Posts

Here are all published articles, sorted by date in descending order.

791 posts total
16 pages total
Defensive M2S: Training Guardrail Models on Compressed Multi-turn Conversations

Defensive M2S: Training Guardrail Models on Compressed Multi-turn Conversations

Defensive M2S๋Š” ๊ธฐ์กด ๊ฐ€๋“œ๋ ˆ์ผ ๋ชจ๋ธ์ด ์ „์ฒด ๋Œ€ํ™” ํžˆ์Šคํ† ๋ฆฌ๋ฅผ ์ž…๋ ฅ์œผ๋กœ ๋ฐ›์•„์•ผ ํ•˜๋Š” ๊ตฌ์กฐ์  ํ•œ๊ณ„๋ฅผ ๊ทผ๋ณธ์ ์œผ๋กœ ํ•ด๊ฒฐํ•œ๋‹ค๋Š” ์ ์—์„œ ์˜๋ฏธ๊ฐ€ ํฌ๋‹ค. ๋‹ค์ค‘ํ„ด ๋Œ€ํ™”๋Š” ์ผ๋ฐ˜์ ์œผ๋กœ ํ† ํฐ ์ˆ˜๊ฐ€ O(nยฒ) ์ˆ˜์ค€์œผ๋กœ ๊ธ‰์ฆํ•˜๋Š”๋ฐ, ์ด๋Š” ํŠนํžˆ 10ํ„ด ์ด์ƒ์œผ๋กœ ๊ธธ์–ด์ง€๋Š” ์‹ค์ œ ์„œ๋น„์Šค ์‹œ๋‚˜๋ฆฌ์˜ค์—์„œ GPU ๋ฉ”๋ชจ๋ฆฌ์™€ ์—ฐ์‚ฐ ์‹œ๊ฐ„์˜ ๋ณ‘๋ชฉ์„ ์ดˆ๋ž˜ํ•œ๋‹ค. ๋…ผ๋ฌธ์€ ์ด๋ฅผ โ€˜Multiโ€‘turn to Singleโ€‘turn (M2S)โ€™ ์••์ถ•์ด๋ผ๋Š” ๊ฐ„๋‹จํ•˜์ง€๋งŒ ํšจ๊ณผ์ ์ธ ๋ณ€ํ™˜ ๊ทœ์น™์œผ๋กœ ์ „ํ™˜ํ•œ๋‹ค. ๊ตฌ์ฒด์ ์œผ๋กœ, ๊ฐ ํ„ด์˜ ํ•ต์‹ฌ ๋ฐœํ™”๋งŒ์„ ๋‚จ๊ธฐ๊ณ , ๋Œ€ํ™” ํ๋ฆ„์„ ์œ ์ง€ํ•˜๊ธฐ ์œ„ํ•ด ํ•˜์ดํ”ˆ(โ€“),

Computer Science NLP Model
Device-Native Autonomous Agents for Privacy-Preserving Negotiations

Device-Native Autonomous Agents for Privacy-Preserving Negotiations

๋ณธ ๋…ผ๋ฌธ์€ ๊ธฐ์กด ํด๋ผ์šฐ๋“œโ€‘์ค‘์‹ฌ ํ˜‘์ƒ ํ”Œ๋žซํผ์ด ๊ฐ–๋Š” โ€œ๋ฐ์ดํ„ฐ ์ค‘์•™์ง‘์ค‘ โ†’ ๋ณด์•ˆ ์œ„ํ˜‘ โ†’ ์‚ฌ์šฉ์ž ์‹ ๋ขฐ ์ €ํ•˜โ€๋ผ๋Š” ๊ตฌ์กฐ์  ๋ฌธ์ œ๋ฅผ ๊ทผ๋ณธ์ ์œผ๋กœ ์žฌ๊ตฌ์„ฑํ•œ๋‹ค๋Š” ์ ์—์„œ ํ•™์ˆ ์ ยท์‚ฐ์—…์  ์˜์˜๋ฅผ ๊ฐ€์ง„๋‹ค. ์ฒซ ๋ฒˆ์งธ๋กœ, ๋””๋ฐ”์ด์Šคโ€‘๋„ค์ดํ‹ฐ๋ธŒ( deviceโ€‘native ) ์•„ํ‚คํ…์ฒ˜๋Š” ๋ชจ๋“  ํ˜‘์ƒ ๋กœ์ง๊ณผ ์ œ์•ฝ ์กฐ๊ฑด์„ ์‚ฌ์šฉ์ž์˜ ๋กœ์ปฌ ํ™˜๊ฒฝ์— ๊ฒฉ๋ฆฌํ•จ์œผ๋กœ์จ ๋ฐ์ดํ„ฐ ํƒˆ์ทจ ์œ„ํ—˜์„ ์ตœ์†Œํ™”ํ•œ๋‹ค. ์ด๋Š” ํŠนํžˆ GDPRยทCCPA ๋“ฑ ๋ฐ์ดํ„ฐ ์ฃผ๊ถŒ ๊ทœ์ œ๊ฐ€ ๊ฐ•ํ™”๋˜๋Š” ํ˜„์žฌ ์ƒํ™ฉ์—์„œ ๋ฒ•์ ยท๊ทœ์ œ์  ์ปดํ”Œ๋ผ์ด์–ธ์Šค๋ฅผ ์ž์—ฐ์Šค๋Ÿฝ๊ฒŒ ์ถฉ์กฑํ•œ๋‹ค๋Š” ์žฅ์ ์ด ์žˆ๋‹ค. ๋‘ ๋ฒˆ์งธ๋กœ, ์ œ๋กœ ์ง€์‹ ์ฆ๋ช…(zeroโ€‘knowl

Computer Science Cryptography and Security
Do LLMs Judge Distantly Supervised Named Entity Labels Well? Constructing the JudgeWEL Dataset

Do LLMs Judge Distantly Supervised Named Entity Labels Well? Constructing the JudgeWEL Dataset

judgeWEL ๋…ผ๋ฌธ์€ ์ €์ž์› ์–ธ์–ด์ธ ๋ฃฉ์…ˆ๋ถ€๋ฅดํฌ์–ด์— ๋Œ€ํ•œ NER ๋ฐ์ดํ„ฐ ๊ตฌ์ถ•์ด๋ผ๋Š” ์‹ค์งˆ์ ์ธ ๋ฌธ์ œ์— ๋Œ€ํ•ด ์ฐฝ์˜์ ์ธ ํ•ด๊ฒฐ์ฑ…์„ ์ œ์‹œํ•œ๋‹ค. ๊ฐ€์žฅ ํฐ ๊ฐ•์ ์€ ๋‘ ๊ฐ€์ง€ ์ธก๋ฉด์—์„œ ์•ฝํ•œ ๊ฐ๋…์„ ํ™œ์šฉํ•œ๋‹ค๋Š” ์ ์ด๋‹ค. ์ฒซ์งธ, ์œ„ํ‚คํ”ผ๋””์•„ ๋‚ด๋ถ€ ๋งํฌ์™€ ์œ„ํ‚ค๋ฐ์ดํ„ฐ์˜ ๊ตฌ์กฐํ™”๋œ ๋ฉ”ํƒ€๋ฐ์ดํ„ฐ๋ฅผ ์—ฐ๊ฒฐํ•จ์œผ๋กœ์จ ์—”ํ„ฐํ‹ฐ ์œ ํ˜•์„ ์ž๋™์œผ๋กœ ์ถ”๋ก ํ•œ๋‹ค๋Š” ์•„์ด๋””์–ด๋Š” ๊ธฐ์กด์˜ ๊ทœ์น™ ๊ธฐ๋ฐ˜ ํ˜น์€ ์‚ฌ์ „ ๋งคํ•‘ ๋ฐฉ์‹๋ณด๋‹ค ํ™•์žฅ์„ฑ์ด ๋›ฐ์–ด๋‚˜๋‹ค. ์œ„ํ‚คํ”ผ๋””์•„๋Š” ์ง€์†์ ์œผ๋กœ ์—…๋ฐ์ดํŠธ๋˜๋ฉฐ ๋‹ค์–‘ํ•œ ๋„๋ฉ”์ธ์„ ํฌ๊ด„ํ•˜๋ฏ€๋กœ, ์ด ์ ‘๊ทผ๋ฒ•์€ ์ƒˆ๋กœ์šด ์—”ํ„ฐํ‹ฐ๊ฐ€ ๋“ฑ์žฅํ•ด๋„ ๋น„๊ต์  ์‰ฝ๊ฒŒ ๋ฐ˜์˜๋  ์ˆ˜ ์žˆ๋‹ค. ๋‘˜์งธ, ์ž๋™ ๋ผ๋ฒจ๋ง ๋‹จ

Computer Science NLP Data
No Image

FlashInfer-Bench: Building the Virtuous Cycle for AI-driven LLM Systems

FlashInferโ€‘Bench ๋…ผ๋ฌธ์€ โ€œAIโ€‘generated GPU kernelโ€์ด๋ผ๋Š” ์ตœ์‹  ์—ฐ๊ตฌ ํ๋ฆ„์„ ์‹ค์ œ ์„œ๋น„์Šค ํ™˜๊ฒฝ์— ์ ์šฉํ•˜๊ธฐ ์œ„ํ•œ ์ธํ”„๋ผ์ŠคํŠธ๋Ÿญ์ฒ˜ ์„ค๊ณ„๋ผ๋Š” ๊ด€์ ์—์„œ ๋งค์šฐ ์˜๋ฏธ ์žˆ๋Š” ๊ธฐ์—ฌ๋ฅผ ํ•˜๊ณ  ์žˆ๋‹ค. ์ฒซ ๋ฒˆ์งธ ํ•ต์‹ฌ์€ FlashInfer Trace ๋ผ๋Š” ๋ฉ”ํƒ€๋ฐ์ดํ„ฐ ์Šคํ‚ค๋งˆ์ด๋‹ค. ๊ธฐ์กด์— LLM์ด ์ƒ์„ฑํ•œ ์ฝ”๋“œ๋ฅผ ๋‹จ์ˆœํžˆ ํ…์ŠคํŠธ๋กœ ์ €์žฅํ•˜๊ณ  ์ธ๊ฐ„์ด ์ˆ˜๋™์œผ๋กœ ๊ฒ€์ฆํ•˜๋Š” ๋ฐฉ์‹์€ ํ™•์žฅ์„ฑ์ด ๋–จ์–ด์ง„๋‹ค. Trace๋Š” ์ปค๋„ ์ธํ„ฐํŽ˜์ด์Šค(์ž…์ถœ๋ ฅ ํ…์„œ ํ˜•ํƒœ, ๋ฉ”๋ชจ๋ฆฌ ์š”๊ตฌ๋Ÿ‰), ์›Œํฌ๋กœ๋“œ ํŠน์„ฑ(๋ฐฐ์น˜ ํฌ๊ธฐ, ์‹œํ€€์Šค ๊ธธ์ด), ๊ตฌํ˜„ ์„ธ๋ถ€์‚ฌํ•ญ(์–ธ์–ด, ์ปดํŒŒ์ผ ์˜ต์…˜)

Computer Science Artificial Intelligence System
No Image

Geometric Regularization in Mixture-of-Experts: The Disconnect Between Weights and Activations

Mixtureโ€‘ofโ€‘Experts(MoE) ๊ตฌ์กฐ๋Š” ์ˆ˜๋ฐฑ์—์„œ ์ˆ˜์ฒœ ๊ฐœ์˜ ์ „๋ฌธ๊ฐ€ ์ค‘ ์ผ๋ถ€๋งŒ์„ ์„ ํƒ์ ์œผ๋กœ ํ™œ์„ฑํ™”ํ•จ์œผ๋กœ์จ ๊ณ„์‚ฐ ๋น„์šฉ์„ ํฌ๊ฒŒ ์ ˆ๊ฐํ•œ๋‹ค๋Š” ์žฅ์ ์ด ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ „๋ฌธ๊ฐ€๋“ค์ด ์‹ค์ œ๋กœ ์„œ๋กœ ๋‹ค๋ฅธ ๊ธฐ๋Šฅ์„ ์ˆ˜ํ–‰ํ•˜๋„๋ก ๋งŒ๋“ค๊ธฐ ์œ„ํ•ด์„œ๋Š” โ€œ์ „๋ฌธ๊ฐ€ ๋‹ค์–‘์„ฑโ€์ด ํ•„์ˆ˜์ ์ด๋ฉฐ, ์ด๋ฅผ ๋‹ฌ์„ฑํ•˜๊ธฐ ์œ„ํ•œ ๋‹ค์–‘ํ•œ ์ •๊ทœํ™” ๊ธฐ๋ฒ•์ด ์ œ์•ˆ๋˜์–ด ์™”๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๊ฐ€์žฅ ์ง๊ด€์ ์ธ ์ ‘๊ทผ๋ฒ• ์ค‘ ํ•˜๋‚˜์ธ ๊ฐ€์ค‘์น˜ ์ง๊ต ์†์‹ค์„ ์ ์šฉํ•˜์—ฌ ์ „๋ฌธ๊ฐ€ ๊ฐ„์˜ ๊ธฐํ•˜ํ•™์  ์ฐจ์ด๋ฅผ ๊ฐ•์ œํ•˜๊ณ , ๊ทธ ํšจ๊ณผ๋ฅผ ๋‹ค๊ฐ๋„๋กœ ํ‰๊ฐ€ํ•˜์˜€๋‹ค. ์ฒซ ๋ฒˆ์งธ ์‹คํ—˜์—์„œ๋Š” ๊ฐ€์ค‘์น˜ ๊ณต๊ฐ„ ์ค‘๋ณต๋„(MSO, Mean Subspace

Machine Learning Computer Science
No Image

Language as Mathematical Structure: Examining Semantic Field Theory Against Language Games

์ด ๋…ผ๋ฌธ์€ ์ตœ๊ทผ ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(Large Language Models, LLM)์˜ ๊ธ‰๊ฒฉํ•œ ์„ฑ๋Šฅ ํ–ฅ์ƒ์ด ์˜๋ฏธ๋ก  ์—ฐ๊ตฌ์— ๋ฏธ์น˜๋Š” ํ•จ์˜๋ฅผ ๋‘ ์ถ•์œผ๋กœ ๋‚˜๋ˆ„์–ด ๊ณ ์ฐฐํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ ์ถ•์€ ๋ฃจํŠธ๋น„ํžˆ ๋น„ํŠธ๊ฒ์Šˆํƒ€์ธ์˜ ํ›„๊ธฐ ์ฒ ํ•™์— ๊ธฐ๋ฐ˜ํ•œ ์‚ฌํšŒ๊ตฌ์„ฑ์ฃผ์˜์  โ€˜์–ธ์–ด๊ฒŒ์ž„โ€™ ์ ‘๊ทผ์ด๋‹ค. ์—ฌ๊ธฐ์„œ๋Š” ์˜๋ฏธ๊ฐ€ ํ™”์ž ๊ฐ„์˜ ๊ด€์Šต์  ์ƒํ˜ธ์ž‘์šฉ๊ณผ ์‚ฌ์šฉ ์ƒํ™ฉ์— ์˜ํ•ด ํ˜•์„ฑ๋œ๋‹ค๊ณ  ๋ณด๋ฉฐ, ์–ด๋– ํ•œ ํ˜•์‹์  ๊ทœ์น™๋„ ์˜๋ฏธ๋ฅผ ์™„์ „ํžˆ ์„ค๋ช…ํ•  ์ˆ˜ ์—†๋‹ค๊ณ  ์ฃผ์žฅํ•œ๋‹ค. ๋‘ ๋ฒˆ์งธ ์ถ•์€ ์ €์ž๊ฐ€ ์ œ์•ˆํ•œ โ€˜์˜๋ฏธ์žฅ ์ด๋ก (Semantic Field Theory)โ€™์œผ๋กœ, ์–ธ์–ด๋ฅผ ์—ฐ์†์ ์ธ ์˜๋ฏธ ๊ณต๊ฐ„ ์•ˆ์—์„œ ์„œ๋กœ ์–ฝํžŒ

