Posts

Here are all published articles, sorted by date in descending order.

791 posts total
16 pages total
PathoSyn: Imaging-Pathology MRI Synthesis via Disentangled Deviation Diffusion

PathoSyn: Imaging-Pathology MRI Synthesis via Disentangled Deviation Diffusion

PathoSyn ๋…ผ๋ฌธ์€ MRI ํ•ฉ์„ฑ ๋ถ„์•ผ์—์„œ ๊ธฐ์กด ์ ‘๊ทผ๋ฒ•์ด ์•ˆ๊ณ  ์žˆ๋˜ ๋‘ ๊ฐ€์ง€ ํ•ต์‹ฌ ํ•œ๊ณ„๋ฅผ ์ฒด๊ณ„์ ์œผ๋กœ ํ•ด๊ฒฐํ•œ๋‹ค๋Š” ์ ์—์„œ ํ•™์ˆ ์ ยท์‹ค์šฉ์  ์˜์˜๋ฅผ ๊ฐ€์ง„๋‹ค. ์ฒซ ๋ฒˆ์งธ ํ•œ๊ณ„๋Š” โ€œ์ „์—ญ ํ”ฝ์…€โ€‘๋ ˆ๋ฒจโ€ ์ƒ์„ฑ ๋ชจ๋ธ์ด ํ•ด๋ถ€ํ•™์  ๊ตฌ์กฐ๋ฅผ ์ถฉ๋ถ„ํžˆ ๋ณด์กดํ•˜์ง€ ๋ชปํ•œ๋‹ค๋Š” ์ ์ด๋‹ค. GANโ€‘๊ธฐ๋ฐ˜ ํ˜น์€ ์ „์ฒด ํ™•์‚ฐ ๋ชจ๋ธ์€ ์ด๋ฏธ์ง€ ์ „์ฒด๋ฅผ ํ•œ ๋ฒˆ์— ์ƒ˜ํ”Œ๋งํ•˜๊ธฐ ๋•Œ๋ฌธ์—, ๋ณ‘๋ณ€๊ณผ ์ •์ƒ ์กฐ์ง ์‚ฌ์ด์˜ ๋ฏธ์„ธํ•œ ๊ฒฝ๊ณ„๊ฐ€ ํ๋ ค์ง€๊ฑฐ๋‚˜ ๋น„ํ˜„์‹ค์ ์ธ ํ˜•ํƒœ๋กœ ๋ณ€ํ˜•๋  ์œ„ํ—˜์ด ์žˆ๋‹ค. ๋‘ ๋ฒˆ์งธ ํ•œ๊ณ„๋Š” โ€œ์ด์ง„ ๋งˆ์Šคํฌ ๊ธฐ๋ฐ˜โ€ ์กฐ๊ฑด๋ถ€ ์ƒ์„ฑ์ด ๋ณ‘๋ณ€ ์˜์—ญ์„ ์ง€๋‚˜์น˜๊ฒŒ ๋‹จ์ˆœํ™”ํ•œ๋‹ค๋Š” ์ ์ด๋‹ค. ๋งˆ์Šคํฌ๋Š” ๋ณ‘๋ณ€์˜ ์œ„์น˜์™€ ๋Œ€

Computer Science Computer Vision
Benchmark Success, Clinical Failure: When Reinforcement Learning Optimizes for Benchmarks, Not Patients

Benchmark Success, Clinical Failure: When Reinforcement Learning Optimizes for Benchmarks, Not Patients

๋ณธ ๋…ผ๋ฌธ์€ ์˜๋ฃŒ ์˜์ƒ ๋ถ„์•ผ์—์„œ ์ตœ๊ทผ ๊ฐ๊ด‘๋ฐ›๊ณ  ์žˆ๋Š” ๊ฐ•ํ™”ํ•™์Šต(RL) ๊ธฐ๋ฐ˜ ํŒŒ์ธํŠœ๋‹์ด ์‹ค์ œ ์ž„์ƒ ์ ์šฉ์— ์–ด๋–ค ํ•จ์˜๋ฅผ ๊ฐ–๋Š”์ง€ ์‹ฌ๋„ ์žˆ๊ฒŒ ํƒ๊ตฌํ•œ๋‹ค. ๋จผ์ € ์ €์ž๋“ค์€ โ€œR1โ€‘styleโ€์ด๋ผ ๋ช…๋ช…ํ•œ ๋‘ ๋‹จ๊ณ„ ํ•™์Šต ํŒŒ์ดํ”„๋ผ์ธ์„ ์ œ์‹œํ•œ๋‹ค. ์ฒซ ๋‹จ๊ณ„๋Š” ๋น„๊ต์  ์ ์€ ์–‘(2,000๊ฐœ)์˜ ๋ผ๋ฒจ๋ง๋œ ์ด๋ฏธ์ง€โ€‘ํ…์ŠคํŠธ ์Œ์„ ์ด์šฉํ•œ ์ง€๋„ํ•™์Šต(Supervised Fineโ€‘Tuning, SFT)์ด๋ฉฐ, ๋‘ ๋ฒˆ์งธ ๋‹จ๊ณ„๋Š” 1,000๊ฐœ์˜ RL ์ƒ˜ํ”Œ์„ ํ™œ์šฉํ•ด GRPO(Goalโ€‘oriented Rewardโ€‘based Policy Optimization)๋ผ๋Š” ์ •์ฑ… ์ตœ์ ํ™” ๊ธฐ๋ฒ•์„

Computer Science Artificial Intelligence Learning
Comment on 'There is No Quantum World' by Jeffrey Bub

Comment on 'There is No Quantum World' by Jeffrey Bub

์ด ๋…ผํ‰์€ ์–‘์ž ๋…ผ๋ฆฌ์™€ ํ™•๋ฅ  ์ด๋ก  ์‚ฌ์ด์˜ ๊นŠ์€ ๊ตฌ์กฐ์  ์—ฐ๊ด€์„ฑ์„ ๊ฐ•์กฐํ•œ๋‹ค. ์ง๊ต ๊ณต๊ฐ„(orthogonal space)์€ ํž๋ฒ ๋ฅดํŠธ ๊ณต๊ฐ„์˜ ํ•œ ํ˜•ํƒœ๋กœ, ์–‘์ž์—ญํ•™์—์„œ ์ƒํƒœ๋ฒกํ„ฐ๊ฐ€ ์„œ๋กœ ์ง๊ตํ•  ๋•Œ ์„œ๋กœ ๋ฐฐํƒ€์ ์ธ ๋ฌผ๋ฆฌ์  ์ƒํƒœ๋ฅผ ๋‚˜ํƒ€๋‚ธ๋‹ค. ์ด๋Ÿฌํ•œ ๊ณต๊ฐ„์— ๋Œ€ํ•ด โ€œ์ง๊ต์„ฑ์„ ๋ณด์กดํ•˜๋Š” ์‚ฌ์ƒโ€์ด๋ผ ํ•จ์€ ๋‘ ๋ฒกํ„ฐ๊ฐ€ ์ง๊ต์ผ ๋•Œ ๊ทธ ์ด๋ฏธ์ง€ ์—ญ์‹œ ์ง๊ต๊ฐ€ ๋˜๋Š” ์„ ํ˜• ํ˜น์€ ๋ฐ˜์„ ํ˜• ๋ณ€ํ™˜์„ ์˜๋ฏธํ•œ๋‹ค. Uhlhorn ์ •๋ฆฌ๋Š” ์ด๋Ÿฌํ•œ ์‚ฌ์ƒ์ด ์‹ค์ œ๋กœ๋Š” ์ „์ฒด ๋‚ด์ ์„ ๋ณด์กดํ•˜๋Š”(์ฆ‰, ์œ ๋‹ˆํ„ฐ๋ฆฌ ํ˜น์€ ๋ฐ˜์œ ๋‹ˆํ„ฐ๋ฆฌ) ๋ณ€ํ™˜์— ํ•œ์ •๋œ๋‹ค๋Š” ๊ฐ•๋ ฅํ•œ ๊ฒฐ๊ณผ๋ฅผ ์ œ๊ณตํ•œ๋‹ค. ์ฆ‰, ์ง๊ต์„ฑ์„ ๋ณด์กดํ•˜๋ฉด ์ž๋™์ 

Quantum Physics
AMBIT: Augmenting Mobility Baselines with Interpretable Trees

AMBIT: Augmenting Mobility Baselines with Interpretable Trees

๋ณธ ์—ฐ๊ตฌ๋Š” ๋„์‹œ ์ด๋™์„ฑ ์˜ˆ์ธก ๋ถ„์•ผ์—์„œ โ€˜์ •ํ™•๋„โ€™์™€ โ€˜ํ•ด์„ ๊ฐ€๋Šฅ์„ฑโ€™์ด๋ผ๋Š” ๋‘ ์ถ•์„ ๋™์‹œ์— ๋งŒ์กฑ์‹œํ‚ค๋ ค๋Š” ์‹œ๋„๋ผ๋Š” ์ ์—์„œ ํ•™๋ฌธ์ ยท์‹ค๋ฌด์  ์˜์˜๊ฐ€ ํฌ๋‹ค. ๋จผ์ € ์ €์ž๋“ค์€ 1๋…„ ๋™์•ˆ ์‹œ๊ฐ„๋‹น์œผ๋กœ ๊ธฐ๋ก๋œ ๋‰ด์š•์‹œ ํƒ์‹œ OD ๋ฐ์ดํ„ฐ๋ฅผ ํ™œ์šฉํ•ด ์ „ํ†ต์ ์ธ ๊ณต๊ฐ„ ์ƒํ˜ธ์ž‘์šฉ ๋ชจ๋ธ๋“ค์„ ์ฒด๊ณ„์ ์œผ๋กœ ๊ฒ€์ฆํ•˜์˜€๋‹ค. ์—ฌ๊ธฐ์„œ PPML(Poisson Pseudoโ€‘Maximum Likelihood) ๊ธฐ๋ฐ˜์˜ Gravity ๋ชจ๋ธ์ด ๊ฐ€์žฅ ๋†’์€ ์„ค๋ช…๋ ฅ์„ ๋ณด์˜€์ง€๋งŒ, ์‹œ๊ฐ„ ํ•ด์ƒ๋„๊ฐ€ ์„ธ๋ถ„ํ™”๋ ์ˆ˜๋ก ๋Œ€๋ถ€๋ถ„์˜ ๋ฌผ๋ฆฌ ๋ชจ๋ธ์ด ๊ณผ์ ํ•ฉ์ด๋‚˜ ๋ฐ์ดํ„ฐ ํฌ์†Œ์„ฑ ๋ฌธ์ œ์— ์ง๋ฉดํ•œ๋‹ค๋Š” ์‚ฌ์‹ค์„ ๋ฐํ˜€๋ƒˆ๋‹ค. ํŠนํžˆ, ์ „์ฒด

No Image

Geometry-Aware Optimization for Respiratory Sound Classification: Enhancing Sensitivity with SAM-Optimized Audio Spectrogram Transformers

๋ณธ ๋…ผ๋ฌธ์€ ํ˜ธํก์Œ ๋ถ„๋ฅ˜ ๋ฌธ์ œ์— ๋Œ€ํ•œ ํ•ด๊ฒฐ์ฑ…์œผ๋กœ ํŠธ๋žœ์Šคํฌ๋จธ ๊ธฐ๋ฐ˜์˜ Audio Spectrogram Transformer (AST) ๋ชจ๋ธ๊ณผ Sharpness Aware Minimization (SAM) ๊ธฐ๋ฒ•์„ ๊ฒฐํ•ฉํ•œ ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. ์ด ์—ฐ๊ตฌ๋Š” ICBHI 2017 ๋ฐ์ดํ„ฐ์…‹์—์„œ ์ผ๋ฐ˜์ ์œผ๋กœ ๊ฒช๋Š” ๋ฌธ์ œ์ , ์ฆ‰ ์ž‘์€ ๊ทœ๋ชจ์˜ ๋ฐ์ดํ„ฐ์…‹, ๋†’์€ ๋…ธ์ด์ฆˆ ์ˆ˜์ค€ ๋ฐ ํด๋ž˜์Šค ๋ถˆ๊ท ํ˜•์— ์ดˆ์ ์„ ๋งž์ถ”๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ํŠธ๋žœ์Šคํฌ๋จธ ๋ชจ๋ธ์€ ๋ณต์žกํ•œ ํŒจํ„ด์„ ์ถ”์ถœํ•˜๋Š” ๋ฐ ๊ฐ•๋ ฅํ•˜์ง€๋งŒ, ์ œ์•ฝ๋œ ์˜๋ฃŒ ๋ฐ์ดํ„ฐ์—์„œ ํ•™์Šต๋  ๋•Œ ๊ณผ์ ํ•ฉ์˜ ์œ„ํ—˜์ด ์žˆ์œผ๋ฉฐ, ์ด๋Š” ๋ชจ๋ธ์ด ์†์‹ค ๊ฒฝ์‚ฌ๋ฉด์˜

Investigating Deep Learning Models for Ejection Fraction Estimation from Echocardiography Videos

Investigating Deep Learning Models for Ejection Fraction Estimation from Echocardiography Videos

๋ณธ ๋…ผ๋ฌธ์€ ์‹ฌ์žฅ๊ธฐ๋Šฅ ์ง„๋‹จ์— ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•˜๋Š” LVEF๋ฅผ ์ถ”์ •ํ•˜๊ธฐ ์œ„ํ•ด ๋‹ค์–‘ํ•œ ๋”ฅ๋Ÿฌ๋‹ ์•„ํ‚คํ…์ฒ˜์˜ ์„ฑ๋Šฅ์„ ํ‰๊ฐ€ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ดˆ์ŒํŒŒๅฟƒๅŠจๅ›พไฝœไธบไธ€็งๅธธ็”จ็š„ไธดๅบŠๅทฅๅ…ท๏ผŒ็”จไบŽ่ฏ„ไผฐๅฟƒ่„ๅŠŸ่ƒฝ๏ผŒไฝ†ๆ‰‹ๅŠจๅˆ†ๆžๅญ˜ๅœจๆ—ถ้—ดๆˆๆœฌ้ซ˜ๅ’Œ่ง‚ๅฏŸ่€…้—ดๅ˜ๅผ‚ๆ€งๅคง็š„้—ฎ้ข˜ใ€‚ๆทฑๅบฆๅญฆไน ๆ–นๆณ•็š„ๅผ•ๅ…ฅไธบ่ฟ™ไธช้—ฎ้ข˜ๆไพ›ไบ†ไธ€ไธชๆœ‰ๆฝœๅŠ›็š„่งฃๅ†ณๆ–นๆกˆใ€‚ๆœฌ็ ”็ฉถไธญ๏ผŒไฝœ่€…ๆŽข่ฎจไบ†ไธ‰็งไธๅŒ็š„ๆทฑๅบฆๅญฆไน ๆžถๆž„๏ผš3D Inceptionใ€ๅŒๆตๆจกๅž‹ไปฅๅŠCNN RNNๆจกๅž‹๏ผŒๅนถๅฏน่ฟ™ไบ›ๆจกๅž‹่ฟ›่กŒไบ†็ณป็ปŸๆ€ง็š„่ฏ„ไผฐไปฅ็กฎๅฎšๆœ€ไฝณ้…็ฝฎใ€‚ๅฎž้ชŒ็ป“ๆžœ่กจๆ˜Ž๏ผŒ็ป่ฟ‡ไฟฎๆ”นๅŽ็š„3D Inceptionๆžถๆž„่กจ็Žฐๆœ€ไผ˜๏ผŒๅ…ถๅ‡ๆ–นๆ น่ฏฏๅทฎ๏ผˆRMSE๏ผ‰ไธบ6.79%ใ€‚ๆญคๅค–๏ผŒ็ ”็ฉถ่ฟ˜ๅ‘็Žฐ่พƒๅฐไธ”็ฎ€ๅ•็š„ๆจกๅž‹ๅœจๆณ›ๅŒ–่ƒฝๅŠ›ไธŠไผ˜ไบŽๅคๆ‚

Model Learning
Learning Multi-Modal Mobility Dynamics for Generalized Next Location Recommendation

Learning Multi-Modal Mobility Dynamics for Generalized Next Location Recommendation

