Posts

Here are all published articles, sorted by date in descending order.

808 posts total
17 pages total
PhysMaster: Building an Autonomous AI Physicist for Theoretical and Computational Physics Research

PhysMaster: Building an Autonomous AI Physicist for Theoretical and Computational Physics Research

์ด ๋…ผ๋ฌธ์€ ํ˜„์žฌ ์ธ๊ณต์ง€๋Šฅ์ด ๊ณผํ•™ ์—ฐ๊ตฌ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ํ•œ ๋‹จ๊ณ„ ๋Œ์–ด์˜ฌ๋ฆฌ๋Š” ์ค‘์š”ํ•œ ์‹œ๋„๋ฅผ ์ œ์‹œํ•œ๋‹ค. ๊ธฐ์กด์˜ AI ์—ฐ๊ตฌ๋Š” ์ฃผ๋กœ ์ •ํ˜•ํ™”๋œ ๋ฌธ์ œ ํ’€์ด ํ˜น์€ ์ •๋ณด ๊ฒ€์ƒ‰์— ๋จธ๋ฌผ๋ €์œผ๋ฉฐ, ์‹ค์ œ ๋ฌผ๋ฆฌํ•™ ์—ฐ๊ตฌ์™€ ๊ฐ™์ด ๋ณตํ•ฉ์ ์ธ ์ด๋ก ์  ์‚ฌ๊ณ ์™€ ์ˆ˜์น˜ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ๋™์‹œ์— ์š”๊ตฌํ•˜๋Š” ์ž‘์—…์„ ์ˆ˜ํ–‰ํ•˜๊ธฐ์—” ํ•œ๊ณ„๊ฐ€ ์žˆ์—ˆ๋‹ค. PHYSMASTER๋Š” ์ด๋Ÿฌํ•œ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด ๋‘ ๊ฐ€์ง€ ํ•ต์‹ฌ ์š”์†Œ๋ฅผ ๊ฒฐํ•ฉํ•œ๋‹ค. ์ฒซ์งธ, ๋Œ€๊ทœ๋ชจ ์–ธ์–ด ๋ชจ๋ธ์— ์ด๋ก ์  ์ถ”๋ก ๊ณผ ์ฝ”๋”ฉ ๋Šฅ๋ ฅ์„ ๋™์‹œ์— ๋ถ€์—ฌํ•จ์œผ๋กœ์จ, ์‚ฌ์šฉ์ž๊ฐ€ ์ œ์‹œํ•œ ๋ฌผ๋ฆฌ์  ์งˆ๋ฌธ์— ๋Œ€ํ•ด ๋…ผ๋ฆฌ์  ์ „๊ฐœ์™€ ์ˆ˜์น˜ ๊ฒ€์ฆ์„ ์—ฐ์†์ ์œผ๋กœ ์ˆ˜ํ–‰ํ•œ๋‹ค. ๋‘˜์งธ,

Reflection-Driven Control for Trustworthy Code Agents

Reflection-Driven Control for Trustworthy Code Agents

๋ณธ ๋…ผ๋ฌธ์€ ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(LLM) ๊ธฐ๋ฐ˜ ์ฝ”๋”ฉ ์—์ด์ „ํŠธ๊ฐ€ ์ง๋ฉดํ•œ ์•ˆ์ „์„ฑ ๋ฌธ์ œ๋ฅผ ๊ทผ๋ณธ์ ์œผ๋กœ ํ•ด๊ฒฐํ•˜๋ ค๋Š” ์‹œ๋„๋กœ์„œ, โ€˜๋ฐ˜์‚ฌ ๊ธฐ๋ฐ˜ ์ œ์–ด(Reflectionโ€‘Driven Control, RDC)โ€™๋ผ๋Š” ์ƒˆ๋กœ์šด ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ์ œ์•ˆํ•œ๋‹ค. ๊ธฐ์กด์˜ ์•ˆ์ „ ์ œ์–ด ๋ฐฉ์‹์€ ์ฃผ๋กœ ์‚ฌํ›„ ํ•„ํ„ฐ๋ง, ํ”„๋กฌํ”„ํŠธ ์—”์ง€๋‹ˆ์–ด๋ง, ํ˜น์€ ์™ธ๋ถ€ ๊ฒ€์ฆ ๋ชจ๋“ˆ์— ์˜์กดํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ์ ‘๊ทผ๋ฒ•์€ ๋ชจ๋ธ์ด ์ด๋ฏธ ์œ„ํ—˜ํ•œ ์ถœ๋ ฅ์„ ์ƒ์„ฑํ•œ ๋’ค์— ์ด๋ฅผ ์ฐจ๋‹จํ•˜๊ฑฐ๋‚˜ ์ˆ˜์ •ํ•˜๊ธฐ ๋•Œ๋ฌธ์—, ์œ„ํ—˜์ด ๋ฐœ์ƒํ•  ๊ฐ€๋Šฅ์„ฑ์„ ์™„์ „ํžˆ ๋ฐฐ์ œํ•˜์ง€ ๋ชปํ•œ๋‹ค. ๋ฐ˜๋ฉด RDC๋Š” ์œ„ํ—˜ ๊ฐ์ง€๋ฅผ ์ƒ์„ฑ ๊ณผ์ • ์ค‘์— ์ˆ˜ํ–‰ํ•œ๋‹ค๋Š” ์ ์—์„œ ์ฐจ๋ณ„ํ™”๋œ๋‹ค. RDC

Scalable Stewardship of an LLM-Assisted Clinical Benchmark with Physician Oversight

Scalable Stewardship of an LLM-Assisted Clinical Benchmark with Physician Oversight

๋ณธ ์—ฐ๊ตฌ๋Š” ์ž„์ƒ ๋ฐ์ดํ„ฐ ์ž๋™ํ™”์— LLM์„ ์ ์šฉํ•จ์— ์žˆ์–ด ๊ฐ€์žฅ ํ•ต์‹ฌ์ ์ธ ๋ฌธ์ œ์ธ ๋ผ๋ฒจ ์‹ ๋ขฐ์„ฑ์„ ์ฒด๊ณ„์ ์œผ๋กœ ๊ฒ€์ฆํ•œ๋‹ค๋Š” ์ ์—์„œ ํ•™์ˆ ์ ยท์‹ค๋ฌด์  ์˜์˜๋ฅผ ๊ฐ€์ง„๋‹ค. ๊ธฐ์กด ์˜๋ฃŒ ์ ์ˆ˜๋Š” ์ž„์ƒ์˜์˜ ๊ฒฝํ—˜๊ณผ ํŒ๋‹จ์— ๊ธฐ๋ฐ˜ํ•ด ์ˆ˜์ž‘์—…์œผ๋กœ ์‚ฐ์ถœ๋˜์—ˆ์œผ๋ฉฐ, ์ด๋Š” ์ •ํ™•๋„๋Š” ๋†’์ง€๋งŒ ์‹œ๊ฐ„๊ณผ ์ธ๋ ฅ ๋น„์šฉ์ด ํฌ๊ฒŒ ์†Œ์š”๋˜๋Š” ๋‹จ์ ์ด ์žˆ๋‹ค. MedCalcโ€‘Bench๋Š” ์ด๋Ÿฌํ•œ ์ž‘์—…์„ LLM์œผ๋กœ ๋Œ€์ฒดํ•˜๋ ค๋Š” ์‹œ๋„๋กœ, ๋Œ€๊ทœ๋ชจ ๋ฒค์น˜๋งˆํฌ๋ฅผ ์ œ๊ณตํ•จ์œผ๋กœ์จ ์—ฐ๊ตฌ์ž๋“ค์ด ๋ชจ๋ธ ์„ฑ๋Šฅ์„ ๋น„๊ตํ•  ์ˆ˜ ์žˆ๋Š” ๊ธฐ๋ฐ˜์„ ๋งˆ๋ จํ–ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๋ผ๋ฒจ ์ž์ฒด๋ฅผ LLM์ด ์ƒ์„ฑํ–ˆ๋‹ค๋Š” ์‚ฌ์‹ค์€ โ€˜๋ผ๋ฒจ๋ง ํŽธํ–ฅโ€™์ด๋ผ๋Š” ์‹ฌ๊ฐํ•œ ์œ„ํ—˜์„ ๋‚ด

Signal-SGN++: Topology-Enhanced Time-Frequency Spiking Graph Network for Skeleton-Based Action Recognition

Signal-SGN++: Topology-Enhanced Time-Frequency Spiking Graph Network for Skeleton-Based Action Recognition

์ด ๋…ผ๋ฌธ์€ ์‹ ํ˜ธ SGN++๋ผ๋Š” ์ƒˆ๋กœ์šด ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์•ˆํ•˜์—ฌ ๊ทธ๋ž˜ํ”„ ์ปจ๋ณผ๋ฃจ์…˜ ๋„คํŠธ์›Œํฌ(GCNs)์™€ ์ŠคํŒฝํ‚น ์‹ ๊ฒฝ๋ง(SNNs)์˜ ์žฅ์ ์„ ๊ฒฐํ•ฉํ•˜๊ณ ์ž ํ•ฉ๋‹ˆ๋‹ค. GCNs๋Š” ๊ด€์ ˆ ๊ตฌ์กฐ๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ๋ชจ๋ธ๋งํ•  ์ˆ˜ ์žˆ์ง€๋งŒ, ์‹ค์ˆ˜ ๊ณ„์‚ฐ์— ๋”ฐ๋ฅธ ์—๋„ˆ์ง€ ์†Œ๋น„๊ฐ€ ๋†’์€ ๋ฐ˜๋ฉด, SNNs๋Š” ์—๋„ˆ์ง€ ํšจ์œจ์ ์ด์ง€๋งŒ ์ธ๊ฐ„ ๋™์ž‘์˜ ๋ณต์žกํ•œ ์‹œ๊ฐ„ ์ฃผํŒŒ์ˆ˜ ๋ฐ ์œ„์ƒ ์˜์กด์„ฑ์„ ํฌ์ฐฉํ•˜๋Š” ๋ฐ ํ•œ๊ณ„๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค. ์‹ ํ˜ธ SGN++์€ ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด 1D Spiking Graph Convolution(1D SGC)๊ณผ Frequency Spiking Convolution(FSC)

Network
WorldWarp: Propagating 3D Geometry with Asynchronous Video Diffusion

WorldWarp: Propagating 3D Geometry with Asynchronous Video Diffusion

WorldWarp ๋…ผ๋ฌธ์€ ์˜์ƒ ํ•ฉ์„ฑยท๋ณด์ • ๋ถ„์•ผ์—์„œ ์žฅ๊ธฐ๊ฐ„ ํ•ด๊ฒฐ๋˜์ง€ ์•Š์•„ ์˜จยท์˜คํ”„๋ผ์ธ ์ปค๋ฎค๋‹ˆํ‹ฐ์—์„œ ๊พธ์ค€ํžˆ ๋…ผ์˜๋ผ ์˜จ โ€˜์›Œํ•‘์— ์˜ํ•œ ๊ตฌ๋ฉโ€™ ๋ฌธ์ œ๋ฅผ ๊ทผ๋ณธ์ ์œผ๋กœ ํ•ด๊ฒฐํ•˜๋ ค๋Š” ์‹œ๋„๋กœ ํ‰๊ฐ€ํ•  ์ˆ˜ ์žˆ๋‹ค. ์ „ํ†ต์ ์ธ ์ •์  ์›Œํ•‘์€ ์ž…๋ ฅ ํ”„๋ ˆ์ž„์„ 3D ๊ณต๊ฐ„์— ํˆฌ์‚ฌํ•œ ๋’ค, ์นด๋ฉ”๋ผ ๋ณ€ํ™˜์„ ์ ์šฉํ•ด ์ƒˆ๋กœ์šด ์‹œ์ (view)์„ ์ƒ์„ฑํ•œ๋‹ค. ์ด ๊ณผ์ •์—์„œ ๊ฐ€๋ ค์ง„ ์˜์—ญ(occlusion)์ด๋‚˜ ์‹œ์  ๋ณ€ํ™”์— ๋”ฐ๋ผ ๋“œ๋Ÿฌ๋‚˜์ง€ ์•Š์•˜๋˜ ๋ฐฐ๊ฒฝยท๊ตฌ์กฐ๊ฐ€ ๋‚˜ํƒ€๋‚˜๋ฉด, ์›๋ณธ ์˜์ƒ์—๋Š” ํ•ด๋‹น ํ”ฝ์…€ ์ •๋ณด๊ฐ€ ์กด์žฌํ•˜์ง€ ์•Š์œผ๋ฏ€๋กœ โ€˜holeโ€™์ด ๋ฐœ์ƒํ•œ๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค์€ ์ธํŽ˜์ธํŒ…(inpainting)์ด๋‚˜

$M^3-Verse$: A 'Spot the Difference' Challenge for Large Multimodal Models

$M^3-Verse$: A 'Spot the Difference' Challenge for Large Multimodal Models

์ด ๋…ผ๋ฌธ์€ ์ธ๊ณต์ง€๋Šฅ, ํŠนํžˆ ๋Œ€ํ˜• ๋ฉ€ํ‹ฐ๋ชจ๋‹ฌ ๋ชจ๋ธ(LMM)์ด โ€œ์ƒํƒœ ๋ณ€ํ™”(state transition)โ€๋ฅผ ์–ผ๋งˆ๋‚˜ ์ž˜ ์ดํ•ดํ•˜๊ณ  ์ถ”๋ก ํ•  ์ˆ˜ ์žˆ๋Š”์ง€๋ฅผ ํ‰๊ฐ€ํ•˜๊ธฐ ์œ„ํ•œ ์ƒˆ๋กœ์šด ๋ฒค์น˜๋งˆํฌ๋ฅผ ์ œ์•ˆํ•œ๋‹ค. ๊ธฐ์กด์˜ ํ‰๊ฐ€ ์ฒด๊ณ„๋Š” ๋Œ€๋ถ€๋ถ„ ์ •์ ์ธ ์ƒํ™ฉ, ์ฆ‰ ํ•˜๋‚˜์˜ ์ด๋ฏธ์ง€ ํ˜น์€ ์˜์ƒ ํ”„๋ ˆ์ž„์— ๋Œ€ํ•œ ์งˆ๋ฌธ์— ๊ตญํ•œ๋œ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด โ€œ์นจ๋Œ€ ์˜† ์„œ๋ž์ด ์—ด๋ ค ์žˆ๋‚˜์š”?โ€์™€ ๊ฐ™์€ ์งˆ๋ฌธ์— ๋Œ€ํ•ด ๋ชจ๋ธ์ด โ€œ์—ด๋ฆผโ€ ํ˜น์€ โ€œ๋‹ซํž˜โ€์ด๋ผ๋Š” ๋‹จ์ผ ๋‹ต๋ณ€์„ ์ œ์‹œํ•˜๋„๋ก ์š”๊ตฌํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ์ ‘๊ทผ์€ ์ธ๊ฐ„์ด ์ผ์ƒ ์ƒํ™œ์—์„œ ๊ฒฝํ—˜ํ•˜๋Š” โ€œ์‹œ๊ฐ„์— ๋”ฐ๋ฅธ ๋ณ€ํ™”โ€๋ฅผ ํฌ์ฐฉํ•˜์ง€ ๋ชปํ•œ๋‹ค. ์ธ๊ฐ„์€ ๋™์ผํ•œ ๋ฌผ์ฒด๊ฐ€ ์‹œ๊ฐ„

Model
Adaptive Accountability in Networked MAS: Tracing and Mitigating Emergent Norms at Scale

Adaptive Accountability in Networked MAS: Tracing and Mitigating Emergent Norms at Scale