Computer Science NLP
Robust Uncertainty Quantification for Factual Generation of Large Language Models

Robust Uncertainty Quantification for Factual Generation of Large Language Models

์ด ๋…ผ๋ฌธ์€ LLM์˜ โ€˜ํ™˜๊ฐโ€™ ๋ฌธ์ œ๋ฅผ ๋ถˆํ™•์‹ค์„ฑ ์ •๋Ÿ‰ํ™”๋ผ๋Š” ๊ด€์ ์—์„œ ์ ‘๊ทผํ•œ๋‹ค๋Š” ์ ์—์„œ ์˜๋ฏธ๊ฐ€ ํฌ๋‹ค. ๊ธฐ์กด์˜ ๋ถˆํ™•์‹ค์„ฑ ์ถ”์ • ๊ธฐ๋ฒ•โ€”์˜ˆ๋ฅผ ๋“ค์–ด ๋ฒ ์ด์ง€์•ˆ ์‹ ๊ฒฝ๋ง, MCโ€‘Dropout, ์—”์‚ผ๋ธ” ๋ฐฉ๋ฒ•โ€”์€ ์ฃผ๋กœ ์ •ํ˜•ํ™”๋œ QA ๋ฐ์ดํ„ฐ์…‹์—์„œ ๊ฒ€์ฆ๋˜์—ˆ์œผ๋ฉฐ, ์งˆ๋ฌธ์ด ์˜๋„์ ์œผ๋กœ ํ˜ผ๋™์„ ์ฃผ๋Š” ํ˜•ํƒœ์ผ ๋•Œ๋Š” ์‹ ๋ขฐ๋„ ์ ์ˆ˜๊ฐ€ ๊ธ‰๊ฒฉํžˆ ์™œ๊ณก๋˜๋Š” ํ•œ๊ณ„๋ฅผ ๋ณด์˜€๋‹ค. ์ €์ž๋“ค์€ ์ด๋Ÿฌํ•œ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด โ€˜ํ•จ์ • ์งˆ๋ฌธ(trap question)โ€™์ด๋ผ๋Š” ์ƒˆ๋กœ์šด ํ‰๊ฐ€ ๋„๊ตฌ๋ฅผ ์„ค๊ณ„ํ–ˆ๋Š”๋ฐ, ์—ฌ๊ธฐ์—๋Š” ์‹ค์ œ ์กด์žฌํ•˜์ง€ ์•Š๋Š” ์ธ๋ฌผ๋ช…์ด๋‚˜ ํ—ˆ์œ„ ์‚ฌ์‹ค์ด ์‚ฝ์ž…๋˜์–ด ๋ชจ๋ธ์ด ์‚ฌ์‹ค์„ ์ƒ์„ฑํ•˜๋„๋ก ์œ ๋„ํ•œ๋‹ค.

Computer Science NLP Model
No Image

Sparse Probabilistic Coalition Structure Generation: Bayesian Greedy Pursuit and $ell_1$ Relaxations

์ด ๋…ผ๋ฌธ์€ ์—ฐํ•ฉ ๊ตฌ์กฐ ์ƒ์„ฑ(CSG) ๋ฌธ์ œ์— โ€˜๊ฐ€์น˜๊ฐ€ ๊ด€์ธก์„ ํ†ตํ•ด ํ•™์Šต๋ผ์•ผ ํ•œ๋‹คโ€™๋Š” ์ƒˆ๋กœ์šด ์ „์ œ๋ฅผ ๋„์ž…ํ•จ์œผ๋กœ์จ ๊ธฐ์กด ์—ฐ๊ตฌ์™€ ์ฐจ๋ณ„ํ™”ํ•œ๋‹ค. ์ „ํ†ต์ ์ธ CSG๋Š” ๋ชจ๋“  ๊ฐ€๋Šฅํ•œ ์—ฐํ•ฉ์— ๋Œ€ํ•œ ์ •ํ™•ํ•œ ๊ฐ€์น˜ ํ•จ์ˆ˜๊ฐ€ ์ฃผ์–ด์กŒ๋‹ค๊ณ  ๊ฐ€์ •ํ•˜๊ณ , ๊ทธ ์œ„์—์„œ ์ตœ์ ์˜ ์—ฐํ•ฉ ๋ถ„ํ• ์„ ์ฐพ๋Š”๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์‹ค์ œ ์‚ฌํšŒยท๊ฒฝ์ œ ์‹œ์Šคํ…œ์—์„œ๋Š” ๊ฐœ๋ณ„ ์—ฐํ•ฉ์˜ ๊ฐ€์น˜๋ฅผ ์ง์ ‘ ์ธก์ •ํ•˜๊ธฐ ์–ด๋ ต๊ณ , ๋Œ€์‹  ์—ฌ๋Ÿฌ ์—ํ”ผ์†Œ๋“œ(์˜ˆ: ํ˜‘์ƒ ๋ผ์šด๋“œ, ํ”„๋กœ์ ํŠธ ์ˆ˜ํ–‰ ๊ฒฐ๊ณผ)์—์„œ ์–ป์€ ์ด ๋ณด์ƒ๋งŒ ๊ด€์ฐฐ๋œ๋‹ค. ์ €์ž๋“ค์€ ์ด๋Ÿฌํ•œ ์ƒํ™ฉ์„ โ€˜ํฌ์†Œ ์„ ํ˜• ํšŒ๊ท€โ€™ ๋ชจ๋ธ๋กœ ์ •ํ˜•ํ™”ํ•œ๋‹ค. ์ฆ‰, ํ•œ ์—ํ”ผ์†Œ๋“œ์˜ ์ด ๋ณด์ƒ Yโ‚œ๋Š” ์†Œ์ˆ˜(K)๊ฐœ

Computer Science Game Theory
VisNet: Efficient Person Re-Identification via Alpha-Divergence Loss, Feature Fusion and Dynamic Multi-Task Learning

VisNet: Efficient Person Re-Identification via Alpha-Divergence Loss, Feature Fusion and Dynamic Multi-Task Learning

VisNet์€ ํ˜„์žฌ ์‚ฌ๋žŒ ์žฌ์‹๋ณ„ ๋ถ„์•ผ์—์„œ ๊ฐ€์žฅ ํฐ ๊ณผ์ œ ์ค‘ ํ•˜๋‚˜์ธ โ€œ์ •ํ™•๋„์™€ ์—ฐ์‚ฐ ํšจ์œจ์„ฑ ์‚ฌ์ด์˜ ํŠธ๋ ˆ์ด๋“œ์˜คํ”„โ€๋ฅผ ํ•ด๊ฒฐํ•˜๋ ค๋Š” ์‹œ๋„๋กœ ๋ˆˆ์— ๋ˆ๋‹ค. ์ฒซ ๋ฒˆ์งธ ํ•ต์‹ฌ ๊ธฐ์—ฌ๋Š” ResNetโ€‘50์˜ ๋„ค ๋‹จ๊ณ„(feature map)๋“ค์„ ์ˆœ์ฐจ์ ์œผ๋กœ ๊ฒฐํ•ฉํ•˜๋ฉด์„œ๋„ ๋ณ„๋„์˜ ๋ณ‘๋ ฌ ๋ธŒ๋žœ์น˜๋ฅผ ๋„์ž…ํ•˜์ง€ ์•Š์€ ์ ์ด๋‹ค. ์ด๋Š” ๊ธฐ์กด์˜ ๋ฉ€ํ‹ฐโ€‘์Šค์ผ€์ผ ์ ‘๊ทผ๋ฒ•์ด ํ”ํžˆ ๊ฒช๋Š” ํŒŒ๋ผ๋ฏธํ„ฐ ํญ์ฆ๊ณผ ๋ฉ”๋ชจ๋ฆฌ ์‚ฌ์šฉ๋Ÿ‰ ์ฆ๊ฐ€ ๋ฌธ์ œ๋ฅผ ํฌ๊ฒŒ ์™„ํ™”ํ•œ๋‹ค. ์ž๋™ ์ฃผ์˜(attention) ๋ชจ๋“ˆ์ด ๊ฐ ์Šค์ผ€์ผ๋ณ„ ํŠน์ง•์— ๊ฐ€์ค‘์น˜๋ฅผ ๋ถ€์—ฌํ•จ์œผ๋กœ์จ, ์ €ํ•ด์ƒ๋„์—์„œ ์ถ”์ถœ๋œ ์ „์—ญ์ ์ธ ํ˜•ํƒœ ์ •๋ณด์™€ ๊ณ ํ•ด์ƒ๋„์—์„œ ์–ป์–ด์ง€๋Š” ์„ธ

Computer Vision Computer Science Learning
A study on constraint extraction and exception exclusion in care worker scheduling

A study on constraint extraction and exception exclusion in care worker scheduling

์ด ๋…ผ๋ฌธ์€ ์žฅ๊ธฐ ์š”์–‘ ์‹œ์„ค์ด๋ผ๋Š” ํŠน์ˆ˜ํ•œ ๋„๋ฉ”์ธ์—์„œ ๊ทผ๋ฌดํ‘œ ์ž๋™ ์ƒ์„ฑ์˜ ์‹ค์šฉ์„ฑ์„ ๋†’์ด๊ธฐ ์œ„ํ•ด โ€˜์ œ์•ฝ ํ…œํ”Œ๋ฆฟ ๊ธฐ๋ฐ˜ ์ถ”์ถœโ€™๊ณผ โ€˜์˜ˆ์™ธ ์ œ์™ธ ๋ฉ”์ปค๋‹ˆ์ฆ˜โ€™์ด๋ผ๋Š” ๋‘ ์ถ•์„ ์ œ์‹œํ•œ๋‹ค๋Š” ์ ์—์„œ ์˜๋ฏธ๊ฐ€ ํฌ๋‹ค. ๊ธฐ์กด ์Šค์ผ€์ค„๋ง ์—ฐ๊ตฌ๋Š” ์ฃผ๋กœ ์ผ๋ฐ˜์ ์ธ ์ œ์กฐยท์„œ๋น„์Šค ํ˜„์žฅ์— ์ ์šฉ ๊ฐ€๋Šฅํ•œ ์ œ์•ฝ ๋ชจ๋ธ์„ ์ œ์‹œํ–ˆ์œผ๋ฉฐ, ์‹ค์ œ ํ˜„์žฅ ์ ์šฉ ์‹œ ํ˜„์žฅ ๋‹ด๋‹น์ž์˜ ์•”๋ฌต์  ์ง€์‹์„ ๋ฐ˜์˜ํ•˜๊ธฐ ์–ด๋ ค์šด ํ•œ๊ณ„๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ์—ˆ๋‹ค. ์š”์–‘๋ณดํ˜ธ์‚ฌ ํ˜„์žฅ์€ ๊ต๋Œ€ ํŒจํ„ด, ์—ฐ์† ๊ทผ๋ฌด์ผ, ์ง์› ๊ฐ„ ์กฐํ•ฉ, ํ™˜์ž ํŠน์„ฑ ๋“ฑ ๋ณตํ•ฉ์ ์ธ ์ œ์•ฝ์ด ์กด์žฌํ•˜๊ณ , ์ด๋“ค ์ค‘ ์ผ๋ถ€๋Š” โ€˜์˜ˆ์™ธโ€™โ€”์˜ˆ๋ฅผ ๋“ค์–ด, ํŠน์ • ์ง์›์˜ ์ž„์‹œ ํœด๊ฐ€๋‚˜ ๊ธ‰

Computer Science Artificial Intelligence
AdaGReS:Adaptive Greedy Context Selection via Redundancy-Aware Scoring for Token-Budgeted RAG

AdaGReS:Adaptive Greedy Context Selection via Redundancy-Aware Scoring for Token-Budgeted RAG

AdaGReS ๋…ผ๋ฌธ์€ ํ˜„์žฌ RAG ์‹œ์Šคํ…œ์ด ์ง๋ฉดํ•œ ๋‘ ๊ฐ€์ง€ ํ•ต์‹ฌ ๋ฌธ์ œโ€”ํ† ํฐ ์˜ˆ์‚ฐ์˜ ์ œํ•œ๊ณผ ์ปจํ…์ŠคํŠธ ์ค‘๋ณตโ€”๋ฅผ ๋™์‹œ์— ํ•ด๊ฒฐํ•˜๋ ค๋Š” ์‹œ๋„๋กœ ๋ˆˆ์— ๋ˆ๋‹ค. ์ „ํ†ต์ ์ธ topโ€‘k ๊ฒ€์ƒ‰์€ ๋‹จ์ˆœํžˆ ์ ์ˆ˜ ์ˆœ์œผ๋กœ ์ฒญํฌ๋ฅผ ์„ ํƒํ•˜๊ธฐ ๋•Œ๋ฌธ์—, ์˜๋ฏธ์ ์œผ๋กœ ๊ฑฐ์˜ ๋™์ผํ•œ ๋ฌธ์žฅ์ด ์—ฌ๋Ÿฌ ๋ฒˆ ํฌํ•จ๋  ๊ฒฝ์šฐ ๋ถˆํ•„์š”ํ•œ ํ† ํฐ์„ ์†Œ๋ชจํ•œ๋‹ค. ์ด๋Š” ํŠนํžˆ ์ œํ•œ๋œ ์ปจํ…์ŠคํŠธ ๊ธธ์ด๋ฅผ ๊ฐ–๋Š” ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(Large Language Model, LLM)์—์„œ ์‹ฌ๊ฐํ•œ ์„ฑ๋Šฅ ์ €ํ•˜ ์š”์ธ์œผ๋กœ ์ž‘์šฉํ•œ๋‹ค. AdaGReS๋Š” ์ด๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด โ€œ๊ด€๋ จ๋„โ€‘์ค‘๋ณต ๋ณตํ•ฉ ๋ชฉํ‘œ ํ•จ์ˆ˜โ€๋ฅผ ์ •์˜ํ•œ๋‹ค. ๋ชฉํ‘œ ํ•จ์ˆ˜๋Š” (1

Computer Science NLP
AI-Driven Cloud Resource Optimization for Multi-Cluster Environments