๋ณธ ๋…ผ๋ฌธ์€ ์ธ๊ฐ„ ์ด๋™์„ฑ ์˜ˆ์ธก์„ ์œ„ํ•œ ์œ„์น˜ ์ถ”์ฒœ ์‹œ์Šคํ…œ์— ๋‹ค์ค‘๋ชจ๋‹ฌ ์ •๋ณด๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ํ†ตํ•ฉํ•˜๋ ค๋Š” ์‹œ๋„๋กœ, ๊ธฐ์กด ์—ฐ๊ตฌ๊ฐ€ ์•ˆ๊ณ  ์žˆ๋˜ ๋‘ ๊ฐ€์ง€ ์ฃผ์š” ํ•œ๊ณ„๋ฅผ ๋ช…ํ™•ํžˆ ์งš๊ณ  ์žˆ๋‹ค. ์ฒซ ๋ฒˆ์งธ๋Š” ๋‹จ์ผ ๋ชจ๋‹ฌ(์˜ˆ: GPS ๋กœ๊ทธ, ์†Œ์…œ ๋ฏธ๋””์–ด ํ…์ŠคํŠธ ๋“ฑ)๋งŒ์„ ์ด์šฉํ•  ๊ฒฝ์šฐ ๋ฐ์ดํ„ฐ ํฌ์†Œ์„ฑ ๋ฐ ํŽธํ–ฅ ๋ฌธ์ œ์— ์ง๋ฉดํ•œ๋‹ค๋Š” ์ ์ด๋‹ค. ๋‘ ๋ฒˆ์งธ๋Š” ๋‹ค์ค‘ ๋ชจ๋‹ฌ์„ ํ™œ์šฉํ•˜๋”๋ผ๋„ ์ •์  ์ด๋ฏธ์ง€๋‚˜ ํ…์ŠคํŠธ์™€ ๊ฐ™์€ ํ‘œํ˜„์ด ๊ณต๊ฐ„โ€‘์‹œ๊ฐ„์ ์ธ ๋ณ€ํ™”๋ฅผ ์ถฉ๋ถ„ํžˆ ๋ฐ˜์˜ํ•˜์ง€ ๋ชปํ•ด, ์‹ค์ œ ์ด๋™ ํŒจํ„ด์„ ์ •ํ™•ํžˆ ๋ชจ๋ธ๋งํ•˜์ง€ ๋ชปํ•œ๋‹ค๋Š” ์ ์ด๋‹ค. ์ด๋Ÿฌํ•œ ๋ฌธ์ œ์ ์„ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ์ €์ž๋“ค์€ ์„ธ ๊ฐ€์ง€ ํ•ต์‹ฌ ๊ธฐ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค

Learning
Unleashing Foundation Vision Models: Adaptive Transfer for Diverse Data-Limited Scientific Domains

Unleashing Foundation Vision Models: Adaptive Transfer for Diverse Data-Limited Scientific Domains

๋ณธ ์—ฐ๊ตฌ๋Š” ํ˜„์žฌ ์ปดํ“จํ„ฐ ๋น„์ „ ๋ถ„์•ผ์—์„œ ๊ฐ€์žฅ ํฐ ๋„์ „ ๊ณผ์ œ ์ค‘ ํ•˜๋‚˜์ธ โ€œ๋Œ€๊ทœ๋ชจ ์‚ฌ์ „ ํ•™์Šต ๋ชจ๋ธ์„ ๋ฐ์ดํ„ฐ๊ฐ€ ๋ถ€์กฑํ•œ ํŠน์ˆ˜ ๋„๋ฉ”์ธ์— ํšจ๊ณผ์ ์œผ๋กœ ์ „์ด์‹œํ‚ค๋Š” ๋ฐฉ๋ฒ•โ€์„ ํ•ด๊ฒฐํ•˜๊ณ ์ž ํ•œ๋‹ค. ๊ธฐ์กด์˜ ํŒŒ์ธํŠœ๋‹ ๋ฐฉ์‹์€ ์‚ฌ์ „ ํ•™์Šต๋œ ๊ฐ€์ค‘์น˜๋ฅผ ๊ทธ๋Œ€๋กœ ์‚ฌ์šฉํ•˜๊ฑฐ๋‚˜, ์ „์ฒด ๋„คํŠธ์›Œํฌ๋ฅผ ๋ฏธ์„ธ์กฐ์ •ํ•˜๋Š” ๋ฐฉ์‹์— ๋จธ๋ฌผ๋Ÿฌ ์žˆ์–ด, ๋„๋ฉ”์ธ ๊ฐ„ ๋ถ„ํฌ ์ฐจ์ด๊ฐ€ ํด ๊ฒฝ์šฐ ๊ณผ์ ํ•ฉ์ด๋‚˜ ํ‘œํ˜„ ์†์‹ค์ด ๋ฐœ์ƒํ•œ๋‹ค. CLAdapter๋Š” ์ด๋Ÿฌํ•œ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด ๋‘ ๊ฐ€์ง€ ํ•ต์‹ฌ ์•„์ด๋””์–ด๋ฅผ ๊ฒฐํ•ฉํ•œ๋‹ค. ์ฒซ์งธ, ํด๋Ÿฌ์Šคํ„ฐ ์ค‘์‹ฌ์„ ํ™œ์šฉํ•ด ์ž…๋ ฅ ํŠน์ง• ๊ณต๊ฐ„์„ ์—ฌ๋Ÿฌ ๊ฐœ์˜ ์˜๋ฏธ๋ก ์  ๊ทธ๋ฃน์œผ๋กœ ๋‚˜๋ˆ„๊ณ , ๊ฐ ํด๋Ÿฌ์Šคํ„ฐ์—

Data Model
BLISS: Bandit Layer Importance Sampling Strategy for Efficient Training of Graph Neural Networks

BLISS: Bandit Layer Importance Sampling Strategy for Efficient Training of Graph Neural Networks

๋ณธ ๋…ผ๋ฌธ์€ ๊ทธ๋ž˜ํ”„ ์‹ ๊ฒฝ๋ง(GNN)์˜ ํ™•์žฅ์„ฑ ๋ฌธ์ œ๋ฅผ ๊ทผ๋ณธ์ ์œผ๋กœ ์žฌ๊ณ ํ•˜๋Š” ์ ‘๊ทผ๋ฒ•์„ ์ œ์‹œํ•œ๋‹ค. ์ „ํ†ต์ ์ธ GNN ํ•™์Šต์—์„œ๋Š” ๊ฐ ๋…ธ๋“œ๊ฐ€ ์ž์‹ ์˜ 1โ€‘hop ์ด์›ƒ์„ ๋ชจ๋‘ ์ง‘๊ณ„ํ•˜๋Š” ๊ณผ์ •์ด ํ•„์ˆ˜์ ์ด๋‹ค. ์ด ๊ณผ์ •์€ ๊ทธ๋ž˜ํ”„๊ฐ€ ์ปค์งˆ์ˆ˜๋ก ์ธ์ ‘ ํ–‰๋ ฌ์˜ ํฌ์†Œ์„ฑ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ  ๋ฉ”๋ชจ๋ฆฌ ์‚ฌ์šฉ๋Ÿ‰๊ณผ ์—ฐ์‚ฐ ๋ณต์žก๋„๊ฐ€ ๊ธ‰๊ฒฉํžˆ ์ฆ๊ฐ€ํ•œ๋‹ค๋Š” ํ•œ๊ณ„๋ฅผ ๊ฐ–๋Š”๋‹ค. ์ตœ๊ทผ์—๋Š” GraphSAGE, FastGCN, LADIES์™€ ๊ฐ™์€ ์ •์  ํ˜น์€ ํ™•๋ฅ ์  ์ƒ˜ํ”Œ๋ง ๊ธฐ๋ฒ•์ด ์ œ์•ˆ๋˜์—ˆ์ง€๋งŒ, ์ด๋“ค ๋ฐฉ๋ฒ•์€ ์‚ฌ์ „์— ์ •์˜๋œ ์ƒ˜ํ”Œ๋ง ๋น„์œจ์ด๋‚˜ ํ™•๋ฅ  ๋ถ„ํฌ์— ์˜์กดํ•œ๋‹ค. ๋”ฐ๋ผ์„œ ๊ทธ๋ž˜ํ”„ ๊ตฌ์กฐ๊ฐ€ ํ•™์Šต ์ง„ํ–‰ ์ค‘์— ๋ณ€ํ™”ํ•˜๊ฑฐ๋‚˜,

Network
Efficient Multi-Model Orchestration for Self-Hosted Large Language Models

Efficient Multi-Model Orchestration for Self-Hosted Large Language Models

๋ณธ ์—ฐ๊ตฌ๋Š” ๋Œ€๊ทœ๋ชจ ์–ธ์–ด ๋ชจ๋ธ์„ ์ž์ฒด ๋ฐ์ดํ„ฐ์„ผํ„ฐ์— ๊ตฌ์ถ•ํ•˜๋ ค๋Š” ๊ธฐ์—…ยท๊ธฐ๊ด€์„ ๋Œ€์ƒ์œผ๋กœ, ๊ธฐ์กด์˜ ์ •์  ๋ฐฐํฌ ๋ฐฉ์‹์ด ์•ˆ๊ณ  ์žˆ๋˜ ๋น„ํšจ์œจ์„ฑ์„ ๊ทผ๋ณธ์ ์œผ๋กœ ๊ฐœ์„ ํ•˜๊ณ ์ž ํ•˜๋Š” ์‹œ๋„์ด๋‹ค. ์ฒซ ๋ฒˆ์งธ ํ•ต์‹ฌ ๋ฌธ์ œ๋Š” GPU ์ž์›์˜ ๋น„์ •์ƒ์  ์‚ฌ์šฉ์ด๋‹ค. LLM์€ ๋ชจ๋ธ ํฌ๊ธฐ์— ๋”ฐ๋ผ ์ˆ˜์‹ญ์—์„œ ์ˆ˜๋ฐฑ ๊ฐœ์˜ GPU๊ฐ€ ํ•„์š”ํ•˜์ง€๋งŒ, ์‹ค์ œ ์š”์ฒญ๋Ÿ‰์€ ์‹œ๊ฐ„๋Œ€๋ณ„, ์„œ๋น„์Šค๋ณ„๋กœ ํฌ๊ฒŒ ๋ณ€๋™ํ•œ๋‹ค. ์ •์  ํ• ๋‹น์€ ํ”ผํฌ ์‹œ์ ์—๋Š” ์„ฑ๋Šฅ ์ €ํ•˜, ๋น„ํ”ผํฌ ์‹œ์ ์—๋Š” ์ž์› ๋‚ญ๋น„๋ฅผ ์ดˆ๋ž˜ํ•œ๋‹ค. ๋‘ ๋ฒˆ์งธ๋Š” ๋‹ค์–‘ํ•œ ๋ชจ๋ธ๊ณผ ์›Œํฌ๋กœ๋“œ๋ฅผ ๋™์‹œ์— ์šด์˜ํ•  ๋•Œ ๋ฐœ์ƒํ•˜๋Š” ๋ผ์šฐํŒ… ๋ณต์žก์„ฑ์ด๋‹ค. ๋ชจ๋ธ๋งˆ๋‹ค ์ •ํ™•๋„ยท์‘๋‹ต์‹œ๊ฐ„ยท๋น„์šฉ ํŠน์„ฑ

Model
Expert System for Bitcoin Forecasting: Integrating Global Liquidity via TimeXer Transformers

Expert System for Bitcoin Forecasting: Integrating Global Liquidity via TimeXer Transformers

๋ณธ ๋…ผ๋ฌธ์€ ๋น„ํŠธ์ฝ”์ธ ๊ฐ€๊ฒฉ ์˜ˆ์ธก ๋ชจ๋ธ์— ๋Œ€ํ•œ ์ค‘์š”ํ•œ ํ†ต์ฐฐ๋ ฅ์„ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค. ํŠนํžˆ, ๋‹จ์ผ ๋ณ€์ˆ˜ ์‹œ๊ณ„์—ด ์˜ˆ์ธก ๋ชจ๋ธ์ด ๋น„ํŠธ์ฝ”์ธ์˜ ๊ทน๋„๋กœ ๋ณ€๋™์„ฑ ๋†’๊ณ  ๋น„์ •์ƒ์ ์ธ ํŠน์„ฑ์„ ์ฒ˜๋ฆฌํ•˜๋Š” ๋ฐ ์–ด๋ ค์›€์„ ๊ฒช๋Š”๋‹ค๋Š” ์ ์„ ๊ฐ•์กฐํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ๊ธ€๋กœ๋ฒŒ M2 ์œ ๋™์„ฑ์„ ์™ธ์ƒ ๋ณ€์ˆ˜๋กœ ํ†ตํ•ฉํ•œ TimeXer Exog ๋ชจ๋ธ์„ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. ์ด ๋ชจ๋ธ์€ LSTM, N BEATS, PatchTST ๋“ฑ ๊ธฐ์กด์˜ ์ตœ์‹  ๋‹จ์ผ ๋ณ€์ˆ˜ ์˜ˆ์ธก ๋ชจ๋ธ๋“ค๊ณผ ๋น„๊ตํ•˜์—ฌ ์šฐ์ˆ˜ํ•œ ์„ฑ๋Šฅ์„ ๋ณด์˜€์Šต๋‹ˆ๋‹ค. ์‹คํ—˜ ๊ฒฐ๊ณผ๋Š” 70์ผ ์˜ˆ์ธก ๊ธฐ๊ฐ„์—์„œ TimeXer Exog ๋ชจ๋ธ์ด ํ‰๊ท ์ œ๊ณฑ์˜ค์ฐจ(MSE) ์ธก๋ฉด

System
No Image

Flexible Multitask Learning with Factorized Diffusion Policy

๋ณธ ๋…ผ๋ฌธ์€ ๋‹ค์ค‘ ์ž‘์—… ํ•™์Šต์˜ ๋ณต์žก์„ฑ์„ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ์ƒˆ๋กœ์šด ์ ‘๊ทผ๋ฒ•์„ ์ œ์‹œํ•ฉ๋‹ˆ๋‹ค. ๋กœ๋ด‡ ํ–‰๋™ ๋ถ„ํฌ๋Š” ๋งค์šฐ ๋‹ค์–‘ํ•˜๊ณ , ์ด๋กœ ์ธํ•ด ์ผ๊ด€๋œ ๋ชจ๋ธ์ด ์ด๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ํ•™์Šตํ•˜๋Š” ๋ฐ ์–ด๋ ค์›€์„ ๊ฒช์Šต๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ๋…ผ๋ฌธ์€ ๋ชจ๋“ˆํ™”๋œ ํ™•์‚ฐ ์ •์ฑ… ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. ์ด ํ”„๋ ˆ์ž„์›Œํฌ๋Š” ๋ณต์žกํ•œ ํ–‰๋™ ๋ถ„ํฌ๋ฅผ ์—ฌ๋Ÿฌ ๊ฐœ์˜ ํŠน์ˆ˜ํ™”๋œ ํ™•์‚ฐ ๋ชจ๋ธ๋กœ ๋ถ„ํ•ดํ•˜์—ฌ ๊ฐ๊ฐ์ด ํŠน์ • ํ•˜์œ„ ๋ชจ๋“œ๋ฅผ ํฌ์ฐฉํ•˜๋„๋ก ํ•ฉ๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ์ ‘๊ทผ๋ฒ•์€ ๊ฐ ๋ชจ๋“ˆ์ด ๋…๋ฆฝ์ ์œผ๋กœ ํ•™์Šตํ•˜๊ณ , ํ•„์š”์— ๋”ฐ๋ผ ์ถ”๊ฐ€ํ•˜๊ฑฐ๋‚˜ ์กฐ์ •ํ•  ์ˆ˜ ์žˆ์–ด ์ƒˆ๋กœ์šด ์ž‘์—…์— ๋Œ€ํ•œ ์œ ์—ฐํ•œ ์ ์‘์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•ฉ๋‹ˆ๋‹ค. ๋˜ํ•œ,

Learning
No Image

Flow morphology and patterns in porous media convection: A persistent homology analysis