์ด ๋…ผ๋ฌธ์€ ๊ธ‰๊ฒฉํžˆ ํ™•๋Œ€๋˜๋Š” ๋‹ค์ค‘ ์—์ด์ „ํŠธ ์‹œ์Šคํ…œ(MAS)์ด ์‚ฌํšŒยท๊ฒฝ์ œ์  ์ธํ”„๋ผ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ๊ณ ๋ คํ•  ๋•Œ, ๊ธฐ์กด์˜ ์ค‘์•™์ง‘์ค‘์‹ ๊ทœ์ œ๋‚˜ ์‚ฌํ›„ ๊ฐ์‚ฌ๋งŒ์œผ๋กœ๋Š” ์‹œ์Šคํ…œ ๋‚ด๋ถ€์—์„œ ๋ฐœ์ƒํ•˜๋Š” ๋น„์ •์ƒ์ ยท๋น„์œค๋ฆฌ์  ํ–‰๋™์„ ์–ต์ œํ•˜๊ธฐ ์–ด๋ ต๋‹ค๋Š” ๋ฌธ์ œ์˜์‹์„ ๋ฐ”ํƒ•์œผ๋กœ ์—ฐ๊ตฌ๊ฐ€ ์ง„ํ–‰๋˜์—ˆ๋‹ค. ์ €์ž๋“ค์€ ์ฑ…์ž„ ํ๋ฆ„์„ โ€˜๋ผ์ดํ”„์‚ฌ์ดํดโ€‘์ธ์‹ ๊ฐ์‚ฌ ์›์žฅ(lifecycleโ€‘aware audit ledger)โ€™์— ๊ธฐ๋กํ•จ์œผ๋กœ์จ, ๊ฐ ์—์ด์ „ํŠธ๊ฐ€ ์–ธ์ œ, ์–ด๋–ค ์˜์‚ฌ๊ฒฐ์ •์„ ๋‚ด๋ ธ๋Š”์ง€๋ฅผ ํˆฌ๋ช…ํ•˜๊ฒŒ ์ถ”์ ํ•œ๋‹ค. ์ด ์›์žฅ์€ ๋ธ”๋ก์ฒด์ธ๊ณผ ์œ ์‚ฌํ•œ ๋ถˆ๋ณ€์„ฑ์„ ๊ฐ–์ถ”๋ฉด์„œ๋„, ์—์ด์ „ํŠธ ๊ฐ„ ํ†ต์‹  ์ง€์—ฐ์ด๋‚˜ ๋ถ€๋ถ„ ๊ด€์ธก์„ฑ

Network
ChronoDreamer: Action-Conditioned World Model as an Online Simulator for Robotic Planning

ChronoDreamer: Action-Conditioned World Model as an Online Simulator for Robotic Planning

ChronoDreamer๋Š” ๋กœ๋ด‡ ๋งค๋‹ˆํ“ฐ๋ ˆ์ด์…˜ ๋ถ„์•ผ์—์„œ ๊ฐ€์žฅ ๋‚œํ•ดํ•œ ๋ฌธ์ œ ์ค‘ ํ•˜๋‚˜์ธ โ€˜์ ‘์ด‰ ์˜ˆ์ธกโ€™์„ ์‹œ๊ฐโ€‘์–ธ์–ดโ€‘๋ฌผ๋ฆฌ ํ†ตํ•ฉ ํ”„๋ ˆ์ž„์›Œํฌ๋กœ ํ’€์–ด๋‚ธ ์ ์ด ํ˜์‹ ์ ์ด๋‹ค. ๊ธฐ์กด ์„ธ๊ณ„ ๋ชจ๋ธ์€ ์ฃผ๋กœ ์ด๋ฏธ์ง€์™€ ๊ด€์ ˆ ์ƒํƒœ๋งŒ์„ ์ด์šฉํ•ด ๋ฏธ๋ž˜ ํ”„๋ ˆ์ž„์„ ์˜ˆ์ธกํ–ˆ์ง€๋งŒ, ์ ‘์ด‰ ์ •๋ณด๊ฐ€ ๊ฒฐ์—ฌ๋ผ ์‹ค์ œ ๋ฌผ๋ฆฌ์  ์ƒํ˜ธ์ž‘์šฉ์„ ์•ˆ์ „ํ•˜๊ฒŒ ๊ณ„ํšํ•˜๊ธฐ ์–ด๋ ค์› ๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ์ ‘์ด‰์„ โ€˜๊นŠ์ด ๊ฐ€์ค‘ ๊ฐ€์šฐ์‹œ์•ˆ ์Šคํ”Œ๋žซโ€™์ด๋ผ๋Š” 2D ์ด๋ฏธ์ง€ ํ˜•ํƒœ๋กœ ๋ณ€ํ™˜ํ•จ์œผ๋กœ์จ, ๊ธฐ์กด ๋น„์ „ ๋ฐฑ๋ณธ(ViT ๋“ฑ)๊ณผ ์ž์—ฐ์Šค๋Ÿฝ๊ฒŒ ๊ฒฐํ•ฉํ•œ๋‹ค. ์ด ๋ฐฉ์‹์€ 3D ํž˜ ๋ฒกํ„ฐ๋ฅผ ์นด๋ฉ”๋ผ ์ขŒํ‘œ๊ณ„์— ํˆฌ์‚ฌํ•ด ์‹œ๊ฐ์  ํŠน์ง•๊ณผ ๋™์‹œ ํ•™์Šต์ด ๊ฐ€๋Šฅํ•˜๋„๋ก

Model
Commercial Vehicle Braking Optimization: A Robust SIFT-Trajectory Approach

Commercial Vehicle Braking Optimization: A Robust SIFT-Trajectory Approach

์ด ์—ฐ๊ตฌ๋Š” ๊ธฐ์กด ์ƒ์šฉ ์ฐจ๋Ÿ‰ AEB ์‹œ์Šคํ…œ์ด ์ €์† ์ฃผํ–‰ ๊ตฌ๊ฐ„์—์„œ CAN ๋ฒ„์Šค ์‹ ํ˜ธ์˜ ๋…ธ์ด์ฆˆ์™€ ์ง€์—ฐ์œผ๋กœ ์ธํ•ด ์ฐจ๋Ÿ‰์ด ์ •์ง€ํ–ˆ์Œ์—๋„ โ€œ์ œ๋กœ์Šคํ”ผ๋“œโ€ ์ƒํƒœ๋ฅผ ์˜ค์ธํ•˜๊ณ  ๋น„์ •์ƒ์ ์ธ ์ œ๋™์„ ๊ฐ€ํ•˜๋Š” ๋ฌธ์ œ๋ฅผ ๊ทผ๋ณธ์ ์œผ๋กœ ํ•ด๊ฒฐํ•˜๊ณ ์ž ํ•œ๋‹ค. ํ•ต์‹ฌ ์•„์ด๋””์–ด๋Š” ์ฐจ๋Ÿ‰ ์ฃผ๋ณ€์„ ์‹ค์‹œ๊ฐ„์œผ๋กœ ๋ชจ๋‹ˆํ„ฐ๋งํ•˜๋Š” ๋ธ”๋ผ์ธ๋“œ ์ŠคํŒŸ ์นด๋ฉ”๋ผ ์˜์ƒ์„ ํ™œ์šฉํ•ด, ์ฐจ๋Ÿ‰ ์ž์ฒด์˜ ์›€์ง์ž„์„ ์ง์ ‘ ์ถ”์ •ํ•˜๋Š” ๊ฒƒ์ด๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ์ €์ „๋ ฅ ๊ณ ์„ฑ๋Šฅ ์—ฃ์ง€ ์ปดํ“จํŒ… ๋ณด๋“œ์ธ NVIDIA Jetson AGX Xavier๋ฅผ ์„ ํƒํ–ˆ์œผ๋ฉฐ, ์ด๋Š” 8์ฝ”์–ด CPU์™€ 512โ€‘์ฝ”์–ด GPU๋ฅผ ๊ฐ–์ถ”์–ด ๋ณต์žกํ•œ ์ด๋ฏธ์ง€ ์ฒ˜๋ฆฌ ํŒŒ์ดํ”„๋ผ์ธ์„

Hyperbolic Graph Embeddings: a Survey and an Evaluation on Anomaly Detection

Hyperbolic Graph Embeddings: a Survey and an Evaluation on Anomaly Detection

ํ•˜์ดํผ๋ณผ๋ฆญ ๊ทธ๋ž˜ํ”„ ์ž„๋ฒ ๋”ฉ์€ ์ตœ๊ทผ ๋ณต์žกํ•˜๊ณ  ๋น„์œ ํด๋ฆฌ๋“œ์ ์ธ ๋„คํŠธ์›Œํฌ ๊ตฌ์กฐ๋ฅผ ๋ชจ๋ธ๋งํ•˜๋Š” ๋ฐ ์ฃผ๋ชฉ๋ฐ›๊ณ  ์žˆ๋‹ค. ์ „ํ†ต์ ์ธ ์œ ํด๋ฆฌ๋“œ ์ž„๋ฒ ๋”ฉ์€ ๋…ธ๋“œ ๊ฐ„ ๊ฑฐ๋ฆฌ์™€ ๊ด€๊ณ„๋ฅผ ํ‰๋ฉด ํ˜น์€ ์ €์ฐจ์› ์œ ํด๋ฆฌ๋“œ ๊ณต๊ฐ„์— ํˆฌ์‚ฌํ•จ์œผ๋กœ์จ ํŠธ๋ฆฌ ๊ตฌ์กฐ๋‚˜ ์Šค์ผ€์ผโ€‘ํ”„๋ฆฌ ๋„คํŠธ์›Œํฌ์™€ ๊ฐ™์€ ๊ณ ์ฐจ์›์  ๊ณ„์ธต์„ฑ์„ ์ถฉ๋ถ„ํžˆ ํ‘œํ˜„ํ•˜์ง€ ๋ชปํ•œ๋‹ค. ๋ฐ˜๋ฉด, ํ•˜์ดํผ๋ณผ๋ฆญ ๊ณต๊ฐ„์€ ์ง€์ˆ˜์ ์œผ๋กœ ํ™•์žฅ๋˜๋Š” ๋ณผ๋ฅจ ํŠน์„ฑ์„ ๊ฐ€์ง€๊ณ  ์žˆ์–ด, ๋™์ผํ•œ ์ฐจ์› ๋‚ด์—์„œ ๋” ๋งŽ์€ ๋…ธ๋“œ๋ฅผ ๊ตฌ๋ถ„ํ•  ์ˆ˜ ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ํŠน์„ฑ์€ ํŠนํžˆ ์ด์ƒ ํƒ์ง€์™€ ๊ฐ™์ด ์ •์ƒ ํŒจํ„ด๊ณผ ๋น„์ •์ƒ ํŒจํ„ด ์‚ฌ์ด์˜ ๋ฏธ์„ธํ•œ ์ฐจ์ด๋ฅผ ํฌ์ฐฉํ•ด์•ผ ํ•˜๋Š” ์ž‘์—…์— ์œ ๋ฆฌํ•˜๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š”

Detection
A Formal Descriptive Language for Learning Dynamics: A Five-Layer Structural Coordinate System

A Formal Descriptive Language for Learning Dynamics: A Five-Layer Structural Coordinate System

์ด ๋…ผ๋ฌธ์ด ์ œ์‹œํ•˜๋Š” ๋‹ค์ธต ํ˜•์‹ ๊ธฐ์ˆ  ํ”„๋ ˆ์ž„์›Œํฌ๋Š” ํ•™์Šต ๊ณผ์ •์„ โ€˜๊ธฐ์ˆ โ€™ํ•œ๋‹ค๋Š” ์ ์—์„œ ๊ธฐ์กด์˜ โ€˜์˜ˆ์ธกยท์ตœ์ ํ™”โ€™ ์ค‘์‹ฌ ๋ชจ๋ธ๊ณผ ๊ทผ๋ณธ์ ์œผ๋กœ ์ฐจ๋ณ„ํ™”๋œ๋‹ค. ํ•™์Šต์€ ๋‹จ์ˆœํžˆ ์„ฑ๊ณผ๋ฅผ ๋†’์ด๋Š” ๋ชฉํ‘œ ํ•จ์ˆ˜์˜ ์ตœ์†Œํ™”๊ฐ€ ์•„๋‹ˆ๋ผ, ํ•™์Šต์ž ๋‚ด๋ถ€์˜ ์ƒํƒœ๊ฐ€ ์™ธ๋ถ€ ์ž๊ทน๊ณผ ์–ด๋–ป๊ฒŒ ์ƒํ˜ธ์ž‘์šฉํ•˜๋ฉด์„œ ๋ณ€ํ˜•๋˜๋Š”๊ฐ€์— ๋Œ€ํ•œ ์„œ์ˆ ์  ์ดํ•ด๊ฐ€ ํ•„์š”ํ•˜๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ์ €์ž๋Š” ํ•™์Šต์„ ๋„ค ๊ฐœ์˜ ๊ธฐ๋Šฅ์  ์ธตโ€”๋ถ€ํ•˜ ์ƒ์„ฑ์ธต, ๋‚ด๋ถ€ ๋ณ€ํ™˜์ธต, ๊ด€์ฐฐยท์ธก์ •์ธต, ํ‰๊ฐ€ยท์กฐ์ ˆ์ธตโ€”์œผ๋กœ ๋ถ„๋ฆฌํ•˜๊ณ , ๊ฐ ์ธต์ด ๋‹ด๋‹นํ•˜๋Š” ์ฑ…์ž„์„ ๋ช…ํ™•ํžˆ ์ •์˜ํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ ๋ถ€ํ•˜ ์ƒ์„ฑ์ธต์€ ์™ธ๋ถ€ ๊ณผ์ œยท์ž๋ฃŒ๊ฐ€ ํ•™์Šต์ž์—๊ฒŒ ์ œ๊ณต๋  ๋•Œ ๋ฐœ์ƒํ•˜๋Š” ์ธ์ง€ ๋ถ€

Learning System
An Agentic AI Framework for Training General Practitioner Student Skills

An Agentic AI Framework for Training General Practitioner Student Skills

๋ณธ ์—ฐ๊ตฌ๋Š” ์˜๋ฃŒ ๊ต์œก ๋ถ„์•ผ์—์„œ ๊ฐ€์ƒ ํ™˜์ž ์‹œ๋ฎฌ๋ ˆ์ด์…˜(VSP)์˜ ์‹ค์šฉ์„ฑ์„ ํฌ๊ฒŒ ํ–ฅ์ƒ์‹œํ‚ฌ ์ˆ˜ ์žˆ๋Š” ์ƒˆ๋กœ์šด ํŒจ๋Ÿฌ๋‹ค์ž„์„ ์ œ์‹œํ•œ๋‹ค. ๊ธฐ์กด VSP๋Š” ์‹ค์ œ ํ™˜์ž๋ฅผ ๋Œ€์ฒดํ•˜๊ธฐ ์œ„ํ•ด ๊ณ ๋„๋กœ ์ •๊ตํ•œ ์‹œ๋‚˜๋ฆฌ์˜ค์™€ ํ”ผ๋“œ๋ฐฑ์„ ์ œ๊ณตํ•ด์•ผ ํ•จ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ , ์ธ๋ ฅยท์‹œ๊ฐ„ยท๋น„์šฉ ์ธก๋ฉด์—์„œ ํ•œ๊ณ„๊ฐ€ ์žˆ์—ˆ๋‹ค. ํŠนํžˆ, ์˜๋ฃŒ ์ •ํ™•์„ฑ ๋ถ€์กฑ๊ณผ ์—ญํ•  ์—ฐ๊ธฐ์˜ ์ผ๊ด€์„ฑ ๊ฒฐ์—ฌ๋Š” ํ•™์Šต ํšจ๊ณผ๋ฅผ ์ €ํ•ดํ•˜๋Š” ์ฃผ์š” ์š”์ธ์œผ๋กœ ์ง€์ ๋˜์–ด ์™”๋‹ค. ์ด ๋…ผ๋ฌธ์ด ์ œ์•ˆํ•˜๋Š” โ€˜์—์ด์ „ํŠธ ๊ธฐ๋ฐ˜ ํ”„๋ ˆ์ž„์›Œํฌโ€™๋Š” ์„ธ ๊ฐ€์ง€ ํ•ต์‹ฌ ๋ชจ๋“ˆ์„ ๋ช…ํ™•ํžˆ ๋ถ„๋ฆฌํ•œ๋‹ค. ์ฒซ์งธ, ๊ตฌ์„ฑ ๊ฐ€๋Šฅํ•œ ์ฆ๊ฑฐ ๊ธฐ๋ฐ˜ ์‚ฌ๋ก€ ์ƒ์„ฑ ๋ชจ๋“ˆ์€ ์ตœ์‹  ์ž„์ƒ ๊ฐ€์ด๋“œ๋ผ์ธ๊ณผ ๋ฐ์ด

Framework
LLaViDA: A Large Language Vision Driving Assistant for Explicit Reasoning and Enhanced Trajectory Planning

LLaViDA: A Large Language Vision Driving Assistant for Explicit Reasoning and Enhanced Trajectory Planning