AI-Driven Cloud Resource Optimization for Multi-Cluster Environments

์ด ๋…ผ๋ฌธ์ด ๋‹ค๋ฃจ๋Š” ๋ฌธ์ œ๋Š” ๋‹ค์ค‘ ํด๋Ÿฌ์Šคํ„ฐ ํ™˜๊ฒฝ์—์„œ ๋ฐœ์ƒํ•˜๋Š” ์ „ํ†ต์ ์ธ ์ž์› ๊ด€๋ฆฌ์˜ ํ•œ๊ณ„์ด๋‹ค. ํ˜„์žฌ ๋Œ€๋ถ€๋ถ„์˜ ํด๋ผ์šฐ๋“œ ์šด์˜์ž๋Š” ๊ฐ ํด๋Ÿฌ์Šคํ„ฐ๋ฅผ ๋…๋ฆฝ์ ์ธ ๊ด€๋ฆฌ ๋‹จ์œ„๋กœ ๋ณด๊ณ , ์Šค์ผ€์ผ๋ง์ด๋‚˜ ๋ฆฌ์†Œ์Šค ์žฌ๋ฐฐ์น˜๋ฅผ ์›Œํฌ๋กœ๋“œ ๋ณ€ํ™”์— ๋”ฐ๋ผ ์ฆ‰๊ฐ์ ์œผ๋กœ ๋ฐ˜์‘ํ•˜๋Š” ๋ฐฉ์‹์œผ๋กœ ์ˆ˜ํ–‰ํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ํด๋Ÿฌ์Šคํ„ฐโ€‘์ค‘์‹ฌ์  ์ ‘๊ทผ์€ ์ „์—ญ์ ์ธ ์‹œ์•ผ๋ฅผ ๊ฒฐ์—ฌํ•˜๊ฒŒ ๋งŒ๋“ค๋ฉฐ, ํŠนํžˆ ์ง€๋ฆฌ์ ์œผ๋กœ ๋ถ„์‚ฐ๋œ ๋ฐ์ดํ„ฐ์„ผํ„ฐ ๊ฐ„์— ๋ถ€ํ•˜๊ฐ€ ๋ถˆ๊ท ํ˜•ํ•˜๊ฒŒ ์ „ํŒŒ๋  ๊ฒฝ์šฐ ์ „์ฒด ์‹œ์Šคํ…œ์˜ ๋น„์šฉ ํšจ์œจ์„ฑ๊ณผ ์„œ๋น„์Šค ์ˆ˜์ค€์ด ํฌ๊ฒŒ ์ €ํ•˜๋œ๋‹ค. ๋…ผ๋ฌธ์€ ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ์„ธ ๊ฐ€์ง€ ํ•ต์‹ฌ ์š”์†Œ๋ฅผ ๊ฒฐํ•ฉํ•œ AIโ€‘๊ธฐ๋ฐ˜ ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์‹œํ•œ๋‹ค.

Computer Science Distributed Computing
Classifying long legal documents using short random chunks

Classifying long legal documents using short random chunks

์ด ๋…ผ๋ฌธ์€ ๋ฒ•๋ฅ  ๋ฌธ์„œ์™€ ๊ฐ™์ด ํ…์ŠคํŠธ ๊ธธ์ด๊ฐ€ ์ˆ˜์ฒœ ํ† ํฐ์— ๋‹ฌํ•˜๋Š” ๋„๋ฉ”์ธ์—์„œ Transformer ๋ชจ๋ธ์˜ ์ž…๋ ฅ ์ œํ•œ์„ ์šฐํšŒํ•˜๊ธฐ ์œ„ํ•œ ์‹ค์šฉ์ ์ธ ์ ‘๊ทผ๋ฒ•์„ ์ œ์‹œํ•œ๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค์€ ๋ณดํ†ต ์ „์ฒด ๋ฌธ์„œ๋ฅผ ์Šฌ๋ผ์ด๋”ฉ ์œˆ๋„์šฐ ๋ฐฉ์‹์œผ๋กœ ๋‚˜๋ˆ„๊ฑฐ๋‚˜, ํ•ต์‹ฌ ๋ฌธ์žฅ์„ ์ถ”์ถœํ•˜๋Š” ์ „์ฒ˜๋ฆฌ ๋‹จ๊ณ„์— ์˜์กดํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์Šฌ๋ผ์ด๋”ฉ ์œˆ๋„์šฐ๋Š” ์—ฐ์‚ฐ๋Ÿ‰์ด ๊ธ‰์ฆํ•˜๊ณ , ํ•ต์‹ฌ ๋ฌธ์žฅ ์ถ”์ถœ์€ ๋„๋ฉ”์ธ ํŠนํ™”๋œ ์š”์•ฝ ๋ชจ๋ธ์ด ํ•„์š”ํ•ด ์ถ”๊ฐ€ ๋น„์šฉ์ด ๋ฐœ์ƒํ•œ๋‹ค. ์ €์ž๋“ค์€ ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ โ€œ๋ฌด์ž‘์œ„ ์ฒญํฌ ์ƒ˜ํ”Œ๋งโ€์ด๋ผ๋Š” ๊ฐ„๋‹จํ•˜์ง€๋งŒ ํšจ๊ณผ์ ์ธ ์ „๋žต์œผ๋กœ ํ•ด๊ฒฐํ•œ๋‹ค. 48๊ฐœ์˜ ์ฒญํฌ๋ฅผ ๋ฌด์ž‘์œ„๋กœ ์„ ํƒํ•จ์œผ๋กœ์จ ๋ฌธ์„œ ์ „์ฒด์˜ ๋‹ค์–‘

Computer Science NLP
Constructing a Neuro-Symbolic Mathematician from First Principles

Constructing a Neuro-Symbolic Mathematician from First Principles

Mathesis ๋…ผ๋ฌธ์€ ํ˜„์žฌ LLM์ด ์ง๋ฉดํ•œ โ€œ๋…ผ๋ฆฌ์  ์ผ๊ด€์„ฑ ๋ถ€์žฌโ€๋ผ๋Š” ๊ทผ๋ณธ์ ์ธ ํ•œ๊ณ„๋ฅผ ์‹ ๊ฒฝโ€‘๊ธฐํ˜ธ ํ•˜์ด๋ธŒ๋ฆฌ๋“œ ์ ‘๊ทผ๋ฒ•์œผ๋กœ ํ•ด๊ฒฐํ•˜๊ณ ์ž ํ•˜๋Š” ์‹œ๋„์ด๋‹ค. ๊ฐ€์žฅ ํฐ ํ˜์‹ ์€ ์ˆ˜ํ•™์  ์ง€์‹์„ ๊ณ ์ฐจ์› ํ•˜์ดํผ๊ทธ๋ž˜ํ”„ ํ˜•ํƒœ๋กœ ํ‘œํ˜„ํ•œ๋‹ค๋Š” ์ ์ด๋‹ค. ์ „ํ†ต์ ์ธ ํ† ํฐโ€‘์‹œํ€€์Šค ํ‘œํ˜„์€ ๋ณ€์ˆ˜์™€ ์—ฐ์‚ฐ์ž ์‚ฌ์ด์˜ ๋ณต์žกํ•œ ๊ด€๊ณ„๋ฅผ ์ถฉ๋ถ„ํžˆ ํฌ์ฐฉํ•˜์ง€ ๋ชปํ•˜์ง€๋งŒ, ํ•˜์ดํผ๊ทธ๋ž˜ํ”„๋Š” ๋…ธ๋“œ(๊ฐœ๋…)์™€ ํ•˜์ดํผ์—ฃ์ง€(๋‹ค์ค‘ ๊ด€๊ณ„)๋ฅผ ๋™์‹œ์— ๋ชจ๋ธ๋งํ•จ์œผ๋กœ์จ ๊ณต๋ฆฌ, ์ •์˜, ์ •๋ฆฌ, ์ฆ๋ช… ๋‹จ๊ณ„ ๋“ฑ์„ ์ž์—ฐ์Šค๋Ÿฝ๊ฒŒ ๊ตฌ์กฐํ™”ํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ๊ตฌ์กฐ ์œ„์— ์–น์–ด์ง„ Symbolic Reasoning Kernel(SRK) ์€ ์ฐจ

Computer Science Artificial Intelligence
Counterfactual Self-Questioning for Stable Policy Optimization in Language Models

Counterfactual Self-Questioning for Stable Policy Optimization in Language Models

๋ณธ ๋…ผ๋ฌธ์ด ์ œ์‹œํ•˜๋Š” Counterfactual Selfโ€‘Questioning(CSQ)์€ ๊ธฐ์กด ์ž๊ธฐ ๊ฐœ์„  ๋ฉ”์ปค๋‹ˆ์ฆ˜์ด ์•ˆ๊ณ  ์žˆ๋˜ โ€œ์™ธ๋ถ€ ์˜์กด์„ฑโ€์ด๋ผ๋Š” ๊ทผ๋ณธ์ ์ธ ๋ฌธ์ œ๋ฅผ ๊ทผ๋ณธ์ ์œผ๋กœ ํ•ด๊ฒฐํ•œ๋‹ค๋Š” ์ ์—์„œ ํ•™์ˆ ์ ยท์‹ค์šฉ์  ์˜๋ฏธ๊ฐ€ ํฌ๋‹ค. ๋จผ์ €, CSQ๋Š” ํ•˜๋‚˜์˜ ์–ธ์–ด ๋ชจ๋ธ์ด ์Šค์Šค๋กœ โ€œ์™œ ์ด ์ถ”๋ก ์ด ํ‹€๋ ธ๋Š”๊ฐ€โ€๋ฅผ ํƒ์ƒ‰ํ•˜๋„๋ก ์„ค๊ณ„๋œ ์„ธ ๋‹จ๊ณ„ ํŒŒ์ดํ”„๋ผ์ธ์„ ๋„์ž…ํ•œ๋‹ค. ์ดˆ๊ธฐ ๋กค์•„์›ƒ ๋‹จ๊ณ„์—์„œ ๋ชจ๋ธ์€ ์ผ๋ฐ˜์ ์ธ chainโ€‘ofโ€‘thought ๋ฐฉ์‹์œผ๋กœ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ณ , ๊ทธ ๊ณผ์ •์—์„œ ์ƒ์„ฑ๋œ ์ค‘๊ฐ„ ๋‹จ๊ณ„์™€ ์ตœ์ข… ๋‹ต์•ˆ์„ ๊ทธ๋Œ€๋กœ ๋ณด๊ด€ํ•œ๋‹ค. ์ด์–ด์ง€๋Š” ์ž๊ธฐ์งˆ๋ฌธ ๋‹จ๊ณ„์—์„œ๋Š” ๋ชจ๋ธ์ด โ€œ

Computer Science Artificial Intelligence Model
No Image

Do Large Language Models Know What They Are Capable Of?

์ด ๋…ผ๋ฌธ์€ โ€œ๋ฉ”ํƒ€โ€‘์ธ์ง€โ€๋ผ๋Š” ๊ด€์ ์—์„œ LLM์˜ ์ž๊ธฐ ํ‰๊ฐ€ ๋Šฅ๋ ฅ์„ ์ฒด๊ณ„์ ์œผ๋กœ ๊ฒ€์ฆํ•œ๋‹ค๋Š” ์ ์—์„œ ์˜๋ฏธ๊ฐ€ ํฌ๋‹ค. ๋จผ์ € ์—ฐ๊ตฌ์ง„์€ โ€œ์„ฑ๊ณต ์˜ˆ์ธกโ€์ด๋ผ๋Š” ์ด์ง„ ํŒ๋‹จ์„ ํ†ตํ•ด ๋ชจ๋ธ์ด ์ž์‹ ์˜ ํ•œ๊ณ„๋ฅผ ์–ผ๋งˆ๋‚˜ ์ •ํ™•ํžˆ ์ธ์‹ํ•˜๋Š”์ง€๋ฅผ ์ธก์ •ํ•˜์˜€๋‹ค. ์—ฌ๊ธฐ์„œ ์‚ฌ์šฉ๋œ ํ‰๊ฐ€์ง€ํ‘œ๋Š” ๋‹จ์ˆœ ์ •ํ™•๋„๋ฟ ์•„๋‹ˆ๋ผ ROCโ€‘AUC์™€ ๊ฐ™์€ ๊ตฌ๋ณ„๋ ฅ ์ง€ํ‘œ์ด๋ฉฐ, ์ด๋Š” ๋ชจ๋ธ์ด ๊ณผ์‹ (overโ€‘confidence)๊ณผ ๊ณผ์†Œ์‹ (underโ€‘confidence) ์‚ฌ์ด์—์„œ ์–ด๋А ์ •๋„ ๊ท ํ˜•์„ ์žก๋Š”์ง€๋ฅผ ๋ณด์—ฌ์ค€๋‹ค. ๊ฒฐ๊ณผ๋Š” ๋Œ€๋ถ€๋ถ„์˜ ์ตœ์‹  LLM์ด ๋†’์€ ํ™•์‹ ์„ ๋ณด์ด์ง€๋งŒ, ๋ฌด์ž‘์œ„๋ณด๋‹ค ๋†’์€ AUC๋ฅผ ๊ธฐ๋กํ•œ๋‹ค๋Š” ์ ์ด๋‹ค

Computer Science NLP Model
No Image

DynaFix: Iterative Automated Program Repair Driven by Execution-Level Dynamic Information

DynaFix๊ฐ€ ์ œ์‹œํ•˜๋Š” ํ•ต์‹ฌ ์•„์ด๋””์–ด๋Š” โ€œ์‹คํ–‰โ€‘๋ ˆ๋ฒจ ๋™์  ์ •๋ณดโ€๋ฅผ ๋ฐ˜๋ณต์ ์ธ ํ”ผ๋“œ๋ฐฑ ๋ฃจํ”„์— ํ†ตํ•ฉํ•จ์œผ๋กœ์จ LLM ๊ธฐ๋ฐ˜ APR์˜ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•œ๋‹ค๋Š” ์ ์ด๋‹ค. ๊ธฐ์กด LLMโ€‘APR ์—ฐ๊ตฌ๋Š” ์ฃผ๋กœ ์ •์  ์ฝ”๋“œ ๊ตฌ์กฐ์™€ ํ…Œ์ŠคํŠธ ์Šค์œ„ํŠธ ๊ฒฐ๊ณผ์— ์˜์กดํ–ˆ์œผ๋ฉฐ, ์ด๋Š” ํ”„๋กœ๊ทธ๋žจ์˜ ์‹ค์ œ ๋™์ž‘์„ ๋ฐ˜์˜ํ•˜์ง€ ๋ชปํ•œ๋‹ค. ์ •์  ์ •๋ณด๋งŒ์œผ๋กœ๋Š” ๋ณ€์ˆ˜ ๊ฐ’์˜ ๋ณ€๋™, ์กฐ๊ฑด๋ฌธ ๋ถ„๊ธฐ, ์˜ˆ์™ธ ๋ฐœ์ƒ ๊ฒฝ๋กœ ๋“ฑ ๋ณต์žกํ•œ ๋Ÿฐํƒ€์ž„ ์ƒํ™ฉ์„ ์ •ํ™•ํžˆ ํŒŒ์•…ํ•˜๊ธฐ ์–ด๋ ต๋‹ค. DynaFix๋Š” ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ๋งค ๋ผ์šด๋“œ๋งˆ๋‹ค ํ”„๋กœ๊ทธ๋žจ์„ ์‹ค์ œ๋กœ ์‹คํ–‰ํ•˜๊ณ , ๋ณ€์ˆ˜ ์Šค๋ƒ…์ƒท, ์ œ์–ด ํ๋ฆ„ ํŠธ๋ ˆ์ด์Šค, ํ˜ธ์ถœ ์Šคํƒ ๋“ฑ