๋ณธ ์—ฐ๊ตฌ๋Š” ๋Œ€๋ฅ˜ ํ˜ผํ•ฉ์ด ์ง€๊ตฌ๋ฌผ๋ฆฌํ•™๊ณผ ์‚ฐ์—… ๋ถ„์•ผ์—์„œ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•˜๋Š” ๋‹ค๊ณต์„ฑ ๋งค์ฒด์˜ ์—ด ์ „๋‹ฌ ๋ฐ ํ™”ํ•™ ๋ฌผ์งˆ ํ™•์‚ฐ ๊ณผ์ •์— ์ดˆ์ ์„ ๋งž์ถ”๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ํŠนํžˆ, ๋ณต์žกํ•˜๊ณ  ์˜ˆ์ธกํ•˜๊ธฐ ์–ด๋ ค์šด ์œ ๋™ ํŒจํ„ด์„ ์ดํ•ดํ•˜๋Š” ๋ฐ ์ง€์†์  ํ˜ธ๋ชจ๋กœ์ง€(PH)๋ฅผ ํ™œ์šฉํ•ฉ๋‹ˆ๋‹ค. PH๋Š” ๋‹ค์–‘ํ•œ ์˜จ๋„๋‚˜ ๋†๋„ ๊ฐ’์—์„œ ๊ตฌ์กฐ๋ฅผ ์ •๋Ÿ‰ํ™”ํ•  ์ˆ˜ ์žˆ๋Š” ๊ฐ๊ด€์ ์ธ ์ธก์ • ๋ฐฉ๋ฒ•์œผ๋กœ, ๊ณ ์ „์ ์ธ ๋‹ค๊ณต์„ฑ ๋งค์ฒด ์„ค์ •์— ์ ์šฉ๋  ๋•Œ ์œ ๋™ ํŒจํ„ด๊ณผ ๊ฑฐ์‹œ์  ํ˜ผํ•ฉ ํŠน์„ฑ์„ ๋ถ„์„ํ•˜๋Š” ์ƒˆ๋กœ์šด ํ†ต์ฐฐ๋ ฅ์„ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋Œ€๊ทœ๋ชจ ๋ฐ์ดํ„ฐ ์„ธํŠธ๋ฅผ ํ™œ์šฉํ•˜์—ฌ ์—ด ์ „๋‹ฌ ์†๋„์™€ ์œ ๋™ ๊ตฌ์กฐ์˜ ์ง„ํ™” ์‚ฌ์ด์˜ ์ƒ๊ด€ ๊ด€๊ณ„๋ฅผ ๋ถ„์„ํ•˜

Analysis
HeartBench: Probing Core Dimensions of Anthropomorphic Intelligence in LLMs

HeartBench: Probing Core Dimensions of Anthropomorphic Intelligence in LLMs

์ด ๋…ผ๋ฌธ์€ ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(LLMs)์˜ ํ•œ๊ณ„์™€ ๊ทธ ํ•ด๊ฒฐ์ฑ…์— ์ดˆ์ ์„ ๋งž์ถ”๊ณ  ์žˆ๋‹ค. ํŠนํžˆ, LLMs๊ฐ€ ์‚ฌํšŒ์ , ์ •์„œ์ , ์œค๋ฆฌ์  ๋ฏธ๋ฌ˜ํ•จ์„ ์ดํ•ดํ•˜๋Š” ๋ฐ ์–ด๋ ค์›€์„ ๊ฒช๋Š”๋‹ค๋Š” ์ ์„ ๊ฐ•์กฐํ•œ๋‹ค. ์ด ๋ฌธ์ œ๋Š” ์ค‘๊ตญ์–ด ๋ฌธํ™”์™€ ์–ธ์–ด ๋งฅ๋ฝ์—์„œ ๋”์šฑ ๋‘๋“œ๋Ÿฌ์ง€๋ฉฐ, ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด HeartBench๋ผ๋Š” ์ƒˆ๋กœ์šด ํ‰๊ฐ€ ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์‹œํ•˜๊ณ  ์žˆ๋‹ค. HeartBench๋Š” ์‹ฌ๋ฆฌ ์ƒ๋‹ด ์‹œ๋‚˜๋ฆฌ์˜ค์™€ ์ž„์ƒ ์ „๋ฌธ๊ฐ€๋“ค์˜ ํ˜‘์—…์„ ํ†ตํ•ด ๊ฐœ๋ฐœ๋˜์—ˆ์œผ๋ฉฐ, 5๊ฐœ ์ฃผ์š” ์ฐจ์›๊ณผ ๊ทธ ํ•˜์œ„ ๋Šฅ๋ ฅ์œผ๋กœ ๊ตฌ์„ฑ๋œ ์ด๋ก  ์ค‘์‹ฌ ๋ถ„๋ฅ˜ ์ฒด๊ณ„๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ์ถ”์ƒ์ ์ธ ์ธ๊ฐ„ ์œ ์‚ฌ ํŠน์„ฑ์„ ์„ธ๋ถ„ํ™”๋œ ์ธก

Human-like visual computing advances explainability and few-shot learning in deep neural networks for complex physiological data

Human-like visual computing advances explainability and few-shot learning in deep neural networks for complex physiological data

์ด ๋…ผ๋ฌธ์€ ํ˜„๋Œ€ ์˜๋ฃŒ ์ธ๊ณต์ง€๋Šฅ์ด ์ง๋ฉดํ•œ ๋‘ ๊ฐ€์ง€ ํ•ต์‹ฌ ๋ฌธ์ œโ€”๋ฐ์ดํ„ฐ ๋ถ€์กฑ๊ณผ ๋ธ”๋ž™๋ฐ•์Šค ํ˜„์ƒโ€”์— ๋Œ€ํ•œ ํ˜์‹ ์ ์ธ ํ•ด๊ฒฐ์ฑ…์„ ์ œ์‹œํ•œ๋‹ค. ๋จผ์ €, โ€˜๊ฐ€์งœ ์ƒ‰์ฑ„(pseudoโ€‘colouring)โ€™๋ผ๋Š” ๊ฐœ๋…์€ ์›๋ž˜ ์ธ๊ฐ„ ์ „๋ฌธ๊ฐ€๊ฐ€ ECG๋ฅผ ์‹œ๊ฐ์ ์œผ๋กœ ํ•ด์„ํ•  ๋•Œ ์ค‘์š”ํ•œ ์‹œ๊ฐ„์  ํŠน์ง•, ์˜ˆ์ปจ๋Œ€ QT ๊ฐ„๊ฒฉ์„ ์ƒ‰์ƒ์œผ๋กœ ๊ฐ•์กฐํ•จ์œผ๋กœ์จ ์ธ์ง€ ๋ถ€ํ•˜๋ฅผ ๋‚ฎ์ถ”๋Š” ๋ฐฉ๋ฒ•์œผ๋กœ ์•Œ๋ ค์ ธ ์žˆ๋‹ค. ์ด๋ฅผ ๋””์ง€ํ„ธ ์ด๋ฏธ์ง€์— ๊ทธ๋Œ€๋กœ ์ ์šฉํ•˜๋ฉด, ์‹ ๊ฒฝ๋ง์ด ์›์‹œ ์ „์•• ํŒŒํ˜• ๋Œ€์‹  ์ƒ‰์ƒ ์ฑ„๋„์„ ํ†ตํ•ด ์˜๋ฏธ ์žˆ๋Š” ์ •๋ณด๋ฅผ ์ง์ ‘ ๋ฐ›์•„๋“ค์ผ ์ˆ˜ ์žˆ๋‹ค. ์ƒ‰์ƒ์€ 3์ฐจ์›(RGB) ๊ณต๊ฐ„์—์„œ ์„œ๋กœ ๋‹ค๋ฅธ ์‹œ๊ฐ„ ๊ตฌ๊ฐ„์„ ๊ตฌ๋ถ„ํ•˜

Network Data Learning
Introducing TrGLUE and SentiTurca: A Comprehensive Benchmark for Turkish General Language Understanding and Sentiment Analysis

Introducing TrGLUE and SentiTurca: A Comprehensive Benchmark for Turkish General Language Understanding and Sentiment Analysis

์ด ๋…ผ๋ฌธ์€ ํ„ฐํ‚ค์–ด ์ž์—ฐ์–ด ์ฒ˜๋ฆฌ(NLP)์˜ ์„ฑ๋Šฅ ํ‰๊ฐ€๋ฅผ ์œ„ํ•ด ํ•„์š”ํ•œ ์ข…ํ•ฉ์ ์ธ ๋ฒค์น˜๋งˆํฌ๋ฅผ ์ œ์‹œํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ํŠนํžˆ, TrGLUE์™€ SentiTurca๋ผ๋Š” ๋‘ ๊ฐ€์ง€ ์ƒˆ๋กœ์šด ๋ฒค์น˜๋งˆํฌ๋ฅผ ์†Œ๊ฐœํ•˜๋ฉฐ, ์ด๋Š” ํ„ฐํ‚ค์–ด NLU ๋Šฅ๋ ฅ์„ ํ‰๊ฐ€ํ•˜๋Š” ๋ฐ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•ฉ๋‹ˆ๋‹ค. GLUE ๋ฒค์น˜๋งˆํฌ๊ฐ€ ์˜์–ด NLU์˜ ์„ฑ๋Šฅ ํ‰๊ฐ€์— ๋Œ€ํ•œ ํ‘œ์ค€์„ ์ œ๊ณตํ•œ ๊ฒƒ์ฒ˜๋Ÿผ, TrGLUE๋Š” ํ„ฐํ‚ค์–ด์—์„œ๋„ ์œ ์‚ฌํ•œ ๊ธฐ๋Šฅ์„ ์ˆ˜ํ–‰ํ•ฉ๋‹ˆ๋‹ค. ๋…ผ๋ฌธ์€ ๋‹ค์–‘ํ•œ ์–ธ์–ด๋ณ„๋กœ ๊ฐœ๋ฐœ๋œ ๋ฒค์น˜๋งˆํฌ๋ฅผ ์†Œ๊ฐœํ•˜๋ฉฐ, ์ด๋Ÿฌํ•œ ๋ฒค์น˜๋งˆํฌ์˜ ์ค‘์š”์„ฑ์„ ๊ฐ•์กฐํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ํŠนํžˆ, ํ„ฐํ‚ค์–ด์— ๋Œ€ํ•œ ์ข…ํ•ฉ์ ์ธ NLU ํ‰๊ฐ€ ๋ฒค์น˜๋งˆํฌ๊ฐ€ ๋ถ€์žฌํ•œ

Analysis
No Image

LibContinual: A Comprehensive Library towards Realistic Continual Learning

์ด ๋…ผ๋ฌธ์€ ๊ณ„์†ํ•™์Šต(Continual Learning) ๋ถ„์•ผ์—์„œ ์ค‘์š”ํ•œ ๋ฌธ์ œ์ธ ์น˜๋ช…์ ์ธ ์žŠ์Œ์„ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด LibContinual์ด๋ผ๋Š” ์ƒˆ๋กœ์šด ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ๋ฅผ ์ œ์•ˆํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ด ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ๋Š” ๊ณ ๊ฒฐํ•ฉ ์ €๊ฒฐ์ฐฉ ๋ชจ๋“ˆํ˜• ์•„ํ‚คํ…์ฒ˜๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ, 5๊ฐœ์˜ ์ฃผ์š” ๋ฐฉ๋ฒ•๋ก  ์นดํ…Œ๊ณ ๋ฆฌ์— ๊ฑธ์ณ 19๊ฐœ์˜ ๋Œ€ํ‘œ์ ์ธ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ํ†ตํ•ฉํ•˜์—ฌ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ๊ตฌ์กฐ๋Š” ๋‹ค์–‘ํ•œ CL ๋ฐฉ๋ฒ•๋“ค์„ ๋น„๊ตํ•˜๊ณ  ์žฌํ˜„ ๊ฐ€๋Šฅํ•œ ์—ฐ๊ตฌ ํ™˜๊ฒฝ์„ ์ œ๊ณตํ•˜๋Š” ๋ฐ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•ฉ๋‹ˆ๋‹ค. ๋…ผ๋ฌธ์€ ๋˜ํ•œ ํ˜„์žฌ ํ‰๊ฐ€์—์„œ ์ผ๋ฐ˜์ ์œผ๋กœ ๋ฐœ๊ฒฌ๋˜๋Š” ์„ธ ๊ฐ€์ง€ ์•”๋ฌต์ ์ธ ๊ฐ€์ •(์˜คํ”„๋ผ์ธ ๋ฐ์ดํ„ฐ ์ ‘๊ทผ ๊ฐ€๋Šฅ์„ฑ, ์ œํ•œ ์—†๋Š”

Learning
Semiparametric Preference Optimization: Your Language Model is Secretly a Single-Index Model

Semiparametric Preference Optimization: Your Language Model is Secretly a Single-Index Model

์ด ๋…ผ๋ฌธ์€ ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(LLMs)์˜ ์„ ํ˜ธ๋„ ์ •ํ•ฉ์„ฑ ๋ฌธ์ œ๋ฅผ ๋‹ค๋ฃจ๋ฉฐ, ํŠนํžˆ ์•Œ๋ ค์ง€์ง€ ์•Š์€ ๋งํฌ ํ•จ์ˆ˜์— ๋Œ€ํ•œ ์ ‘๊ทผ๋ฒ•์„ ์ œ์‹œํ•œ๋‹ค. ๋ณดํ†ต LLMs๋Š” ํŠน์ • ์—ฐ๊ฒฐ ํ•จ์ˆ˜(์˜ˆ: ๋กœ์ง“ ๋ธŒ๋ผ๋“ค๋ฆฌ ํ…Œ๋ฆฌ ์—ฐ๊ฒฐ)๋ฅผ ๊ฐ€์ •ํ•˜์—ฌ ๊ด€์ฐฐ๋œ ์„ ํ˜ธ์™€ ์ž ์žฌ์  ๋ณด์ƒ ์‚ฌ์ด์˜ ๊ด€๊ณ„๋ฅผ ๋ชจ๋ธ๋งํ•˜๋Š”๋ฐ, ์ด๋Ÿฌํ•œ ์—ฐ๊ฒฐ ํ•จ์ˆ˜๊ฐ€ ์ž˜๋ชป ์ง€์ •๋˜๋ฉด ์ถ”๋ก ๋œ ๋ณด์ƒ๊ณผ ํ•™์Šต๋œ ์ •์ฑ…์ด ๋ถˆ์ผ์น˜ํ•˜๊ฒŒ ๋œ๋‹ค. ๋…ผ๋ฌธ์€ ์•Œ๋ ค์ง€์ง€ ์•Š์€ ๋งํฌ ํ•จ์ˆ˜์— ๋Œ€ํ•ด f ๋ถ„์‚ฐ ์ œ์•ฝ ์กฐ๊ฑด ํ•˜์—์„œ ๋ณด์ƒ ์ตœ๋Œ€ํ™”์˜ ์‹คํ˜„ ๊ฐ€๋Šฅ์„ฑ ๋ฌธ์ œ๋ฅผ ๋‹ค๋ฃจ๋ฉฐ, ์ด๋ฅผ ํ†ตํ•ด ๋ฐ˜ํŒŒ๋ผ๋ฉ”ํŠธ๋ฆญ ๋‹จ์ผ ์ธ๋ฑ์Šค ์ด์ง„ ์„ ํƒ ๋ชจ๋ธ์„ ์œ ๋„ํ•œ๋‹ค. ์ด ๋ชจ๋ธ์—์„œ๋Š” ์ •์ฑ… ์ข…์†

Model
Subgoaling Relaxation-based Heuristics for Numeric Planning with Infinite Actions

Subgoaling Relaxation-based Heuristics for Numeric Planning with Infinite Actions

๋ณธ ์—ฐ๊ตฌ๋Š” ์ˆ˜์น˜ ๊ณ„ํš(Numeric Planning) ๋ถ„์•ผ์—์„œ โ€˜์ œ์–ด ํŒŒ๋ผ๋ฏธํ„ฐ(Control Parameters)โ€™๋ผ๋Š” ์ƒˆ๋กœ์šด ์ฐจ์›์„ ๋„์ž…ํ•จ์œผ๋กœ์จ ๊ธฐ์กด ๋ชจ๋ธ์ด ๊ฐ–๋Š” ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๋ ค๋Š” ์‹œ๋„์ด๋‹ค. ์ „ํ†ต์ ์ธ ์ˆ˜์น˜ ๊ณ„ํš์—์„œ๋Š” ๊ฐ ํ–‰๋™์ด ๋ฏธ๋ฆฌ ์ •์˜๋œ ๋งค๊ฐœ๋ณ€์ˆ˜ ์ง‘ํ•ฉ์„ ๊ฐ€์ง€๊ณ  ์žˆ์–ด, ํŠน์ • ์ƒํƒœ์—์„œ ์ ์šฉ ๊ฐ€๋Šฅํ•œ ํ–‰๋™์˜ ์ˆ˜๊ฐ€ ์œ ํ•œํ•˜๊ณ , ์ด๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํœด๋ฆฌ์Šคํ‹ฑ ํ•จ์ˆ˜๊ฐ€ ํšจ๊ณผ์ ์œผ๋กœ ์„ค๊ณ„๋  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ œ์–ด ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ์ž์œ  ๋ณ€์ˆ˜๋กœ ๋‘๋ฉด, ๊ฐ™์€ ํ–‰๋™ ์œ ํ˜•์ด๋ผ๋„ ๋งค๊ฐœ๋ณ€์ˆ˜๊ฐ’์— ๋”ฐ๋ผ ๋ฌด์ˆ˜ํžˆ ๋งŽ์€ ๊ตฌ์ฒดํ™”๊ฐ€ ๊ฐ€๋Šฅํ•ด์ง„๋‹ค. ๊ฒฐ๊ณผ์ ์œผ๋กœ ํ•œ ์ƒํƒœ์—์„œ โ€œ์ ์šฉ ๊ฐ€๋Šฅํ•œ