LLaViDA๋Š” ์ž์œจ์ฃผํ–‰ ๋ถ„์•ผ์—์„œ โ€œ์‹œ๊ฐโ€‘์–ธ์–ด ํ†ตํ•ฉโ€์ด๋ผ๋Š” ์ƒˆ๋กœ์šด ํŒจ๋Ÿฌ๋‹ค์ž„์„ ์ œ์‹œํ•œ๋‹ค๋Š” ์ ์—์„œ ํ•™์ˆ ์ ยท์‚ฐ์—…์  ์˜๋ฏธ๊ฐ€ ํฌ๋‹ค. ๊ธฐ์กด์˜ ์—”๋“œโ€‘ํˆฌโ€‘์—”๋“œ(Endโ€‘toโ€‘End) ์ ‘๊ทผ ๋ฐฉ์‹์€ ์นด๋ฉ”๋ผ ์ด๋ฏธ์ง€ ํ˜น์€ ๋ผ์ด๋‹ค ํฌ์ธํŠธ ํด๋ผ์šฐ๋“œ์™€ ๊ฐ™์€ ์›์‹œ ์„ผ์„œ ๋ฐ์ดํ„ฐ๋ฅผ ์ง์ ‘ ๋„คํŠธ์›Œํฌ์— ์ž…๋ ฅํ•ด ๊ถค์ ์„ ์ถœ๋ ฅํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฐฉ์‹์€ ๋Œ€๊ทœ๋ชจ ๋ผ๋ฒจ๋ง๋œ ์ฃผํ–‰ ๋ฐ์ดํ„ฐ๊ฐ€ ์ถฉ๋ถ„ํžˆ ํ™•๋ณด๋œ ๊ฒฝ์šฐ์—๋Š” ๊ฐ•๋ ฅํ•˜์ง€๋งŒ, ๋ฐ์ดํ„ฐ ๋ถ„ํฌ๊ฐ€ ๊ธ‰๊ฒฉํžˆ ๋ณ€ํ•˜๋Š” ์•…์ฒœํ›„, ์•ผ๊ฐ„, ๋ˆˆ๋ณด๋ผ ๋“ฑ์—์„œ๋Š” ์ผ๋ฐ˜ํ™”๊ฐ€ ์–ด๋ ค์›Œ์ง„๋‹ค. ํŠนํžˆ ์ธ๊ฐ„ ์šด์ „์ž์˜ ๋ฏธ๋ฌ˜ํ•œ ํ–‰๋™(์˜ˆ: ๊ธ‰์ •๊ฑฐ, ์ฐจ์„  ๋ณ€๊ฒฝ ์˜๋„)์ด๋‚˜ ๋ณตํ•ฉ ๊ต์ฐจ๋กœ์™€ ๊ฐ™

MatSpray: Fusing 2D Material World Knowledge on 3D Geometry

MatSpray: Fusing 2D Material World Knowledge on 3D Geometry

MatSpray๋Š” ์ตœ๊ทผ ๊ธ‰๋ถ€์ƒํ•œ 2์ฐจ์› ํ™•์‚ฐ ๋ชจ๋ธ์˜ ํ’๋ถ€ํ•œ ์žฌ์งˆ ํ‘œํ˜„ ๋Šฅ๋ ฅ์„ 3์ฐจ์› ๊ฐ€์šฐ์‹œ์•ˆ ์Šคํ”Œ๋ž˜ํŒ… ํŒŒ์ดํ”„๋ผ์ธ์— ์ ‘๋ชฉํ•จ์œผ๋กœ์จ, ๊ธฐ์กด 3D ์žฌ๊ตฌ์„ฑ ๋ฐฉ๋ฒ•์ด ์ง๋ฉดํ•˜๋˜ ๋ฌผ๋ฆฌ ๊ธฐ๋ฐ˜ ๋ Œ๋”๋ง(PBR) ์žฌ์งˆ์˜ ์ •ํ™•๋„์™€ ์ผ๊ด€์„ฑ ๋ฌธ์ œ๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ํ•ด๊ฒฐํ•œ๋‹ค. ์ฒซ ๋‹จ๊ณ„์—์„œ๋Š” ๋‹ค์ค‘ ์‹œ์  ์ด๋ฏธ์ง€๋กœ๋ถ€ํ„ฐ ๊ฐ ์‹œ์ ๋งˆ๋‹ค ๋ฒ ์ด์Šค ์ปฌ๋Ÿฌ, ๋Ÿฌํ”„๋‹ˆ์Šค, ๋ฉ”ํƒˆ๋ฆญ๊ณผ ๊ฐ™์€ PBR ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ์ถ”์ถœํ•œ๋‹ค. ์—ฌ๊ธฐ์„œ ์ค‘์š”ํ•œ ์ ์€ โ€˜any 2D diffusionโ€‘based material modelโ€™์„ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ์ ์ด๋‹ค. ์ฆ‰, Stable Diffusion, Imagen ๋“ฑ ์ตœ์‹ 

Prediction and Forecast of Short-Term Drought Impacts Using Machine Learning to Support Mitigation and Adaptation Efforts

Prediction and Forecast of Short-Term Drought Impacts Using Machine Learning to Support Mitigation and Adaptation Efforts

๋ณธ ๋…ผ๋ฌธ์€ ์ตœ๊ทผ ์ฆ๊ฐ€ํ•˜๋Š” ๊ฑด์กฐ์˜ ์‹ฌ๊ฐ์„ฑ๊ณผ ๋นˆ๋„์— ๋Œ€์‘ํ•˜๊ธฐ ์œ„ํ•ด ๋จธ์‹ ๋Ÿฌ๋‹ ๊ธฐ๋ฒ•์„ ํ™œ์šฉํ•œ ๊ฑด์กฐ ์˜ํ–ฅ ์˜ˆ์ธก ๋ชจ๋ธ ๊ฐœ๋ฐœ์— ์ดˆ์ ์„ ๋งž์ถ”๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ํŠนํžˆ, Drought Severity and Coverage Index (DSCI)์™€ Evaporative Stress Index (ESI)๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๊ฑด์กฐ์˜ ์˜ํ–ฅ์„ ์˜ˆ์ธกํ•˜๊ณ ์ž ํ•˜์˜€์Šต๋‹ˆ๋‹ค. ์—ฐ๊ตฌ๋Š” 2005๋…„๋ถ€ํ„ฐ 2024๋…„๊นŒ์ง€์˜ ๋ฐ์ดํ„ฐ๋ฅผ ํ™œ์šฉํ•˜์˜€์œผ๋ฉฐ, Fire์™€ Relief ์˜์—ญ์—์„œ ๊ฐ€์žฅ ๋†’์€ ์˜ˆ์ธก ์ •ํ™•๋„๋ฅผ ๋ณด์˜€๊ณ , Agriculture์™€ Water ๋ถ„์•ผ์—์„œ๋Š” ๊ทธ ๋‹ค์Œ์œผ๋กœ ๋†’์€ ์ •ํ™•๋„๊ฐ€ ๋‚˜ํƒ€๋‚ฌ์Šต๋‹ˆ

Learning
Revisiting the Learning Objectives of Vision-Language Reward Models

Revisiting the Learning Objectives of Vision-Language Reward Models

์ด ๋…ผ๋ฌธ์€ ์ตœ๊ทผ ๊ธ‰๋ถ€์ƒํ•˜๊ณ  ์žˆ๋Š” ๋Œ€์กฐ์  ๋น„์ „โ€‘์–ธ์–ด ๋ชจ๋ธ(VLM)์„ ๋ณด์ƒ ํ•จ์ˆ˜ ํ•™์Šต์— ์ ์šฉํ•˜๋Š” ์—ฐ๊ตฌ ํ๋ฆ„์„ ๋น„ํŒ์ ์œผ๋กœ ์žฌ์กฐ๋ช…ํ•œ๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค์€ VLM์„ ํ™œ์šฉํ•ด ์ธ๊ฐ„ ๋ผ๋ฒจ๋ง ์—†์ด๋„ ๋กœ๋ด‡ ์ œ์–ด๋‚˜ ๊ฐ•ํ™”ํ•™์Šต ํ™˜๊ฒฝ์—์„œ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ๋Š” ํ’๋ถ€ํ•œ ๋ณด์ƒ ์‹ ํ˜ธ๋ฅผ ์ƒ์„ฑํ•œ๋‹ค๋Š” ์ ์—์„œ ํฐ ๊ธฐ๋Œ€๋ฅผ ๋ชจ์•˜๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ด๋Ÿฌํ•œ ์—ฐ๊ตฌ๋“ค์€ ์„œ๋กœ ๋‹ค๋ฅธ ์‚ฌ์ „ํ•™์Šต ๋ฐ์ดํ„ฐ์…‹(์˜ˆ: CLIP, ALIGN), ์„œ๋กœ ๋‹ค๋ฅธ ๋„คํŠธ์›Œํฌ ์•„ํ‚คํ…์ฒ˜(ResNet, ViT), ๊ทธ๋ฆฌ๊ณ  ์„œ๋กœ ๋‹ค๋ฅธ ํŒŒ์ธํŠœ๋‹ ํ”„๋กœํ† ์ฝœ์„ ์‚ฌ์šฉํ–ˆ๊ธฐ ๋•Œ๋ฌธ์—, ์‹ค์ œ๋กœ ์–ด๋А ํ•™์Šต ๋ชฉํ‘œ๊ฐ€ ์„ฑ๋Šฅ ํ–ฅ์ƒ์— ๊ธฐ์—ฌํ–ˆ๋Š”์ง€๋ฅผ ๋ช…ํ™•ํžˆ ํŒŒ์•…ํ•˜

Learning Model
What is Stochastic Supervenience?

What is Stochastic Supervenience?

์ด ๋…ผ๋ฌธ์€ ์ƒ์œ„์˜์กด์„ฑ ๊ฐœ๋…์„ ํ™•๋ฅ ๋ก ์  ๊ด€์ ์œผ๋กœ ํ™•์žฅํ•˜๊ณ , ์ด๋ฅผ ํ†ตํ•ด ํ˜„๋Œ€ ๊ณผํ•™์—์„œ ๋ณต์žกํ•œ ์‹œ์Šคํ…œ์˜ ๋™์ž‘์„ ๋” ์ •ํ™•ํ•˜๊ฒŒ ์„ค๋ช…ํ•˜๋ ค๋Š” ์‹œ๋„๋ฅผ ๋ณด์—ฌ์ค๋‹ˆ๋‹ค. ๊ธฐ์กด์˜ ์ƒ์œ„์˜์กด์„ฑ ์ด๋ก ์€ ์ฃผ๋กœ ๊ฒฐ์ •๋ก ์ ์ธ ๊ด€์ ์„ ์ทจํ•ด์™”์ง€๋งŒ, ์‹ค์ œ ์ž์—ฐ ํ˜„์ƒ๊ณผ ์ธ๊ณต ์ง€๋Šฅ ๋ถ„์•ผ์—์„œ๋Š” ํ™•๋ฅ ์  ์š”์†Œ๊ฐ€ ๋งค์šฐ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•ฉ๋‹ˆ๋‹ค. ์ด๋ฅผ ๋ฐ˜์˜ํ•˜์—ฌ ์ €์ž๋Š” ๋งˆ๋ฅด์ฝ”ํ”„ ์ปค๋„์ด๋ผ๋Š” ์ˆ˜ํ•™์  ๋„๊ตฌ๋ฅผ ์‚ฌ์šฉํ•ด ๊ธฐ์ € ์ƒํƒœ์™€ ๊ณ ์ˆ˜์ค€ ๋ถ„ํฌ ์‚ฌ์ด์˜ ๊ด€๊ณ„๋ฅผ ํ‘œํ˜„ํ•ฉ๋‹ˆ๋‹ค. ๋…ผ๋ฌธ์€ ์ด๋Ÿฌํ•œ ํ™•์žฅ๋œ ํ”„๋ ˆ์ž„์›Œํฌ์—์„œ ๋ฒ•์น™์  ๊ณ ์ •, ๋น„ํ‡ดํ™”์„ฑ ๋ฐ ๋ฐฉํ–ฅ ๋น„๋Œ€์นญ์„ฑ์„ ๋ณด์žฅํ•˜๊ธฐ ์œ„ํ•œ ๊ณต๋ฆฌ๋“ค์„ ์ œ์‹œํ•˜๊ณ , ์ด๋“ค ๊ณต๋ฆฌ๋Š” ํด๋ž˜์‹

When Does Learning Renormalize? Sufficient Conditions for Power Law Spectral Dynamics

When Does Learning Renormalize? Sufficient Conditions for Power Law Spectral Dynamics

์ด ๋…ผ๋ฌธ์€ ์ตœ๊ทผ ๋”ฅ๋Ÿฌ๋‹ ์ปค๋ฎค๋‹ˆํ‹ฐ์—์„œ ํ™”๋‘๊ฐ€ ๋˜๊ณ  ์žˆ๋Š” โ€œํŒŒ์›Œโ€‘๋ฒ•์น™ ์Šค์ผ€์ผ๋งโ€ ํ˜„์ƒ์„ ๊ทผ๋ณธ์ ์œผ๋กœ ์„ค๋ช…ํ•˜๋ ค๋Š” ์‹œ๋„๋ฅผ ๋‹ด๊ณ  ์žˆ๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค์€ ์‹คํ—˜์ ์œผ๋กœ ํŒŒ์›Œโ€‘๋ฒ•์น™์ด ๋‚˜ํƒ€๋‚˜๋Š” ๊ฒƒ์„ ๊ด€์ฐฐํ–ˆ์ง€๋งŒ, ์™œ ๊ทธ๋Ÿฐ ํ˜„์ƒ์ด ๋ฐœ์ƒํ•˜๋Š”์ง€์— ๋Œ€ํ•œ ์ด๋ก ์  ํ‹€์€ ๋ถ€์กฑํ–ˆ๋‹ค. ์—ฌ๊ธฐ์„œ ์ œ์‹œ๋œ Generalized Resolutionโ€‘Shell Dynamics(GRSD) ํ”„๋ ˆ์ž„์›Œํฌ๋Š” ํ•™์Šต์„ ๊ณ ์ฐจ์› ํŒŒ๋ผ๋ฏธํ„ฐ ๊ณต๊ฐ„์˜ ์ŠคํŽ™ํŠธ๋Ÿผ ์—๋„ˆ์ง€ ํ๋ฆ„์œผ๋กœ ๋ฐ”๋ผ๋ณด๋Š” ์ƒˆ๋กœ์šด ๊ด€์ ์„ ์ œ๊ณตํ•œ๋‹ค. ํŠนํžˆ ๋กœ๊ทธ ์Šค์ผ€์ผ์˜ ํ•ด์ƒ๋„ ์‰˜์ด๋ผ๋Š” ๊ฐœ๋…์„ ๋„์ž…ํ•ด, ์„œ๋กœ ๋‹ค๋ฅธ ์ฃผํŒŒ์ˆ˜ ๋Œ€์—ญ ์‚ฌ์ด์˜ ์—๋„ˆ์ง€ ์ „๋‹ฌ์„

Learning
AlignDP: Hybrid Differential Privacy with Rarity-Aware Protection for LLMs

AlignDP: Hybrid Differential Privacy with Rarity-Aware Protection for LLMs

AlignDP๋Š” ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(Large Language Models, LLMs)์˜ ๋ฐ์ดํ„ฐ ์ธํ„ฐํŽ˜์ด์Šค์—์„œ ์ง€์‹ ์ „์†ก์„ ์ฐจ๋‹จํ•˜๋Š” ํ˜์‹ ์ ์ธ ์ ‘๊ทผ๋ฒ•์ž…๋‹ˆ๋‹ค. ์ด ์—ฐ๊ตฌ๋Š” LLMs์ด ์ถ”์ถœ, ์ •์ œ ๋ฐ ๋ฌด๋‹จ ๋ฏธ์„ธ ์กฐ์ •์— ๋Œ€ํ•œ ์œ„ํ—˜์— ๋…ธ์ถœ๋˜์–ด ์žˆ์Œ์„ ์ธ์ •ํ•˜๊ณ , ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ์›Œํ„ฐ๋งˆํ‚น์ด๋‚˜ ๋ชจ๋‹ˆํ„ฐ๋ง๊ณผ ๊ฐ™์€ ๊ธฐ์กด ๋ฐฉ์–ด ๊ธฐ๋ฒ•์˜ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๋ ค๊ณ  ํ•ฉ๋‹ˆ๋‹ค. AlignDP๋Š” ๋“œ๋ฌธ ํ•„๋“œ์™€ ์ผ๋ฐ˜์ ์ธ ํ•„๋“œ๋ฅผ ๋ถ„๋ฆฌํ•˜์—ฌ ๊ฐ๊ฐ ๋‹ค๋ฅธ ํ”„๋ผ์ด๋ฒ„์‹œ ๋ณดํ˜ธ ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ์ ์šฉํ•ฉ๋‹ˆ๋‹ค. ๋“œ๋ฌธ ํ•„๋“œ๋Š” PAC(Piecewise Aggregate Approximation) ๊ตฌ

