹ค. ์ด ๋‹ค๋ฆฌ๋Š” ์ž…๋ ฅ๋œ ์—ฌ๋Ÿฌ ์ฃผ์ œ๋“ค ์ค‘์—์„œ ์˜ฌ๋ฐ”๋ฅธ ์ฃผ์ œ๋ฅผ ์‹๋ณ„ํ•˜๊ณ  ๊ทธ ์ •์ฒด์„ฑ์„ ์œ ์ง€ํ•˜๋Š” ๋ฐ ํ•„์ˆ˜์ ์ด๋‹ค. ๋‘ ๋‹จ๊ณ„ ํ›ˆ๋ จ ๋ฐฉ์‹์„ ํ†ตํ•ด

Model
No Image

The Complete Anatomy of the Madden-Julian Oscillation Revealed by Artificial Intelligence

์ด ๋…ผ๋ฌธ์€ ๋งค๋“  ์ค„๋ฆฌ์•ˆ ์ง„๋™(MJO)์˜ ์ƒ๋ช…์ฃผ๊ธฐ๋ฅผ ์ •ํ™•ํ•˜๊ฒŒ ์ •์˜ํ•˜๊ธฐ ์œ„ํ•œ ์ƒˆ๋กœ์šด ์ ‘๊ทผ๋ฒ•์„ ์ œ์‹œํ•ฉ๋‹ˆ๋‹ค. MJO๋Š” ๊ธฐํ›„ ๋ณ€๋™์„ฑ์—์„œ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•˜๋Š”๋ฐ, ๊ทธ ์ „ํŒŒ ํŠน์„ฑ ๋•Œ๋ฌธ์— ์ด ์ƒ๋ช…์ฃผ๊ธฐ์˜ ์ •์˜๊ฐ€ ์–ด๋ ต์Šต๋‹ˆ๋‹ค. ํ˜„์žฌ ์‚ฌ์šฉ๋˜๋Š” RMM ์ง€์ˆ˜๋Š” ์ˆ˜ํ•™์  ์˜ค๋ฅ˜๋ฅผ ๋ฌผ๋ฆฌ ์ƒํƒœ์™€ ํ˜ผ๋™ํ•˜๋Š” ๋ฌธ์ œ๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ์œผ๋ฉฐ, ์›์‹œ ๋ฐ์ดํ„ฐ ๊ณต๊ฐ„์—์„œ ์ง์ ‘ ํด๋Ÿฌ์Šคํ„ฐ๋ง์„ ์‹œ๋„ํ•˜๋ฉด '์ „ํŒŒ ํŒจ๋„ํ‹ฐ' ๋ฌธ์ œ๊ฐ€ ๋ฐœ์ƒํ•ฉ๋‹ˆ๋‹ค. ์ด ๋…ผ๋ฌธ์€ ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด AI ๊ธฐ๋ฐ˜ ์ด๋ก  ๋ฐœ๊ฒฌ ๋ฐฉ๋ฒ•๋ก ์„ ๋„์ž…ํ•˜์˜€์Šต๋‹ˆ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด MJO์˜ ๋‚ด์žฌ ๊ตฌ์กฐ๋ฅผ ๊ฐ์ฒด์ ์œผ๋กœ ํƒ์ƒ‰ํ•  ์ˆ˜ ์žˆ๋Š” ์ƒˆ๋กœ์šด ์ ‘๊ทผ๋ฒ•์„

AI Transparency Atlas: Framework, Scoring, and Real-Time Model Card Evaluation Pipeline

AI Transparency Atlas: Framework, Scoring, and Real-Time Model Card Evaluation Pipeline