Computer Science Software Engineering
Evaluating Contextual Intelligence in Recyclability: A Comprehensive Study of Image-Based Reasoning Systems

Evaluating Contextual Intelligence in Recyclability: A Comprehensive Study of Image-Based Reasoning Systems

๋ณธ ๋…ผ๋ฌธ์€ ์žฌํ™œ์šฉ ์‹ค์ฒœ์„ ์ง€์›ํ•˜๊ธฐ ์œ„ํ•œ ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๋„๊ตฌ์˜ ๊ฐ€๋Šฅ์„ฑ์„ ํƒ์ƒ‰ํ•œ๋‹ค๋Š” ์ ์—์„œ ์‚ฌํšŒ์ ยทํ™˜๊ฒฝ์  ์˜๋ฏธ๊ฐ€ ํฌ๋‹ค. ์—ฐ๊ตฌ์ง„์€ ๋จผ์ € ์žฌํ™œ์šฉ ๋Œ€์ƒ ๋ฌผํ’ˆ์„ ๋‹ค์–‘ํ•œ ๊ฐ๋„์™€ ์กฐ๋ช… ์กฐ๊ฑด์—์„œ ์ดฌ์˜ํ•œ ์ด๋ฏธ์ง€์™€, ๊ฐ ๋ฌผํ’ˆ์ด ์†ํ•ด์•ผ ํ•  ์žฌํ™œ์šฉํ†ต(ํ”Œ๋ผ์Šคํ‹ฑ, ๊ธˆ์†, ์ข…์ด ๋“ฑ) ๋ฐ ๋ฌผ๋ฆฌ์  ์น˜์ˆ˜ ์ •๋ณด๋ฅผ ํฌํ•จํ•œ ๋ฉ”ํƒ€๋ฐ์ดํ„ฐ๋ฅผ ๊ฒฐํ•ฉํ•œ ๋ฐ์ดํ„ฐ์…‹์„ ๊ตฌ์ถ•ํ•˜์˜€๋‹ค. ๋ฐ์ดํ„ฐ์…‹์€ 5,000์—ฌ ์žฅ์˜ ์ด๋ฏธ์ง€์™€ 1,200๊ฐœ์˜ ๋‹ค์ค‘ ์žฌ์งˆ ์‚ฌ๋ก€๋ฅผ ํฌํ•จํ•ด, ์‹ค์ œ ๊ฐ€์ •์—์„œ ๋งˆ์ฃผ์น˜๋Š” ๋ณตํ•ฉ ์ƒํ™ฉ์„ ์ถฉ๋ถ„ํžˆ ๋ฐ˜์˜ํ•œ๋‹ค. ๋ชจ๋ธ ํ‰๊ฐ€์—์„œ๋Š” ๋‘ ๋‹จ๊ณ„์˜ ์งˆ๋ฌธ์„ ์ œ์‹œํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ๋Š” โ€œ์ด ๋ฌผ๊ฑด์€ ์–ด๋А ์žฌ

System Computer Vision Computer Science
Evaluating the Impact of Compression Techniques on the Robustness of CNNs under Natural Corruptions

Evaluating the Impact of Compression Techniques on the Robustness of CNNs under Natural Corruptions

๋ณธ ์—ฐ๊ตฌ๋Š” ๋ชจ๋ธ ์••์ถ•์ด CNN์˜ ๊ฒฌ๊ณ ์„ฑ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ์ฒด๊ณ„์ ์œผ๋กœ ๊ทœ๋ช…ํ•˜๊ธฐ ์œ„ํ•ด ์„ธ ๊ฐ€์ง€ ๋Œ€ํ‘œ์ ์ธ ์••์ถ• ๊ธฐ๋ฒ•โ€”์–‘์žํ™”(Quantization), ํ”„๋ฃจ๋‹(Pruning), ๊ฐ€์ค‘์น˜ ํด๋Ÿฌ์Šคํ„ฐ๋ง(Weight Clustering)โ€”์„ ์„ ํƒํ•˜์˜€๋‹ค. ๊ฐ๊ฐ์˜ ๊ธฐ๋ฒ•์€ ๋ฉ”๋ชจ๋ฆฌ ์‚ฌ์šฉ๋Ÿ‰๊ณผ ์—ฐ์‚ฐ๋Ÿ‰์„ ๊ฐ์†Œ์‹œํ‚ค๋Š” ๋ฉ”์ปค๋‹ˆ์ฆ˜์€ ์œ ์‚ฌํ•˜์ง€๋งŒ, ํŒŒ๋ผ๋ฏธํ„ฐ ๋ถ„ํฌ์™€ ํ™œ์„ฑํ™” ํŒจํ„ด์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์ด ๋‹ค๋ฅด๋‹ค. ์–‘์žํ™”๋Š” ๊ฐ€์ค‘์น˜๋ฅผ ๋‚ฎ์€ ๋น„ํŠธ ํญ์œผ๋กœ ํ‘œํ˜„ํ•จ์œผ๋กœ์จ ์—ฐ์‚ฐ ์ •๋ฐ€๋„๋ฅผ ๋‚ฎ์ถ”์ง€๋งŒ, ์ •๊ทœํ™”๋œ ๋ ˆ์ด์–ด์—์„œ๋Š” ์˜ค์ฐจ๊ฐ€ ๋ถ€๋ถ„์ ์œผ๋กœ ์ƒ์‡„๋˜๋Š” ๊ฒฝํ–ฅ์ด ์žˆ๋‹ค. ํ”„๋ฃจ๋‹์€ ์ค‘์š”๋„๊ฐ€ ๋‚ฎ์€ ์ฑ„๋„์ด๋‚˜ ํ•„ํ„ฐ๋ฅผ

Computer Science Computer Vision
Generative Classifiers Avoid Shortcut Solutions

Generative Classifiers Avoid Shortcut Solutions

ํŒ๋ณ„ ๋ชจ๋ธ์€ ์ž…๋ ฅ ๋ฐ์ดํ„ฐ๋ฅผ ์ง์ ‘ ๋ผ๋ฒจ์— ๋งคํ•‘ํ•˜๋Š” ๋ฐฉ์‹์œผ๋กœ ํ•™์Šตํ•œ๋‹ค. ์ด ๊ณผ์ •์—์„œ ๋ชจ๋ธ์€ ํ›ˆ๋ จ ๋ฐ์ดํ„ฐ์— ์กด์žฌํ•˜๋Š” ํ†ต๊ณ„์  ํŒจํ„ด์„ ์ตœ์ ํ™”ํ•˜์ง€๋งŒ, ๋ผ๋ฒจ๊ณผ ์ง์ ‘์ ์ธ ์ธ๊ณผ๊ด€๊ณ„๊ฐ€ ์—†๋Š” ํŠน์ง•โ€”์˜ˆ๋ฅผ ๋“ค์–ด ๋ฐฐ๊ฒฝ ์ƒ‰, ์ดฌ์˜ ๊ฐ๋„, ํ˜น์€ ํ…์ŠคํŠธ์—์„œ ํ”ํžˆ ๋‚˜ํƒ€๋‚˜๋Š” ํŠน์ • ๋‹จ์–ดโ€”์— ๊ณผ๋„ํ•˜๊ฒŒ ์˜์กดํ•  ์œ„ํ—˜์ด ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ์Šคํ“จ๋ฆฌ์–ด์Šค ํŠน์ง•์€ ํ›ˆ๋ จ ๋ฐ์ดํ„ฐ ๋‚ด์—์„œ๋Š” ๋ผ๋ฒจ๊ณผ ๋†’์€ ์ƒ๊ด€๊ด€๊ณ„๋ฅผ ๋ณด์ด์ง€๋งŒ, ์‹ค์ œ ๋ฐฐํฌ ํ™˜๊ฒฝ์—์„œ ์‚ฌ์†Œํ•œ ๋ถ„ํฌ ์ด๋™์ด ๋ฐœ์ƒํ•˜๋ฉด ๊ธ‰๊ฒฉํžˆ ์‚ฌ๋ผ์ง„๋‹ค. ๊ฒฐ๊ณผ์ ์œผ๋กœ ํŒ๋ณ„ ๋ชจ๋ธ์€ โ€œ๋‹จ์ถ•(shortcut)โ€์„ ์ด์šฉํ•ด ๋†’์€ ์ •ํ™•๋„๋ฅผ ๋‹ฌ์„ฑํ•˜์ง€๋งŒ, ์ผ๋ฐ˜ํ™” ๋Šฅ๋ ฅ์€ ํฌ๊ฒŒ

Machine Learning Computer Science
HiGR: Efficient Generative Slate Recommendation via Hierarchical Planning and Multi-Objective Preference Alignment

HiGR: Efficient Generative Slate Recommendation via Hierarchical Planning and Multi-Objective Preference Alignment

HiGR ๋…ผ๋ฌธ์€ ์Šฌ๋ ˆ์ดํŠธ ์ถ”์ฒœ์ด๋ผ๋Š” ๋ณตํ•ฉ์ ์ธ ๋ฌธ์ œ๋ฅผ ๋‘ ๊ฐ€์ง€ ํ•ต์‹ฌ ์ฐจ์›์—์„œ ํ˜์‹ ์ ์œผ๋กœ ์ ‘๊ทผํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ๋Š” ์•„์ดํ…œ ํ† ํฌ๋‚˜์ด์ œ์ด์…˜ ๋‹จ๊ณ„์ด๋‹ค. ๊ธฐ์กด์˜ ์ž๋™ํšŒ๊ท€ ๊ธฐ๋ฐ˜ ๋ชจ๋ธ์€ ์•„์ดํ…œ์„ ๋‹จ์ˆœํžˆ ๊ณ ์œ  ๋ฒˆํ˜ธ ํ˜น์€ ์ž„๋ฒ ๋”ฉ ๋ฒกํ„ฐ๋กœ ๋ณ€ํ™˜ํ•œ ๋’ค ์ˆœ์ฐจ์ ์œผ๋กœ ์˜ˆ์ธกํ•œ๋‹ค. ์ด ๊ฒฝ์šฐ ์•„์ดํ…œ ๊ฐ„ ์˜๋ฏธ์  ์—ฐ๊ด€์„ฑ์ด ํ† ํฐ ์ˆ˜์ค€์—์„œ ์ถฉ๋ถ„ํžˆ ๋ฐ˜์˜๋˜์ง€ ์•Š์•„, โ€œ์Œ์•…โ€‘ํŒโ€๊ณผ โ€œ์Œ์•…โ€‘์žฌ์ฆˆโ€์™€ ๊ฐ™์€ ์œ ์‚ฌ ์•„์ดํ…œ์ด ์„œ๋กœ ๋‹ค๋ฅธ ํ† ํฐ์œผ๋กœ ์ทจ๊ธ‰๋ผ ๋ชจ๋ธ์ด ๋ถˆํ•„์š”ํ•œ ํ˜ผ๋™์„ ๊ฒช๋Š”๋‹ค. HiGR์€ ์ž”์ฐจ ์–‘์žํ™”(residual quantization)์™€ ๋Œ€๋น„ ํ•™์Šต(contrastive learn

Computer Science Information Retrieval
Iterative Deployment Improves Planning Skills in LLMs

Iterative Deployment Improves Planning Skills in LLMs

๋ณธ ๋…ผ๋ฌธ์€ โ€œ๋ฐ˜๋ณต ๋ฐฐํฌ(iterative deployment)โ€๋ผ๋Š” ์ƒˆ๋กœ์šด ๋ชจ๋ธ ์ง„ํ™” ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์‹œํ•œ๋‹ค. ํ•ต์‹ฌ ์•„์ด๋””์–ด๋Š” ํ•œ ๋ฒˆ ๋ฐฐํฌ๋œ LLM์ด ์‹ค์ œ ์‚ฌ์šฉ์ž์™€ ์ƒํ˜ธ์ž‘์šฉํ•˜๋ฉด์„œ ์ƒ์„ฑํ•œ ์ถœ๋ ฅ๋ฌผ ์ค‘, ํŠนํžˆ ๊ณ„ํš ๋ฌธ์ œ์— ๋Œ€ํ•œ ๋‹ต๋ณ€์„ ์ธ๊ฐ„์ด ๊ฒ€ํ† ยท์„ ๋ณ„ํ•˜์—ฌ ๊ณ ํ’ˆ์งˆ ๋ฐ์ดํ„ฐ์…‹์„ ๋งŒ๋“ ๋‹ค. ์ด ๋ฐ์ดํ„ฐ์…‹์„ ์ด์šฉํ•ด ๊ธฐ์กด ๋ชจ๋ธ์„ ํŒŒ์ธํŠœ๋‹ํ•˜๊ณ , ๋‹ค์‹œ ๋ฐฐํฌํ•œ๋‹ค๋Š” ๊ณผ์ •์„ ์—ฌ๋Ÿฌ ์ฐจ๋ก€ ๋ฐ˜๋ณตํ•œ๋‹ค. ์ด๋ ‡๊ฒŒ ํ•˜๋ฉด ๋ชจ๋ธ์€ ์ ์ง„์ ์œผ๋กœ โ€œ์‚ฌ์šฉ์žโ€‘ํ”ผ๋“œ๋ฐฑโ€‘๋ฐ์ดํ„ฐโ€‘์žฌํ•™์Šตโ€์ด๋ผ๋Š” ์ˆœํ™˜ ๊ณ ๋ฆฌ๋ฅผ ํ†ตํ•ด ์Šค์Šค๋กœ ์„ฑ๋Šฅ์„ ํ–ฅ์ƒ์‹œํ‚จ๋‹ค. ์‹คํ—˜์—์„œ๋Š” ๊ณ ์ „์ ์ธ ํ”Œ๋ž˜๋‹ ๋„๋ฉ”์ธ(์˜ˆ: ๋ธ”๋ก์Šค ์›”๋“œ, ๋กœ

Computer Science Artificial Intelligence
LeanCat: A Benchmark Suite for Formal Category Theory in Lean (Part I: 1-Categories)

LeanCat: A Benchmark Suite for Formal Category Theory in Lean (Part I: 1-Categories)