From Priors to Predictions: Explaining and Visualizing Human Reasoning in a Graph Neural Network Framework

From Priors to Predictions: Explaining and Visualizing Human Reasoning in a Graph Neural Network Framework

์ด ๋…ผ๋ฌธ์€ ์ธ๊ฐ„์˜ ์ถ”์ƒ์  ์‚ฌ๊ณ ์™€ ๋ฌธ์ œ ํ•ด๊ฒฐ ๋Šฅ๋ ฅ์— ์ดˆ์ ์„ ๋งž์ถ”๋ฉฐ, ์ด๋ฅผ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•˜๋Š” ๊ท€๋‚ฉ์  ํŽธํ–ฅ์„ฑ์˜ ๊ณ„์‚ฐ์  ๊ตฌ์กฐ์™€ ์‹ ๊ฒฝํ•™์  ๊ตฌํ˜„์„ ํƒ๊ตฌํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์—ฐ๊ตฌ์ง„์€ ๊ทธ๋ž˜ํ”„ ์ด๋ก ๊ณผ GNN์„ ๊ฒฐํ•ฉํ•œ ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์‹œํ•˜์—ฌ ์ด๋Ÿฌํ•œ ํŽธํ–ฅ์„ฑ์„ ๋ช…ํ™•ํžˆ ์ •์‹ํ™”ํ•˜๊ณ , ์ด๋ฅผ ํ†ตํ•ด ์ธ๊ฐ„์˜ ์ถ”๋ก  ๊ณผ์ •์„ ๋” ์ž˜ ์ดํ•ดํ•  ์ˆ˜ ์žˆ๋Š” ๋ฐฉ๋ฒ•์„ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค. ํŠนํžˆ, ๋ณธ ๋…ผ๋ฌธ์—์„œ ์‚ฌ์šฉ๋œ ๋ฐ์ดํ„ฐ์…‹์€ Abstraction and Reasoning Corpus (ARC)์—์„œ ์ ์‘๋œ ๊ฒƒ์œผ๋กœ, ์ด๋Š” ์ธ๊ฐ„ ํ–‰๋™ ๋ฐ์ดํ„ฐ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•˜์—ฌ ์‹ค์ œ ์ธ๊ฐ„์˜ ๋ฌธ์ œ ํ•ด๊ฒฐ ๋Šฅ๋ ฅ์„ ๋ฐ˜์˜ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.

Network Framework
Interpretable Plant Leaf Disease Detection Using Attention-Enhanced CNN

Interpretable Plant Leaf Disease Detection Using Attention-Enhanced CNN

๋ณธ ๋…ผ๋ฌธ์€ ์‹๋ฌผ ์žŽ ๋ณ‘์›๊ท  ์ž๋™ ์ง„๋‹จ ๋ถ„์•ผ์—์„œ ์ •ํ™•๋„์™€ ํ•ด์„ ๊ฐ€๋Šฅ์„ฑ์„ ๋™์‹œ์— ๋งŒ์กฑ์‹œํ‚ค๋Š” ๋ชจ๋ธ ์„ค๊ณ„์— ์ดˆ์ ์„ ๋งž์ถ”์—ˆ๋‹ค. ๊ธฐ์กด์˜ CNN ๊ธฐ๋ฐ˜ ๋ณ‘ ์ง„๋‹จ ๋ชจ๋ธ์€ ๋†’์€ ๋ถ„๋ฅ˜ ์„ฑ๋Šฅ์„ ๋ณด์—ฌ์™”์ง€๋งŒ, โ€œ์™œ ์ด๋Ÿฐ ๊ฒฐ๊ณผ๊ฐ€ ๋‚˜์™”๋Š”๊ฐ€โ€์— ๋Œ€ํ•œ ์„ค๋ช…์ด ๋ถ€์กฑํ•ด ํ˜„์žฅ ์ ์šฉ์— ํ•œ๊ณ„๊ฐ€ ์žˆ์—ˆ๋‹ค. ์ด๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด ์ €์ž๋“ค์€ VGG16 ๊ตฌ์กฐ์— Convolution Block Attention Module(CBAM)์„ ๊ฐ ํ•ฉ์„ฑ๊ณฑ ๋ธ”๋ก ๋’ค์— ์‚ฝ์ž…ํ•˜์˜€๋‹ค. CBAM์€ ์ฑ„๋„โ€‘์ฃผ์˜์™€ ๊ณต๊ฐ„โ€‘์ฃผ์˜ ๋‘ ๋‹จ๊ณ„๋กœ ๊ตฌ์„ฑ๋˜์–ด, ์ค‘์š”ํ•œ ํŠน์ง• ์ฑ„๋„์„ ๊ฐ•์กฐํ•˜๊ณ  ๋™์‹œ์— ๋ณ‘๋ณ€์ด ์ง‘์ค‘๋œ ์˜์—ญ์„ ๊ฐ•์กฐํ•œ

Detection
No Image

MedNeXt-v2: Scaling 3D ConvNeXts for Large-Scale Supervised Representation Learning in Medical Image Segmentation

๋ณธ ๋…ผ๋ฌธ์€ ์ตœ๊ทผ ์˜๋ฃŒ ์˜์ƒ ๋ถ„์•ผ์—์„œ ๊ธ‰๋ถ€์ƒํ•˜๊ณ  ์žˆ๋Š” โ€˜๋Œ€๊ทœ๋ชจ ๊ฐ๋… ์‚ฌ์ „ํ•™์Šต(Supervised Preโ€‘training)โ€™ ํ๋ฆ„์— ์ค‘์š”ํ•œ ์งˆ๋ฌธ์„ ์ œ๊ธฐํ•œ๋‹ค. ๋Œ€๋ถ€๋ถ„์˜ ์—ฐ๊ตฌ๊ฐ€ ๋ฐ์ดํ„ฐ ์–‘์„ ๋Š˜๋ฆฌ๋Š” ๋ฐฉํ–ฅ์—๋งŒ ์ง‘์ค‘ํ•œ ๋ฐ˜๋ฉด, ์‹ค์ œ ๋ชจ๋ธ์ด ๋Œ€๊ทœ๋ชจ ๋ฐ์ดํ„ฐ์—์„œ ์–ผ๋งˆ๋‚˜ ํšจ์œจ์ ์œผ๋กœ ํŠน์ง•์„ ์ถ”์ถœํ•˜๊ณ  ์ผ๋ฐ˜ํ™”ํ•  ์ˆ˜ ์žˆ๋Š”์ง€๋Š” ์ถฉ๋ถ„ํžˆ ๊ฒ€์ฆ๋˜์ง€ ์•Š์•˜๋‹ค. ์ €์ž๋“ค์€ ์ด๋Ÿฌํ•œ ๊ณต๋ฐฑ์„ ๋ฉ”์šฐ๊ธฐ ์œ„ํ•ด ConvNeXt๋ผ๋Š” ์ตœ์‹  2D ๋น„์ „ ๋ฐฑ๋ณธ์„ 3์ฐจ์› ๋ณผ๋ฅ˜๋ฉ”ํŠธ๋ฆญ ์ž‘์—…์— ๋งž๊ฒŒ ์žฌ์„ค๊ณ„ํ•˜๊ณ , ์ด๋ฅผ โ€˜MedNeXtโ€‘v2โ€™๋ผ๋Š” ์ด๋ฆ„์œผ๋กœ ์ œ์‹œํ•œ๋‹ค. ํ•ต์‹ฌ ๊ธฐ์—ฌ๋Š” ํฌ๊ฒŒ ๋„ค ๊ฐ€์ง€๋กœ ์ •๋ฆฌํ•  ์ˆ˜

Learning
More Consistent Accuracy PINN via Alternating Easy-Hard Training

More Consistent Accuracy PINN via Alternating Easy-Hard Training

๋ณธ ๋…ผ๋ฌธ์€ ๋ฌผ๋ฆฌ์ •๋ณด์‹ ๊ฒฝ๋ง(PINN)์˜ ํ•™์Šต ํšจ์œจ์„ฑ์„ ๋†’์ด๊ธฐ ์œ„ํ•œ ์ƒˆ๋กœ์šด ์šฐ์„ ์ˆœ์œ„ ์Šค์ผ€์ค„๋ง ์ „๋žต์„ ์ œ์‹œํ•œ๋‹ค. ๊ธฐ์กด์— ๋„๋ฆฌ ์‚ฌ์šฉ๋˜๋Š” โ€˜ํ•˜๋“œ ์šฐ์„ ์ˆœ์œ„โ€™๋Š” ์†์‹ค ํ•จ์ˆ˜์— ๋ฌผ๋ฆฌ์  ์ œ์•ฝ์„ ๊ฐ•์ œ๋กœ ๋ถ€์—ฌํ•ด ํŠน์ • ์˜์—ญ(์˜ˆ: ๊ฒฝ๊ณ„์กฐ๊ฑด์ด๋‚˜ ๊ธ‰๊ฒฉํ•œ ๋ณ€ํ™”๊ฐ€ ์žˆ๋Š” ์˜์—ญ)์˜ ํ•™์Šต์„ ๊ฐ•์กฐํ•œ๋‹ค. ์ด๋Š” ์œ ํ•œ์š”์†Œ๋ฒ•(FEM)์—์„œ์˜ ์ ์‘ํ˜• ๋ฉ”์‰ฌ ์ •์ œ์™€ ์œ ์‚ฌํ•œ ๊ฐœ๋…์œผ๋กœ, ์–ด๋ ค์šด ์˜์—ญ์„ ๋จผ์ € ํ•ด๊ฒฐํ•จ์œผ๋กœ์จ ์ „์ฒด ํ•ด์˜ ํ’ˆ์งˆ์„ ํ–ฅ์ƒ์‹œํ‚ค๋ ค๋Š” ๋ชฉํ‘œ๋ฅผ ๊ฐ€์ง„๋‹ค. ๋ฐ˜๋ฉด โ€˜์ด์ฆˆ ์šฐ์„ ์ˆœ์œ„โ€™๋Š” ํ˜„์žฌ ์†์‹ค์ด ์ž‘์€, ์ฆ‰ ํ•™์Šต์ด ๋น„๊ต์  ์‰ฌ์šด ์ƒ˜ํ”Œ์— ๋” ๋งŽ์€ ๊ฐ€์ค‘์น˜๋ฅผ ๋ถ€์—ฌํ•œ๋‹ค. ์ด ์ ‘๊ทผ๋ฒ•์€ ํ•™์Šต ์ดˆ๊ธฐ

PermuteV: A Performant Side-channel-Resistant RISC-V Core Securing Edge AI Inference

PermuteV: A Performant Side-channel-Resistant RISC-V Core Securing Edge AI Inference

์—ฃ์ง€ AI๋Š” ์„ผ์„œ์™€ ๋””๋ฐ”์ด์Šค๊ฐ€ ํ˜„์žฅ์—์„œ ์‹ค์‹œ๊ฐ„์œผ๋กœ ๋ฐ์ดํ„ฐ๋ฅผ ์ฒ˜๋ฆฌํ•˜๋„๋ก ํ•จ์œผ๋กœ์จ ํด๋ผ์šฐ๋“œ ์˜์กด๋„๋ฅผ ๋‚ฎ์ถ”๊ณ , ์ „์†ก ์ง€์—ฐ๊ณผ ์—๋„ˆ์ง€ ์†Œ๋น„๋ฅผ ํฌ๊ฒŒ ์ค„์ธ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ด๋Ÿฌํ•œ ์žฅ์ ์€ ๋ฌผ๋ฆฌ์  ์ ‘๊ทผ์ด ๊ฐ€๋Šฅํ•œ ํ™˜๊ฒฝ์— ๋ฐฐ์น˜๋  ๋•Œ ์ƒˆ๋กœ์šด ๋ณด์•ˆ ์œ„ํ˜‘์„ ์ดˆ๋ž˜ํ•œ๋‹ค. ํŠนํžˆ ์ „์ž๊ธฐ ๋ฐฉ์ถœ(EM) ์‹ ํ˜ธ๋Š” ํ”„๋กœ์„ธ์„œ ๋‚ด๋ถ€์˜ ์—ฐ์‚ฐ ํ๋ฆ„์„ ์™ธ๋ถ€์—์„œ ๋น„์นจํˆฌ์ ์œผ๋กœ ๊ด€์ฐฐํ•  ์ˆ˜ ์žˆ๋Š” ๊ฐ•๋ ฅํ•œ ์‚ฌ์ด๋“œ์ฑ„๋„์ด๋ฉฐ, ์‹ ๊ฒฝ๋ง ๋ชจ๋ธ์˜ ๊ตฌ์กฐยท๊ฐ€์ค‘์น˜์™€ ๊ฐ™์€ ๋ฏผ๊ฐ ์ •๋ณด๋ฅผ ์ถ”์ถœํ•˜๋Š” ๋ฐ ์•…์šฉ๋  ์ˆ˜ ์žˆ๋‹ค. ๊ธฐ์กด์˜ ์†Œํ”„ํŠธ์›จ์–ด ๊ธฐ๋ฐ˜ ๋‚œ์ˆ˜ํ™” ๊ธฐ๋ฒ•์€ ์‹คํ–‰ ์‹œ๊ฐ„๊ณผ ์ „๋ ฅ ์†Œ๋น„๋ฅผ ํฌ๊ฒŒ ๋Š˜๋ฆฌ๋Š” ๋ฐ˜๋ฉด, ํ•˜๋“œ์›จ์–ด ์ˆ˜์ค€์—์„œ

Preventing AI Deepfake Abuse: An Islamic Ethics Framework

Preventing AI Deepfake Abuse: An Islamic Ethics Framework

๋”ฅํŽ˜์ดํฌ ๊ธฐ์ˆ ์€ AI์˜ ๋ฐœ์ „์œผ๋กœ ์ธํ•ด ๊ธ‰์†๋„๋กœ ์ง„๋ณดํ•˜๋ฉด์„œ, ์ •๋ณด ์กฐ์ž‘๊ณผ ๋””์ง€ํ„ธ ์‹ ๋ถ„ ์นจํ•ด ๋“ฑ์— ๋Œ€ํ•œ ์šฐ๋ ค๊ฐ€ ์ฆ๊ฐ€ํ•˜์˜€์Šต๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋Š” ๋‹จ์ˆœํžˆ ๊ธฐ์ˆ ์  ์ธก๋ฉด์„ ๋„˜์–ด ์œค๋ฆฌ์  ์ฐจ์›๊นŒ์ง€ ํ™•์žฅ๋˜๋ฉฐ, ๊ธฐ์กด์˜ ๋ฐ˜์‘์ ์ธ ๊ด€๋ฆฌ ๋ฐฉ์‹๋งŒ์œผ๋กœ ํ•ด๊ฒฐํ•˜๊ธฐ ์–ด๋ ต์Šต๋‹ˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ด์Šฌ๋žŒ ์œค๋ฆฌ ์›์น™์„ ๋ฐ”ํƒ•์œผ๋กœ ๋”ฅํŽ˜์ดํฌ ๊ธฐ์ˆ ์˜ ์˜ค๋‚จ์šฉ์„ ์˜ˆ๋ฐฉํ•˜๊ณ ์ž ํ•ฉ๋‹ˆ๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ์‹œ์Šคํ…œ ๋ฆฌํ„ฐ๋Ÿฌ์ฒ˜ ๊ฒ€ํ† ๋ฅผ ํ†ตํ•ด 2018๋…„๋ถ€ํ„ฐ 2025๋…„ ์‚ฌ์ด์— ๋ฐœํ‘œ๋œ ์ฃผ์š” ์ถœํŒ๋ฌผ์„ ๋ถ„์„ํ•˜์˜€์Šต๋‹ˆ๋‹ค. ์—ฐ๊ตฌ ๊ฒฐ๊ณผ, ์ด์Šฌ๋žŒ ์œค๋ฆฌ ์›์น™์ธ Maqฤs . id al Sharฤซ'ah์˜ h . ifz al