์ด ๋…ผ๋ฌธ์€ AI ๋ชจ๋ธ ๋ฌธ์„œ์˜ ํˆฌ๋ช…์„ฑ ๋ฌธ์ œ๋ฅผ ์ฒด๊ณ„์ ์œผ๋กœ ๋ถ„์„ํ•˜๊ณ  ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•œ ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์‹œํ•ฉ๋‹ˆ๋‹ค. ํŠนํžˆ, ๋‹ค์–‘ํ•œ ํ”Œ๋žซํผ์—์„œ ์ œ๊ณต๋˜๋Š” AI ๋ชจ๋ธ ๋ฌธ์„œ๋Š” ๊ตฌ์กฐ์™€ ๋‚ด์šฉ์— ์ผ๊ด€์„ฑ์ด ๋ถ€์กฑํ•˜์—ฌ ์‚ฌ์šฉ์ž๋“ค์ด ํ•„์š”ํ•œ ์ •๋ณด๋ฅผ ์‰ฝ๊ฒŒ ์ฐพ๊ธฐ ์–ด๋ ต๋‹ค๋Š” ์ ์„ ์ง€์ ํ•ฉ๋‹ˆ๋‹ค. ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด EU AI Act Annex IV์™€ ์Šคํƒ ํผ๋“œ ํˆฌ๋ช…์„ฑ ์ง€์ˆ˜๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ ๊ฐ€์ค‘ ํˆฌ๋ช…๋„ ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ๊ฐœ๋ฐœํ•˜์˜€์Šต๋‹ˆ๋‹ค. ์ด ํ”„๋ ˆ์ž„์›Œํฌ๋Š” ์•ˆ์ „์„ฑ์ด ์ค‘์š”ํ•œ ๊ณต๊ฐœ ์‚ฌํ•ญ์„ ์šฐ์„ ์‹œํ•˜๋ฉฐ, ์ด๋ฅผ ํ†ตํ•ด ๋ชจ๋ธ์˜ ์•ˆ์ „์„ฑ์„ ํ‰๊ฐ€ํ•˜๋Š” ๋ฐ ํ•„์š”ํ•œ ์ •๋ณด๋ฅผ ์ฒด๊ณ„์ ์œผ๋กœ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค. ๋˜ํ•œ, ๋…ผ๋ฌธ์€ AI ๋ชจ

Model Framework
Bidirectional human-AI collaboration in brain tumour assessments improves both expert human and AI agent performance

Bidirectional human-AI collaboration in brain tumour assessments improves both expert human and AI agent performance

๋ณธ ๋…ผ๋ฌธ์€ ์ธ๊ณต์ง€๋Šฅ(AI)๊ณผ ์ธ๊ฐ„ ์ „๋ฌธ๊ฐ€์˜ ํŒŒํŠธ๋„ˆ์‹ญ์ด ์˜๋ฃŒ ๋ถ„์•ผ์—์„œ ์–ด๋–ป๊ฒŒ ์ž‘๋™ํ•˜๋Š”์ง€๋ฅผ ํƒ๊ตฌํ•œ ์—ฐ๊ตฌ์ž…๋‹ˆ๋‹ค. ํŠนํžˆ, ๋‡Œ์ข…์–‘ ํ™˜์ž์˜ MRI ๊ธฐ๋ฐ˜ ์ง„๋‹จ์„ ์ค‘์‹ฌ์œผ๋กœ AI์™€ ๋ฐฉ์‚ฌ์„  ์ „๋ฌธ๊ฐ€ ๊ฐ„์˜ ์ƒํ˜ธ์ž‘์šฉ์— ์ดˆ์ ์„ ๋งž์ถ”๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ด ์—ฐ๊ตฌ๋Š” ๋‘ ๊ฐ€์ง€ ์ฃผ์š” ๊ด€์ ์—์„œ ์ง„ํ–‰๋˜์—ˆ์Šต๋‹ˆ๋‹ค: ์ฒซ์งธ, AI๊ฐ€ ์ธ๊ฐ„ ์ „๋ฌธ๊ฐ€๋ฅผ ์ง€์›ํ•˜๋Š” ์—ญํ• ๊ณผ ๋‘˜์งธ, ์ธ๊ฐ„ ์ „๋ฌธ๊ฐ€๊ฐ€ AI๋ฅผ ์ง€์›ํ•˜๋Š” ์—ญํ• ์ž…๋‹ˆ๋‹ค. ์—ฐ๊ตฌ ๊ฒฐ๊ณผ, ์–‘์ชฝ ํŒŒํŠธ๋„ˆ์‹ญ ๋ชจ๋‘ ์ •ํ™•๋„์™€ ๋ฉ”ํƒ€์ธ์ง€ ๋Šฅ๋ ฅ์ด ํ–ฅ์ƒ๋˜์—ˆ์Œ์„ ๋ฐœ๊ฒฌํ–ˆ์Šต๋‹ˆ๋‹ค. ํŠนํžˆ, ๋ฐฉ์‚ฌ์„  ์ „๋ฌธ๊ฐ€์˜ ์ง€์›์„ ๋ฐ›๋Š” AI ์—์ด์ „ํŠธ์—์„œ ํ™˜์ž์—๊ฒŒ ๊ฐ€์žฅ ํฐ ํ˜œํƒ์ด ๋‚˜ํƒ€๋‚ฌ์Šต๋‹ˆ