์ด ๋…ผ๋ฌธ์€ ํ˜•์‹ํ™”๋œ ์ˆ˜ํ•™ ์—ฐ๊ตฌ์— ์žˆ์–ด โ€œ๊ตฌ์กฐ์  ์ถ”๋ก โ€์ด๋ผ๋Š” ํ•ต์‹ฌ ๊ณผ์ œ๋ฅผ ๋ช…ํ™•ํžˆ ์ œ์‹œํ•œ๋‹ค๋Š” ์ ์—์„œ ์˜๋ฏธ๊ฐ€ ํฌ๋‹ค. ๊ธฐ์กด์˜ ์ •๋ฆฌ ์ฆ๋ช… ๋ฒค์น˜๋งˆํฌ๋Š” ์ฃผ๋กœ ๊ตฌ์ฒด์ ์ธ ๊ณ„์‚ฐ์ด๋‚˜ ์ „ํ†ต์ ์ธ ์œ„์ƒยท๋Œ€์ˆ˜์  ๋ช…์ œ์— ์ดˆ์ ์„ ๋งž์ถ”์–ด ์™”์œผ๋ฉฐ, ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ(์˜ˆ: Mathlib)์™€์˜ ์ƒํ˜ธ์ž‘์šฉ์„ ์ตœ์†Œํ™”ํ–ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ํ˜„๋Œ€ ์ˆ˜ํ•™์€ ๋ฒ”์ฃผ๋ก ๊ณผ ๊ฐ™์€ ๊ณ ์ฐจ ๊ตฌ์กฐ๋ฅผ ํ†ตํ•ด ๋‹ค์–‘ํ•œ ๋ถ„์•ผ๋ฅผ ์—ฐ๊ฒฐํ•˜๊ณ , ์ด๋Ÿฌํ•œ ๊ตฌ์กฐ๋Š” ์ •์˜, ํ•จ์ž, ์ž์—ฐ ๋ณ€ํ™˜ ๋“ฑ ๋ณตํ•ฉ์ ์ธ ์ธํ„ฐํŽ˜์ด์Šค๋ฅผ ์š”๊ตฌํ•œ๋‹ค. ๋”ฐ๋ผ์„œ LLM์ด ์‹ค์ œ ์—ฐ๊ตฌ์ž ์ˆ˜์ค€์˜ ๋Šฅ๋ ฅ์„ ๋ณด์ด๋ ค๋ฉด ๋‹จ์ˆœํžˆ โ€œ์ •๋ฆฌ๋ฅผ ์ฆ๋ช…โ€ํ•˜๋Š” ๊ฒƒ์„ ๋„˜์–ด, ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ ์•ˆ์—์„œ ์ 

Computer Science Logic
Let It Flow: Agentic Crafting on Rock and Roll, Building the ROME Model within an Open Agentic Learning Ecosystem

Let It Flow: Agentic Crafting on Rock and Roll, Building the ROME Model within an Open Agentic Learning Ecosystem

๋ณธ ๋…ผ๋ฌธ์€ โ€œ์—์ด์ „ํŠธ ์ œ์ž‘(agentic crafting)โ€์ด๋ผ๋Š” ๊ฐœ๋…์„ ๊ธฐ์กด์˜ ์ผํšŒ์„ฑ ํ…์ŠคํŠธ ์ƒ์„ฑ๊ณผ ๊ตฌ๋ณ„ํ•˜์—ฌ, ์‹ค์ œ ์„ธ๊ณ„์—์„œ ๋‹ค์ค‘ ํ„ด์„ ๊ฑฐ์ณ ํ–‰๋™ํ•˜๊ณ  ๊ทธ ๊ฒฐ๊ณผ๋ฅผ ๊ด€์ฐฐยทํ”ผ๋“œ๋ฐฑํ•˜๋Š” ๋ฐ˜๋ณต์  ํ”„๋กœ์„ธ์Šค๋กœ ์ •์˜ํ•œ๋‹ค. ์ด๋Š” ๋‹จ์ˆœํžˆ ์ฝ”๋“œ๋ฅผ ์ž๋™ ์ƒ์„ฑํ•˜๋Š” ์ˆ˜์ค€์„ ๋„˜์–ด, ๋ณตํ•ฉ์ ์ธ ํˆด ์ฒด์ธ๊ณผ ์–ธ์–ด ๊ธฐ๋ฐ˜ ์›Œํฌํ”Œ๋กœ ์ „๋ฐ˜์— ๊ฑธ์ณ ๋ชจ๋ธ์ด ๊ณ„ํšยท์‹คํ–‰ยท๋ชจ๋‹ˆํ„ฐ๋งยท์ˆ˜์ •๊นŒ์ง€ ์ „ ๊ณผ์ •์„ ๋‹ด๋‹นํ•ด์•ผ ํ•จ์„ ์˜๋ฏธํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ์š”๊ตฌ๋ฅผ ์ถฉ์กฑํ•˜๋ ค๋ฉด ๋ชจ๋ธ ์ž์ฒด๋ฟ ์•„๋‹ˆ๋ผ, ๋ชจ๋ธ์ด ์ž‘๋™ํ•  ํ™˜๊ฒฝ, ๋ฐ์ดํ„ฐ ํŒŒ์ดํ”„๋ผ์ธ, ํ•™์Šตยท๋ฐฐํฌ ์ธํ”„๋ผ๊ฐ€ ๋ชจ๋‘ ์œ ๊ธฐ์ ์œผ๋กœ ์—ฐ๊ฒฐ๋œ โ€˜์—์ด์ „ํŠธ ํ•™์Šต ์ƒํƒœ๊ณ„(AL

Model Artificial Intelligence System Computer Science Learning
Modeling Language as a Sequence of Thoughts

Modeling Language as a Sequence of Thoughts

์ด ๋…ผ๋ฌธ์€ ํ˜„์žฌ ๊ฐ€์žฅ ๋„๋ฆฌ ์‚ฌ์šฉ๋˜๋Š” ํŠธ๋žœ์Šคํฌ๋จธ ๊ธฐ๋ฐ˜ ์–ธ์–ด ๋ชจ๋ธ์ด โ€œํ‘œ๋ฉด์ โ€ ํ† ํฐ ์—ฐ๊ด€์„ฑ์— ๊ณผ๋„ํ•˜๊ฒŒ ์˜์กดํ•œ๋‹ค๋Š” ๊ทผ๋ณธ์ ์ธ ํ•œ๊ณ„๋ฅผ ์งš๊ณ  ์žˆ๋‹ค. ํ† ํฐ ์ˆ˜์ค€์—์„œ๋งŒ ํ•™์Šต์ด ์ด๋ฃจ์–ด์ง€๋ฉด ๋ชจ๋ธ์€ ๋ฌธ๋งฅ ์ „์ฒด์— ๊ฑธ์นœ ์ผ๊ด€๋œ ์—”ํ‹ฐํ‹ฐยท์‚ฌ๊ฑด ํ‘œํ˜„์„ ๊ตฌ์ถ•ํ•˜์ง€ ๋ชปํ•œ๋‹ค. ๊ฒฐ๊ณผ์ ์œผ๋กœ โ€œ์—ญ์ „ ์ €์ฃผโ€(์˜ˆ: โ€œ์•„๋ฒ„์ง€๊ฐ€ ์•„๋“ค์„ ๋‚ณ์•˜๋‹คโ€์™€ โ€œ์•„๋“ค์ด ์•„๋ฒ„์ง€๋ฅผ ๋‚ณ์•˜๋‹คโ€๋ฅผ ๊ตฌ๋ถ„ํ•˜์ง€ ๋ชปํ•จ)์™€ ๊ฐ™์€ ๊ด€๊ณ„ ์ผ๋ฐ˜ํ™” ์˜ค๋ฅ˜๊ฐ€ ๋ฐœ์ƒํ•˜๊ณ , ๋™์ผํ•œ ์˜๋ฏธ๋ฅผ ๊ฐ€์ง„ ๋‹ค์–‘ํ•œ ํ‘œํ˜„์„ ํ•™์Šตํ•˜๊ธฐ ์œ„ํ•ด ๋ถˆํ•„์š”ํ•˜๊ฒŒ ๋งŽ์€ ๋ฐ์ดํ„ฐ๊ฐ€ ์š”๊ตฌ๋œ๋‹ค. ์ธ์ง€๊ณผํ•™ ์—ฐ๊ตฌ์—์„œ๋Š” ์ธ๊ฐ„์ด ์–ธ์–ด๋ฅผ ์ฒ˜๋ฆฌํ•  ๋•Œ ์ž…๋ ฅ ์ŠคํŠธ๋ฆผ์„ ์ผ์‹œ์ ์ธ ํ‘œ

Computer Science NLP Model
No Image

More Than Bits: Multi-Envelope Double Binary Factorization for Extreme Quantization

์ด ๋…ผ๋ฌธ์€ ๋Œ€๊ทœ๋ชจ ์–ธ์–ด ๋ชจ๋ธ(LLM)์˜ ๊ทน์ €๋น„ํŠธ ์–‘์žํ™”์— ์žˆ์–ด ๊ธฐ์กด ์ด์ค‘ ์ด์ง„ ๋ถ„ํ•ด(Double Binary Factorization, DBF)์˜ ๊ตฌ์กฐ์  ํ•œ๊ณ„๋ฅผ ์ •ํ™•ํžˆ ์งš์–ด๋‚ธ๋‹ค. DBF๋Š” ๊ฐ€์ค‘์น˜๋ฅผ ๋ถ€ํ˜ธ ํ–‰๋ ฌ๊ณผ ์Šค์ผ€์ผ(์—”๋ฒจ๋กœํ”„) ํ–‰๋ ฌ์˜ ๊ณฑ์œผ๋กœ ํ‘œํ˜„ํ•˜๋Š”๋ฐ, ๋ถ€ํ˜ธ๋ฅผ 1๋น„ํŠธ๋กœ ๊ณ ์ •ํ•˜๊ณ  ์Šค์ผ€์ผ์„ ์‹ค์ˆ˜๊ฐ’์œผ๋กœ ๋‘์–ด ๋ฉ”๋ชจ๋ฆฌ ์‚ฌ์šฉ๋Ÿ‰์„ ํฌ๊ฒŒ ์ค„์ธ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์Šค์ผ€์ผ ํŒŒ๋ผ๋ฏธํ„ฐ๊ฐ€ ๋ชจ๋“  ๋žญํฌ ์„ฑ๋ถ„์— ๋™์ผํ•˜๊ฒŒ ์ ์šฉ๋˜๋ฉด์„œ, ๋ชจ๋ธ์ด ํ‘œํ˜„ํ•  ์ˆ˜ ์žˆ๋Š” ํฌ๊ธฐ ๋ณ€๋™ ํญ์ด ์ œํ•œ๋œ๋‹ค. ํŠนํžˆ, ๋žญํฌโ€‘R ๋ถ„ํ•ด์—์„œ R์ด ์ปค์งˆ์ˆ˜๋ก ๊ฐ ์„ฑ๋ถ„์ด ๋™์ผํ•œ ํฌ๊ธฐ ํ”„๋กœํŒŒ์ผ์„ ๊ณต์œ ํ•˜๊ฒŒ ๋˜๋ฏ€๋กœ

Machine Learning Computer Science
Mortar: Evolving Mechanics for Automatic Game Design

Mortar: Evolving Mechanics for Automatic Game Design

MORTAR๋Š” ์ž๋™ ๊ฒŒ์ž„ ๋””์ž์ธ ๋ถ„์•ผ์—์„œ โ€˜๋ฉ”์ปค๋‹ˆ์ฆ˜โ€™์ด๋ผ๋Š” ํ•ต์‹ฌ ์š”์†Œ๋ฅผ ์ง„ํ™”์‹œํ‚ค๋Š” ์ƒˆ๋กœ์šด ์ ‘๊ทผ๋ฒ•์„ ์ œ์‹œํ•œ๋‹ค๋Š” ์ ์—์„œ ํ•™์ˆ ์ ยท์‹ค์šฉ์  ์˜๋ฏธ๊ฐ€ ํฌ๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค์€ ์ฃผ๋กœ ๋ ˆ๋ฒจ ๋””์ž์ธ์ด๋‚˜ ์Šคํ† ๋ฆฌ ํ…”๋ง์„ ์ž๋™ํ™”ํ•˜๋Š” ๋ฐ ์ดˆ์ ์„ ๋งž์ถ”์—ˆ์œผ๋ฉฐ, ๊ฒŒ์ž„ ๊ทœ์น™ ์ž์ฒด๋ฅผ ์ƒ์„ฑยท์กฐ์ •ํ•˜๋Š” ์ž‘์—…์€ ์—ฌ์ „ํžˆ ์ธ๊ฐ„ ๋””์ž์ด๋„ˆ์˜ ์ „๋ฌธ ์˜์—ญ์œผ๋กœ ๋‚จ์•„ ์žˆ์—ˆ๋‹ค. ๋ณธ ์‹œ์Šคํ…œ์€ ํ’ˆ์งˆโ€‘๋‹ค์–‘์„ฑ(QD) ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ํ™œ์šฉํ•ด โ€˜๋‹ค์–‘์„ฑโ€™๊ณผ โ€˜ํ’ˆ์งˆโ€™์ด๋ผ๋Š” ๋‘ ์ถ•์„ ๋™์‹œ์— ์ตœ์ ํ™”ํ•œ๋‹ค. ๊ตฌ์ฒด์ ์œผ๋กœ, ๋ฉ”์ปค๋‹ˆ์ฆ˜ ํ›„๋ณด๊ตฐ์„ LLM(์˜ˆ: GPTโ€‘4)์—๊ฒŒ ํ”„๋กฌํ”„ํŠธ๋กœ ์ œ์‹œํ•ด ์ž์—ฐ์–ด ๊ธฐ๋ฐ˜ ๊ทœ์น™์„ ์ƒ์„ฑํ•˜๊ณ , ์ด๋ฅผ

Computer Science Artificial Intelligence
No Image

Multi-modal cross-domain mixed fusion model with dual disentanglement for fault diagnosis under unseen working conditions

์ด ๋…ผ๋ฌธ์€ ์‚ฐ์—… ํ˜„์žฅ์—์„œ ํ”ํžˆ ๋งˆ์ฃผ์น˜๋Š” โ€˜๋ณด์ด์ง€ ์•Š๋Š” ์ž‘์—… ์กฐ๊ฑดโ€™์ด๋ผ๋Š” ๋ฌธ์ œ๋ฅผ ํ•ต์‹ฌ์œผ๋กœ ์‚ผ์•„, ๊ธฐ์กด ๊ฒฐํ•จ ์ง„๋‹จ ๋ชจ๋ธ๋“ค์˜ ์ผ๋ฐ˜ํ™” ํ•œ๊ณ„๋ฅผ ์ฒด๊ณ„์ ์œผ๋กœ ๊ทน๋ณตํ•˜๊ณ ์ž ํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ ํ•ต์‹ฌ ๊ธฐ์—ฌ๋Š” ์ด์ค‘ ๋ถ„๋ฆฌ(disentanglement) ํ”„๋ ˆ์ž„์›Œํฌ ์ด๋‹ค. ์—ฌ๊ธฐ์„œ๋Š” ๋‘ ์ฐจ์›์˜ ๋ถ„๋ฆฌ๋ฅผ ๋™์‹œ์— ์ˆ˜ํ–‰ํ•œ๋‹ค. ํ•˜๋‚˜๋Š” ๋ชจ๋‹ฌ๋ฆฌํ‹ฐ ์ฐจ์› ์œผ๋กœ, ์„œ๋กœ ๋‹ค๋ฅธ ์„ผ์„œ(์˜ˆ: ์ „๋ฅ˜, ์ง„๋™, ์˜จ๋„)์—์„œ ์ถ”์ถœ๋œ ํŠน์ง•์„ โ€˜๋ชจ๋‹ฌ๋ฆฌํ‹ฐ ๋ถˆ๋ณ€(modalityโ€‘invariant)โ€™๊ณผ โ€˜๋ชจ๋‹ฌ๋ฆฌํ‹ฐ ํŠนํ™”(modalityโ€‘specific)โ€™๋กœ ๋‚˜๋ˆˆ๋‹ค. ์ด๋Š” ๊ฐ ์„ผ์„œ๊ฐ€ ์ œ๊ณตํ•˜๋Š” ๊ณ ์œ ํ•œ ๋ฌผ๋ฆฌ์  ์ •

Computer Science Artificial Intelligence Model
R-Debater: Retrieval-Augmented Debate Generation through Argumentative Memory