Framework
Securing Agentic AI Systems -- A Multilayer Security Framework

Securing Agentic AI Systems -- A Multilayer Security Framework

๋ณธ ๋…ผ๋ฌธ์€ ๊ธ‰์†ํžˆ ํ™•์‚ฐ๋˜๋Š” ์—์ด์ „ํŠธํ˜• ์ธ๊ณต์ง€๋Šฅ(AI) ์‹œ์Šคํ…œ์ด ๊ธฐ์กด ๋ณด์•ˆ ํŒจ๋Ÿฌ๋‹ค์ž„์— ๋„์ „ํ•œ๋‹ค๋Š” ์ ์„ ๋ช…ํ™•ํžˆ ์งš์–ด๋‚ธ๋‹ค. ์—์ด์ „ํŠธํ˜• AI๋Š” ๋‹จ์ˆœํžˆ ์ž…๋ ฅโ€‘์ถœ๋ ฅ ๊ด€๊ณ„๋ฅผ ๋„˜์–ด์„œ, ์ž์ฒด ๋ชฉํ‘œ๋ฅผ ์„ค์ •ํ•˜๊ณ  ํ™˜๊ฒฝ๊ณผ ์ƒํ˜ธ์ž‘์šฉํ•˜๋ฉฐ ํ•™์Šต์„ ์ง€์†ํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ํŠน์„ฑ์€ ๋ฌด๋‹จ ํ–‰๋™(์˜ˆ: ๊ถŒํ•œ ์—†๋Š” ๋ฐ์ดํ„ฐ ์ ‘๊ทผ), ์ ๋Œ€์  ์กฐ์ž‘(์˜ˆ: ์ ๋Œ€์  ์ƒ˜ํ”Œ์„ ํ†ตํ•œ ์ •์ฑ… ๋ณ€์กฐ), ๊ทธ๋ฆฌ๊ณ  ๋™์  ํ™˜๊ฒฝ ๋ณ€ํ™”์— ๋Œ€ํ•œ ์‹ค์‹œ๊ฐ„ ๋Œ€์‘ ๋“ฑ ์ƒˆ๋กœ์šด ์œ„ํ˜‘ ๋ฒกํ„ฐ๋ฅผ ๋งŒ๋“ ๋‹ค. ๊ธฐ์กด AI ๋ณด์•ˆ ํ”„๋ ˆ์ž„์›Œํฌ๋Š” ์ฃผ๋กœ ๋ชจ๋ธ ๋ฌด๊ฒฐ์„ฑ, ๋ฐ์ดํ„ฐ ๋ณดํ˜ธ, ์ถ”๋ก  ๋‹จ๊ณ„์˜ ๊ณต๊ฒฉ ๋ฐฉ์–ด์— ์ดˆ์ ์„ ๋งž์ถ”์—ˆ์œผ๋ฉฐ, ์—์ด์ „ํŠธ์˜ ์ž์œจ์ 

System Framework
Adaptation of Agentic AI

Adaptation of Agentic AI

์ด ๋…ผ๋ฌธ์€ ์ตœ์ฒจ๋‹จ ์ง€๋Šฅํ˜• AI ์‹œ์Šคํ…œ์˜ ์„ฑ๋Šฅ ํ–ฅ์ƒ๊ณผ ์‹ ๋ขฐ์„ฑ ๊ฐ•ํ™”๋ฅผ ์œ„ํ•ด ์ ์‘ ๋ฉ”์ปค๋‹ˆ์ฆ˜์— ์ค‘์ ์„ ๋‘ก๋‹ˆ๋‹ค. ์ด๋“ค ์‹œ์Šคํ…œ์€ ๊ธฐ์ดˆ ๋ชจ๋ธ ์œ„์— ๊ตฌ์ถ•๋˜์–ด ์žˆ์œผ๋ฉฐ, ์™ธ๋ถ€ ๋„๊ตฌ์™€ ์ƒํ˜ธ์ž‘์šฉํ•˜๋ฉฐ ์ ์  ๋” ๋ณต์žกํ•˜๊ณ  ์ „๋ฌธํ™”๋œ ์ž‘์—…์„ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ๋„๋ก ์„ค๊ณ„๋˜์—ˆ์Šต๋‹ˆ๋‹ค. ๋…ผ๋ฌธ์—์„œ๋Š” ์—์ด์ „ํŠธ ์ ์‘๊ณผ ๋„๊ตฌ ์ ์‘์ด๋ผ๋Š” ๋‘ ๊ฐ€์ง€ ์ฃผ์š” ๋ฒ”์ฃผ๋ฅผ ์ œ์‹œํ•˜๋ฉฐ, ์ด๋ฅผ ๋”์šฑ ์„ธ๋ถ„ํ™”ํ•˜์—ฌ ๋„๊ตฌ ์‹คํ–‰ ์‹ ํ˜ธ ๋ฐ ์—์ด์ „ํŠธ ์ถœ๋ ฅ ์‹ ํ˜ธ์— ์˜ํ•œ ์—์ด์ „ํŠธ ์ ์‘ ํ˜•ํƒœ์™€ ์—์ด์ „ํŠธ ๋ฌด๊ด€ ๋ฐ ์—์ด์ „ํŠธ ๊ฐ๋…ํ˜•์˜ ๋„๊ตฌ ์ ์‘ ํ˜•ํƒœ๋กœ ๋‚˜๋ˆ•๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ๋ถ„๋ฅ˜๋Š” ์ง€๋Šฅํ˜• AI ์‹œ์Šคํ…œ์—์„œ ๋‹ค์–‘ํ•œ ์ ์‘ ์ „๋žต์„ ์„ค๊ณ„ํ•˜

No Image

Adversarial VR: An Open-Source Testbed for Evaluating Adversarial Robustness of VR Cybersickness Detection and Mitigation

์ด ๋…ผ๋ฌธ์€ ๊ฐ€์ƒํ˜„์‹ค(VR) ํ™˜๊ฒฝ์—์„œ ์‚ฌ์ด๋ฒ„์งˆ๋ณ‘(CS)์˜ ์‹ฌ๊ฐ๋„ ์กฐ์ž‘ ๋ฐ ๊ทธ์— ๋”ฐ๋ฅธ ์ ์ ˆํ•˜์ง€ ์•Š์€ ์™„ํ™” ์ „๋žต์„ ์—ฐ๊ตฌํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ํŠนํžˆ, ๋กœ์ปฌ VR ํ™˜๊ฒฝ๊ณผ ํด๋ผ์šฐ๋“œ ๊ธฐ๋ฐ˜ VR ํ™˜๊ฒฝ์ด ๊ฒฐํ•ฉ๋œ ํ…Œ์ŠคํŠธ๋ฒ ๋“œ๋ฅผ ๊ฐœ๋ฐœํ•˜์—ฌ ์ด ๋ฌธ์ œ๋ฅผ ํƒ๊ตฌํ•ฉ๋‹ˆ๋‹ค. ๋กœ์ปฌ ํ™˜๊ฒฝ์—์„œ๋Š” ์‚ฌ์šฉ์ž์˜ ์ฒดํ—˜ ์ค‘์— CS ์™„ํ™”๊ฐ€ ์ด๋ฃจ์–ด์ง€๋ฉฐ, ํด๋ผ์šฐ๋“œ ํ™˜๊ฒฝ์—์„œ๋Š” ๋”ฅ๋Ÿฌ๋‹(DL) ๋ชจ๋ธ์„ ํ™œ์šฉํ•ด CS ๊ฐ์ง€๋ฅผ ์ˆ˜ํ–‰ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ๋…ผ๋ฌธ์˜ ํ•ต์‹ฌ์€ ์ ๋Œ€์  ์˜ˆ์ œ๋ฅผ ์ƒ์„ฑํ•˜์—ฌ DL ๋ชจ๋ธ์— ์ž…๋ ฅํ•จ์œผ๋กœ์จ CS์˜ ์‹ฌ๊ฐ๋„๋ฅผ ์กฐ์ž‘ํ•˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ์ ‘๊ทผ๋ฒ•์€ VR ์‚ฌ์šฉ์ž์˜ ์ฒดํ—˜ ์งˆ์„ ์ €ํ•˜์‹œํ‚ค๊ฑฐ๋‚˜, ์‹ฌ์ง€์–ด๋Š”

Detection
No Image

AI-Driven Prediction of Cancer Pain Episodes: A Hybrid Decision Support Approach

๋ณธ ๋…ผ๋ฌธ์€ ํ์•” ํ™˜์ž๋“ค์˜ ๋ŒํŒŒํ†ต ์˜ˆ์ธก์„ ์œ„ํ•œ ํ˜์‹ ์ ์ธ ์ ‘๊ทผ๋ฒ•์„ ์ œ์‹œํ•˜๋ฉฐ, ์ด๋ฅผ ํ†ตํ•ด ํ™˜์ž์˜ ํ†ต์ฆ ๊ด€๋ฆฌ์™€ ์น˜๋ฃŒ ํšจ๊ณผ๋ฅผ ํ–ฅ์ƒ์‹œํ‚ค๋Š” ๋ฐ ์ค‘์ ์„ ๋‘๊ณ  ์žˆ๋‹ค. ์—ฐ๊ตฌํŒ€์€ ๊ตฌ์กฐํ™”๋œ ์ „์ž ์˜๋ฃŒ ๊ธฐ๋ก๊ณผ ๋น„๊ตฌ์กฐํ™”๋œ ๋ฐ์ดํ„ฐ๋ฅผ ํ™œ์šฉํ•˜์—ฌ ๋จธ์‹ ๋Ÿฌ๋‹ ๋ฐ ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ์„ ๊ฒฐํ•ฉํ•œ ํ•˜์ด๋ธŒ๋ฆฌ๋“œ ์‹œ์Šคํ…œ์„ ๊ฐœ๋ฐœํ•˜์˜€๋‹ค. ์ด ์‹œ์Šคํ…œ์€ ํ™˜์ž์˜ ํ†ต์ฆ ๋ฐœ์ž‘์„ ์ž…์› ํ›„ 48์‹œ๊ฐ„ ๋‚ด์™ธ๋กœ ์˜ˆ์ธกํ•˜๋Š” ๋ฐ ์„ฑ๊ณตํ•˜์˜€์œผ๋ฉฐ, ํŠนํžˆ ๋ฏผ๊ฐ๋„์˜ ํ–ฅ์ƒ์œผ๋กœ ์ธํ•ด ์‹ค์ œ ์ž„์ƒ ์ ์šฉ์—์„œ ๋”์šฑ ํšจ๊ณผ์ ์ธ ๊ฒฐ๊ณผ๋ฅผ ๋ณด์—ฌ์ฃผ์—ˆ๋‹ค. ์—ฐ๊ตฌ๋Š” ๋‹ค์–‘ํ•œ ๋ฐ์ดํ„ฐ ์š”์†Œ๋ฅผ ํ™œ์šฉํ•˜์—ฌ ํ™˜์ž์˜ ํ†ต์ฆ ๋ฐœ์ž‘์„ ์ •ํ™•ํ•˜๊ฒŒ ์˜ˆ์ธกํ•  ์ˆ˜ ์žˆ๋Š” ๋ฐฉ๋ฒ•

No Image

Automatic Penalty Parameter Selection by Residual Whiteness Principle (RWP) and GCV for Full Waveform Inversion

์ „ํŒŒํ˜• ์—ญ์‚ฐ(FWI)์€ ๊ณ ํ•ด์ƒ๋„์˜ ์ง€ํ•˜ ๊ตฌ์กฐ๋ฌผ ๋ฌผ๋ฆฌ์  ์†์„ฑ์„ ์ถ”์ •ํ•˜๋Š” ๋ฐ ์‚ฌ์šฉ๋˜๋Š” ๊ฐ•๋ ฅํ•œ ๊ธฐ์ˆ ์ž…๋‹ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ FWI๋Š” ๋น„์„ ํ˜•์ ์ด๋ฉฐ ๋ณ‘๋ ฌ ์—ญ๋ฌธ์ œ๋กœ, ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ํ™•์žฅ ์†Œ์Šค ์ ‘๊ทผ๋ฒ•์ด ํ•„์š”ํ•ฉ๋‹ˆ๋‹ค. ์ด ์ค‘ ํ•˜๋‚˜์ธ ์ฆ๊ฐ• ๋ผ๊ทธ๋ž‘์ฃผ(AL) ๋ฐฉ๋ฒ•์€ ํŽ˜๋„ํ‹ฐ ํŒŒ๋ผ๋ฏธํ„ฐ(ยต)๋ฅผ ํ†ตํ•ด ์†”๋ฃจ์…˜์˜ ๋ณผ๋ก์„ฑ๊ณผ ๊ฒฌ๊ณ ์„ฑ์„ ๊ฐœ์„ ํ•˜๋Š” ์—ญํ• ์„ ํ•ฉ๋‹ˆ๋‹ค. ยต๋Š” ๊ด€์ฐฐ๋œ ๋ฐ์ดํ„ฐ์™€ ๋ชจ๋ธ๋ง๋œ ๋ฐ์ดํ„ฐ ๊ฐ„์˜ ๋ถˆ์ผ์น˜๋ฅผ ์ตœ์†Œํ™”ํ•˜๋ฉด์„œ, ๋™์‹œ์— ๋ฌผ๋ฆฌ์  ์ œ์•ฝ ์กฐ๊ฑด์ธ ํŒŒ๋™ ๋ฐฉ์ •์‹์„ ์ถฉ์กฑ์‹œํ‚ค๋Š” ๊ท ํ˜•์ ์„ ์ฐพ๋Š”๋ฐ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•ฉ๋‹ˆ๋‹ค. ํŠนํžˆ ๋…ธ์ด์ฆˆ๊ฐ€ ์žˆ๋Š” ์ƒํ™ฉ์—์„œ๋Š” ยต์˜ ์„ ํƒ์ด ์ˆ˜๋ ด์— ํฐ ์˜ํ–ฅ

No Image

Code-in-the-Loop Forensics: Agentic Tool Use for Image Forgery Detection

์ด ๋…ผ๋ฌธ์€ ์ด๋ฏธ์ง€ ์œ„๋ณ€์กฐ ๊ฒ€์ถœ(IFD) ๋ถ„์•ผ์—์„œ ์ €์ˆ˜์ค€ ์žก์Œ ๊ธฐ๋ฐ˜ ๋ฐฉ๋ฒ•๊ณผ ๊ณ ์ˆ˜์ค€ ์˜๋ฏธ ์ •๋ณด ๊ธฐ๋ฐ˜ MLLMs์˜ ํ†ตํ•ฉ์„ ๋ชฉํ‘œ๋กœ ํ•œ๋‹ค. ForenAgent๋Š” ์ด๋Ÿฌํ•œ ๋‘ ๊ฐ€์ง€ ์ ‘๊ทผ ๋ฐฉ์‹์„ ๊ฒฐํ•ฉํ•˜์—ฌ, Python ๊ธฐ๋ฐ˜ ๋„๊ตฌ๋ฅผ ํ™œ์šฉํ•ด ์ด๋ฏธ์ง€ ์œ„๋ณ€์กฐ ๊ฒ€์ถœ์„ ์ˆ˜ํ–‰ํ•˜๋Š” ์ƒˆ๋กœ์šด ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์•ˆํ•œ๋‹ค. ์ด ํ”„๋ ˆ์ž„์›Œํฌ๋Š” ๋‹ค์ค‘ ๋ผ์šด๋“œ ์ƒํ˜ธ์ž‘์šฉ์„ ํ†ตํ•ด MLLMs๊ฐ€ ์ €์ˆ˜์ค€ ๋„๊ตฌ๋ฅผ ์ƒ์„ฑํ•˜๊ณ  ์‹คํ–‰ํ•˜๋ฉฐ, ์ด๋ฅผ ๋ฐ˜๋ณต์ ์œผ๋กœ ๊ฐœ์„ ํ•จ์œผ๋กœ์จ ๋”์šฑ ์œ ์—ฐํ•˜๊ณ  ํ•ด์„ ๊ฐ€๋Šฅํ•œ ์œ„๋ณ€์กฐ ๋ถ„์„์ด ๊ฐ€๋Šฅํ•˜๋„๋ก ์„ค๊ณ„๋˜์—ˆ๋‹ค. ForenAgent์˜ ํ•ต์‹ฌ์€ ๋‘ ๋‹จ๊ณ„ ํ›ˆ๋ จ ํŒŒ์ดํ”„๋ผ์ธ๊ณผ ๋™์  ์ถ”๋ก  ๋ฃจ

Detection
Decoding Fake Narratives in Spreading Hateful Stories: A Dual-Head RoBERTa Model with Multi-Task Learning

Decoding Fake Narratives in Spreading Hateful Stories: A Dual-Head RoBERTa Model with Multi-Task Learning