Entropy Collapse: A Universal Failure Mode of Intelligent Systems

Entropy Collapse: A Universal Failure Mode of Intelligent Systems

๋ณธ ๋…ผ๋ฌธ์€ ์ง€๋Šฅ ์‹œ์Šคํ…œ์˜ ๋ณต์žกํ•œ ์—ญ๋™์„ฑ๊ณผ ๊ทธ์— ๋”ฐ๋ฅธ ๋ถ•๊ดด ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ํƒ๊ตฌํ•˜๊ณ  ์žˆ๋‹ค. ํ•™์Šต, ์กฐ์ •, ์ตœ์ ํ™”๋ฅผ ํ†ตํ•ด ์ง€๋Šฅ์ด ํ–ฅ์ƒ๋˜๋Š” ๊ฒƒ์ด ์ผ๋ฐ˜์ ์ธ ๊ด€์ ์ด๋‚˜, ์ด ๊ณผ์ •์—์„œ ๋ฐœ์ƒํ•˜๋Š” ์—ญ์„ค์ ์ธ ๋ฌธ์ œ์ , ์ฆ‰ ์‹œ์Šคํ…œ์˜ ๊ฒฝ์ง๊ณผ ์˜ˆ๊ธฐ์น˜ ์•Š์€ ์‹คํŒจ๊ฐ€ ์ œ์‹œ๋œ๋‹ค. ์ด๋Ÿฌํ•œ ํ˜„์ƒ์„ ์—”ํŠธ๋กœํ”ผ ๋ถ•๊ดด๋ผ๋Š” ๊ฐœ๋…์œผ๋กœ ์„ค๋ช…ํ•˜๋ฉฐ, ํ”ผ๋“œ๋ฐฑ ์ฆํญ์ด ์ƒˆ๋กœ์šด ์ฐฝ์ถœ์„ ๋Šฅ๊ฐ€ํ•  ๋•Œ ๋ฐœ์ƒํ•˜๋Š” ๋ณดํŽธ์ ์ธ ๋™์  ์‹คํŒจ ๋ชจ๋“œ๋ฅผ ์‹๋ณ„ํ•œ๋‹ค. ์—”ํŠธ๋กœํ”ผ ๋ถ•๊ดด๋Š” ์‹œ์Šคํ…œ์˜ ์ ์‘์„ฑ ์ฐจ์› ์ถ•์†Œ๋ฅผ ์˜๋ฏธํ•˜๋ฉฐ, ์ด๋Š” ํ™œ๋™์ด๋‚˜ ๊ทœ๋ชจ์˜ ์ƒ์‹ค๋ณด๋‹ค ๋” ๋ณต์žกํ•œ ๊ตฌ์กฐ์  ๋ณ€ํ™”๋ฅผ ๋‚˜ํƒ€๋‚ธ๋‹ค. ๋…ผ๋ฌธ์€ ์ด๋Ÿฌํ•œ ํ˜„์ƒ์ด ๋‹ค์–‘ํ•œ ๋ถ„์•ผ์—

System
Epistemoverse: Toward an AI-Driven Knowledge Metaverse for Intellectual Heritage Preservation

Epistemoverse: Toward an AI-Driven Knowledge Metaverse for Intellectual Heritage Preservation

์ด ๋…ผ๋ฌธ์€ ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(LLMs)์˜ ์—ญํ• ์— ๋Œ€ํ•œ ํ†ต๋…์„ ์žฌ๊ณ ํ•˜๊ณ , ์ด๋Ÿฌํ•œ ์‹œ์Šคํ…œ๋“ค์ด ๋‹จ์ˆœํžˆ ํ›ˆ๋ จ ๋ฐ์ดํ„ฐ๋ฅผ ๋ณต์ œํ•˜๋Š” ๊ฒƒ์ด ์•„๋‹ˆ๋ผ, ์ ์ ˆํ•œ ์ƒํ˜ธ์ž‘์šฉ์  ๋งฅ๋ฝ์—์„œ ์ƒˆ๋กœ์šด ๊ฐœ๋… ๊ตฌ์กฐ์™€ ์ฐฝ์˜์ ์ธ ์‚ฌ๊ณ ๋ฅผ ๋ฐœ์ „์‹œํ‚ฌ ์ˆ˜ ์žˆ์Œ์„ ์ž…์ฆํ•ฉ๋‹ˆ๋‹ค. ์—ฐ๊ตฌ๋Š” ์ฒ ํ•™์ž๋“ค์˜ ๋””์ง€ํ„ธ ์žฌํ˜„์ฒด๊ฐ€ ์ฐธ์—ฌํ•˜๋Š” Syntropic Counterpoints ํ”„๋กœ์ ํŠธ๋ฅผ ํ†ตํ•ด ์‹ค์ œ ์ฒ ํ•™์  ๋…ผ์Ÿ์„ ๋ถ„์„ํ•˜๊ณ , ์ด๋Ÿฌํ•œ ๋Œ€ํ™”์—์„œ ์ถ”๋ก ์˜ ์ผ๊ด€์„ฑ๊ณผ ๋ฐ˜์„ฑ์ ์ธ ์งˆ๋ฌธ์ด ์–ด๋–ป๊ฒŒ ๋ฐœ์ƒํ•˜๋Š”์ง€๋ฅผ ํƒ๊ตฌํ•ฉ๋‹ˆ๋‹ค. ์—ฐ๊ตฌํŒ€์€ ์ด๋Ÿฌํ•œ ๋ฐœ๊ฒฌ์„ ๋ฐ”ํƒ•์œผ๋กœ 'Epistemoverse'๋ผ๋Š” ๊ฐœ๋…์„ ์ œ์•ˆํ•˜๋ฉฐ, ์ด๋Š” ์ธ๊ฐ„๊ณผ ๊ธฐ