R-Debater: Retrieval-Augmented Debate Generation through Argumentative Memory

Rโ€‘Debater๋Š” โ€œ๋…ผ์ฆ ๋ฉ”๋ชจ๋ฆฌโ€๋ผ๋Š” ๊ฐœ๋…์„ ํ† ๋ก  ์ƒ์„ฑ์— ์ ์šฉํ•จ์œผ๋กœ์จ ๊ธฐ์กด LLM ๊ธฐ๋ฐ˜ ํ† ๋ก  ์‹œ์Šคํ…œ์ด ๊ฐ–๋Š” ๋ช‡ ๊ฐ€์ง€ ๊ทผ๋ณธ์ ์ธ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•œ๋‹ค. ์ฒซ์งธ, ์ผ๋ฐ˜์ ์ธ LLM์€ ๋Œ€๊ทœ๋ชจ ์‚ฌ์ „ํ•™์Šต์„ ํ†ตํ•ด ํ’๋ถ€ํ•œ ์–ธ์–ด ๋Šฅ๋ ฅ์„ ๋ณด์œ ํ•˜์ง€๋งŒ, ํŠน์ • ์ฃผ์žฅ์ด๋‚˜ ์ฆ๊ฑฐ๋ฅผ ์ผ๊ด€๋˜๊ฒŒ ์ธ์šฉํ•˜๋Š” ๋Šฅ๋ ฅ์€ ์ œํ•œ์ ์ด๋‹ค. ์ด๋Š” ํŠนํžˆ ๋‹ค์ค‘ ํ„ด ํ† ๋ก ์—์„œ โ€˜์ž…์žฅ ์ผ๊ด€์„ฑโ€™๊ณผ โ€˜์ฆ๊ฑฐ ๊ธฐ๋ฐ˜ ์ฃผ์žฅโ€™์ด ์š”๊ตฌ๋  ๋•Œ, ๋ชจ๋ธ์ด ์•ž์„  ๋ฐœ์–ธ์„ ๋ง๊ฐํ•˜๊ฑฐ๋‚˜ ๋ถ€์ •ํ™•ํ•œ ์ •๋ณด๋ฅผ ์‚ฝ์ž…ํ•˜๋Š” ์˜ค๋ฅ˜๋ฅผ ์ดˆ๋ž˜ํ•œ๋‹ค. Rโ€‘Debater๋Š” ๋ณ„๋„์˜ ํ† ๋ก  ์ง€์‹๋ฒ ์ด์Šค๋ฅผ ๊ตฌ์ถ•ํ•ด ์‚ฌ๋ก€โ€‘ํ˜• ์ฆ๊ฑฐ์™€ ๊ณผ๊ฑฐ ํ† ๋ก  ์ „๊ฐœ๋ฅผ ์ธ๋ฑ์‹ฑํ•˜๊ณ ,

Computer Science NLP
Reinforcement Learning-Augmented LLM Agents for Collaborative Decision Making and Performance Optimization

Reinforcement Learning-Augmented LLM Agents for Collaborative Decision Making and Performance Optimization

์ด ๋…ผ๋ฌธ์€ ๋Œ€๊ทœ๋ชจ ์–ธ์–ด ๋ชจ๋ธ(LLMs)์˜ ํ˜‘์—… ๋Šฅ๋ ฅ์„ ํ–ฅ์ƒ์‹œํ‚ค๊ธฐ ์œ„ํ•ด ๊ฐ•ํ™” ํ•™์Šต์„ ํ†ตํ•ฉํ•œ ์ƒˆ๋กœ์šด ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์‹œํ•ฉ๋‹ˆ๋‹ค. ์ด ํ”„๋ ˆ์ž„์›Œํฌ๋Š” ๋‹ค์ค‘ ์—์ด์ „ํŠธ ํ™˜๊ฒฝ์—์„œ ์ „์—ญ์ ์ธ ์„ฑ๋Šฅ ์ตœ์ ํ™”์— ์–ด๋ ค์›€์„ ๊ฒช๋Š” LLMs์˜ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๋ ค๊ณ  ํ•ฉ๋‹ˆ๋‹ค. ๋…ผ๋ฌธ์€ ํ˜‘์—…์„ ๋ถ„์‚ฐ ๋ถ€๋ถ„ๅฏ่ง‚ๆต‹้ฉฌๅฐ”ๅฏๅคซๅ†ณ็ญ–่ฟ‡็จ‹๏ผˆDec POMDP๏ผ‰็š„ๅฝขๅผๅŒ–๏ผŒๅนถ้‡‡็”จ้›†ไธญ่ฎญ็ปƒไธŽๅˆ†ๆ•ฃๆ‰ง่กŒ๏ผˆCTDE๏ผ‰ใ€‚่ฟ™็งๆ–นๆณ•้€š่ฟ‡ๅผ•ๅ…ฅ็ป„็›ธๅฏน็ญ–็•ฅไผ˜ๅŒ–๏ผˆGRPO๏ผ‰๏ผŒๅœจ่ฎญ็ปƒ่ฟ‡็จ‹ไธญๅˆฉ็”จๅ…จๅฑ€ไฟกๅทๆฅๅ…ฑๅŒไผ˜ๅŒ–ไปฃ็†็ญ–็•ฅ๏ผŒๅŒๆ—ถ็ฎ€ๅŒ–่”ๅˆๅฅ–ๅŠฑไปฅๅนณ่กกไปปๅŠก่ดจ้‡ใ€้€Ÿๅบฆๅ’Œๅ่ฐƒๆˆๆœฌใ€‚ๅฎž้ชŒ็ป“ๆžœ่กจๆ˜Ž๏ผŒๅœจๅไฝœๅ†™ไฝœๅ’Œ็ผ–็ ๅŸบๅ‡†ๆต‹่ฏ•ไธญ๏ผŒ่ฏฅๆก†ๆžถๆฏ”ๅ•ไปฃ็†ๅŸบ็บฟๆ้ซ˜ไบ†3ๅ€็š„ไปปๅŠกๅค„็†้€Ÿ

Learning
No Image

Toward Large-Scale Photonics-Empowered AI Systems: From Physical Design Automation to System-Algorithm Co-Exploration

์ด ๋…ผ๋ฌธ์€ ํฌํ† ๋‹‰์Šค ๊ธฐ๋ฐ˜ ์ธ๊ณต์ง€๋Šฅ ๊ฐ€์†๊ธฐ์˜ ์—ฐ๊ตฌ๊ฐ€ โ€œ๋””๋ฐ”์ด์Šคโ€‘๋ ˆ๋ฒจ ํ˜์‹ โ€์—์„œ โ€œ์‹œ์Šคํ…œโ€‘๋ ˆ๋ฒจ ์‹ค์šฉํ™”โ€ ๋‹จ๊ณ„๋กœ ์ „ํ™˜๋˜๋Š” ๋ฐ ํ•„์š”ํ•œ ํ•ต์‹ฌ ๊ณผ์ œ๋ฅผ ์ฒด๊ณ„์ ์œผ๋กœ ์ •๋ฆฌํ•˜๊ณ , ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•œ ํ†ตํ•ฉ ์„ค๊ณ„ ํ๋ฆ„์„ ์ œ์‹œํ•œ๋‹ค๋Š” ์ ์—์„œ ์˜๋ฏธ๊ฐ€ ํฌ๋‹ค. ์ฒซ ๋ฒˆ์งธ ๊ณ ๋ ค์‚ฌํ•ญ์ธ ๋™์  ํ…์„œ ์—ฐ์‚ฐ ์ง€์›์€ ํ˜„์žฌ AI ๋ชจ๋ธ์ด ๊ณ ์ •๋œ ๊ฐ€์ค‘์น˜ ๋งคํŠธ๋ฆญ์Šค๋งŒ์„ ํ™œ์šฉํ•˜๋Š” ์ „ํ†ต์ ์ธ ์ปจ๋ณผ๋ฃจ์…˜ ๊ฐ€์†๊ธฐ์™€๋Š” ๊ทผ๋ณธ์ ์œผ๋กœ ๋‹ค๋ฅธ ์š”๊ตฌ์‚ฌํ•ญ์ด๋‹ค. ํŠนํžˆ Transformer์™€ ๊ฐ™์€ ์–ดํ…์…˜ ๋ฉ”์ปค๋‹ˆ์ฆ˜์€ ์ž…๋ ฅ ์‹œํ€€์Šค ๊ธธ์ด์— ๋”ฐ๋ผ ์‹ค์‹œ๊ฐ„์œผ๋กœ ๊ฐ€์ค‘์น˜ ํ–‰๋ ฌ์„ ์žฌ๊ตฌ์„ฑํ•˜๊ณ , ๋‹ค์ค‘ ํ—ค๋“œ ์—ฐ์‚ฐ์„ ๋ณ‘๋ ฌ์ ์œผ๋กœ ์ˆ˜ํ–‰ํ•œ๋‹ค

System Physics
No Image

Understanding and Steering the Cognitive Behaviors of Reasoning Models at Test-Time

๋ณธ ๋…ผ๋ฌธ์€ ํ˜„์žฌ LLM์ด ๋ณต์žกํ•œ ๋ฌธ์ œ ํ•ด๊ฒฐ์— ํ”ํžˆ ์‚ฌ์šฉํ•˜๋Š” CoT(Chainโ€‘ofโ€‘Thought) ๋ฐฉ์‹์ด โ€œ๊ณผ๋‹ค ํ† ํฐ ์ƒ์„ฑโ€๊ณผ โ€œ๋ถˆ์•ˆ์ •ํ•œ ์‚ฌ๊ณ  ํ๋ฆ„โ€์ด๋ผ๋Š” ๋‘ ๊ฐ€์ง€ ์ฃผ์š” ๋ณ‘๋ชฉ์„ ์•ˆ๊ณ  ์žˆ๋‹ค๋Š” ์ ์„ ์ •ํ™•ํžˆ ์งš์–ด๋‚ธ๋‹ค. ์ €์ž๋“ค์€ ๋จผ์ € ๋Œ€๊ทœ๋ชจ ๋ชจ๋ธ(์˜ˆ: GPTโ€‘NeoX, LLaMA)์—์„œ ์ถ”๋ก  ์‹œ ์ƒ์„ฑ๋˜๋Š” ํ† ํฐ ์‹œํ€€์Šค๋ฅผ ๋‹จ๊ณ„๋ณ„๋กœ ๋ถ„์„ํ•˜๊ณ , ๊ฐ ๋‹จ๊ณ„๊ฐ€ ์–ด๋–ค ์ธ์ง€์  ์—ญํ• ์„ ์ˆ˜ํ–‰ํ•˜๋Š”์ง€ ๋ฉ”ํƒ€๋ฐ์ดํ„ฐํ™”ํ•œ๋‹ค. ์ด ๊ณผ์ •์—์„œ ํŠนํžˆ โ€˜๊ฒ€์ฆ(verification)โ€™ ๋‹จ๊ณ„์™€ โ€˜์—ญ์ถ”์ (backtracking)โ€™ ๋‹จ๊ณ„๊ฐ€ ๋ณ„๋„์˜ ์–ดํ…์…˜ ํ—ค๋“œ์— ์ง‘์ค‘๋˜์–ด ์žˆ๋‹ค๋Š” ์‚ฌ์‹ค์„

Computer Science NLP Model
An Comparative Analysis about KYC on a Recommendation System Toward Agentic Recommendation System

An Comparative Analysis about KYC on a Recommendation System Toward Agentic Recommendation System

๋ณธ ๋…ผ๋ฌธ์€ KYC ๋ฐ์ดํ„ฐ๋ฅผ ์—์ด์ „ํŠธํ˜• ์ธ๊ณต์ง€๋Šฅ(AI)๊ณผ ๊ฒฐํ•ฉํ•จ์œผ๋กœ์จ ๊ฐœ์ธํ™” ์ถ”์ฒœ์˜ ์ •ํ™•๋„์™€ ์‹ ๋ขฐ์„ฑ์„ ๋™์‹œ์— ํ–ฅ์ƒ์‹œํ‚ค๋Š” ์ƒˆ๋กœ์šด ํŒจ๋Ÿฌ๋‹ค์ž„์„ ์ œ์‹œํ•œ๋‹ค. ๋จผ์ €, KYC๋Š” ์ „ํ†ต์ ์œผ๋กœ ๊ธˆ์œต ๊ธฐ๊ด€์ด ๊ณ ๊ฐ์˜ ์‹ ์›ยท๊ฑฐ๋ž˜ ์œ„ํ—˜์„ ํ‰๊ฐ€ํ•˜๊ธฐ ์œ„ํ•ด ์ˆ˜์ง‘ํ•˜๋Š” ์ •ํ˜•ยท๋น„์ •ํ˜• ๋ฐ์ดํ„ฐ ์ง‘ํ•ฉ์ด๋ฉฐ, ๊ฐœ์ธ์ •๋ณด ๋ณดํ˜ธ์™€ ๊ทœ์ œ ์ค€์ˆ˜ ์ธก๋ฉด์—์„œ ๋†’์€ ๋ฏผ๊ฐ์„ฑ์„ ๊ฐ€์ง„๋‹ค. ์ด๋Ÿฌํ•œ ๋ฐ์ดํ„ฐ๋ฅผ ์ถ”์ฒœ ์‹œ์Šคํ…œ์— ์ง์ ‘ ํˆฌ์ž…ํ•˜๋ฉด ์‚ฌ์šฉ์ž์˜ ์‹ ์šฉ๋„ยท์†Œ๋“ ์ˆ˜์ค€ยท๊ฑฐ๋ž˜ ํŒจํ„ด ๋“ฑ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ๋งž์ถคํ˜• ์ฝ˜ํ…์ธ ๋ฅผ ์ œ๊ณตํ•  ์ˆ˜ ์žˆ์–ด, ํŠนํžˆ ๊ด‘๊ณ (Ad)์™€ ๊ธฐ์ˆ (Tech) ๋ถ„์•ผ์—์„œ ์ „ํ™˜์œจ์„ ํฌ๊ฒŒ ๋Œ์–ด์˜ฌ๋ฆด ๊ฐ€๋Šฅ์„ฑ์ด ์žˆ๋‹ค.