์ด ๋…ผ๋ฌธ์€ ์‚ฌํšŒ ๋ฏธ๋””์–ด ํ”Œ๋žซํผ์—์„œ ํ˜์˜ค ๋ฐœ์–ธ๊ณผ ๊ฑฐ์ง“ ์ •๋ณด์˜ ํ™•์‚ฐ ๋ฌธ์ œ๋ฅผ ๋‹ค๋ฃจ๋ฉฐ, ํŠนํžˆ ์ฝ”๋“œ๋ฏน์Šค ํžŒ๋”” ์˜์–ด ํ…์ŠคํŠธ์—์„œ ๊ฐ€์งœ ์ด์•ผ๊ธฐ์— ์˜ํ•ด ์œ ๋ฐœ๋œ ํ˜์˜ค ๋ฐœ์–ธ์„ ๊ฐ์ง€ํ•˜๋Š” Faux Hate ๊ณต๋™ ์ž‘์—…์„ ํƒ๊ตฌํ•ฉ๋‹ˆ๋‹ค. ์ด ์—ฐ๊ตฌ๋Š” ๋‘ ๊ฐ€์ง€ ์ฃผ์š” ํ•˜์œ„ ์ž‘์—…์„ ์ˆ˜ํ–‰ํ•˜๋Š”๋ฐ, ์ฒซ์งธ๋กœ ์ด์ง„ Faux Hate ๊ฐ์ง€๋Š” ๊ฑฐ์ง“๊ณผ ํ˜์˜ค ๋ฐœ์–ธ์„ ๋ถ„๋ฅ˜ํ•˜๊ณ , ๋‘˜์งธ๋กœ ๋Œ€์ƒ ๋ฐ ์‹ฌ๊ฐ์„ฑ ์˜ˆ์ธก์€ ํ˜์˜ค ๋ฐœ์–ธ์˜ ๋ชฉํ‘œ์™€ ๊ทธ ์ •๋„๋ฅผ ๋ฒ”์ฃผํ™”ํ•ฉ๋‹ˆ๋‹ค. ์—ฐ๊ตฌํŒ€์ด ๊ฐœ๋ฐœํ•œ ์‹œ์Šคํ…œ์€ ๊ณ ๊ธ‰ ์ž์—ฐ์–ด ์ฒ˜๋ฆฌ ๊ธฐ์ˆ ๊ณผ ๋„๋ฉ”์ธ ํŠนๅผ‚ๆ€ง้ข„่ฎญ็ปƒ็›ธ็ป“ๅˆ๏ผŒๆ—จๅœจๆ้ซ˜่ฟ™ไธค้กนไปปๅŠก็š„ๆ€ง่ƒฝใ€‚่ฏฅ็ณป็ปŸๅœจๆฏ”่ต›ไธญๅ–ๅพ—ไบ†ๆœ‰็ซžไบ‰ๅŠ›็š„็ป“ๆžœ๏ผŒ่ฏๆ˜Žไบ†

Model Learning
Design and Evaluation of Cost-Aware PoQ for Decentralized LLM Inference

Design and Evaluation of Cost-Aware PoQ for Decentralized LLM Inference

์ด ๋…ผ๋ฌธ์€ ๋ถ„์‚ฐ ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(LLM) ์ถ”๋ก ์˜ ํ’ˆ์งˆ ๊ฒ€์ฆ์— ๋Œ€ํ•œ ์ƒˆ๋กœ์šด ์ ‘๊ทผ ๋ฐฉ์‹์„ ์ œ์‹œํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ๊ธฐ์กด์˜ ํ’ˆ์งˆ ์ฆ๋ช…(PoQ) ๋ฐฉ๋ฒ•์€ ๊ณ„์‚ฐ ๊ฒฐ๊ณผ์˜ ์•”ํ˜ธํ•™์  ๊ฒ€์ฆ์„ ์‚ฌ์šฉํ•˜์ง€๋งŒ, ์ด ๋…ผ๋ฌธ์—์„œ๋Š” ์ถœ๋ ฅ ํ’ˆ์งˆ์— ๋Œ€ํ•œ ํ•ฉ์˜๋ฅผ ํ†ตํ•ด ์ด๋ฅผ ๋Œ€์ฒดํ•ฉ๋‹ˆ๋‹ค. ํŠนํžˆ, ์ถ”๋ก  ๋…ธ๋“œ์™€ ํ‰๊ฐ€์ž ๋…ธ๋“œ ๊ฐ„์˜ ์ด์งˆ์ ์ธ ์ปดํ“จํŒ… ๋น„์šฉ์„ ๊ณ ๋ คํ•˜์—ฌ ๋ณด์ƒ ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ๊ฐœ์„ ํ•˜๋Š” ๋ฐ ์ดˆ์ ์„ ๋งž์ถ”๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ๋…ผ๋ฌธ์€ ๋‹ค์–‘ํ•œ LLM๊ณผ ํ‰๊ฐ€ ๋ชจ๋ธ์„ ์‚ฌ์šฉํ•œ ์‹คํ—˜ ๊ฒฐ๊ณผ๋ฅผ ํ†ตํ•ด, ํŠน์ • ์•„ํ‚คํ…์ฒ˜์˜ ์ค‘์š”์„ฑ์„ ๊ฐ•์กฐํ•ฉ๋‹ˆ๋‹ค. ํŠนํžˆ, ์‹ฌ๋ฏธ์  ํ…์ŠคํŠธ ์œ ์‚ฌ์„ฑ(bi encoder)์ด ๊ต์ฐจ ์ธ์ฝ”๋”๋ณด๋‹ค ๋”

No Image

Guiding Perception-Reasoning Closer to Human in Blind Image Quality Assessment

๋ณธ ๋…ผ๋ฌธ์€ ์ด๋ฏธ์ง€์™€ ์บก์…˜์— ๋Œ€ํ•œ ์งˆ๋Ÿ‰ ํ‰๊ฐ€๋ฅผ ํ†ตํ•ด ๋ชจ๋ธ์˜ ์ถ”๋ก  ๊ณผ์ •๊ณผ ์ธ๊ฐ„์˜ ํŒ๋‹จ ์‚ฌ์ด์—์„œ ์ผ๊ด€์„ฑ์„ ๋ถ„์„ํ•ฉ๋‹ˆ๋‹ค. ํŠนํžˆ, Q Instruct(SFT) ๋ฐ Q Insight(RL) ๋ชจ๋ธ์„ ํ…Œ์ŠคํŠธํ•˜์—ฌ ๊ธฐ์กด ๋ชจ๋ธ๋“ค์ด ์ด๋ฏธ์ง€์™€ ์บก์…˜ ์ž…๋ ฅ์— ๋Œ€ํ•œ ์ ์ˆ˜์—์„œ ์ผ์น˜ํ•˜์ง€ ์•Š๋Š” ๊ฒฐ๊ณผ๋ฅผ ๋‚ด๋†“๋Š” ๋ฐ˜๋ฉด, ์ œ์•ˆ๋œ ๋ชจ๋ธ์€ ์ธ๊ฐ„์˜ ํŒ๋‹จ๊ณผ ์ผ๊ด€๋˜๊ฒŒ ์ผ์น˜ํ•˜๋Š” ์ ์ˆ˜๋ฅผ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค. ์ด ์—ฐ๊ตฌ์—์„œ๋Š” SFT ๋ชจ๋ธ์ด ์บก์…˜๊ณผ ๋“ฑ๊ธ‰์— ๋Œ€ํ•ด ๊ฐ๋…์„ ๋ฐ›์ง€๋งŒ ๋ช…์‹œ์ ์ธ ์ถ”๋ก  ๊ฐ€์ด๋“œ๊ฐ€ ๋ถ€์กฑํ•˜๊ณ , RL ๋ชจ๋ธ์€ ์ ์ˆ˜ ์ตœ์ ํ™”์— ์ดˆ์ ์„ ๋งž์ถ”๋Š” ๋ฐ˜๋ฉด ์ธ๊ฐ„์€ ํ•ด์„ ๊ฐ€๋Šฅํ•œ ํŒ๋‹จ ๊ธฐ์ค€์„ ํ†ตํ•ด ์ผ๊ด€๋œ ํ‰

KineST: A Kinematics-guided Spatiotemporal State Space Model for Human Motion Tracking from Sparse Signals

KineST: A Kinematics-guided Spatiotemporal State Space Model for Human Motion Tracking from Sparse Signals

KineST๋Š” AR/VR ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜์—์„œ ์ „์‹  ๋™์ž‘ ์ถ”์ ์ด ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•˜๋Š” ์ƒํ™ฉ์—์„œ, ํ—ค๋“œ ๋งˆ์šดํŠธ ๋””์Šคํ”Œ๋ ˆ์ด๋ฅผ ํ†ตํ•ด ์–ป์€ ์ œํ•œ์ ์ธ ์‹ ํ˜ธ๋กœ ์‹ค์ œ์ด๊ณ  ๋‹ค์–‘ํ•œ ๋™์ž‘์„ ์žฌ๊ตฌ์„ฑํ•˜๋Š” ๋ฌธ์ œ์— ์ดˆ์ ์„ ๋งž์ถฅ๋‹ˆ๋‹ค. ๊ธฐ์กด์˜ ๋ฐฉ๋ฒ•๋“ค์€ ๋†’์€ ๊ณ„์‚ฐ ๋น„์šฉ์ด๋‚˜ ๋ณ„๋„์˜ ๊ณต๊ฐ„์ ๊ณผ ์‹œ๊ฐ„์  ์˜์กด์„ฑ์„ ๋ชจ๋ธ๋งํ•จ์œผ๋กœ์จ ์ •ํ™•์„ฑ, ์‹œ๊ณ„์—ด ์ผ๊ด€์„ฑ ๋ฐ ํšจ์œจ์„ฑ ์‚ฌ์ด์—์„œ ๊ท ํ˜•์„ ๋งž์ถ”๋Š” ๊ฒƒ์ด ์–ด๋ ต๋‹ค๋Š” ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด KineST๊ฐ€ ์ œ์•ˆ๋˜์—ˆ์Šต๋‹ˆ๋‹ค. ์ด ๋ชจ๋ธ์€ ๋‘ ๊ฐ€์ง€ ํ•ต์‹ฌ ์•„์ด๋””์–ด๋กœ ๊ตฌ์„ฑ๋ฉ๋‹ˆ๋‹ค: ์ฒซ์งธ, ์ƒํƒœ๊ณต๊ฐ„ ์ด์ค‘์„ฑ ํ”„๋ ˆ์ž„์›Œํฌ ๋‚ด์˜ ์Šค์บ๋‹ ์ „๋žต์„ ๋™์—ญํ•™ ์ง€ํ–ฅ ์–‘๋ฐฉํ–ฅ ์Šค์บ”์œผ๋กœ

Model
Multi-scale Attention-Guided Intrinsic Decomposition and Rendering Pass Prediction for Facial Images

Multi-scale Attention-Guided Intrinsic Decomposition and Rendering Pass Prediction for Facial Images

MAGINet์€ ์–ผ๊ตด ์ด๋ฏธ์ง€ ๋‚ด์žฌ์„ฑ ๋ถ„ํ•ด๋ผ๋Š” ๋งค์šฐ ๊ตฌ์ฒด์ ์ธ ๋ฌธ์ œ์— ๋Œ€ํ•ด ์—ฌ๋Ÿฌ ํ˜์‹ ์ ์ธ ์„ค๊ณ„ ์š”์†Œ๋ฅผ ๊ฒฐํ•ฉํ•œ ์ ์ด ๋ˆˆ์— ๋ˆ๋‹ค. ์ฒซ ๋ฒˆ์งธ๋กœ, ๊ณ„์ธต์  ์ž”์ฐจ ์ธ์ฝ”๋”๋ฅผ ์ฑ„ํƒํ•จ์œผ๋กœ์จ ์ €ํ•ด์ƒ๋„์—์„œ ๊ณ ํ•ด์ƒ๋„๋กœ ๋„˜์–ด๊ฐ€๋Š” ๊ณผ์ •์—์„œ ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ๋Š” ์ •๋ณด ์†์‹ค์„ ์ตœ์†Œํ™”ํ•œ๋‹ค. ์ด๋Š” ํŠนํžˆ ์–ผ๊ตด๊ณผ ๊ฐ™์ด ๋ฏธ์„ธํ•œ ๋””ํ…Œ์ผ์ด ์ค‘์š”ํ•œ ์˜์—ญ์—์„œ ์•Œ๋ฒ ๋„ ๊ฒฝ๊ณ„๊ฐ€ ํ๋ ค์ง€๋Š” ํ˜„์ƒ์„ ๋ฐฉ์ง€ํ•œ๋‹ค. ๋‘ ๋ฒˆ์งธ๋กœ, ๋ณ‘๋ชฉ ๊ตฌ์กฐ์— ์‚ฝ์ž…๋œ ๊ณต๊ฐ„โ€‘์ฑ„๋„ ์ฃผ์˜ ๋ฉ”์ปค๋‹ˆ์ฆ˜์€ ํŠน์ง• ๋งต์˜ ์ค‘์š”ํ•œ ์˜์—ญ์„ ์ž๋™์œผ๋กœ ๊ฐ•์กฐํ•œ๋‹ค. ๊ณต๊ฐ„ ์ฃผ์˜๋Š” ์–ผ๊ตด์˜ ๋ˆˆ, ์ž…์ˆ , ํ„ฑ์„  ๋“ฑ ๊ณ ์ฃผํŒŒ ์˜์—ญ์— ์ง‘์ค‘ํ•˜๊ณ , ์ฑ„๋„ ์ฃผ์˜๋Š” ์•Œ๋ฒ ๋„

PrivateXR: Defending Privacy Attacks in Extended Reality Through Explainable AI-Guided Differential Privacy

PrivateXR: Defending Privacy Attacks in Extended Reality Through Explainable AI-Guided Differential Privacy

์ด ๋…ผ๋ฌธ์€ ๊ฐ€์ƒํ˜„์‹ค(XR) ํ™˜๊ฒฝ์—์„œ ๊ฐœ์ธ ์ •๋ณด ๋ณดํ˜ธ์™€ ์‚ฌ์šฉ์ž ๊ฒฝํ—˜ ์‚ฌ์ด์˜ ๊ท ํ˜•์„ ํƒ๊ตฌํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. PrivateXR์ด๋ผ๋Š” ์‹œ์Šคํ…œ์€ XAI(๊ฐ€๋Šฅ์„ฑ ํ•ด์„ ๊ฐ€๋Šฅ ์ธ๊ณต์ง€๋Šฅ)๋ฅผ ํ†ตํ•ด ๋™์ ์ธ ๊ฐœ์ธ์ •๋ณด ์ œ์–ด ๊ธฐ๋Šฅ์„ ์ œ๊ณตํ•˜๋ฉฐ, ์ด๋ฅผ ํ†ตํ•ด ์‚ฌ์šฉ์ž๋Š” ์ž์‹ ์˜ ๊ฐœ์ธ์ •๋ณด ๋…ธ์ถœ ์ˆ˜์ค€์„ ์กฐ์ ˆํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ๋…ผ๋ฌธ์—์„œ ์ œ์‹œ๋œ ๊ฐ€์ƒ ๋กค๋Ÿฌ์ฝ”์Šคํ„ฐ ํ™˜๊ฒฝ์—์„œ๋Š” ์ด ์‹œ์Šคํ…œ์ด ์‚ฌ์šฉ์ž ๊ฒฝํ—˜์„ ํฌ๊ฒŒ ํ–ฅ์ƒ์‹œํ‚ค๋Š” ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ์Šต๋‹ˆ๋‹ค. ํŠนํžˆ, PrivateXR์€ ์‹ค์‹œ๊ฐ„์œผ๋กœ ์‚ฌ์ด๋ฒ„์งˆํ™˜(CS)์˜ ์‹ฌ๊ฐ๋„๋ฅผ ์˜ˆ์ธกํ•˜๋Š” ๊ธฐ๋Šฅ์„ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค. CS๋Š” ๊ฐ€์ƒํ˜„์‹ค์—์„œ ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ๋Š” ๋ถˆํŽธ๊ฐ์ด๋‚˜ ์งˆ๋ณ‘