No Image

VideoZoomer: Reinforcement-Learned Temporal Focusing for Long Video Reasoning

๋น„๋””์˜ค์คŒ๋จธ๋Š” MLLMs์˜ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•œ ํ˜์‹ ์ ์ธ ์ ‘๊ทผ๋ฒ•์ด๋‹ค. ๊ธฐ์กด ๋ชจ๋ธ๋“ค์ด ๊ณ ์ •๋œ ํ”„๋ ˆ์ž„ ์ƒ˜ํ”Œ๋ง์ด๋‚˜ ์ •์  ์‚ฌ์ „ ์„ ํƒ์— ์˜์กดํ•จ์œผ๋กœ์จ ์ค‘์š”ํ•œ ์ •๋ณด๋ฅผ ๋†“์น˜๊ฑฐ๋‚˜ ์ดˆ๊ธฐ ์˜ค๋ฅ˜๋ฅผ ์ˆ˜์ •ํ•  ์ˆ˜ ์—†๋Š” ๋ฌธ์ œ์ ์„ ํ•ด๊ฒฐํ•˜๊ณ ์ž, ๋น„๋””์˜ค์คŒ๋จธ๋Š” MLLMs๊ฐ€ ์ถ”๋ก  ๊ณผ์ •์—์„œ ์‹œ๊ฐ์  ์ฃผ์˜๋ ฅ์„ ๋™์ ์œผ๋กœ ์กฐ์ ˆํ•  ์ˆ˜ ์žˆ๋Š” ์—์ด์ „ํŠธ ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์•ˆํ•œ๋‹ค. ์ด ๋ชจ๋ธ์€ ์ €์† ํ”„๋ ˆ์ž„ ๋ ˆ์ดํŠธ๋กœ ์‹œ์ž‘ํ•˜์—ฌ ์‹œ๊ฐ„ ํ™•๋Œ€ ๋„๊ตฌ๋ฅผ ์‚ฌ์šฉํ•ด ๊ณ ์† ํ”„๋ ˆ์ž„ ๋ ˆ์ดํŠธ ํด๋ฆฝ์„ ์ž๋™์œผ๋กœ ์„ ํƒํ•˜๊ณ  ์ˆ˜์ง‘ํ•จ์œผ๋กœ์จ, ์ ์ง„์ ์œผ๋กœ ์„ธ๋ฐ€ํ•œ ์ฆ๊ฑฐ๋ฅผ ๋‹ค์ค‘ ํšŒ์ฐจ ์ƒํ˜ธ์ž‘์šฉ ๋ฐฉ์‹์œผ๋กœ ์ˆ˜์ง‘ํ•œ๋‹ค. ์ด๋Š” ๋น„๋””์˜ค์คŒ๋จธ๊ฐ€ ๋™์˜์ƒ

Accelerating Scientific Discovery with Autonomous Goal-evolving Agents

Accelerating Scientific Discovery with Autonomous Goal-evolving Agents

SAGA๋Š” ๊ธฐ์กด ๊ณผํ•™ ์ž๋™ํ™” ํ”„๋ ˆ์ž„์›Œํฌ๊ฐ€ ์ง๋ฉดํ•œ ๊ทผ๋ณธ์ ์ธ ํ•œ๊ณ„๋ฅผ ๋›ฐ์–ด๋„˜๋Š”๋‹ค. ์ „ํ†ต์ ์ธ ์ ‘๊ทผ๋ฒ•์€ ์‚ฌ์ „์— ์ •์˜๋œ ๋ชฉํ‘œ ํ•จ์ˆ˜๋ฅผ ๊ณ ์ •ํ•˜๊ณ , ๊ทธ ํ•จ์ˆ˜์— ๋งž์ถฐ ํ›„๋ณด ๋ฌผ์งˆ์ด๋‚˜ ์„ค๊ณ„์•ˆ์„ ํƒ์ƒ‰ํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๋ณต์žกํ•œ ๊ณผํ•™ ๋ฌธ์ œ์—์„œ๋Š” ๋ชฉํ‘œ ์ž์ฒด๊ฐ€ ๋ถˆ์™„์ „ํ•˜๊ฑฐ๋‚˜ ์ƒ์ถฉ๋˜๋Š” ๊ฒฝ์šฐ๊ฐ€ ๋งŽ์•„, ๊ณ ์ •๋œ ๋ชฉํ‘œ์— ์ตœ์ ํ™”๋œ ์†”๋ฃจ์…˜์ด ์‹ค์ œ๋กœ๋Š” ๋น„ํ˜„์‹ค์ ์ด๊ฑฐ๋‚˜ ํ™œ์šฉ๋„๊ฐ€ ๋‚ฎ์„ ์ˆ˜ ์žˆ๋‹ค. SAGA๋Š” ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ โ€˜๋ชฉํ‘œ ์ž์ฒด๋ฅผ ์ง„ํ™”์‹œํ‚ค๋Š”โ€™ ๋ฉ”์ปค๋‹ˆ์ฆ˜์œผ๋กœ ํ•ด๊ฒฐํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ ํ•ต์‹ฌ์€ ์ด์ค‘ ๋ฃจํ”„ ๊ตฌ์กฐ ์ด๋‹ค. ์™ธ๋ถ€ ๋ฃจํ”„๋Š” LLM ๊ธฐ๋ฐ˜ ์—์ด์ „ํŠธ๊ฐ€ ํ˜„์žฌ ์ตœ์ ํ™” ๊ฒฐ๊ณผ๋ฅผ ๋ฉ”ํƒ€โ€‘๋ถ„์„ํ•˜๊ณ , ๋ฐœ๊ฒฌ๋œ ๋ถ€

Bidirectional Human-AI Alignment in Education for Trustworthy Learning Environments

Bidirectional Human-AI Alignment in Education for Trustworthy Learning Environments

๋ณธ ๋…ผ๋ฌธ์€ ์ธ๊ณต์ง€๋Šฅ์ด ๊ต์œก ํ˜„์žฅ์— ๋ฏธ์น˜๋Š” ๋ณ€ํ™”๋ฅผ ๋‹จ์ˆœํ•œ ๊ธฐ์ˆ  ๋„์ž… ์ˆ˜์ค€์„ ๋„˜์–ด โ€˜์–‘๋ฐฉํ–ฅ ์ •๋ ฌ(bidirectional alignment)โ€™์ด๋ผ๋Š” ์ƒˆ๋กœ์šด ํ”„๋ ˆ์ž„์›Œํฌ๋กœ ์žฌ๊ตฌ์„ฑํ•œ๋‹ค. ์ „ํ†ต์ ์ธ AI ์œค๋ฆฌ ๋…ผ์˜๋Š” ์ฃผ๋กœ ์ธ๊ฐ„ ๊ฐ€์น˜์™€ ๋ชฉํ‘œ๋ฅผ ์•Œ๊ณ ๋ฆฌ์ฆ˜์— ๋‚ด์žฌ์‹œํ‚ค๋Š” ์ผ๋ฐฉํ–ฅ์  ์ ‘๊ทผ์— ๋จธ๋ฌผ๋ €๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๊ต์œก์€ ํ•™์Šต์ž์™€ ๊ต์‚ฌ, ์ œ๋„ ์ „์ฒด๊ฐ€ ์ง€์†์ ์œผ๋กœ ์ƒํ˜ธ์ž‘์šฉํ•˜๊ณ  ํ”ผ๋“œ๋ฐฑ์„ ์ฃผ๊ณ ๋ฐ›๋Š” ๋ณตํ•ฉ ์‹œ์Šคํ…œ์ด๋‹ค. ๋”ฐ๋ผ์„œ AI๊ฐ€ ์ œ๊ณตํ•˜๋Š” ๋งž์ถคํ˜• ํ•™์Šต ๊ฒฝ๋กœ, ์ž๋™ ์ฑ„์ , ํ•™์Šต ๋ถ„์„ ๋„๊ตฌ๋Š” ๊ต์‚ฌ์˜ ์ „๋ฌธ์„ฑยทํŒ๋‹จ์„ ๋ณด์™„ํ•˜๋Š” ๋™์‹œ์— ๊ต์‚ฌ์™€ ํ•™์ƒ์ด AI์˜ ์ž‘๋™ ์›๋ฆฌ์™€ ํ•œ๊ณ„๋ฅผ ์ดํ•ดํ•˜

Learning
DiverseGRPO: Mitigating Mode Collapse in Image Generation via Diversity-Aware GRPO

DiverseGRPO: Mitigating Mode Collapse in Image Generation via Diversity-Aware GRPO

๋ณธ ๋…ผ๋ฌธ์€ ํ˜„๋Œ€ ์ƒ์„ฑ ๋ชจ๋ธ์ด ์ง๋ฉดํ•œ ๋‘ ๊ฐ€์ง€ ํ•ต์‹ฌ ๊ณผ์ œ, ์ฆ‰ โ€˜๋ชจ๋“œ ๋ถ•๊ดด(Mode Collapse)โ€™์™€ โ€˜๋ชจ๋“œ ์ปค๋ฒ„๋ฆฌ์ง€(Rich Mode Coverage)โ€™ ์‚ฌ์ด์˜ ํŠธ๋ ˆ์ด๋“œ์˜คํ”„๋ฅผ ์‹คํ—˜์ ยท์ด๋ก ์ ์œผ๋กœ ํƒ๊ตฌํ•œ๋‹ค. ๋ชจ๋“œ ๋ถ•๊ดด๋Š” ํ•™์Šต๋œ ๋ชจ๋ธ์ด ์ œํ•œ๋œ ์†Œ์ˆ˜์˜ ์ถœ๋ ฅ ๋ชจ๋“œ๋งŒ์„ ๋ฐ˜๋ณต ์ƒ์„ฑํ•จ์œผ๋กœ์จ ๋ฐ์ดํ„ฐ ๋ถ„ํฌ์˜ ๋‹ค์–‘์„ฑ์„ ์ƒ์‹คํ•˜๋Š” ํ˜„์ƒ์ด๋ฉฐ, ์ด๋Š” ํŠนํžˆ ๊ณ ํ•ด์ƒ๋„ ์ด๋ฏธ์ง€ ์ƒ์„ฑ์—์„œ ์‹ฌ๊ฐํ•œ ํ’ˆ์งˆ ์ €ํ•˜๋ฅผ ์ดˆ๋ž˜ํ•œ๋‹ค. ๋ฐ˜๋ฉด, ํ’๋ถ€ํ•œ ๋ชจ๋“œ ์ปค๋ฒ„๋ฆฌ์ง€๋Š” ๋ชจ๋ธ์ด ์›๋ณธ ๋ฐ์ดํ„ฐ์˜ ๋‹ค์–‘ํ•œ ์Šคํƒ€์ผ, ์ƒ‰๊ฐ, ๊ตฌ์„ฑ์„ ํฌ๊ด„์ ์œผ๋กœ ํ•™์Šตํ•จ์„ ์˜๋ฏธํ•œ๋‹ค. ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ์ €์ž๋Š” (c)

No Image

Efficient MoE Inference with Fine-Grained Scheduling of Disaggregated Expert Parallelism

๋ณธ ๋…ผ๋ฌธ์€ ํ˜„์žฌ ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(Large Language Model, LLM)์—์„œ ํ•ต์‹ฌ์ ์ธ ์—ญํ• ์„ ํ•˜๋Š” Mixtureโ€‘ofโ€‘Experts(MoE) ์•„ํ‚คํ…์ฒ˜์˜ ์ถ”๋ก  ํšจ์œจ์„ฑ์„ ํฌ๊ฒŒ ๊ฐœ์„ ํ•˜๊ณ ์ž ํ•˜๋Š” ์‹ค์šฉ์ ์ธ ์ ‘๊ทผ์„ ์ œ์‹œํ•œ๋‹ค. MoE๋Š” ์ „๋ฌธ๊ฐ€(Expert) ๋ผ๋Š” ์„œ๋ธŒ๋ชจ๋ธ์„ ๋‹ค์ˆ˜ ๋ณด์œ ํ•˜๊ณ , ์ž…๋ ฅ ํ† ํฐ๋‹น ํ™œ์„ฑํ™”๋˜๋Š” ์ „๋ฌธ๊ฐ€ ์ˆ˜๋ฅผ ์ œํ•œํ•จ์œผ๋กœ์จ ๋ชจ๋ธ ํŒŒ๋ผ๋ฏธํ„ฐ๋Š” ํฌ๊ฒŒ ๋Š˜๋ฆฌ๋ฉด์„œ๋„ ์‹ค์ œ ์—ฐ์‚ฐ๋Ÿ‰์€ ์ƒ๋Œ€์ ์œผ๋กœ ๋‚ฎ๊ฒŒ ์œ ์ง€ํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ถ”๋ก  ๋‹จ๊ณ„์—์„œ๋Š” ๋‘ ๊ฐ€์ง€ ์ฃผ์š” ๋ณ‘๋ชฉ์ด ์กด์žฌํ•œ๋‹ค. ์ฒซ์งธ, ํŠธ๋žœ์Šคํฌ๋จธ ์–ดํ…์…˜ ๋ ˆ์ด์–ด์—์„œ ๋งค ํ† ํฐ๋งˆ๋‹ค KV ์บ์‹œ๋ฅผ ์ฝ๊ณ  ์“ฐ๋Š” ๊ณผ์ •

S&P 500 Stock's Movement Prediction using CNN

S&P 500 Stock's Movement Prediction using CNN

์ด ๋…ผ๋ฌธ์€ S&P 500 ์ง€์ˆ˜๋ฅผ ๊ตฌ์„ฑํ•˜๋Š” ์ฃผ์‹์˜ ์›€์ง์ž„์„ ์˜ˆ์ธกํ•˜๋Š”๋ฐ ์ดˆ์ ์„ ๋งž์ถ”๊ณ  ์žˆ๋‹ค. ๊ณผ๊ฑฐ์—๋Š” ๋‹ค์–‘ํ•œ ๋ฐฉ๋ฒ•๋ก ์„ ์‚ฌ์šฉํ•˜์—ฌ ์ฃผ๊ฐ€ ์˜ˆ์ธก์— ๋Œ€ํ•œ ๋งŽ์€ ์ ‘๊ทผ๋ฒ•๋“ค์ด ์‹œ์žฅ์—์„œ ์•Œ๊ณ ๋ฆฌ์ฆ˜ ๊ฑฐ๋ž˜์™€ ์•ŒํŒŒ ์ƒ์„ฑ ์‹œ์Šคํ…œ์— ํ™œ์šฉ๋˜์–ด ์™”๋‹ค. ์ตœ๊ทผ ์ธ๊ณต ์‹ ๊ฒฝ๋ง์˜ ์„ฑ๊ณต์€ ๊ธฐ๊ณ„ ํ•™์Šต๊ณผ ๋”ฅ๋Ÿฌ๋‹ ๋ถ„์•ผ์˜ ์ตœ์‹  ์—ฐ๊ตฌ๋ฅผ ํ†ตํ•ด ์˜ˆ์ธก์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•˜๋Š” ๊ธธ์„ ์—ด์—ˆ๋‹ค. ์ด ๋…ผ๋ฌธ์—์„œ๋Š” ์‹ค์„ธ๊ณ„ ์‹œ์žฅ ๋ฐ์ดํ„ฐ์—์„œ ๋ฐœ์ƒํ•˜๋Š” ์ฃผ์‹ ๋ถ„ํ• /๋ฐฐ๋‹น ์ด๋ฒคํŠธ๋ฅผ ํฌํ•จํ•œ ๋‹ค๋ณ€๋Ÿ‰ ์›์‹œ ๋ฐ์ดํ„ฐ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ, ์ด๋ฏธ์ง€ ๋ถ„๋ฅ˜์— ๊ฐ€์žฅ ์ž˜ ์•Œ๋ ค์ง„ ๋„๊ตฌ์ธ ์ปจ๋ณผ๋ฃจ์…˜ ์‹ ๊ฒฝ๋ง(CNN)์„ ์ ์šฉํ•˜๊ณ  ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ์ ‘๊ทผ๋ฒ•์€ ๊ฐ๊ฐ