Computer Science Analysis Information Retrieval System
Causify DataFlow: A Framework For High-performance Machine Learning Stream Computing

Causify DataFlow: A Framework For High-performance Machine Learning Stream Computing

๋ณธ ๋…ผ๋ฌธ์€ ๋ฐ์ดํ„ฐ ๊ณผํ•™ ์‹ค๋ฌด์—์„œ ๊ฐ€์žฅ ๋นˆ๋ฒˆํžˆ ๋งˆ์ฃผ์น˜๋Š” โ€˜๋ฐ์ดํ„ฐ๋Š” ์œ ํ•œํ•˜๊ณ  ์™„์ „ํ•˜๋‹คโ€™๋Š” ๊ฐ€์ •์„ ๊ทผ๋ณธ์ ์œผ๋กœ ๋’คํ”๋“ ๋‹ค. ์ „ํ†ต์ ์ธ ๋ฐฐ์น˜ ๊ธฐ๋ฐ˜ ์›Œํฌํ”Œ๋กœ์šฐ๋Š” ๊ณ ์ •๋œ ๋ฐ์ดํ„ฐ์…‹์„ ํ•œ ๋ฒˆ์— ๋ฉ”๋ชจ๋ฆฌ๋กœ ๋กœ๋“œํ•˜๊ฑฐ๋‚˜ ๋‹จ์ผ ํŒจ์Šค๋กœ ์ฒ˜๋ฆฌํ•œ๋‹ค๋Š” ์ „์ œํ•˜์— ์„ค๊ณ„๋˜์—ˆ์œผ๋ฉฐ, ์ด๋Š” ์„ผ์„œ ์ŠคํŠธ๋ฆผ, ๊ธˆ์œต ๊ฑฐ๋ž˜ ๋กœ๊ทธ, ์‹œ์Šคํ…œ ์ด๋ฒคํŠธ์™€ ๊ฐ™์ด ์‹œ๊ฐ„์— ๋”ฐ๋ผ ์ง€์†์ ์œผ๋กœ ์ƒ์„ฑ๋˜๋Š” ๋ฐ์ดํ„ฐ์™€๋Š” ๊ทผ๋ณธ์ ์œผ๋กœ ๋งž์ง€ ์•Š๋Š”๋‹ค. ์ €์ž๋Š” ์ด๋Ÿฌํ•œ ๋ถˆ์ผ์น˜๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด Causify DataFlow๋ผ๋Š” ํ†ตํ•ฉ ์ปดํ“จํ…Œ์ด์…”๋„ ๋ชจ๋ธ์„ ์ œ์•ˆํ•œ๋‹ค. ์ฒซ์งธ, ํ”„๋ ˆ์ž„์›Œํฌ๋Š” DAG๋ฅผ ์„ ์–ธ์ ์œผ๋กœ ์ •์˜ํ•˜๊ณ , ๋™์ผํ•œ ์ •์˜๋ฅผ

Framework Machine Learning Computer Science Learning Data
Comparing Approaches to Automatic Summarization in Less-Resourced Languages

Comparing Approaches to Automatic Summarization in Less-Resourced Languages

์ด ๋…ผ๋ฌธ์€ ์ž์›์ด ๋ถ€์กฑํ•œ ์–ธ์–ด(LRL, Lessโ€‘Resourced Languages)์—์„œ ์ž๋™ ์š”์•ฝ ๊ธฐ์ˆ ์˜ ํ˜„ํ™ฉ๊ณผ ํ•œ๊ณ„๋ฅผ ์ฒด๊ณ„์ ์œผ๋กœ ์กฐ๋ช…ํ•œ๋‹ค. ๋จผ์ €, ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(LLM)์˜ ์ œ๋กœ์ƒท ํ”„๋กฌํ”„ํŠธ ๋ฐฉ์‹์„ ๋‹ค์–‘ํ•œ ๋ชจ๋ธ ํฌ๊ธฐ(์˜ˆ: GPTโ€‘3.5, LLaMAโ€‘7B ๋“ฑ)์™€ ํ•จ๊ป˜ ์‹คํ—˜ํ–ˆ๋Š”๋ฐ, ํŒŒ๋ผ๋ฏธํ„ฐ ์ˆ˜๊ฐ€ ๋น„์Šทํ•˜๋”๋ผ๋„ ์‚ฌ์ „ ํ•™์Šต ๋ฐ์ดํ„ฐ์˜ ์–ธ์–ด ๋‹ค์–‘์„ฑ, ํ† ํฌ๋‚˜์ด์ € ์„ค๊ณ„, ๊ทธ๋ฆฌ๊ณ  ํ”„๋กฌํ”„ํŠธ ์—”์ง€๋‹ˆ์–ด๋ง ์ฐจ์ด์— ๋”ฐ๋ผ ์„ฑ๋Šฅ ํŽธ์ฐจ๊ฐ€ ํฌ๊ฒŒ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ์ด๋Š” LLM์ด ๊ณ ์ž์› ์–ธ์–ด์— ์ตœ์ ํ™”๋œ ๊ตฌ์กฐ๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ์–ด, LRL์— ๋Œ€ํ•œ ์ผ๋ฐ˜ํ™” ๋Šฅ๋ ฅ์ด ์ œํ•œ์ ์ž„์„ ์‹œ์‚ฌํ•œ๋‹ค.

Computer Science NLP
Deep Learning in Geotechnical Engineering: A Critical Assessment of PINNs and Operator Learning

Deep Learning in Geotechnical Engineering: A Critical Assessment of PINNs and Operator Learning

์ด ๋…ผ๋ฌธ์€ ์ตœ๊ทผ ์ง€๋ฐ˜๊ณตํ•™ ๋ถ„์•ผ์— ๋„์ž…๋œ ์„ธ ๊ฐ€์ง€ ๋”ฅ๋Ÿฌ๋‹ ํ”„๋ ˆ์ž„์›Œํฌโ€”๋ฌผ๋ฆฌ ๊ธฐ๋ฐ˜ ์‹ ๊ฒฝ๋ง(PINN), ๋”ฅ ์—ฐ์‚ฐ์ž ๋„คํŠธ์›Œํฌ(DeepONet), ๊ทธ๋ž˜ํ”„ ๋„คํŠธ์›Œํฌ ์‹œ๋ฎฌ๋ ˆ์ดํ„ฐ(GNS)โ€”๋ฅผ ์ „ํ†ต์ ์ธ ์ˆ˜์น˜ ํ•ด๋ฒ•๊ณผ ์ง์ ‘ ๋น„๊ตํ•จ์œผ๋กœ์จ ์‹ค์šฉ์„ฑ์„ ํ‰๊ฐ€ํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ ์‹คํ—˜์ธ ํŒŒ๋™ ์ „ํŒŒ ๋ฌธ์ œ๋Š” ๊ณ ์ฃผํŒŒ ๋™์  ์‘๋‹ต์„ ์ •ํ™•ํžˆ ํฌ์ฐฉํ•ด์•ผ ํ•˜๋Š” ์ „ํ˜•์ ์ธ ํ…Œ์ŠคํŠธ๋ฒ ๋“œ์ด๋‹ค. ์—ฌ๊ธฐ์„œ PINN์€ ๋ฌผ๋ฆฌ ๋ฐฉ์ •์‹์„ ์†์‹ค ํ•จ์ˆ˜์— ์ง์ ‘ ์‚ฝ์ž…ํ•˜๋Š” ๋ฐฉ์‹์ž„์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ , ๋ฏธ๋ถ„ ์—ฐ์‚ฐ๊ณผ ์ตœ์ ํ™” ๊ณผ์ •์—์„œ ๋ฐœ์ƒํ•˜๋Š” ์ˆ˜์น˜์  ๋ถˆ์•ˆ์ •์„ฑ์œผ๋กœ ์ธํ•ด ์œ ํ•œ์ฐจ๋ถ„(FD) ๋Œ€๋น„ 90 000๋ฐฐ ๋А๋ ค์กŒ๋‹ค. ์˜ค์ฐจ ์ธก๋ฉด์—์„œ

Learning Physics
DRL-TH: Jointly Utilizing Temporal Graph Attention and Hierarchical Fusion for UGV Navigation in Crowded Environments

DRL-TH: Jointly Utilizing Temporal Graph Attention and Hierarchical Fusion for UGV Navigation in Crowded Environments

๋ณธ ๋…ผ๋ฌธ์€ ๋ณต์žกํ•œ ์ธ๊ฐ„ยท๋กœ๋ด‡ ํ˜ผ์žฌ ํ™˜๊ฒฝ์—์„œ UGV๊ฐ€ ์‹ค์‹œ๊ฐ„์œผ๋กœ ์•ˆ์ „ํ•˜๊ณ  ํšจ์œจ์ ์œผ๋กœ ์ด๋™ํ•˜๊ธฐ ์œ„ํ•ด ํ•„์š”ํ•œ ๋‘ ๊ฐ€์ง€ ํ•ต์‹ฌ ์š”์†Œ, ์ฆ‰ โ€˜์‹œ๊ฐ„์  ์—ฐ์†์„ฑโ€™๊ณผ โ€˜๋‹ค์ค‘ ์„ผ์„œ ์œตํ•ฉโ€™์„ ๋™์‹œ์— ๋งŒ์กฑ์‹œํ‚ค๋Š” ์ƒˆ๋กœ์šด DRL ๊ธฐ๋ฐ˜ ์•„ํ‚คํ…์ฒ˜๋ฅผ ์ œ์‹œํ•œ๋‹ค. ๊ธฐ์กด DRL ๊ธฐ๋ฐ˜ ๋‚ด๋น„๊ฒŒ์ด์…˜ ์—ฐ๊ตฌ๋“ค์€ ์ฃผ๋กœ ํ˜„์žฌ ์‹œ์ ์˜ RGB ์ด๋ฏธ์ง€ ํ˜น์€ LiDAR ํฌ์ธํŠธ ํด๋ผ์šฐ๋“œ์™€ ๊ฐ™์€ ๋‹จ์ผ ํ”„๋ ˆ์ž„ ๋ฐ์ดํ„ฐ๋ฅผ ์ž…๋ ฅ์œผ๋กœ ์‚ฌ์šฉํ•˜๊ณ , ์—ฌ๋Ÿฌ ๋ชจ๋‹ฌ๋ฆฌํ‹ฐ๋ฅผ ๊ฒฐํ•ฉํ•  ๋•Œ๋Š” ๋‹จ์ˆœํžˆ ๋ฒกํ„ฐ๋ฅผ ์ด์–ด ๋ถ™์ด๋Š”(concatenation) ๋ฐฉ์‹์„ ์ฑ„ํƒํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ์„ค๊ณ„๋Š” (1) ๊ณผ๊ฑฐ ํ”„๋ ˆ์ž„์—์„œ ๊ด€์ฐฐ๋œ ์›€์ง์ด๋Š” ์žฅ์• 

Computer Science Robotics
No Image

Factorized Learning for Temporally Grounded Video-Language Models

์ด ๋…ผ๋ฌธ์€ ๊ธฐ์กด ๋น„๋””์˜คโ€‘์–ธ์–ด ๋ชจ๋ธ์ด โ€œํ•œ ๋ฒˆ์— ์ „์ฒด ๋น„๋””์˜ค๋ฅผ ์š”์•ฝํ•˜๊ณ  ์งˆ๋ฌธ์— ๋‹ตํ•œ๋‹คโ€๋Š” ์ „ํ†ต์ ์ธ ํŒจ๋Ÿฌ๋‹ค์ž„์„ ํƒˆํ”ผํ•œ๋‹ค๋Š” ์ ์—์„œ ํฐ ์˜๋ฏธ๊ฐ€ ์žˆ๋‹ค. ๊ธฐ์กด ๋ฐฉ๋ฒ•๋“ค์€ ์ข…์ข… ์‹œ๊ฐ„์  ์ •๋ณด๋ฅผ ํ๋ฆฟํ•˜๊ฒŒ ์ฒ˜๋ฆฌํ•˜๊ฑฐ๋‚˜, ๊ทผ๊ฑฐ๊ฐ€ ๋˜๋Š” ์‹œ๊ฐ์  ์ฆ๊ฑฐ๋ฅผ ๋ช…์‹œ์ ์œผ๋กœ ์ œ์‹œํ•˜์ง€ ๋ชปํ•ด ํ•ด์„ ๊ฐ€๋Šฅ์„ฑ์ด ๋‚ฎ์•˜๋‹ค. ์ €์ž๋“ค์€ ์ด๋Ÿฌํ•œ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด ๋‘ ๊ฐ€์ง€ ํ•ต์‹ฌ ์•„์ด๋””์–ด๋ฅผ ์ œ์‹œํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ๋Š” generation objective์˜ factorization ์ด๋‹ค. ๋ชจ๋ธ์ด ๋จผ์ € โ€œ์–ด๋–ค ์‹œ๊ฐ„ ๊ตฌ๊ฐ„์ด ์งˆ๋ฌธ์— ๋Œ€ํ•œ ๊ทผ๊ฑฐ๊ฐ€ ๋˜๋Š”๊ฐ€โ€๋ฅผ ํŒ๋‹จํ•˜๊ณ , ๊ทธ ๊ตฌ๊ฐ„์— ํ•ด๋‹นํ•˜๋Š” evidence

Computer Science Model Learning Computer Vision
No Image

HOLOGRAPH: Active Causal Discovery via Sheaf-Theoretic Alignment of Large Language Model Priors

HOLOGRAPH ๋…ผ๋ฌธ์€ ์ธ๊ณผ ๊ตฌ์กฐ ํ•™์Šต์ด๋ผ๋Š” ์˜ค๋ž˜๋œ ๋ฌธ์ œ์— ์ตœ์‹  ์ธ๊ณต์ง€๋Šฅ ๊ธฐ์ˆ ์„ ์ˆ˜ํ•™์ ์œผ๋กœ ๊ฒฐํ•ฉํ•œ ์‹œ๋„๋ผ ํ•  ์ˆ˜ ์žˆ๋‹ค. ์ „ํ†ต์ ์ธ ์ธ๊ณผ ๋ฐœ๊ฒฌ ๋ฐฉ๋ฒ•์€ ์กฐ๊ฑด๋ถ€ ๋…๋ฆฝ์„ฑ ๊ฒ€์ •์ด๋‚˜ ๊ตฌ์กฐ์  ๋ฐฉ์ •์‹ ๋ชจ๋ธ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•˜์ง€๋งŒ, ๊ด€์ธก ๋ฐ์ดํ„ฐ๋งŒ์œผ๋กœ๋Š” ๋™์ผํ•œ ๋งˆ๋ฅด์ฝ”ํ”„ ๋“ฑ๊ฐ€ ํด๋ž˜์Šค ๋‚ด์˜ ์—ฌ๋Ÿฌ ๊ทธ๋ž˜ํ”„๋ฅผ ๊ตฌ๋ถ„ํ•˜๊ธฐ ์–ด๋ ต๋‹ค. ์ด ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด ์—ฐ๊ตฌ์ž๋“ค์€ ์™ธ๋ถ€ ์ง€์‹, ํŠนํžˆ ์ธ๊ฐ„์ด ๋งŒ๋“  ์ง€์‹ ๊ทธ๋ž˜ํ”„๋‚˜ ๋„๋ฉ”์ธ ์ „๋ฌธ๊ฐ€์˜ ์˜๊ฒฌ์„ ์‚ฌ์ „ํ™•๋ฅ ๋กœ ๋„์ž…ํ•ด ์™”๋‹ค. ์ตœ๊ทผ์—๋Š” LLM์ด ๋ฐฉ๋Œ€ํ•œ ํ…์ŠคํŠธ ์ฝ”ํผ์Šค๋ฅผ ํ•™์Šตํ•จ์œผ๋กœ์จ โ€œ์ธ๊ณผ์  ์ง๊ด€โ€์„ ๋‚ดํฌํ•˜๊ณ  ์žˆ๋‹ค๋Š” ์ ์— ์ฃผ๋ชฉํ•ด, LLM์„