No Image

SDFoam: Signed-Distance Foam for explicit surface reconstruction

SDFoam๋Š” 3D ์žฅ๋ฉด ์žฌ๊ตฌ์„ฑ์„ ์œ„ํ•œ ํ˜์‹ ์ ์ธ ์ ‘๊ทผ๋ฒ•์œผ๋กœ, ๊ธฐ์กด ๋ฐฉ๋ฒ•๋“ค์ด ๋ช…์‹œ์  ๋˜๋Š” ์•”์‹œ์  ๊ธฐํ•˜ํ•™์„ ์‚ฌ์šฉํ•˜์—ฌ ๊ฐ๊ฐ์˜ ์žฅ๋‹จ์ ์„ ๊ฐ€์ง€๊ณ  ์žˆ๋Š” ๋ฐ˜๋ฉด, SDFoam์€ ๋ถ€ํ˜ธํ™”๋œ ๊ฑฐ๋ฆฌ ํ•„๋“œ(SDF)์™€ 3D ๋ณด๋กœ๋…ธ์ด ๋‹ค์ด์–ด๊ทธ๋žจ์„ ๋™์‹œ์— ํ•™์Šตํ•˜๊ณ  ์ตœ์ ํ™”ํ•˜๋Š” ๋ฐฉ์‹์œผ๋กœ ์ด๋ฅผ ๊ทน๋ณตํ•ฉ๋‹ˆ๋‹ค. ์ด๋Š” ๋ ˆ์ด ์ถ”์  ๊ณผ์ •์—์„œ ์ด๋ฃจ์–ด์ง€๋ฉฐ, ์ด ๋ฐฉ๋ฒ•์˜ ๊ฐ€์žฅ ํฐ ์žฅ์ ์€ ๋ Œ๋”๋ง ์†๋„, ์‹œ๊ฐ์  ์ •๋ฐ€์„ฑ ๋ฐ ์žฌ๊ตฌ์„ฑ ์ •ํ™•์„ฑ ๊ฐ„์˜ ์ข‹์€ ๊ท ํ˜•์„ ์ œ๊ณตํ•œ๋‹ค๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค. SDFoam์€ ๊ธฐ์กด ์ ‘๊ทผ๋ฒ•๋“ค๋ณด๋‹ค ๋” ํšจ์œจ์ ์ธ ๊ฒฐ๊ณผ๋ฅผ ๋„์ถœํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ, ์ด๋ฅผ ํ†ตํ•ด 3D ์žฅ๋ฉด ์žฌ๊ตฌ์„ฑ ๋ถ„์•ผ์—์„œ ์ƒˆ๋กœ

No Image

TextEditBench: Evaluating Reasoning-aware Text Editing Beyond Rendering

ํ…์ŠคํŠธ ํŽธ์ง‘์€ ์ด๋ฏธ์ง€ ๋‚ด์—์„œ ๊ธ€์ž๋ฅผ ์กฐ์ž‘ํ•˜๋Š” ๋ณต์žกํ•œ ๊ณผ์ •์œผ๋กœ, ๋‹จ์ˆœํžˆ ํ”ฝ์…€์„ ๋ณ€๊ฒฝํ•˜๋Š” ๊ฒƒ์„ ๋„˜์–ด ์˜๋ฏธ์ , ๊ธฐํ•˜ํ•™์ , ๊ทธ๋ฆฌ๊ณ  ๋ฌธ๋งฅ์  ์ผ๊ด€์„ฑ์„ ์œ ์ง€ํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค. ์ด ์—ฐ๊ตฌ๋Š” ์ด๋Ÿฌํ•œ ์–ด๋ ค์›€์„ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด TextEditBench๋ผ๋Š” ์ƒˆ๋กœ์šด ํ‰๊ฐ€ ๋ฒค์น˜๋งˆํฌ๋ฅผ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. ํŠนํžˆ, ์ด ๋ฒค์น˜๋งˆํฌ๋Š” ๋ชจ๋ธ๋“ค์ด ํ…์ŠคํŠธ ํŽธ์ง‘ ์‹œ ๋ฌผ๋ฆฌ์  ๊ฐ€๋Šฅ์„ฑ๊ณผ ์–ธ์–ด์  ์˜๋ฏธ๋ฅผ ์ดํ•ดํ•˜๊ณ  ๋‹ค์ค‘ ๋ชจ๋‹ฌ ์˜์กด์„ฑ์„ ์ฒ˜๋ฆฌํ•  ์ˆ˜ ์žˆ๋Š” ๋Šฅ๋ ฅ์„ ํ‰๊ฐ€ํ•˜๋Š”๋ฐ ์ค‘์ ์„ ๋‘ก๋‹ˆ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ์—ฐ๊ตฌ์ง„์€ '์˜๋ฏธ ๊ธฐ๋Œ€(SE)'๋ผ๋Š” ์ƒˆ๋กœ์šด ํ‰๊ฐ€ ์ฐจ์›์„ ๋„์ž…ํ•˜์—ฌ, ํ…์ŠคํŠธ ํŽธ์ง‘ ๊ณผ์ •์—์„œ์˜ ์˜๋ฏธ์  ์ผ๊ด€์„ฑ๊ณผ ๋‹ค์ค‘

The Evolution of Reranking Models in Information Retrieval: From Heuristic Methods to Large Language Models

The Evolution of Reranking Models in Information Retrieval: From Heuristic Methods to Large Language Models

๋ณธ ๋…ผ๋ฌธ์€ ์ •๋ณด ๊ฒ€์ƒ‰(IR) ์‹œ์Šคํ…œ์—์„œ ์žฌ์ˆœ์œ„ํ™”๊ฐ€ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•˜๋Š” ์ด์œ ์™€ ๊ทธ ๋ฐœ์ „ ๊ณผ์ •์„ ์ฒด๊ณ„์ ์œผ๋กœ ๋ถ„์„ํ•ฉ๋‹ˆ๋‹ค. ํŠนํžˆ, ์ตœ๊ทผ์˜ Retrieval Augmented Generation (RAG) ํŒŒ์ดํ”„๋ผ์ธ์— ์ค‘์ ์„ ๋‘๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. RAG๋Š” ๊ฒ€์ƒ‰๋œ ๋ฌธ์„œ๋“ค์ด ์ถœ๋ ฅ ํ’ˆ์งˆ์— ํฐ ์˜ํ–ฅ์„ ๋ฏธ์น˜๋ฏ€๋กœ ์žฌ์ˆœ์œ„ํ™” ๊ธฐ๋ฒ•์˜ ์ค‘์š”์„ฑ์ด ๋”์šฑ ๋ถ€๊ฐ๋ฉ๋‹ˆ๋‹ค. ๋…ผ๋ฌธ์€ ์žฌ์ˆœ์œ„ํ™” ๊ธฐ๋ฒ•์˜ ์—ญ์‚ฌ์  ๋ฐœ์ „ ๊ฒฝ๋กœ๋ฅผ ํƒ๊ตฌํ•˜๋ฉฐ, ์ดˆ๊ธฐ ์ ‘๊ทผ ๋ฐฉ์‹์—์„œ ์‹œ์ž‘ํ•ด ๋‹ค์–‘ํ•œ ์‹ ๊ฒฝ๋ง ์•„ํ‚คํ…์ฒ˜๊นŒ์ง€ ๋‹ค๋ฃน๋‹ˆ๋‹ค. ์ด ์ค‘์—๋Š” ํฌ๋กœ์Šค ์ธ์ฝ”๋”, T5์™€ ๊ฐ™์€ ์‹œํ€€์Šค ์ƒ์„ฑ ๋ชจ๋ธ, ๊ตฌ์กฐ์  ์ •๋ณด๋ฅผ ํ™œ์šฉํ•˜๋Š” ๊ทธ๋ž˜

Model
No Image

Topic Modelling Black Box Optimization

๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” LDA ๋ชจ๋ธ์—์„œ ์ฃผ์ œ ์ˆ˜ T๋ฅผ ์„ ํƒํ•˜๋Š” ๋ฌธ์ œ๋ฅผ ์ด์‚ฐ ๋ธ”๋ž™๋ฐ•์Šค ์ตœ์ ํ™” ๋ฌธ์ œ๋กœ ์ •์‹ํ™”ํ•˜๊ณ , ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•œ ๋‹ค์–‘ํ•œ ์ตœ์ ํ™” ๋ฐฉ๋ฒ•๋“ค์„ ๋น„๊ตํ•œ๋‹ค. ํŠนํžˆ, ๋ณธ ๋…ผ๋ฌธ์€ GA์™€ ES๋ผ๋Š” ๋‘ ๊ฐ€์ง€ ์ง„ํ™” ์•Œ๊ณ ๋ฆฌ์ฆ˜๊ณผ PABBO ๋ฐ SABBO๋ผ๋Š” ํ•™์Šต ๊ธฐ๋ฐ˜ ์•ฐORTIZED ์ ‘๊ทผ๋ฒ•์„ ํ‰๊ฐ€ํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ์ ‘๊ทผ๋ฒ•๋“ค์€ ๊ฐ๊ฐ์˜ ์žฅ๋‹จ์ ์„ ๊ฐ€์ง€๊ณ  ์žˆ์œผ๋ฉฐ, ์‹คํ—˜ ๊ฒฐ๊ณผ๋ฅผ ํ†ตํ•ด ๊ทธ ํšจ์œจ์„ฑ์„ ๋น„๊ตํ•œ๋‹ค. GA์™€ ES๋Š” ์ „ํ†ต์ ์ธ ์ง„ํ™” ์•Œ๊ณ ๋ฆฌ์ฆ˜์œผ๋กœ์„œ, ๋‹ค์–‘ํ•œ ํ•ด์˜ ์กฐํ•ฉ์„ ์ƒ์„ฑํ•˜๊ณ  ์„ ํƒ ๊ณผ์ •์„ ๊ฑฐ์ณ ์ตœ์ ํ•ด์— ๋„๋‹ฌํ•˜๋ ค๊ณ  ๋…ธ๋ ฅํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฐฉ๋ฒ•์€ ๋ณต์žกํ•œ ๋ฌธ์ œ ๊ณต๊ฐ„์—์„œ

Model
No Image

Towards AI-Supported Research: a Vision of the TIB AIssistant

๋ณธ ๋…ผ๋ฌธ์€ ์ƒ์„ฑํ˜• ์ธ๊ณต์ง€๋Šฅ(AI)๊ณผ ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(Large Language Models, LLMs)์˜ ๋ฐœ์ „์ด ์—ฐ๊ตฌ ๋ฐฉ๋ฒ•๋ก ์— ๋ฏธ์น˜๋Š” ์ž ์žฌ์  ๋ณ€ํ™”๋ฅผ ํƒ๊ตฌํ•˜๊ณ  ์žˆ๋‹ค. ํŠนํžˆ, AI๊ฐ€ ์ œ๊ณตํ•˜๋Š” ์ƒˆ๋กœ์šด ๊ธฐํšŒ์™€ ๊ทธ๋กœ ์ธํ•ด ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ๋Š” ๋„์ „ ๊ณผ์ œ๋“ค์„ ๋ถ„์„ํ•œ๋‹ค. ๋…ผ๋ฌธ์€ TIB AIssistant๋ผ๋Š” ํ”Œ๋žซํผ์„ ์ œ์•ˆํ•˜๋ฉฐ, ์ด ํ”Œ๋žซํผ์€ ๋‹ค์–‘ํ•œ ํ•™๋ฌธ ๋ถ„์•ผ์˜ ์—ฐ๊ตฌ์ž๋“ค์ด AI๋ฅผ ํ™œ์šฉํ•˜์—ฌ ์—ฐ๊ตฌ ์ƒ๋ช… ์ฃผ๊ธฐ ์ „๋ฐ˜์— ๊ฑธ์นœ ์ž‘์—…์„ ์ˆ˜ํ–‰ํ•˜๋„๋ก ์ง€์›ํ•˜๋Š” ๊ฒƒ์„ ๋ชฉํ‘œ๋กœ ํ•œ๋‹ค. TIB AIssistant๋Š” ํ”„๋กฌํ”„ํŠธ์™€ ๋„๊ตฌ ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ, ๊ณต์œ  ๋ฐ์ดํ„ฐ ์ €์žฅ์†Œ, ์œ ์—ฐํ•œ ์กฐ์ •

Using Gaussian Splats to Create High-Fidelity Facial Geometry and Texture

Using Gaussian Splats to Create High-Fidelity Facial Geometry and Texture

๋ณธ ์—ฐ๊ตฌ๋Š” 3์ฐจ์› ์‹ ๊ฒฝ๋ง ํ‘œํ˜„์„ ํ™œ์šฉํ•˜์—ฌ ์บ˜๋ฆฌ๋ธŒ๋ ˆ์ด์…˜๋˜์ง€ ์•Š์€ ์—ฌ๋Ÿฌ ๊ฐœ์˜ ์ธ๊ฐ„ ์–ผ๊ตด ์ด๋ฏธ์ง€๋ฅผ ํ†ตํ•ฉํ•˜๊ณ  ์ผ๊ด€๋œ ์„ค๋ช…์„ ์ œ๊ณตํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์‹œํ•ฉ๋‹ˆ๋‹ค. ํŠนํžˆ, Gaussian Splatting ๊ธฐ๋ฒ•์ด NeRFs๋ณด๋‹ค ๋” ๋ช…ํ™•ํ•˜๊ฒŒ ๊ตฌ์กฐํ™”๋˜์–ด ์žˆ์–ด ์ œ์•ฝ ์กฐ๊ฑด์— ์ž˜ ๋Œ€์‘ํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ์ ์—์„œ ์ฃผ๋ชฉํ•  ๋งŒํ•œ ์—ฐ๊ตฌ์ž…๋‹ˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์€ ์„ธ๊ทธ๋ฉ˜ํ…Œ์ด์…˜ ์ฃผ์„์„ ํ™œ์šฉํ•˜์—ฌ ์–ผ๊ตด์˜ ์˜๋ฏธ์  ์˜์—ญ์„ ์ •๋ ฌํ•จ์œผ๋กœ์จ, 11์žฅ์˜ ์ด๋ฏธ์ง€๋งŒ์œผ๋กœ ์ค‘๋ฆฝ ์ž์„ธ๋ฅผ ์žฌ๊ตฌ์„ฑํ•˜๋Š” ๋ฐ ์„ฑ๊ณตํ–ˆ์Šต๋‹ˆ๋‹ค. ์ด๋Š” ๊ธฐ์กด์— ๊ธด ๋™์˜์ƒ์ด ํ•„์š”ํ–ˆ๋˜ ๊ฒƒ๊ณผ ๋Œ€์กฐ๋˜๋Š” ์ค‘์š”ํ•œ ๋ฐœ์ „์ž…๋‹ˆ๋‹ค. ๋˜ํ•œ ๋ณธ ๋…ผ๋ฌธ์€ Gaussia

No Image

Value Under Ignorance in Universal Artificial Intelligence

์ด ๋…ผ๋ฌธ์€ AIXI ๊ฐ•ํ™”ํ•™์Šต ์—์ด์ „ํŠธ์˜ ์ด๋ก ์„ ํ™•์žฅํ•˜์—ฌ ๋” ๋„“์€ ํด๋ž˜์Šค์˜ ์œ ํ‹ธ๋ฆฌํ‹ฐ ํ•จ์ˆ˜๋ฅผ ์ ์šฉํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•ฉ๋‹ˆ๋‹ค. ํŠนํžˆ, ๊ฐ€๋Šฅํ•œ ์ƒํ˜ธ์ž‘์šฉ ์—ญ์‚ฌ์— ๋Œ€ํ•œ ๊ฐ๊ฐ์˜ ์œ ํ‹ธ๋ฆฌํ‹ฐ๋ฅผ ํ• ๋‹นํ•จ์œผ๋กœ์จ, ์—์ด์ „ํŠธ๊ฐ€ ๋ฏธ๋ž˜์˜ ๋ถˆํ™•์‹ค์„ฑ์„ ์–ด๋–ป๊ฒŒ ๋‹ค๋ฃจ๋Š”์ง€์— ๋Œ€ํ•ด ์ƒˆ๋กœ์šด ๊ด€์ ์„ ์ œ์‹œํ•ฉ๋‹ˆ๋‹ค. ์ด ๋…ผ๋ฌธ์€ '์‚ฌ๋ง ๊ฐ€๋Šฅ์„ฑ'์ด๋ผ๋Š” ๊ฐœ๋…์„ ๋„์ž…ํ•˜์—ฌ, ํŠน์ • ๊ฐ€์„ค๋“ค์ด ์—ญ์‚ฌ์˜ ์œ ํ•œ ์ ‘๋‘์‚ฌ๋ฅผ ์˜ˆ์ธกํ•˜๋Š” ๊ฒƒ๋งŒ์„ ์˜๋ฏธํ•˜๊ฒŒ ๋˜์–ด ์ด๋ฅผ ํ•ด์„ํ•  ๋•Œ ๋ฐœ์ƒํ•˜๋Š” ๋ถˆํ™•์‹ค์„ฑ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๋ ค๊ณ  ํ•ฉ๋‹ˆ๋‹ค. ๋˜ํ•œ, Choquet ์ ๋ถ„์„ ์‚ฌ์šฉํ•˜์—ฌ ๊ธฐ๋Œ€ ์œ ํ‹ธ๋ฆฌํ‹ฐ๋ฅผ ๊ณ„์‚ฐํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. ์ด๋Š” ๋ถˆ๋ช…ํ™•ํ•œ