The Illusion of Clinical Reasoning: A Benchmark Reveals the Pervasive Gap in Vision-Language Models for Clinical Competency

The Illusion of Clinical Reasoning: A Benchmark Reveals the Pervasive Gap in Vision-Language Models for Clinical Competency

์ด ๋…ผ๋ฌธ์€ ์˜๋ฃŒ ๋ถ„์•ผ์—์„œ ์ธ๊ณต ์ง€๋Šฅ(AI)์˜ ์‹ค์ œ ์„ฑ๋Šฅ์„ ํ‰๊ฐ€ํ•˜๋Š” ์ค‘์š”ํ•œ ์—ฐ๊ตฌ๋ฅผ ์ œ๊ณตํ•œ๋‹ค. ํŠนํžˆ, ์ด ์—ฐ๊ตฌ๋Š” AI ๋ชจ๋ธ๋“ค์ด ์‹ค์ œ ์ž„์ƒ ์ƒํ™ฉ์—์„œ ์–ผ๋งˆ๋‚˜ ํšจ๊ณผ์ ์œผ๋กœ ์ž‘๋™ํ•˜๋Š”์ง€์— ๋Œ€ํ•œ ๊นŠ์ด ์žˆ๋Š” ํ†ต์ฐฐ๋ ฅ์„ ์ œ๊ณตํ•œ๋‹ค. B&J ๋ฒค์น˜๋งˆํฌ๋Š” ์˜๋ฃŒ ๋ถ„์•ผ์—์„œ AI์˜ ์„ฑ๋Šฅ์„ ์ข…ํ•ฉ์ ์œผ๋กœ ํ‰๊ฐ€ํ•˜๊ธฐ ์œ„ํ•œ ์ฒด๊ณ„์ ์ธ ์ ‘๊ทผ๋ฒ•์„ ์ œ์‹œํ•˜๋ฉฐ, ์ด๋Š” ๊ธฐ์กด์˜ ๋‹จ์ˆœํ•œ ์„ ํƒ์ง€ ๋ฌธ์ œ๋ฅผ ๋„˜์–ด ์‹ค์ œ ํ™˜์ž ์น˜๋ฃŒ์— ํ•„์š”ํ•œ ๋‹ค์–‘ํ•œ ์ถ”๋ก  ๋Šฅ๋ ฅ์„ ํ‰๊ฐ€ํ•œ๋‹ค. ์—ฐ๊ตฌ ๊ฒฐ๊ณผ๋Š” AI ๋ชจ๋ธ๋“ค์ด ๊ตฌ์กฐํ™”๋œ ์งˆ๋ฌธ์—์„œ๋Š” ๋†’์€ ์„ฑ๋Šฅ์„ ๋ณด์ด์ง€๋งŒ, ์‹ค์ œ ์ž„์ƒ ์ƒํ™ฉ์—์„œ ์š”๊ตฌ๋˜๋Š” ๋ณต์žกํ•˜๊ณ  ๋‹ค์ค‘๋ชจ๋‹ฌ์ ์ธ ์ถ”๋ก ์—๋Š” ์•„์ง

Model
AInsteinBench: Benchmarking Coding Agents on Scientific Repositories

AInsteinBench: Benchmarking Coding Agents on Scientific Repositories

AInsteinBench์€ ํ˜„์žฌ LLM ๊ธฐ๋ฐ˜ ์ฝ”๋”ฉ ์—์ด์ „ํŠธ ์—ฐ๊ตฌ์—์„œ ๋ˆˆ์— ๋„๋Š” ๊ณต๋ฐฑ์„ ๋ฉ”์šฐ๋Š” ์‹œ๋„์ด๋‹ค. ์ฒซ์งธ, ๋ฐ์ดํ„ฐ ์†Œ์Šค๊ฐ€ โ€œmaintainerโ€‘authored pull requestsโ€๋ผ๋Š” ์ ์—์„œ ์‹ค์ œ ๊ฐœ๋ฐœ์ž๋“ค์ด ์ง๋ฉดํ•˜๋Š” ๋ณตํ•ฉ์ ์ธ ์š”๊ตฌ์‚ฌํ•ญโ€”์ฝ”๋“œ ์Šคํƒ€์ผ, ์„ฑ๋Šฅ ์ตœ์ ํ™”, ๋ฌธ์„œํ™”, ํ…Œ์ŠคํŠธ ์ž‘์„ฑโ€”์„ ๊ทธ๋Œ€๋กœ ๋ฐ˜์˜ํ•œ๋‹ค๋Š” ๊ฐ•์ ์„ ๊ฐ€์ง„๋‹ค. ์ด๋Š” ๊ธฐ์กด ๋ฒค์น˜๋งˆํฌ๊ฐ€ ์ฃผ๋กœ ์ธ๊ณต์ ์œผ๋กœ ๋งŒ๋“  ์ฝ”๋”ฉ ๊ณผ์ œ๋‚˜ ๋‹จ์ˆœํ•œ ์•Œ๊ณ ๋ฆฌ์ฆ˜ ๊ตฌํ˜„์— ๋จธ๋ฌด๋Š” ํ•œ๊ณ„๋ฅผ ๋›ฐ์–ด๋„˜๋Š”๋‹ค. ๋‘˜์งธ, ์—ฌ์„ฏ ๊ฐœ์˜ ๋„๋ฉ”์ธ(์–‘์ž ํ™”ํ•™ยท์–‘์ž ์ปดํ“จํŒ…ยท๋ถ„์ž ๋™์—ญํ•™ยท์ˆ˜์น˜ ์ƒ๋Œ€์„ฑยท์œ ์ฒด ์—ญํ•™ยทํ™”ํ•™ ์ •๋ณดํ•™)์€

No Image

BALLAST: Bandit-Assisted Learning for Latency-Aware Stable Timeouts in Raft

์ด ๋…ผ๋ฌธ์€ Raft ํ•ฉ์˜ ํ”„๋กœํ† ์ฝœ์—์„œ ๊ฐ€์žฅ ํ”ํžˆ ์‚ฌ์šฉ๋˜๋Š” ๋ฌด์ž‘์œ„ ์„ ์ถœ ํƒ€์ž„์•„์›ƒ์ด ์žฅ๊ธฐ ์ง€์—ฐ(longโ€‘tail latency)์ด๋‚˜ ๋„คํŠธ์›Œํฌ ํŒŒํ‹ฐ์…˜ ๋ณต๊ตฌ ์‹œ์— ๋ฐœ์ƒํ•˜๋Š” โ€œ๋ถ„ํ•  ํˆฌํ‘œ(split vote)โ€ ํ˜„์ƒ์œผ๋กœ ์ธํ•ด ์‹œ์Šคํ…œ ๊ฐ€์šฉ์„ฑ์ด ๊ธ‰๊ฒฉํžˆ ์ €ํ•˜๋˜๋Š” ๋ฌธ์ œ์ ์„ ์ •ํ™•ํžˆ ์งš์–ด๋‚ธ๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค์€ ํƒ€์ž„์•„์›ƒ ๊ฐ’์„ ๊ณ ์ •ํ•˜๊ฑฐ๋‚˜ ๋‹จ์ˆœํžˆ ํ‰๊ท  ์ง€์—ฐ์— ๊ธฐ๋ฐ˜ํ•œ ์กฐ์ • ๋ฐฉ์‹์„ ์ œ์•ˆํ–ˆ์ง€๋งŒ, ์ด๋Ÿฌํ•œ ์ ‘๊ทผ๋ฒ•์€ ๋„คํŠธ์›Œํฌ ์ƒํƒœ๊ฐ€ ๊ธ‰๋ณ€ํ•˜๊ฑฐ๋‚˜ ๋น„์ •์ƒ์ ์ธ ์ง€์—ฐ ๋ถ„ํฌ๊ฐ€ ๋‚˜ํƒ€๋‚  ๋•Œ ์ ์‘์„ฑ์ด ๋ถ€์กฑํ•˜๋‹ค. BALLAST๋Š” ์ด๋Ÿฌํ•œ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด โ€˜์ปจํ…์ŠคํŠธ ๋ฐด๋”ง(contextu

Learning
Feasible strategies in three-way conflict analysis with three-valued ratings

Feasible strategies in three-way conflict analysis with three-valued ratings

๋ณธ ๋…ผ๋ฌธ์€ ์„ธ ๊ฐˆ๋“ฑ(threeโ€‘way conflict) ์ƒํ™ฉ์—์„œ ์ „๋žต์  ์˜์‚ฌ๊ฒฐ์ •์„ ์ง€์›ํ•˜๊ธฐ ์œ„ํ•œ ์ƒˆ๋กœ์šด ์ •๋Ÿ‰์  ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์‹œํ•œ๋‹ค๋Š” ์ ์—์„œ ํ•™์ˆ ์ ยท์‹ค๋ฌด์  ์˜์˜๊ฐ€ ํฌ๋‹ค. ์ฒซ ๋ฒˆ์งธ๋กœ, ๊ธฐ์กด ๊ฐˆ๋“ฑ ๋ถ„์„ ์—ฐ๊ตฌ๊ฐ€ ์ฃผ๋กœ ์—์ด์ „ํŠธยท์ด์Šˆยท๊ด€๊ณ„์˜ ์‚ผ๋ถ„๋ฒ•์  ๋ถ„๋ฅ˜์— ๋จธ๋ฌผ๋ €๋˜ ๋ฐ˜๋ฉด, ์ €์ž๋Š” โ€˜์‹คํ–‰ ๊ฐ€๋Šฅํ•œ ์ „๋žต(feasible strategy)โ€™์ด๋ผ๋Š” ๊ฐœ๋…์„ ๋„์ž…ํ•ด ๊ฐˆ๋“ฑ ํ•ด๊ฒฐ ๋‹จ๊ณ„๊นŒ์ง€ ํ™•์žฅํ•˜์˜€๋‹ค. ์ด๋Š” ๊ฐˆ๋“ฑ ๋ถ„์„์„ ์ง„๋‹จ์—์„œ ์ฒ˜๋ฐฉ์œผ๋กœ ์ „ํ™˜ํ•˜๋Š” ์ค‘์š”ํ•œ ์ „ํ™˜์ ์ด๋‹ค. ๋‘ ๋ฒˆ์งธ๋กœ, ๊ธ์ •ยท๋ถ€์ • ์œ ์‚ฌ๋„ ๊ธฐ๋ฐ˜์˜ ํด๋ฆฌํฌ ํ‰์  ๊ณ„์‚ฐ์€ ๋‹ค์ค‘ ์ดํ•ด๊ด€๊ณ„์ž ๊ฐ„ ์ƒํ˜ธ์ž‘์šฉ์„ ์ •๋Ÿ‰ํ™”

Analysis
Leveraging Lightweight Entity Extraction for Scalable Event-Based Image Retrieval

Leveraging Lightweight Entity Extraction for Scalable Event-Based Image Retrieval

๋ถ„์„ ์š”์•ฝ 1. ๋…ผ๋ฌธ์˜ ์ฃผ์š” ๋‚ด์šฉ ๋ฐ ๋ชฉ์ : ์ด ๋…ผ๋ฌธ์€ ์ž์—ฐ์–ด ์„ค๋ช…์„ ๊ธฐ๋ฐ˜์œผ๋กœ ์ด๋ฏธ์ง€๋ฅผ ๊ฒ€์ƒ‰ํ•˜๋Š” ๊ฒฝ๋Ÿ‰ ๋‘ ๋‹จ๊ณ„ ํŒŒ์ดํ”„๋ผ์ธ ์‹œ์Šคํ…œ์„ ์ œ์•ˆํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ด ์‹œ์Šคํ…œ์€ ์‹ค์ œ ์„ธ๊ณ„ ์บก์…˜์—์„œ ์‹œ๊ฐ„์ , ๋ฌธ๋งฅ์  ์‹ ํ˜ธ๋ฅผ ํฌํ•จํ•œ ๋ณต์žกํ•œ ์ •๋ณด๋ฅผ ์ฒ˜๋ฆฌํ•  ์ˆ˜ ์žˆ๋„๋ก ์„ค๊ณ„๋˜์—ˆ์Šต๋‹ˆ๋‹ค. 2. ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ: ์‘์šฉ ๋ถ„์•ผ : ์ด๋ฏธ์ง€ ๊ฒ€์ƒ‰์€ ์›น ๊ฒ€์ƒ‰, ๋‰ด์Šค ์•„์นด์ด๋ธŒ, ์ „์ž์ƒ๊ฑฐ๋ž˜ ๋“ฑ ๋‹ค์–‘ํ•œ ๋ถ„์•ผ์—์„œ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•ฉ๋‹ˆ๋‹ค. ๋ฌธ์ œ์  : ๊ธฐ์กด ๋ชจ๋ธ๋“ค์€ ์งง์€ ์บก์…˜์— ์ตœ์ ํ™”๋˜์–ด ์žˆ์–ด ๋ณต์žกํ•œ ์‹ค์ œ ์„ธ๊ณ„ ์ฟผ๋ฆฌ ์ฒ˜๋ฆฌ ๋Šฅ๋ ฅ์ด ๋ถ€์กฑํ•ฉ๋‹ˆ๋‹ค. ์ด๋กœ ์ธํ•ด ๋‰ด์Šค๋‚˜ ์ด๋ฒคํŠธ ๊ฒ€์ƒ‰๊ณผ ๊ฐ™์€ ๋„๋ฉ”์ธ

No Image

PhononBench:A Large-Scale Phonon-Based Benchmark for Dynamical Stability in Crystal Generation

๋ณธ ๋…ผ๋ฌธ์€ ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ฒฐ์ • ์„ค๊ณ„ ๋ถ„์•ผ์—์„œ ์žฅ๊ธฐ๊ฐ„ ๊ฐ„๊ณผ๋˜์–ด ์˜จ ํ•ต์‹ฌ ๋ฌธ์ œ์ธ ๋™์—ญํ•™์  ์•ˆ์ •์„ฑ์„ ์ฒด๊ณ„์ ์œผ๋กœ ๊ฒ€์ฆํ•œ ์ตœ์ดˆ์˜ ๋Œ€๊ทœ๋ชจ ๋ฒค์น˜๋งˆํฌ๋ฅผ ์ œ์‹œํ•œ๋‹ค๋Š” ์ ์—์„œ ํ•™๋ฌธ์ ยท์‚ฐ์—…์  ํŒŒ๊ธ‰๋ ฅ์ด ํฌ๋‹ค. ๊ธฐ์กด์˜ S.U.N. ํ‰๊ฐ€ ์ฒด๊ณ„๋Š” ์—ด์—ญํ•™์  ์•ˆ์ •์„ฑ์— ์ดˆ์ ์„ ๋งž์ถ”์–ด, ๊ณ„์‚ฐ ํšจ์œจ์„ฑ์€ ํ™•๋ณดํ–ˆ์ง€๋งŒ ์‹ค์ œ ํ•ฉ์„ฑ ๊ฐ€๋Šฅ์„ฑ์„ ํŒ๋‹จํ•˜๊ธฐ์—” ๋ถ€์กฑํ–ˆ๋‹ค. ๋™์—ญํ•™์  ์•ˆ์ •์„ฑ์€ ํฌ๋…ผ ์ŠคํŽ™ํŠธ๋Ÿผ, ํŠนํžˆ ์ „ ์˜์—ญ์—์„œ์˜ ์Œ์˜ ๋ชจ๋“œ ์กด์žฌ ์—ฌ๋ถ€์— ์˜ํ•ด ๊ฒฐ์ •๋˜๋ฉฐ, ์ด๋Š” ๋ฌผ์งˆ์ด ์‹คํ—˜์‹ค์—์„œ ์‹ค์ œ๋กœ ์กด์žฌํ•  ์ˆ˜ ์žˆ๋Š”์ง€๋ฅผ ๊ฐ€๋Š ํ•˜๋Š” ๊ฐ€์žฅ ํ™•์‹คํ•œ ์ง€ํ‘œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ DFT ๊ธฐ๋ฐ˜ ํฌ๋…ผ ๊ณ„์‚ฐ์€ ์ˆ˜์ฒœ ๊ฐœ ์›์ž