Exploring the Design Space of Transition Matching

Exploring the Design Space of Transition Matching

๋ณธ ๋…ผ๋ฌธ์€ ์ „์ด ๋งค์นญ(TM)์ด๋ผ๋Š” ์ƒˆ๋กœ์šด ์ƒ์„ฑ ๋ชจ๋ธ๋ง ํŒจ๋Ÿฌ๋‹ค์ž„์— ๋Œ€ํ•œ ๋Œ€๊ทœ๋ชจ ์—ฐ๊ตฌ๋ฅผ ์ˆ˜ํ–‰ํ•˜์˜€์Šต๋‹ˆ๋‹ค. TM์€ ๊ธฐ์กด์˜ ํ™•์‚ฐ ๋ฐ ์œ ๋™ ์ผ์น˜ ๋ชจ๋ธ, ์—ฐ์† ์ƒํƒœ ์ž๊ธฐํšŒ๊ท€ ๋ชจ๋ธ์„ ์ผ๋ฐ˜ํ™”ํ•˜๋ฉฐ, ํŠนํžˆ ๋‘ ๋ฒˆ์งธ '๋‚ด๋ถ€' ์ƒ์„ฑ ๋ชจ๋ธ์„ ์‚ฌ์šฉํ•˜์—ฌ ์ „์ด ๋‹จ๊ณ„๋ฅผ ๊ตฌํ˜„ํ•จ์œผ๋กœ์จ ๋” ํ‘œํ˜„๋ ฅ ์žˆ๋Š” ๊ฒฐ๊ณผ๋ฅผ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค. ์—ฐ๊ตฌ์—์„œ๋Š” ์‹œ๊ฐ„ ์—ฐ์† ์–‘๋ฐฉํ–ฅ ๋ณ€ํ˜•์— ์ดˆ์ ์„ ๋งž์ถ”์–ด TM ํ”„๋ ˆ์ž„์›Œํฌ์—์„œ ํ—ค๋“œ์˜ ์„ค๊ณ„, ํ•™์Šต ๋ฐ ์ƒ˜ํ”Œ๋ง์— ๋Œ€ํ•œ ์ฒด๊ณ„์ ์ธ ์กฐ์‚ฌ๋ฅผ ์ˆ˜ํ–‰ํ•˜์˜€์Šต๋‹ˆ๋‹ค. ์—ฐ๊ตฌํŒ€์€ 56๊ฐœ์˜ ๋‹ค๋ฅธ 17์–ต ๊ฐœ ํ…์ŠคํŠธ ์ด๋ฏธ์ง€ ๋ชจ๋ธ์„ ํ•™์Šตํ•˜๋Š” ํฌ๊ด„์ ์ธ ์‹คํ—˜(์ด 549๊ฐœ ๊ณ ์œ ํ•œ ํ‰๊ฐ€)์„ ํ†ตํ•ด

< Category Statistics (Total: 810) >

Electrical Engineering and Systems Science
7
General
272
General Relativity
9
HEP-EX
7
HEP-PH
12
HEP-TH
7
MATH-PH
4
NUCL-TH
1
Quantum Physics
11

Start searching

Enter keywords to search articles

โ†‘โ†“
โ†ต
ESC
โŒ˜K Shortcut