Bayesian Updating of constitutive parameters under hybrid uncertainties with a novel surrogate model applied to biofilms

Bayesian Updating of constitutive parameters under hybrid uncertainties with a novel surrogate model applied to biofilms

์ด ๋…ผ๋ฌธ์€ ๋ฐ”์ด์˜คํ•„๋ฆ„ ์„ฑ์žฅ ๋ชจ๋ธ๋ง ๋ถ„์•ผ์—์„œ โ€˜ํ•˜์ด๋ธŒ๋ฆฌ๋“œ ๋ถˆํ™•์‹ค์„ฑโ€™์ด๋ผ๋Š” ๋ณตํ•ฉ์ ์ธ ๋‚œ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๋ ค๋Š” ์‹œ๋„๋กœ ๋ˆˆ๊ธธ์„ ๋ˆ๋‹ค. ๊ธฐ์กด์˜ ๋ฒ ์ด์ง€์•ˆ ๋ชจ๋ธ ์—…๋ฐ์ดํŠธ๋Š” ์ฃผ๋กœ ์ธ์‹ ๋ถˆํ™•์‹ค์„ฑ๋งŒ์„ ๊ณ ๋ คํ•˜๊ฑฐ๋‚˜, ์šฐ์—ฐ ๋ถˆํ™•์‹ค์„ฑ์„ ๋ณ„๋„์˜ ๋ชฌํ…Œ์นด๋ฅผ๋กœ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์œผ๋กœ ์ฒ˜๋ฆฌํ•ด ์ด์ค‘ ๋ฃจํ”„ ๊ตฌ์กฐ๋ฅผ ์ทจํ•œ๋‹ค. ์ด์ค‘ ๋ฃจํ”„๋Š” ๋งค ๋ฐ˜๋ณต๋งˆ๋‹ค ๊ณ ๋น„์šฉ์˜ ์ „๋ฐฉ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ์ˆ˜ํ–‰ํ•ด์•ผ ํ•˜๋ฏ€๋กœ ๊ณ„์‚ฐ๋Ÿ‰์ด ๊ธ‰๊ฒฉํžˆ ์ฆ๊ฐ€ํ•˜๊ณ , ์‹ค์‹œ๊ฐ„ ํ˜น์€ ๋Œ€๊ทœ๋ชจ ํŒŒ๋ผ๋ฏธํ„ฐ ํƒ์ƒ‰์— ๋ถ€์ ํ•ฉํ•˜๋‹ค. ์ €์ž๋“ค์€ ์ด๋Ÿฌํ•œ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด ์‹œ๊ฐ„๋ถ„๋ฆฌ ํ™•๋ฅ ์—ญํ•™(TSM) ๊ธฐ๋ฐ˜ ์ฐจ์›์ถ•์†Œ ๋ชจ๋ธ(ROM)์„ ๋„์ž…ํ•œ๋‹ค. TSM์€ ์‹œ์Šคํ…œ์˜

Model
No Image

Enhancing Tree Species Classification: Insights from YOLOv8 and Explainable AI Applied to TLS Point Cloud Projections

๋ณธ ๋…ผ๋ฌธ์€ TLS(Terrestrial Laser Scanning) ๋ฐ์ดํ„ฐ๋ฅผ ํ™œ์šฉํ•œ ๋‚˜๋ฌด ์ข…๋ฅ˜ ๋ถ„๋ฅ˜ ๋ชจ๋ธ์˜ ๊ฒฐ์ • ๊ณผ์ • ํ•ด์„์— ์ดˆ์ ์„ ๋งž์ถ”๊ณ  ์žˆ๋‹ค. ํŠนํžˆ, Finer CAM(Class Activation Mapping)์ด๋ผ๋Š” ๊ธฐ์ˆ ์„ ํ†ตํ•ด ๋”ฅ๋Ÿฌ๋‹ ๋ชจ๋ธ์ด ์–ด๋–ค ํŠน์ง•์— ์ง‘์ค‘ํ•˜์—ฌ ๋‚˜๋ฌด ์ข…์„ ๊ตฌ๋ถ„ํ•˜๋Š”์ง€ ๋ถ„์„ํ•œ๋‹ค. ์—ฐ๊ตฌํŒ€์€ 7์ข…๋ฅ˜์˜ ์œ ๋Ÿฝ ๋‚˜๋ฌด๋“ค๋กœ๋ถ€ํ„ฐ ์ˆ˜์ง‘๋œ TLS ๋ฐ์ดํ„ฐ๋ฅผ ์ด์šฉํ•ด YOLOv8 ๋ชจ๋ธ์„ ํ•™์Šตํ•˜๊ณ  ๊ฒ€์ฆํ•˜์˜€์œผ๋ฉฐ, ํ‰๊ท  ์ •ํ™•๋„๋Š” 96%์— ๋‹ฌํ–ˆ๋‹ค. ์ด ์—ฐ๊ตฌ์—์„œ ์ค‘์š”ํ•œ ๋ฐœ๊ฒฌ ์ค‘ ํ•˜๋‚˜๋Š”, ๋”ฅ๋Ÿฌ๋‹ ๋ชจ๋ธ์ด ๋‚˜๋ฌด์˜ ์ฝ˜ํฌ๋กœ๋‚˜ํŠธ(crown) ํŠน์ง•์— ํฌ

Foundation Models in Biomedical Imaging: Turning Hype into Reality

Foundation Models in Biomedical Imaging: Turning Hype into Reality

๋ณธ ๋…ผ๋ฌธ์€ ๊ธฐ๋ฐ˜๋ชจ๋ธ(Foundation Models)์ด ์˜๋ฃŒ ์˜์ƒ ๋ถ„์•ผ์—์„œ ์–ด๋–ป๊ฒŒ ํ™œ์šฉ๋˜๊ณ  ์žˆ๋Š”์ง€์— ๋Œ€ํ•ด ๊นŠ์ด ์žˆ๊ฒŒ ๋ถ„์„ํ•ฉ๋‹ˆ๋‹ค. FMs๋Š” ๋‹จ์ˆœํžˆ ํŒจํ„ด์„ ์ธ์‹ํ•˜๋Š” ๋ฐ ๊ทธ์น˜์ง€ ์•Š๊ณ , ๋ณต์žกํ•œ ์ž„์ƒ ์‚ฌ๊ณ ๋ฅผ ๋ชจ๋ฐฉํ•˜๊ณ  ๊ณต๊ฐ„ ๊ด€๊ณ„๋ฅผ ์ดํ•ดํ•˜๋ฉฐ ๋‹ค์ค‘๋ชจ๋‹ฌ ๋ฐ์ดํ„ฐ๋ฅผ ํ†ตํ•ฉํ•˜๋Š” ๋Šฅ๋ ฅ์„ ๊ฐ–์ถ”๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ด๋Ÿฌํ•œ ๊ฐ€๋Šฅ์„ฑ๊ณผ ์‹ค์ œ ํ™œ์šฉ ์‚ฌ์ด์—๋Š” ํฐ ๊ฐ„๊ทน์ด ์กด์žฌํ•ฉ๋‹ˆ๋‹ค. ๋…ผ๋ฌธ์€ FMs์˜ ํ•ต์‹ฌ ๊ธฐ๋Šฅ๊ณผ ํ•œ๊ณ„๋ฅผ ํ‰๊ฐ€ํ•˜๋ฉด์„œ, ์ด๋“ค ๋ชจ๋ธ๋“ค์ด ์ง„์ •ํ•œ ์ธ์ง€๋ ฅ์„ ๋ณด์—ฌ์ฃผ๊ณ  ์žˆ๋Š”์ง€ ์•„๋‹ˆ๋ฉด ํ‘œ๋ฉด์ ์ธ ํŒจํ„ด์„ ๋‹จ์ˆœํžˆ ํ‰๋‚ด ๋‚ด๋Š” ๊ฒƒ์ธ์ง€์— ๋Œ€ํ•ด ๊ฒ€ํ† ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ๋˜ํ•œ ๋…ผ๋ฌธ์€ ํ†ต๊ณ„์ 

Model
Navigating Taxonomic Expansions of Entity Sets Driven by Knowledge Bases

Navigating Taxonomic Expansions of Entity Sets Driven by Knowledge Bases

๋ณธ ์—ฐ๊ตฌ๋Š” ์ง€์‹ ๊ธฐ๋ฐ˜(Knowledge Base)์ด ์–ด๋–ป๊ฒŒ ๋‹ค์–‘ํ•œ ์—”ํ‹ฐํ‹ฐ ์ง‘ํ•ฉ์„ ๊ตฌ๋™ํ•˜๋Š”์ง€์— ๋Œ€ํ•œ ์‹ฌ์ธต์ ์ธ ๋ถ„์„์„ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค. ์ด ๋…ผ๋ฌธ์€ ์•„๋งˆ๋„ ๋ฐ์ดํ„ฐ ๊ด€๋ฆฌ, ์ •๋ณด ๊ฒ€์ƒ‰, ๋˜๋Š” ์ธ๊ณต์ง€๋Šฅ ์‹œ์Šคํ…œ์˜ ๊ฐœ์„ ๊ณผ ๊ด€๋ จ๋œ ์ฃผ์ œ๋ฅผ ๋‹ค๋ฃจ๊ณ  ์žˆ์„ ๊ฒƒ์ž…๋‹ˆ๋‹ค. ์ง€์‹ ๊ธฐ๋ฐ˜์€ ํŠน์ • ๋„๋ฉ”์ธ์—์„œ ์ˆ˜์ง‘๋œ ์ •๋ณด์™€ ๊ทธ ์ •๋ณด ๊ฐ„์˜ ๊ด€๊ณ„๋ฅผ ์ €์žฅํ•˜๋Š” ๊ตฌ์กฐ๋กœ, ์ด๋Š” ์—”ํ‹ฐํ‹ฐ ์ง‘ํ•ฉ์„ ํšจ๊ณผ์ ์œผ๋กœ ๊ด€๋ฆฌํ•˜๊ณ  ํ™œ์šฉํ•˜๋Š” ๋ฐ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•ฉ๋‹ˆ๋‹ค. ์—ฐ๊ตฌ์ž๋“ค์€ ์•„๋งˆ๋„ ์ด๋Ÿฌํ•œ ์‹œ์Šคํ…œ์ด ์–ด๋–ป๊ฒŒ ํšจ์œจ์„ฑ์„ ํ–ฅ์ƒ์‹œํ‚ค๊ณ  ์ƒˆ๋กœ์šด ์ธ์‚ฌ์ดํŠธ๋ฅผ ์ œ๊ณตํ•˜๋Š”์ง€์— ๋Œ€ํ•ด ํƒ๊ตฌํ–ˆ์„ ๊ฒƒ์ž…๋‹ˆ๋‹ค.

No Image

Optimizing Agentic Language Model Inference via Speculative Tool Calls

๋ณธ ๋…ผ๋ฌธ์€ ์–ธ์–ด ๋ชจ๋ธ(LMs)์˜ ์„ฑ๋Šฅ ํ–ฅ์ƒ์„ ์œ„ํ•ด ๋„๊ตฌ ํ˜ธ์ถœ์— ๋Œ€ํ•œ ์ตœ์ ํ™” ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. LMs๋Š” ์™ธ๋ถ€ ๋„๊ตฌ์™€ ์ƒํ˜ธ์ž‘์šฉํ•˜์—ฌ ํŒŒ์ผ ๊ฒ€์ƒ‰, ์ฝ”๋“œ ์‹คํ–‰, API ํ˜ธ์ถœ ๋“ฑ์„ ์ˆ˜ํ–‰ํ•˜๋ฉฐ, ์ด๋Ÿฌํ•œ ์ž‘์—…๋“ค์€ ์ถ”๋ก  ๊ณผ์ •์—์„œ ๋ณ‘๋ชฉ ํ˜„์ƒ์ด ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ๋Š” ์ฃผ์š” ์›์ธ์ž…๋‹ˆ๋‹ค. ๋…ผ๋ฌธ์—์„œ๋Š” ์ด ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ๋„๊ตฌ ํ˜ธ์ถœ์„ ์˜ˆ์ธกํ•˜๊ณ  ์ธํผ๋Ÿฐ์Šค ์—”์ง„์— ์‹œํ€€์Šค๋ฅผ ์ตœ์†Œํ•œ์˜ ์˜ค๋ฒ„ํ—ค๋“œ๋กœ ์œ ์ง€ํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. ์ œ์•ˆ๋œ ์ตœ์ ํ™” ๊ธฐ๋ฒ•์€ LM ์—์ด์ „ํŠธ์˜ ์ฒ˜๋ฆฌ๋Ÿ‰์„ ํฌ๊ฒŒ ํ–ฅ์ƒ์‹œํ‚ต๋‹ˆ๋‹ค. ํŠนํžˆ, ์ดˆ๋‹น ์ˆ˜๋ฐฑ ํ† ํฐ์˜ ์ฒ˜๋ฆฌ๋Ÿ‰ ํ–ฅ์ƒ์„ ๋ณด์—ฌ์ฃผ๋ฉฐ, ์ด๋Š” LMs๊ฐ€ ๋ณต์žกํ•œ ์ถ”

Model
Seeing Beyond Words: Self-Supervised Visual Learning for Multimodal Large Language Models

Seeing Beyond Words: Self-Supervised Visual Learning for Multimodal Large Language Models

์ด ๋…ผ๋ฌธ์€ MLLMs์˜ ์‹œ๊ฐ์  ์ดํ•ด๋ ฅ ํ–ฅ์ƒ์„ ์œ„ํ•ด JARVIS๋ผ๋Š” ์ƒˆ๋กœ์šด ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์•ˆํ•œ๋‹ค. ๊ธฐ์กด MLLMs๋Š” ์ฃผ๋กœ ์–ธ์–ด์ ์ธ ์„ค๋ช…์„ ํ†ตํ•ด ํ•™์Šตํ•˜๋ฏ€๋กœ, ์ด์— ๋”ฐ๋ฅธ ํ•œ๊ณ„์ ์ด ์กด์žฌํ•œ๋‹ค. ํŠนํžˆ, ์–ธ์–ด ๊ธฐ๋ฐ˜ ๊ฐ๋… ์‹ ํ˜ธ์˜ ์ฃผ๊ด€์„ฑ๊ณผ ๋ถˆ์™„์ „ํ•จ์œผ๋กœ ์ธํ•ด ์‹œ๊ฐ์  ์ถ”๋ก  ๋Šฅ๋ ฅ์ด ์ œํ•œ์ ์ด๋ฉฐ, ๋‹ค์ค‘๋ชจ๋‹ฌ ์ง€์‹œ์–ด ํŠœ๋‹์˜ ๊ทœ๋ชจ๊ฐ€ ์ž‘์•„ ์‹œ๊ฐ์  ์„ธ๋ถ€ ์‚ฌํ•ญ์„ ๋ฌด์‹œํ•˜๋Š” ๊ฒฝํ–ฅ์ด ์žˆ๋‹ค. JARVIS๋Š” ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด JEPA ํ•™์Šต ํŒจ๋Ÿฌ๋‹ค์ž„์„ MLLMs ํ›ˆ๋ จ ํŒŒ์ดํ”„๋ผ์ธ์— ํ†ตํ•ฉํ•œ๋‹ค. ์ด ํ”„๋ ˆ์ž„์›Œํฌ๋Š” ๋™๊ฒฐ๋œ ์‹œ๊ฐ ๊ธฐ๋ฐ˜ ๋ชจ๋ธ์„ ํ™œ์šฉํ•˜์—ฌ ์˜ˆ์ธก๊ธฐ๋ฅผ ํ›ˆ๋ จ์‹œํ‚ค๊ณ , ์–ธ์–ด

Model Learning

< Category Statistics (Total: 810) >

Electrical Engineering and Systems Science
7
General
272
General Relativity
9
HEP-EX
7
HEP-PH
12
HEP-TH
7
MATH-PH
4
NUCL-TH
1
Quantum Physics
11

Start searching

Enter keywords to search articles

โ†‘โ†“
โ†ต
ESC
โŒ˜K Shortcut