Policy-Conditioned Policies for Multi-Agent Task Solving

Policy-Conditioned Policies for Multi-Agent Task Solving

๋ณธ ๋…ผ๋ฌธ์€ ๋‹ค์ค‘ ์—์ด์ „ํŠธ ์‹œ์Šคํ…œ์—์„œ ์ „๋žต ์ ์‘์„ ์œ„ํ•œ ๊ทผ๋ณธ์ ์ธ ํ•œ๊ณ„๋ฅผ ์ง€์ ํ•˜๊ณ , ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•œ ํ˜์‹ ์ ์ธ ์ ‘๊ทผ๋ฒ•์„ ์ œ์‹œํ•œ๋‹ค. ๊ธฐ์กด ๋”ฅ ๊ฐ•ํ™”ํ•™์Šต์—์„œ๋Š” ์ •์ฑ…์„ ์‹ ๊ฒฝ๋ง ํŒŒ๋ผ๋ฏธํ„ฐ ์ง‘ํ•ฉ์œผ๋กœ ํ‘œํ˜„ํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ๊ณ ์ฐจ์› ๋ฒกํ„ฐ๋Š” ์ธ๊ฐ„์ด ์ง๊ด€์ ์œผ๋กœ ์ดํ•ดํ•˜๊ฑฐ๋‚˜ ๋‹ค๋ฅธ ์—์ด์ „ํŠธ๊ฐ€ ์ง์ ‘ ํ™œ์šฉํ•˜๊ธฐ์— ์ ํ•ฉํ•˜์ง€ ์•Š๋‹ค. ํŠนํžˆ ์ƒ๋Œ€ ์—์ด์ „ํŠธ์˜ ํ–‰๋™์„ ์˜ˆ์ธกํ•˜๊ฑฐ๋‚˜ ์ด์— ๋งž์ถฐ ์ „๋žต์„ ์ˆ˜์ •ํ•˜๋ ค๋ฉด โ€œ์ •์ฑ…์„ ์ฝ์„ ์ˆ˜ ์žˆ๋Š”โ€ ํ˜•ํƒœ๊ฐ€ ํ•„์š”ํ•˜์ง€๋งŒ, ํ˜„์žฌ ๊ธฐ์ˆ ๋กœ๋Š” ์ด๋ฅผ ๊ตฌํ˜„ํ•˜๊ธฐ ์–ด๋ ต๋‹ค. ๋…ผ๋ฌธ์€ ์ด ๋ฌธ์ œ๋ฅผ โ€˜์ •์ฑ…์„ ์†Œ์Šค ์ฝ”๋“œ ํ˜•ํƒœ๋กœ ํ‘œํ˜„ํ•œ๋‹คโ€™๋Š” ์•„์ด๋””์–ด๋กœ ํ•ด๊ฒฐํ•œ๋‹ค. ์†Œ์Šค ์ฝ”๋“œ๋Š” ์ธ

Reflection Pretraining Enables Token-Level Self-Correction in Biological Sequence Models

Reflection Pretraining Enables Token-Level Self-Correction in Biological Sequence Models

Chain of Thought(CoT) ํ”„๋กฌํ”„ํŠธ๋Š” ์ตœ๊ทผ ์ž์—ฐ์–ด ์ฒ˜๋ฆฌ ๋ถ„์•ผ์—์„œ ๊ฐ€์žฅ ์ฃผ๋ชฉ๋ฐ›๋Š” ๊ธฐ๋ฒ• ์ค‘ ํ•˜๋‚˜์ด๋‹ค. ๊ธฐ์กด์˜ โ€œ์งˆ๋ฌธโ€‘๋‹ต๋ณ€โ€ ํ˜•ํƒœ ํ”„๋กฌํ”„ํŠธ๋Š” ๋ชจ๋ธ์ด ๋ฐ”๋กœ ์ตœ์ข… ๋‹ต์„ ์ถœ๋ ฅํ•˜๋„๋ก ๊ฐ•์š”ํ•˜์ง€๋งŒ, CoT๋Š” ๋ชจ๋ธ์ด ์ค‘๊ฐ„์— ๋…ผ๋ฆฌ์ ยท์ˆ˜ํ•™์  ์ถ”๋ก  ๊ณผ์ •์„ ํ…์ŠคํŠธ ํ† ํฐ ํ˜•ํƒœ๋กœ ์„œ์ˆ ํ•˜๋„๋ก ๋งŒ๋“ ๋‹ค. ์ด๋Ÿฌํ•œ โ€œ๋น„๋‹ต๋ณ€ ํ† ํฐโ€์€ ๋ชจ๋ธ์ด ๋ณต์žกํ•œ ์—ฐ์‚ฐ์„ ๋‹จ๊ณ„๋ณ„๋กœ ํ’€์–ด๊ฐ€๊ฒŒ ํ•จ์œผ๋กœ์จ, ํŠนํžˆ ๋‹ค์ค‘ ๋‹จ๊ณ„ ๋…ผ๋ฆฌ, ์ˆ˜์‹ ์ „๊ฐœ, ํ˜น์€ ์ฝ”๋“œ ์ƒ์„ฑ๊ณผ ๊ฐ™์€ ์ž‘์—…์—์„œ ์˜ค๋ฅ˜์œจ์„ ํฌ๊ฒŒ ๋‚ฎ์ถ˜๋‹ค. CoT๊ฐ€ ์„ฑ๊ณต์„ ๊ฑฐ๋‘˜ ์ˆ˜ ์žˆ์—ˆ๋˜ ํ•ต์‹ฌ์€ ๋‘ ๊ฐ€์ง€์ด๋‹ค. ์ฒซ์งธ, ์ธ๊ฐ„ ์–ธ์–ด ์ž์ฒด๊ฐ€ ํ’๋ถ€ํ•œ

Model
No Image

ReVEAL: GNN-Guided Reverse Engineering for Formal Verification of Optimized Multipliers

ReVEAL์€ ๊ทธ๋ž˜ํ”„ ํ•™์Šต์„ ํ™œ์šฉํ•˜์—ฌ ๋ฉ€ํ‹ฐํ”Œ๋ผ์ด์–ด ์•„ํ‚คํ…์ฒ˜์˜ ์—ญ๊ณตํ•™์„ ์ˆ˜ํ–‰ํ•˜๋Š” ํ˜์‹ ์ ์ธ ๋ฐฉ๋ฒ•๋ก ์ด๋‹ค. ์ด ์ ‘๊ทผ๋ฒ•์€ ๊ธฐ์กด์˜ ๊ทœ์น™ ๊ธฐ๋ฐ˜ ๋ฐฉ๋ฒ•๋ณด๋‹ค ํ™•์žฅ์„ฑ๊ณผ ์ •ํ™•๋„๋ฅผ ํฌ๊ฒŒ ํ–ฅ์ƒ์‹œํ‚ค๋Š” ๋ฐ ์ค‘์ ์„ ๋‘๊ณ  ์žˆ๋‹ค. ReVEAL์€ ๋Œ€๊ทœ๋ชจ ์ตœ์ ํ™”๋œ ๋ฉ€ํ‹ฐํ”Œ๋ผ์ด์–ด์—์„œ ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ๋Š” ๋ณต์žกํ•œ ํŒจํ„ด์„ ์‹๋ณ„ํ•˜๊ณ , ์ด๋ฅผ ํ†ตํ•ด ๋Œ€์ˆ˜์  ํšŒ๋กœ ๊ฒ€์ฆ ๊ธฐ์ˆ ์˜ ์„ฑ๋Šฅ์„ ๊ฐœ์„ ํ•œ๋‹ค. ํŠนํžˆ, ์ด ๋ฐฉ๋ฒ•๋ก ์€ ๋‹ค์–‘ํ•œ ๋ฉ€ํ‹ฐํ”Œ๋ผ์ด์–ด ๋ฒค์น˜๋งˆํฌ์— ์ ์šฉ ๊ฐ€๋Šฅํ•˜๋ฉฐ, ์ด๋ฅผ ํ†ตํ•ด ๊ทธ ์œ ์—ฐ์„ฑ๊ณผ ํšจ๊ณผ์„ฑ์„ ์ž…์ฆํ•œ๋‹ค. ReVEAL์€ ํ•™์Šต ์ฃผ๋„ ์ถ”๋ก ๊ณผ ๊ตฌ์กฐ์ ์ธ ๊ทธ๋ž˜ํ”„ ํŠน์ง•์„ ํ™œ์šฉํ•˜์—ฌ ์•„ํ‚คํ…์ฒ˜ ํŒจํ„ด์„ ์‹๋ณ„ํ•˜๊ณ ,

Shape of Thought: When Distribution Matters More than Correctness in Reasoning Tasks

Shape of Thought: When Distribution Matters More than Correctness in Reasoning Tasks

์ด ๋…ผ๋ฌธ์€ ์–ธ์–ด ๋ชจ๋ธ์˜ ์ถ”๋ก  ๋Šฅ๋ ฅ์„ ํ–ฅ์ƒ์‹œํ‚ค๋Š” ์ƒˆ๋กœ์šด ์ ‘๊ทผ๋ฒ•์„ ์ œ์‹œํ•ฉ๋‹ˆ๋‹ค. ํ•ต์‹ฌ ์•„์ด๋””์–ด๋Š” ๋” ์šฐ์ˆ˜ํ•œ ๋ชจ๋ธ์—์„œ ์ƒ์„ฑ๋œ ์‚ฌ์Šฌํ˜• ์‚ฌ๊ณ (CoT) ์ถ”์ ์„ ์‚ฌ์šฉํ•˜์—ฌ ํ•ฉ์„ฑ ๋ฐ์ดํ„ฐ์…‹์„ ๋งŒ๋“ค์–ด ์ด๋ฅผ ํ†ตํ•ด ํ•™์Šตํ•˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค. ์ด ๋ฐฉ๋ฒ•์˜ ๋†€๋ผ์šด ์ ์€ ์ด๋Ÿฌํ•œ CoT ์ถ”์ ์ด ์ž˜๋ชป๋œ ์ตœ์ข… ๋‹ต์•ˆ์œผ๋กœ ์ด์–ด์ง„๋‹ค ํ•˜๋”๋ผ๋„, ์–ธ์–ด ๋ชจ๋ธ์˜ ์„ฑ๋Šฅ์ด ํ–ฅ์ƒ๋œ๋‹ค๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค. ๋…ผ๋ฌธ์—์„œ๋Š” ๋‘ ๊ฐ€์ง€ ์ฃผ์š” ๊ฐ€์„ค์„ ์ œ์‹œํ•ฉ๋‹ˆ๋‹ค: ์ฒซ์งธ, ํ•ฉ์„ฑ ๋ฐ์ดํ„ฐ์˜ ๋ถ„ํฌ๊ฐ€ ์–ธ์–ด ๋ชจ๋ธ ์ž์ฒด์˜ ๋ถ„ํฌ์™€ ๋” ๊ฐ€๊น๊ธฐ ๋•Œ๋ฌธ์— ํ•™์Šต์ด ์šฉ์ดํ•˜๋‹ค๋Š” ์ ์ž…๋‹ˆ๋‹ค. ์ด๋ฅผ ๊ฒ€์ฆํ•˜๊ธฐ ์œ„ํ•ด ์ธ๊ฐ„ ์ฃผ์„ ์ถ”์ ์„ ๋ฌธ์žฅ ๋ณ€ํ™˜ํ•˜์—ฌ ๋ถ„ํฌ

A Comprehensive Guide to Mesh Simplification using Edge Collapse

A Comprehensive Guide to Mesh Simplification using Edge Collapse

์—์ง€ ์ฝœ๋žฉ์Šค(edge collapse)๋Š” ๋ฉ”์‰ฌ ๋‹จ์ˆœํ™” ๋ถ„์•ผ์—์„œ ๊ฐ€์žฅ ๋„๋ฆฌ ์ฑ„ํƒ๋˜๋Š” ๋กœ์ปฌ ๋ฆฌ๋‹ค์ฟ ์…˜ ๊ธฐ๋ฒ•์œผ๋กœ, ๋ณต์žกํ•œ ๋‹ค๊ฐํ˜• ๋ฉ”์‰ฌ๋ฅผ ์ €ํ•ด์ƒ๋„ ํ˜•ํƒœ๋กœ ๋ณ€ํ™˜ํ•˜๋ฉด์„œ๋„ ์‹œ๊ฐ์  ํ’ˆ์งˆ์„ ์œ ์ง€ํ•˜๋ ค๋Š” ๋ชฉ์ ์— ๋ถ€ํ•ฉํ•œ๋‹ค. ํ•ต์‹ฌ ์•„์ด๋””์–ด๋Š” ๋‘ ์ธ์ ‘ ์ •์ ์„ ํ•˜๋‚˜๋กœ ํ•ฉ์น˜๊ณ , ๊ทธ์— ๋”ฐ๋ผ ์—ฐ๊ฒฐ๋œ ๋ฉด๋“ค์„ ์žฌ๊ตฌ์„ฑํ•˜๋Š” ๊ณผ์ •์—์„œ ๋ฐœ์ƒํ•˜๋Š” ๊ธฐํ•˜ํ•™์  ์˜ค์ฐจ๋ฅผ ์ตœ์†Œํ™”ํ•˜๋Š” ๊ฒƒ์ด๋‹ค. ์ด๋ฅผ ์œ„ํ•ด์„œ๋Š” โ€œ์–ด๋–ค ์—ฃ์ง€๋ฅผ ์–ธ์ œ ์ฝœ๋žฉ์Šคํ•  ๊ฒƒ์ธ๊ฐ€?โ€๋ผ๋Š” ์„ ํƒ ๋ฌธ์ œ๊ฐ€ ๋น„์šฉ ํ•จ์ˆ˜(cost function)์— ์˜ํ•ด ์ •์˜๋œ๋‹ค. ๊ฐ€์žฅ ์œ ๋ช…ํ•œ ๋น„์šฉ ํ•จ์ˆ˜๋Š” Garland์™€ Heckbert๊ฐ€ ์ œ์•ˆํ•œ Quad

Assessing Coronary Microvascular Dysfunction using Angiography-based Data-driven Methods

Assessing Coronary Microvascular Dysfunction using Angiography-based Data-driven Methods

๊ด€์ƒ๋™๋งฅ ๋ฏธ์„ธํ˜ˆ๊ด€ ๊ธฐ๋Šฅ์žฅ์• (CMD)๋Š” ์ „ํ†ต์ ์ธ ๊ด€์ƒ๋™๋งฅ ์งˆํ™˜ ์ง„๋‹จ์—์„œ ๊ฐ„๊ณผ๋˜๊ธฐ ์‰ฌ์šด ์ค‘์š”ํ•œ ๋ณ‘๋ฆฌํ•™์  ํ˜„์ƒ์ด๋‹ค. ๊ธฐ์กด์— CMD๋ฅผ ํ‰๊ฐ€ํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ์••๋ ฅ ์™€์ด์–ด๋ฅผ ์ด์šฉํ•ด ๋ฏธ์„ธ๊ด€ ์ €ํ•ญ ์ง€์ˆ˜(IMR)์™€ ๊ด€์ƒ๋™๋งฅ ํ˜ˆ๋ฅ˜ ์˜ˆ๋น„์œจ(CFR)์„ ์ง์ ‘ ์ธก์ •ํ•ด์•ผ ํ•˜๋Š”๋ฐ, ์ด๋Ÿฌํ•œ ์นจ์Šต์  ๋ฐฉ๋ฒ•์€ ๋น„์šฉ์ด ๋†’๊ณ  ์‹œ์ˆ  ์‹œ๊ฐ„์ด ๊ธธ๋ฉฐ, ํ™˜์ž์—๊ฒŒ ์ถœํ˜ˆยทํ˜ˆ๊ด€ ์†์ƒ ๋“ฑ ๋ถ€์ž‘์šฉ ์œ„ํ—˜์„ ๋™๋ฐ˜ํ•œ๋‹ค. ๋”ฐ๋ผ์„œ ์ž„์ƒ ํ˜„์žฅ์—์„œ CMD๋ฅผ ์ฒด๊ณ„์ ์œผ๋กœ ํŒŒ์•…ํ•˜๊ธฐ๋Š” ํ˜„์‹ค์ ์œผ๋กœ ์–ด๋ ค์šด ์ ์ด ์žˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ์ด๋Ÿฌํ•œ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ณ ์ž, ์ด๋ฏธ ์ž„์ƒ์—์„œ ๋„๋ฆฌ ์‚ฌ์šฉ๋˜๋Š” ๊ด€์ƒ๋™๋งฅ ์กฐ์˜์ˆ  ์˜์ƒ์„ ํ™œ์šฉํ•ด

Data
Automated stereotactic radiosurgery planning using a human-in-the-loop reasoning large language model agent

Automated stereotactic radiosurgery planning using a human-in-the-loop reasoning large language model agent

๋ณธ ์—ฐ๊ตฌ๋Š” ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ์น˜๋ฃŒ ๊ณ„ํš ์‹œ์Šคํ…œ์ด ์ž„์ƒ ํ˜„์žฅ์—์„œ ์‹ ๋ขฐ๋ฅผ ์–ป๊ธฐ ์œ„ํ•ด์„œ๋Š” โ€˜์„ค๋ช… ๊ฐ€๋Šฅ์„ฑโ€™์ด ํ•„์ˆ˜์ ์ด๋ผ๋Š” ๊ฐ€์ •์„ ๊ฒ€์ฆํ•œ๋‹ค. ๊ธฐ์กด์˜ ๋Œ€ํ˜•์–ธ์–ด๋ชจ๋ธ(LLM) ๊ธฐ๋ฐ˜ ์ž๋™ํ™”๋Š” ๋†’์€ ์„ฑ๋Šฅ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ  ๋‚ด๋ถ€ ์˜์‚ฌ๊ฒฐ์ • ๊ณผ์ •์„ ๊ฒ€์ฆํ•  ์ˆ˜ ์—†๋‹ค๋Š” ํ•œ๊ณ„๊ฐ€ ์žˆ์—ˆ๋‹ค. ์ด๋ฅผ ๊ทน๋ณตํ•˜๊ณ ์ž ์—ฐ๊ตฌํŒ€์€ โ€˜์ฒด์ธ์˜ค๋ธŒ์ƒ๊ฐ(Chainโ€‘ofโ€‘Thought, CoT)โ€™์ด๋ผ๋Š” ์‚ฌ๊ณ  ํ๋ฆ„์„ ๋ช…์‹œ์ ์œผ๋กœ ์ƒ์„ฑํ•˜๋„๋ก ํ”„๋กฌํ”„ํŠธ๋ฅผ ์„ค๊ณ„ํ•˜์˜€๋‹ค. CoT๋Š” ๋ชจ๋ธ์ด ๋ฌธ์ œ๋ฅผ ๋‹จ๊ณ„๋ณ„๋กœ ๋ถ„ํ•ดํ•˜๊ณ , ๊ฐ ๋‹จ๊ณ„์—์„œ ์ œ์•ฝ์กฐ๊ฑด์„ ํ™•์ธํ•˜๋ฉฐ, ๊ฐ€๋Šฅํ•œ ๋Œ€์•ˆ์„ ๋…ผ์˜ํ•˜๋„๋ก ์œ ๋„ํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ๊ณผ์ •์€ ์ตœ์ข… ์„ ๋Ÿ‰ ์ตœ์ 

Model
No Image

Bridging Efficiency and Safety: Formal Verification of Neural Networks with Early Exits

๋ณธ ๋…ผ๋ฌธ์€ ์ตœ๊ทผ ์ธ๊ณต์ง€๋Šฅ ์‹œ์Šคํ…œ์—์„œ ๋‘๋“œ๋Ÿฌ์ง€๋Š” ๋‘ ๊ฐ€์ง€ ์š”๊ตฌ, ์ฆ‰ ์•ˆ์ „์„ฑ(robustness) ๊ณผ ํšจ์œจ์„ฑ(efficiency) ์„ ๋™์‹œ์— ๋งŒ์กฑ์‹œํ‚ค๊ธฐ ์œ„ํ•œ ์ƒˆ๋กœ์šด ์—ฐ๊ตฌ ๋ฐฉํ–ฅ์„ ์ œ์‹œํ•œ๋‹ค. ์ „ํ†ต์ ์ธ ์‹ ๊ฒฝ๋ง ๊ฒ€์ฆ ์—ฐ๊ตฌ๋Š” ์ฃผ๋กœ ์ „์ฒด ๋„คํŠธ์›Œํฌ๊ฐ€ ๋‹จ์ผ ๊ฒฝ๋กœ๋กœ ์‹คํ–‰๋œ๋‹ค๋Š” ์ „์ œ ํ•˜์—, ์ž…๋ ฅ ๋ณ€๋™์— ๋Œ€ํ•œ ์ถœ๋ ฅ ๋ณ€๋™์„ ์ˆ˜ํ•™์ ์œผ๋กœ ์ œํ•œํ•˜๋Š” ๋ฐฉ์‹์œผ๋กœ ์ง„ํ–‰๋˜์–ด ์™”๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์‹ค์ œ ์„œ๋น„์Šค ํ™˜๊ฒฝ์—์„œ๋Š” ์ง€์—ฐ ์‹œ๊ฐ„๊ณผ ์—ฐ์‚ฐ ๋น„์šฉ์„ ์ ˆ๊ฐํ•˜๊ธฐ ์œ„ํ•ด ์กฐ๊ธฐ ์ข…๋ฃŒ(early exit) ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ๋„์ž…ํ•˜๋Š” ๊ฒฝ์šฐ๊ฐ€ ๋Š˜์–ด๋‚˜๊ณ  ์žˆ๋‹ค. ์กฐ๊ธฐ ์ข…๋ฃŒ๋Š” ์ค‘๊ฐ„ ๋ ˆ์ด์–ด์—์„œ ์ถฉ๋ถ„ํžˆ ๋†’์€ ์‹ ๋ขฐ๋„

Network
DETACH : Decomposed Spatio-Temporal Alignment for Exocentric Video and Ambient Sensors with Staged Learning

DETACH : Decomposed Spatio-Temporal Alignment for Exocentric Video and Ambient Sensors with Staged Learning

์ด ๋…ผ๋ฌธ์€ ์ธ๊ฐ„ ํ–‰๋™ ์ธ์‹์„ ์œ„ํ•œ ๋ฉ€ํ‹ฐ๋ชจ๋‹ฌ ์ •๋ ฌ ์—ฐ๊ตฌ์—์„œ ์ƒˆ๋กœ์šด ํŒจ๋Ÿฌ๋‹ค์ž„์„ ์ œ์‹œํ•œ๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค์€ ์ฃผ๋กœ ์ฐฉ์šฉํ˜• ์„ผ์„œ์™€ ์ž๊ธฐ์‹œ์ (egocentric) ์˜์ƒ ์‚ฌ์ด์˜ ์ „์—ญ ์ •๋ ฌ(Global Alignment)์— ์˜์กดํ•ด ์™”์œผ๋ฉฐ, ์ด๋Š” ์ „์ฒด ์‹œํ€€์Šค๋ฅผ ํ•˜๋‚˜์˜ ๊ณ ์ฐจ์› ๋ฒกํ„ฐ๋กœ ์••์ถ•ํ•ด ๋‘ ๋ชจ๋‹ฌ๋ฆฌํ‹ฐ๋ฅผ ๋งค์นญํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ด๋Ÿฌํ•œ ์ ‘๊ทผ์€ ๋‘ ๊ฐ€์ง€ ๊ทผ๋ณธ์ ์ธ ํ•œ๊ณ„์— ๋ด‰์ฐฉํ•œ๋‹ค. ์ฒซ์งธ, ํ–‰๋™์˜ ๋ฏธ์„ธํ•œ ์›€์ง์ž„์ด๋‚˜ ๋ถ€๋ถ„์ ์ธ ๋ณ€ํ™”๋ฅผ ํฌ์ฐฉํ•˜๊ธฐ ์œ„ํ•œ ์ง€์—ญ์  ๋””ํ…Œ์ผ์ด ์†์‹ค๋œ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด, ์†๋ชฉ์˜ ๋ฏธ์„ธํ•œ ํšŒ์ „์ด๋‚˜ ๋ฌผ์ฒด์™€์˜ ์ ‘์ด‰ ์ˆœ๊ฐ„์€ ์ „์ฒด ์‹œํ€€์Šค ํ‰๊ท ํ™” ๊ณผ์ •์—์„œ ํฌ์„๋œ๋‹ค

Learning
From artificial to organic: Rethinking the roots of intelligence for digital health

From artificial to organic: Rethinking the roots of intelligence for digital health

์ด ๋…ผ๋ฌธ์€ ์ธ๊ณต์ง€๋Šฅ(AI)์ด๋ผ๋Š” ๊ฐœ๋…์„ ์žฌ์ •์˜ํ•˜๊ณ , AI์™€ ์œ ๊ธฐ์  ์ง€๋Šฅ ๊ฐ„์˜ ๊ด€๊ณ„๋ฅผ ํƒ๊ตฌํ•œ๋‹ค. '์ธ๊ณต'์ด๋ผ๋Š” ์šฉ์–ด๋Š” ์ž์—ฐ๊ณผ ๋Œ€๋น„๋˜๋Š” ๊ฒƒ์œผ๋กœ ์ดํ•ด๋˜์ง€๋งŒ, ์ด ๋…ผ๋ฌธ์€ AI๊ฐ€ ์ธ๊ฐ„์˜ ์ฐฝ์˜์„ฑ๊ณผ ์ง„ํ™” ๊ณผ์ •์—์„œ ์˜๊ฐ์„ ๋ฐ›์•˜์Œ์„ ๊ฐ•์กฐํ•˜๋ฉฐ, ์ด๋Ÿฌํ•œ ๊ด€์ ์—์„œ๋Š” ์ธ๊ณต์ง€๋Šฅ์ด '์œ ๊ธฐ์ '์œผ๋กœ๋ถ€ํ„ฐ ํฌ๊ฒŒ ๋ฒ—์–ด๋‚˜์ง€ ์•Š๋Š”๋‹ค๋Š” ์ ์„ ์ œ์‹œํ•œ๋‹ค. ํŠนํžˆ ๋””์ง€ํ„ธ ๊ฑด๊ฐ• ๋ถ„์•ผ๋ฅผ ์ค‘์‹ฌ์œผ๋กœ AI์˜ ๋ฐœ์ „ ๊ฒฝ๋กœ๋ฅผ ์„ค๋ช…ํ•˜๋ฉด์„œ, AI๊ฐ€ ๋‹จ์ˆœํžˆ ๋ณต์žกํ•œ ๋งค๊ฐœ๋ณ€์ˆ˜์™€ ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ์ง‘ํ•ฉ์ด ์•„๋‹ˆ๋ผ ์กฐ์ง๊ณผ ์ ์‘์— ๊ธฐ๋ฐ˜ํ•œ๋‹ค๋Š” ๊ฒƒ์„ ๊ฐ•์กฐํ•œ๋‹ค. ๋…ผ๋ฌธ์€ AI์˜ ์›์น™๋“ค์ด ์ธ๊ฐ„ ๋‡Œ์‹ ๊ฒฝ์ƒ๋ฌผํ•™ ๋ฐ ์ง„ํ™” ๊ณผ์ •์—์„œ

MemR$^3$: Memory Retrieval via Reflective Reasoning for LLM Agents

MemR$^3$: Memory Retrieval via Reflective Reasoning for LLM Agents

๋ณธ ๋…ผ๋ฌธ์€ ๋Œ€๊ทœ๋ชจ ์–ธ์–ด ๋ชจ๋ธ(LLM) ๊ธฐ๋ฐ˜ ์—์ด์ „ํŠธ๊ฐ€ ๊ณผ๊ฑฐ ๊ฒฝํ—˜์„ ํ™œ์šฉํ•˜๋Š” ๋ฉ”๋ชจ๋ฆฌ ์‹œ์Šคํ…œ์„ ์žฌ๊ฒ€ํ† ํ•œ๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค์€ ์ฃผ๋กœ ๋ฉ”๋ชจ๋ฆฌ์˜ ์••์ถ• ํšจ์œจ๊ณผ ์ €์žฅ ์šฉ๋Ÿ‰์„ ์ตœ์ ํ™”ํ•˜๋Š” ๋ฐ ์ดˆ์ ์„ ๋งž์ถ”์—ˆ์œผ๋ฉฐ, ์‹ค์ œ ๋‹ต๋ณ€์„ ๋„์ถœํ•˜๋Š” ๊ณผ์ •์—์„œ ๊ธฐ์–ต์„ ์–ธ์ œ, ์–ด๋–ป๊ฒŒ ๊ฒ€์ƒ‰ํ• ์ง€์— ๋Œ€ํ•œ ์˜์‚ฌ๊ฒฐ์ • ๋ฉ”์ปค๋‹ˆ์ฆ˜์€ ๊ฑฐ์˜ ๋‹ค๋ฃจ์ง€ ์•Š์•˜๋‹ค. ์ด๋Ÿฌํ•œ ํ•œ๊ณ„๋Š” ํŠนํžˆ ๋ณตํ•ฉ์ ์ธ ์งˆ๋ฌธ์— ๋Œ€ํ•ด ์ถฉ๋ถ„ํ•œ ์ฆ๊ฑฐ๋ฅผ ์ˆ˜์ง‘ํ•˜์ง€ ๋ชปํ•˜๊ฑฐ๋‚˜, ์ด๋ฏธ ํ™•๋ณดํ•œ ์ •๋ณด์— ๊ณผ๋„ํ•˜๊ฒŒ ์˜์กดํ•˜๋Š” ๋ฌธ์ œ๋ฅผ ์•ผ๊ธฐํ•œ๋‹ค. MemRยณ๋Š” ์ด๋Ÿฌํ•œ ๋ฌธ์ œ์ ์„ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ๋‘ ๊ฐ€์ง€ ํ˜์‹ ์ ์ธ ๊ตฌ์„ฑ์š”์†Œ๋ฅผ ๋„์ž…ํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ๋Š” โ€˜๋ผ์šฐํ„ฐโ€™์ด๋‹ค

Retrieval-augmented Prompt Learning for Pre-trained Foundation Models

Retrieval-augmented Prompt Learning for Pre-trained Foundation Models

๋ณธ ๋…ผ๋ฌธ์€ ์‚ฌ์ „ ํ•™์Šต๋œ ๋Œ€ํ˜• ๋ชจ๋ธ(Preโ€‘trained Foundation Models, ์ดํ•˜ PFM)์ด ๋ฉ€ํ‹ฐ๋ชจ๋‹ฌ ํ•™์Šต์—์„œ ์ฐจ์ง€ํ•˜๋Š” ์ „๋žต์  ์œ„์น˜๋ฅผ ์žฌ์กฐ๋ช…ํ•œ๋‹ค. ๊ธฐ์กด์˜ โ€œpreโ€‘train, prompt, predictโ€ ํ๋ฆ„์€ ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ์ง์ ‘ ์—…๋ฐ์ดํŠธํ•˜๋Š” ์ „ํ†ต์ ์ธ ๋ฏธ์„ธ์กฐ์ • ๋ฐฉ์‹๊ณผ ๋‹ฌ๋ฆฌ, ํ”„๋กฌํ”„ํŠธ ํ† ํฐ์„ ์‚ฝ์ž…ํ•˜๊ฑฐ๋‚˜ ํ…œํ”Œ๋ฆฟ์„ ์„ค๊ณ„ํ•จ์œผ๋กœ์จ ๋ชจ๋ธ ์ž์ฒด๋Š” ๊ณ ์ •๋œ ์ฑ„ ์™ธ๋ถ€ ์ž…๋ ฅ๋งŒ์œผ๋กœ ์ž‘์—…์„ ์ˆ˜ํ–‰ํ•˜๋„๋ก ๋งŒ๋“ ๋‹ค. ์ด๋Ÿฌํ•œ ์ ‘๊ทผ์€ ํŒŒ๋ผ๋ฏธํ„ฐ ํšจ์œจ์„ฑ์„ ํฌ๊ฒŒ ๋†’์˜€์ง€๋งŒ, ์—ฌ์ „ํžˆ โ€œ๊ธฐ์–ต ์ค‘์‹ฌโ€์˜ ์ผ๋ฐ˜ํ™” ํ•œ๊ณ„์— ์ง๋ฉดํ•œ๋‹ค. ๊ตฌ์ฒด์ ์œผ๋กœ, ์ œํ•œ๋œ ๋ผ๋ฒจ ๋ฐ์ดํ„ฐ๋งŒ์œผ๋กœ ํ”„

Model Learning
No Image

SA-DiffuSeq: Addressing Computational and Scalability Challenges in Long-Document Generation with Sparse Attention

SAโ€‘DiffuSeq๋Š” ๊ธฐ์กด ํ™•์‚ฐ ๋ชจ๋ธ์ด ์ง๋ฉดํ•œ โ€œ์‹œ๊ฐ„ยท๊ณต๊ฐ„ ๋ณต์žก๋„ ํญ๋ฐœโ€ ๋ฌธ์ œ๋ฅผ ๊ทผ๋ณธ์ ์œผ๋กœ ์žฌ๊ตฌ์„ฑํ•œ๋‹ค๋Š” ์ ์—์„œ ํ•™์ˆ ์  ์˜์˜๊ฐ€ ํฌ๋‹ค. ์ „ํ†ต์ ์ธ ํ™•์‚ฐ ํ…์ŠคํŠธ ์ƒ์„ฑ์€ ์ „์ฒด ํ† ํฐ ๊ฐ„์˜ ์ „์—ญ ์–ดํ…์…˜์„ ๋งค ๋‹จ๊ณ„๋งˆ๋‹ค ์ˆ˜ํ–‰ํ•œ๋‹ค. ์ด ๋ฐฉ์‹์€ ์‹œํ€€์Šค ๊ธธ์ด L์— ๋Œ€ํ•ด O(Lยฒ)ยทT(์Šคํ… ์ˆ˜)์˜ ์—ฐ์‚ฐ๋Ÿ‰์„ ์š”๊ตฌํ•ด, ์ˆ˜์ฒœ ํ† ํฐ์„ ๋„˜์–ด์„œ๋Š” ๋ฌธ์„œ์—์„œ๋Š” GPU ๋ฉ”๋ชจ๋ฆฌ ์ดˆ๊ณผ์™€ ํ•™์Šต ์‹œ๊ฐ„ ๊ธ‰์ฆ์„ ์ดˆ๋ž˜ํ•œ๋‹ค. SAโ€‘DiffuSeq๋Š” ์ด๋Ÿฌํ•œ ์ „์—ญ ์—ฐ์‚ฐ์„ โ€œํฌ์†Œ ์–ดํ…์…˜โ€์ด๋ผ๋Š” ๊ตฌ์กฐ์  ์ œ์•ฝ์œผ๋กœ ๋Œ€์ฒดํ•œ๋‹ค. ๊ตฌ์ฒด์ ์œผ๋กœ, ๊ฐ ๋””ํ“จ์ „ ์Šคํ…์—์„œ ํ† ํฐ ๊ฐ„์˜ ์–ดํ…์…˜ ์—ฐ๊ฒฐ์„ ๋™์ ์œผ๋กœ ์„ 

Zero-Shot Segmentation through Prototype-Guidance for Multi-Label Plant Species Identification

Zero-Shot Segmentation through Prototype-Guidance for Multi-Label Plant Species Identification

์ด ์—ฐ๊ตฌ๋Š” PlantCLEF 2025๋ผ๋Š” ๋Œ€๊ทœ๋ชจ ์‹๋ฌผ ์ด๋ฏธ์ง€ ์ธ์‹ ๋Œ€ํšŒ์—์„œ ๊ณ ํ•ด์ƒ๋„ ํ”Œ๋กฏ ์ด๋ฏธ์ง€์˜ ๋‹ค์ค‘ ๋ผ๋ฒจ ์‹๋ณ„์ด๋ผ๋Š” ์–ด๋ ค์šด ๊ณผ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ๋‘ ๊ฐ€์ง€ ํ•ต์‹ฌ ์•„์ด๋””์–ด๋ฅผ ๊ฒฐํ•ฉํ•˜์˜€๋‹ค. ์ฒซ ๋ฒˆ์งธ๋Š” ํด๋ž˜์Šค ํ”„๋กœํ† ํƒ€์ž… ์„ ํ™œ์šฉํ•œ ์ง€๋„ ํ•™์Šต์ด๋‹ค. ๊ธฐ์กด์˜ ๋‹ค์ค‘ ํด๋ž˜์Šค ๋ถ„๋ฅ˜์™€ ๋‹ฌ๋ฆฌ, ์—ฌ๊ธฐ์„œ๋Š” ํ›ˆ๋ จ ๋ฐ์ดํ„ฐ์—์„œ ๊ฐ ์ข…๋งˆ๋‹ค ๋Œ€ํ‘œ์ ์ธ ํŠน์ง• ๋ฒกํ„ฐ(ํ”„๋กœํ† ํƒ€์ž…)๋ฅผ Kโ€‘Means ๊ตฐ์ง‘ํ™”๋กœ ์ถ”์ถœํ•œ๋‹ค. K๊ฐ’์„ ํด๋ž˜์Šค ์ˆ˜์™€ ๋™์ผํ•˜๊ฒŒ ์„ค์ •ํ•จ์œผ๋กœ์จ, ๊ฐ ๊ตฐ์ง‘ ์ค‘์‹ฌ์ด ๊ณง ํ•ด๋‹น ์ข…์„ ๋Œ€ํ‘œํ•˜๋„๋ก ์„ค๊ณ„ํ•˜์˜€๋‹ค. ์ด๋Ÿฌํ•œ ํ”„๋กœํ† ํƒ€์ž…์€ ํ…Œ์ŠคํŠธ ์ด๋ฏธ์ง€์— ๋Œ€ํ•œ ์„ธ๊ทธ๋ฉ˜ํ…Œ์ด์…˜ ๋ชจ๋ธ์ด

Binary Neural Network Implementation for Handwritten Digit Recognition on FPGA

Binary Neural Network Implementation for Handwritten Digit Recognition on FPGA

์ด ๋…ผ๋ฌธ์€ ์ด์ง„์‹ ๊ฒฝ๋ง(BNN)์„ ํ™œ์šฉํ•œ ์†๊ธ€์”จ ์ˆซ์ž ์ธ์‹ ๊ฐ€์†๊ธฐ์˜ ์„ค๊ณ„์™€ ๊ตฌํ˜„์„ ๋‹ค๋ฃน๋‹ˆ๋‹ค. BNN๋Š” ๋ถ€๋™์†Œ์ˆ˜์  ์—ฐ์‚ฐ ๋Œ€์‹  ๋น„ํŠธ ๋…ผ๋ฆฌ ์—ฐ์‚ฐ์„ ์‚ฌ์šฉํ•จ์œผ๋กœ์จ, ์ €์ „๋ ฅ๊ณผ ๊ณ ์† ์ถ”๋ก ์ด ๊ฐ€๋Šฅํ•œ ํŠน์„ฑ์„ ๊ฐ€์ง€๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ํŠนํžˆ ์ด ์—ฐ๊ตฌ์—์„œ๋Š” Xilinx Artix 7 FPGA๋ฅผ ํƒ€๊ฒŸ์œผ๋กœ ํ•˜์—ฌ Verilog ์–ธ์–ด๋กœ ์ˆ˜์ž‘์—… ์„ค๊ณ„๋ฅผ ์ˆ˜ํ–‰ํ•˜์˜€์Šต๋‹ˆ๋‹ค. ์ด๋Š” ๊ณ ์ˆ˜์ค€ ํ•ฉ์„ฑ ๋„๊ตฌ ์—†์ด๋„ ์‹ค์‹œ๊ฐ„ ๋ถ„๋ฅ˜ ์„ฑ๋Šฅ์„ ๋‹ฌ์„ฑํ•  ์ˆ˜ ์žˆ์Œ์„ ๋ณด์—ฌ์ฃผ๋ฉฐ, 80 MHz์—์„œ ์ž‘๋™ํ•˜๋ฉด์„œ ๋‚ฎ์€ ์ „๋ ฅ ์†Œ๋น„์™€ ์˜ˆ์ธก ๊ฐ€๋Šฅํ•œ ํƒ€์ด๋ฐ์„ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค. MNIST ๋ฐ์ดํ„ฐ์…‹์— ๋Œ€ํ•œ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๊ฒฐ๊ณผ์—์„œ๋Š”

Network
HARMON-E: Hierarchical Agentic Reasoning for Multimodal Oncology Notes to Extract Structured Data

HARMON-E: Hierarchical Agentic Reasoning for Multimodal Oncology Notes to Extract Structured Data

๋ณธ ๋…ผ๋ฌธ์€ ์ „์ž ๊ฑด๊ฐ• ๊ธฐ๋ก(EHR) ๋‚ด์— ์‚ฐ์žฌํ•ด ์žˆ๋Š” ๋น„๊ตฌ์กฐํ™” ํ…์ŠคํŠธ๋ฅผ ํ™œ์šฉํ•ด ์•” ํ™˜์ž์— ๋Œ€ํ•œ ์ •๋ฐ€ํ•œ ์ž„์ƒ ์ •๋ณด๋ฅผ ์ž๋™์œผ๋กœ ๊ตฌ์กฐํ™”ํ•˜๋Š” ๋ฌธ์ œ์— ์ ‘๊ทผํ•œ๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค์€ ํฌ๊ฒŒ ๋‘ ๊ฐ€์ง€ ํ•œ๊ณ„์— ๋ด‰์ฐฉํ•œ๋‹ค. ์ฒซ์งธ, ํ•ฉ์„ฑ ๋ฐ์ดํ„ฐ์…‹์„ ์ด์šฉํ•˜๊ฑฐ๋‚˜ ์ œํ•œ๋œ ์‹ค์ œ ๋ฐ์ดํ„ฐ์—๋งŒ ์˜์กดํ•จ์œผ๋กœ์จ ์‹ค์ œ ์ž„์ƒ ํ˜„์žฅ์˜ ๋ณต์žก์„ฑ์„ ์ถฉ๋ถ„ํžˆ ๋ฐ˜์˜ํ•˜์ง€ ๋ชปํ•œ๋‹ค๋Š” ์ ์ด๋‹ค. ํ•ฉ์„ฑ ๋ฐ์ดํ„ฐ๋Š” ์šฉ์–ด ๋‹ค์–‘์„ฑ, ๋ฌธ์„œ ํ˜•์‹ ๋ณ€์ด, ๊ทธ๋ฆฌ๊ณ  ํ™˜์ž ๊ฐ„ ์ •๋ณด ์ถฉ๋Œ์„ ์žฌํ˜„ํ•˜๊ธฐ ์–ด๋ ต๋‹ค. ๋‘˜์งธ, ๋Œ€๋ถ€๋ถ„์˜ ์ž๋™ํ™” ๋ฐฉ๋ฒ•์ด ๋ฌธ์„œ ์ˆ˜์ค€์—์„œ ํŠน์ • ๋ณ€์ˆ˜๋งŒ์„ ์ถ”์ถœํ•˜๋„๋ก ์„ค๊ณ„๋ผ, ํ™˜์ž ์ „์ฒด ๊ธฐ๋ก์„ ํ†ตํ•ฉํ•ด ์ผ๊ด€๋œ ํ”„๋กœ

Data
No Image

Is Visual Realism Enough? Evaluating Gait Biometric Fidelity in Generative AI Human Animation

์ƒ์„ฑ AI์˜ ๋ฐœ์ „์€ ์• ๋‹ˆ๋ฉ”์ด์…˜ ๋ถ„์•ผ์—์„œ ์ƒˆ๋กœ์šด ๊ฐ€๋Šฅ์„ฑ์„ ์—ด์—ˆ์ง€๋งŒ, ์ธ๊ฐ„ ์›€์ง์ž„์˜ ์ž์—ฐ์Šค๋Ÿฌ์šด ์žฌํ˜„์—๋Š” ์—ฌ์ „ํžˆ ํ•œ๊ณ„๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค. ํŠนํžˆ ์ƒ์ฒด์ธ์‹๊ณผ ๊ฐ™์€ ๊ณ ๋„๋กœ ์„ธ๋ฐ€ํ•œ ์ž‘์—…์—์„œ๋Š” ์ด๋Ÿฌํ•œ ํ•œ๊ณ„๊ฐ€ ๋”์šฑ ๋‘๋“œ๋Ÿฌ์ง‘๋‹ˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ์ตœ์‹  ์ƒ์„ฑ AI ๋ชจ๋ธ๋“ค์ด ๊ฑธ์Œ๊ฑธ์ด ํŒจํ„ด์„ ์ •ํ™•ํ•˜๊ฒŒ ๋ณต์›ํ•˜๊ณ  ์ด๋ฅผ ๋‹ค๋ฅธ ์‹œ๊ฐ์  ์ •์ฒด์„ฑ์— ์ „๋‹ฌํ•  ์ˆ˜ ์žˆ๋Š”์ง€ ํ‰๊ฐ€ํ–ˆ์Šต๋‹ˆ๋‹ค. ๊ฒฐ๊ณผ์ ์œผ๋กœ, ํ˜„์žฌ์˜ ์ƒ์„ฑ AI ๋ชจ๋ธ๋“ค์€ ์›€์ง์ž„๊ณผ ์ •์ฒด์„ฑ์„ ๋ถ„๋ฆฌํ•˜๋Š” ๋ฐ ์–ด๋ ค์›€์„ ๊ฒช๊ณ  ์žˆ์œผ๋ฉฐ, ์ด๋Š” ์™ธ๊ด€ ๊ธฐ๋ฐ˜ ๊ฑธ์Œ๊ฑธ์ด ์ธ์‹์—์„œ ์‹๋ณ„๋ฅ ์ด ํฌ๊ฒŒ ์ €ํ•˜๋˜๋Š” ์›์ธ ์ค‘ ํ•˜๋‚˜์ž…๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฐœ๊ฒฌ์€ ๋ฏธ๋ž˜์˜ ์—ฐ๊ตฌ๊ฐ€ ๋™

No Image

On the Existence and Behaviour of Secondary Attention Sinks

์ด ๋…ผ๋ฌธ์€ ๊ธฐ์กด ์—ฐ๊ตฌ์—์„œ ๋‹ค๋ฃจ์–ด์ง„ '์ฃผ์š” ์นจ์ˆ˜'์™€ ๊ตฌ๋ณ„๋˜๋Š” ์ƒˆ๋กœ์šด ํ˜•ํƒœ์˜ '๋ถ€์ฐจ์  ์นจ์ˆ˜'๋ฅผ ์‹๋ณ„ํ•˜๊ณ  ๊ทธ ํŠน์„ฑ๊ณผ ํ˜•์„ฑ ๊ณผ์ •์„ ๋ถ„์„ํ•œ๋‹ค. ๋ถ€์ฐจ์  ์นจ์ˆ˜๋Š” ์ค‘๊ฐ„ ๋ ˆ์ด์–ด์—์„œ ์ฃผ๋กœ ๋ฐœ์ƒํ•˜๋ฉฐ, ๋‹ค์–‘ํ•œ ์ˆ˜์˜ ๋ ˆ์ด์–ด์— ๊ฑธ์ณ ์กด์žฌํ•˜๊ณ  ์ƒ๋Œ€์ ์œผ๋กœ ์ž‘์€ ์–‘์˜ ์ฃผ์˜๋ ฅ์„ ๋ฐ›๋Š”๋‹ค. ์ด ์—ฐ๊ตฌ์—์„œ๋Š” 11๊ฐœ ๋ชจ๋ธ ๊ฐ€์กฑ์„ ๋Œ€์ƒ์œผ๋กœ ์‹คํ—˜์„ ํ†ตํ•ด ์ด๋Ÿฌํ•œ ๋ถ€์ฐจ์  ์นจ์ˆ˜์˜ ํ˜•์„ฑ ๊ณผ์ •๊ณผ ํŠน์„ฑ์„ ๋ถ„์„ํ•œ๋‹ค. ํŠนํžˆ, ์ค‘๊ฐ„ ๋ ˆ์ด์–ด์˜ MLP ๋ชจ๋“ˆ์—์„œ ํ† ํฐ ํ‘œํ˜„์„ ์ฃผ์š” ์นจ์ˆ˜ ๋ฐฉํ–ฅ์— ๋งž๊ฒŒ ๋งคํ•‘ํ•˜๋Š” ๊ฒƒ์„ ๋ฐœ๊ฒฌํ•˜๊ณ , ์ด ๋ฒกํ„ฐ๋“ค์˜ 2 ๋…ธ๋ฆ„์ด ๋ถ€์ฐจ์  ์นจ์ˆ˜์˜ ์ ์ˆ˜์™€ ์ง€์† ๊ธฐ๊ฐ„์„ ๊ฒฐ์ •ํ•œ๋‹ค๋Š” ์‚ฌ์‹ค์„

< Category Statistics (Total: 793) >

Electrical Engineering and Systems Science
7
General
272
General Relativity
9
HEP-EX
7
HEP-PH
12
HEP-TH
7
MATH-PH
4
NUCL-TH
1
Quantum Physics
11

Start searching

Enter keywords to search articles

โ†‘โ†“
โ†ต
ESC
โŒ˜K Shortcut