Machine Learning Computer Science Model
iCLP: Large Language Model Reasoning with Implicit Cognition Latent Planning

iCLP: Large Language Model Reasoning with Implicit Cognition Latent Planning

iCLP๋Š” ๊ธฐ์กด โ€œ์ฒด์ธโ€‘์˜ค๋ธŒโ€‘์ƒ๊ฐโ€(CoT) ์ ‘๊ทผ๋ฒ•์˜ ๋‘ ๊ฐ€์ง€ ํ•œ๊ณ„๋ฅผ ๋™์‹œ์— ํ•ด๊ฒฐํ•˜๋ ค๋Š” ์‹œ๋„์ด๋‹ค. ์ฒซ ๋ฒˆ์งธ๋Š” ์ธ๊ฐ„์ด ๋ฌธ์ œ๋ฅผ ํ’€ ๋•Œ ํ…์ŠคํŠธ๋กœ ๋ช…์‹œ์ ์ธ ๊ณ„ํš์„ ์„ธ์šฐ์ง€ ์•Š๋”๋ผ๋„, ๊ณผ๊ฑฐ ๊ฒฝํ—˜์—์„œ ์ถ”์ถœ๋œ ์••์ถ•๋œ ํŒจํ„ด์„ ๋ฌด์˜์‹์ ์œผ๋กœ ํ™œ์šฉํ•œ๋‹ค๋Š” ์ ์ด๋‹ค. ์ด๋Ÿฌํ•œ ์•”๋ฌต์  ์ธ์ง€๋Š” LLM์ด ์ง์ ‘ ํ…์ŠคํŠธ ๊ณ„ํš์„ ์ƒ์„ฑํ•  ๋•Œ ๋ฐœ์ƒํ•˜๋Š” โ€œํ™˜๊ฐโ€(hallucination) ๋ฌธ์ œ๋ฅผ ํšŒํ”ผํ•  ์ˆ˜ ์žˆ๋Š” ๊ฐ€๋Šฅ์„ฑ์„ ์ œ๊ณตํ•œ๋‹ค. ๋‘ ๋ฒˆ์งธ๋Š” ๋‹ค์–‘ํ•œ ๋„๋ฉ”์ธ๊ณผ ์งˆ๋ฌธ ํ˜•ํƒœ์— ๋Œ€ํ•ด ์ผ๊ด€๋œ ํ…์ŠคํŠธ ๊ณ„ํš์„ ์„ค๊ณ„ํ•˜๋Š” ๊ฒƒ์ด ๋น„ํ˜„์‹ค์ ์ด๋ผ๋Š” ์ ์ด๋‹ค. iCLP๋Š” ๋ช…์‹œ์  ๊ณ„ํš์„ ๋จผ์ € ์ˆ˜์ง‘ํ•˜๊ณ , ์ด

Computer Science NLP Model
No Image

Improving Multi-step RAG with Hypergraph-based Memory for Long-Context Complex Relational Modeling

๋ณธ ๋…ผ๋ฌธ์€ ๋‹ค๋‹จ๊ณ„ RAG ์‹œ์Šคํ…œ์—์„œ ๋ฉ”๋ชจ๋ฆฌ์˜ ์—ญํ• ์„ ๊ทผ๋ณธ์ ์œผ๋กœ ์žฌ์ •์˜ํ•œ๋‹ค๋Š” ์ ์—์„œ ํ•™์ˆ ์ ยท์‹ค์šฉ์  ์˜์˜๊ฐ€ ํฌ๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค์€ ๋ฉ”๋ชจ๋ฆฌ๋ฅผ โ€œ์ˆ˜๋™์  ์ €์žฅ์†Œโ€๋กœ ๊ฐ„์ฃผํ•˜๊ณ , ๊ฒ€์ƒ‰๋œ ํ…์ŠคํŠธ ์กฐ๊ฐ๋“ค์„ ๋‹จ์ˆœํžˆ ์••์ถ•ํ•˜๊ฑฐ๋‚˜ ์ˆœ์ฐจ์ ์œผ๋กœ ์—ฐ๊ฒฐํ•˜๋Š” ๋ฐฉ์‹์— ๋จธ๋ฌผ๋ €๋‹ค. ์ด๋Ÿฌํ•œ ์ ‘๊ทผ์€ ๊ฐœ๋ณ„ ์‚ฌ์‹ค์„ ๋‚˜์—ดํ•˜๋Š” ์ˆ˜์ค€์— ๊ทธ์น˜๋ฉฐ, ์‚ฌ์‹ค ๊ฐ„์˜ ๋ณตํ•ฉ์  ๊ด€๊ณ„โ€”์˜ˆ๋ฅผ ๋“ค์–ด, ์ธ๊ณผ๊ด€๊ณ„, ๊ณตํ†ต ์›์ธ, ์ƒํ˜ธ ๋ณด์™„์  ์ฆ๊ฑฐ ๋“ฑโ€”๋ฅผ ํฌ์ฐฉํ•˜์ง€ ๋ชปํ•œ๋‹ค. ๊ฒฐ๊ณผ์ ์œผ๋กœ ์žฅ๊ธฐ ๋ฌธ๋งฅ์—์„œ ์—ฌ๋Ÿฌ ๋‹จ๊ณ„์— ๊ฑธ์นœ ์ถ”๋ก ์ด ๋‹จ์ ˆ๋˜๊ณ , ์ „์—ญ์  ์˜๋ฏธ๋ง์„ ํ˜•์„ฑํ•˜๋Š” ๋ฐ ํ•œ๊ณ„๊ฐ€ ๋ฐœ์ƒํ•œ๋‹ค. HGMEM์€ ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜

Computer Science NLP Model
OptRot: Mitigating Weight Outliers via Data-Free Rotations for Post-Training Quantization

OptRot: Mitigating Weight Outliers via Data-Free Rotations for Post-Training Quantization

๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(LLM)์€ ์ˆ˜์–ต์—์„œ ์ˆ˜์กฐ ๊ฐœ์˜ ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ๋ณด์œ ํ•˜๊ณ  ์žˆ์–ด, ์‹ค์ œ ์„œ๋น„์Šค ํ™˜๊ฒฝ์—์„œ ๋ฉ”๋ชจ๋ฆฌ์™€ ์—ฐ์‚ฐ ๋น„์šฉ์„ ํฌ๊ฒŒ ์ ˆ๊ฐํ•˜๊ธฐ ์œ„ํ•ด ์‚ฌํ›„ ์–‘์žํ™”(postโ€‘training quantization, PTQ)๊ฐ€ ํ•„์ˆ˜์ ์ด๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ LLM์˜ ๊ฐ€์ค‘์น˜์™€ ํ™œ์„ฑ๊ฐ’์—๋Š” โ€œ์ด์ƒ์น˜(outlier)โ€๋ผ ๋ถˆ๋ฆฌ๋Š” ๊ทน๋‹จ์ ์ธ ๊ฐ’๋“ค์ด ์กด์žฌํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ์ด์ƒ์น˜๋Š” ์–‘์žํ™” ๋‹จ๊ณ„์—์„œ ์Šค์ผ€์ผ๋ง์„ ํฌ๊ฒŒ ์žก์•„์•ผ ํ•˜๋ฏ€๋กœ, ์ „์ฒด ๋ถ„ํฌ๊ฐ€ ๊ณผ๋„ํ•˜๊ฒŒ ์••์ถ•๋˜๊ณ  ๊ฒฐ๊ณผ์ ์œผ๋กœ ์ •๋ฐ€๋„๊ฐ€ ํฌ๊ฒŒ ๋–จ์–ด์ง„๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋Š” ์ด ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ํšŒ์ „(rotation) ๊ธฐ๋ฒ•์„ ๋„์ž…ํ–ˆ๋Š”๋ฐ, ํšŒ์ „์€

Computer Science Data Machine Learning
No Image

Pathology Context Recalibration Network for Ocular Disease Recognition

๋ณธ ๋…ผ๋ฌธ์€ ์•ˆ๊ณผ ์˜์ƒ ์ง„๋‹จ ๋ถ„์•ผ์—์„œ โ€˜๋ณ‘๋ฆฌํ•™์  ๋งฅ๋ฝโ€™๊ณผ โ€˜์ „๋ฌธ๊ฐ€ ๊ฒฝํ—˜โ€™์ด๋ผ๋Š” ๋‘ ๊ฐ€์ง€ ์ธ๊ฐ„ ์ค‘์‹ฌ์˜ ์‚ฌ์ „ ์ •๋ณด๋ฅผ ๋”ฅ๋Ÿฌ๋‹ ๋ชจ๋ธ์— ์ฒด๊ณ„์ ์œผ๋กœ ํ†ตํ•ฉํ•˜๋ ค๋Š” ์‹œ๋„๋ฅผ ์ œ์‹œํ•œ๋‹ค. ๋จผ์ € ์ œ์•ˆ๋œ Pathology Recalibration Module(PRM)์€ ๋‘ ๋‹จ๊ณ„๋กœ ๊ตฌ์„ฑ๋œ๋‹ค. ์ฒซ ๋ฒˆ์งธ ๋‹จ๊ณ„์ธ ํ”ฝ์…€โ€‘๋‹จ์œ„ ๋งฅ๋ฝ ์••์ถ• ์—ฐ์‚ฐ์ž๋Š” ๊ณ ํ•ด์ƒ๋„ ์•ˆ๊ตฌ ์ด๋ฏธ์ง€์—์„œ ์ง€์—ญ์  ํŠน์ง•์„ ์ €์ฐจ์› ํ‘œํ˜„์œผ๋กœ ์••์ถ•ํ•จ์œผ๋กœ์จ ์—ฐ์‚ฐ ํšจ์œจ์„ฑ์„ ๋†’์ด๊ณ , ๋™์‹œ์— ๋ณ‘๋ณ€์ด ๋‚˜ํƒ€๋‚˜๋Š” ์˜์—ญ์˜ ์ „๋ฐ˜์ ์ธ ๊ตฌ์กฐ์  ์ •๋ณด๋ฅผ ๋ณด์กดํ•œ๋‹ค. ๋‘ ๋ฒˆ์งธ ๋‹จ๊ณ„์ธ ๋ณ‘๋ฆฌํ•™์  ๋ถ„ํฌ ์ง‘์ค‘ ์—ฐ์‚ฐ์ž๋Š” ์••์ถ•๋œ ํŠน์ง• ๋งต์„ ๊ธฐ๋ฐ˜์œผ๋กœ

Computer Vision Computer Science Network
No Image

Tubular Riemannian Laplace Approximations for Bayesian Neural Networks

๋ณธ ์—ฐ๊ตฌ๋Š” ๋ฒ ์ด์ง€์•ˆ ์‹ ๊ฒฝ๋ง(BNN)์—์„œ ๋ผํ”Œ๋ผ์Šค ๊ทผ์‚ฌ์˜ ํ•œ๊ณ„๋ฅผ ์ •ํ™•ํžˆ ์งš์–ด๋‚ธ ๋’ค, ๋ฆฌ๋งŒ ๊ธฐํ•˜ํ•™์„ ๋„์ž…ํ•ด ์ด๋ฅผ ๊ทน๋ณตํ•˜๋ ค๋Š” ์‹œ๋„๋ฅผ ๋ณด์—ฌ์ค€๋‹ค. ์ „ํ†ต์ ์ธ ๋ผํ”Œ๋ผ์Šค ๊ทผ์‚ฌ๋Š” MAP(์ตœ๋Œ€ ์‚ฌํ›„ ํ™•๋ฅ ) ์ถ”์ •์  ์ฃผ๋ณ€์„ ์œ ํด๋ฆฌ๋“œ ๊ฑฐ๋ฆฌ ๊ธฐ๋ฐ˜์˜ ๋‹ค๋ณ€๋Ÿ‰ ์ •๊ทœ๋ถ„ํฌ๋กœ ๊ทผ์‚ฌํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๋”ฅ๋Ÿฌ๋‹ ๋ชจ๋ธ์€ ์ˆ˜๋ฐฑ๋งŒ ์ฐจ์›์˜ ํŒŒ๋ผ๋ฏธํ„ฐ ๊ณต๊ฐ„์— ๋ณต์žกํ•œ ๋น„์„ ํ˜• ๊ตฌ์กฐ์™€ ๋‹ค์ค‘ ๋Œ€์นญ(์˜ˆ: ๋ ˆ์ด์–ด ์ˆœ์—ด, ์Šค์ผ€์ผ ๋ณ€ํ™˜ ๋“ฑ)๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ์–ด, ์†์‹ค ํ‘œ๋ฉด์€ ๊ทน๋„๋กœ ์–‡๊ณ  ๊ธด ๊ณจ์งœ๊ธฐ ํ˜•ํƒœ๋ฅผ ๋ค๋‹ค. ์ด๋Ÿฐ ์ƒํ™ฉ์—์„œ ์œ ํด๋ฆฌ๋“œ ๋ฉ”ํŠธ๋ฆญ์€ ์‹ค์ œ ๊ณก๋ฅ ์„ ๋ฌด์‹œํ•˜๊ณ , ๊ฒฐ๊ณผ์ ์œผ๋กœ ๊ณผ๋„ํ•˜๊ฒŒ ์ถ•์†Œ๋œ ํ˜น์€ ๊ณผ๋„ํ•˜๊ฒŒ

Computer Science Network Machine Learning
Unified Embodied VLM Reasoning with Robotic Action via Autoregressive Discretized Pre-training

Unified Embodied VLM Reasoning with Robotic Action via Autoregressive Discretized Pre-training

์ด ๋…ผ๋ฌธ์€ ๋กœ๋ด‡ ์กฐ์ž‘ ์‹œ์Šคํ…œ์ด ์ง๋ฉดํ•œ ๋‘ ๊ฐ€์ง€ ํ•ต์‹ฌ ๊ณผ์ œ, ์ฆ‰ โ€œ๋„“์€ ์˜๋ฏธ์  ์ผ๋ฐ˜ํ™”โ€์™€ โ€œ๊ณ ์ •๋ฐ€ ์—ฐ์† ์ œ์–ดโ€ ์‚ฌ์ด์˜ ๊ท ํ˜•์„ ์ •๋ฐ€ํ•˜๊ฒŒ ์ง„๋‹จํ•˜๊ณ  ํ•ด๊ฒฐ์ฑ…์„ ์ œ์‹œํ•œ๋‹ค๋Š” ์ ์—์„œ ํฐ ์˜๋ฏธ๊ฐ€ ์žˆ๋‹ค. ๋จผ์ € ERIQ(Embodied Reasoning Intelligence Quotient)๋ผ๋Š” ์ƒˆ๋กœ์šด ๋ฒค์น˜๋งˆํฌ๋ฅผ ๋„์ž…ํ–ˆ๋Š”๋ฐ, ์ด๋Š” ๊ธฐ์กด VLA ๋ชจ๋ธ ํ‰๊ฐ€๊ฐ€ โ€œ์ž…๋ ฅโ€‘์ถœ๋ ฅโ€ ํ˜•ํƒœ์˜ ์„ฑ๊ณต๋ฅ ์—๋งŒ ์ดˆ์ ์„ ๋งž์ถ”๋Š” ๋ฐ˜๋ฉด, ์งˆ๋ฌธโ€‘๋‹ต๋ณ€ ํ˜•ํƒœ์˜ 6์ฒœ ๊ฐœ ์ด์ƒ ๋ฐ์ดํ„ฐ์…‹์„ ํ†ตํ•ด โ€˜์ถ”๋ก  ๋‹จ๊ณ„โ€™๋ฅผ ๋ณ„๋„๋กœ ์ธก์ •ํ•œ๋‹ค๋Š” ์ ์ด ์ฐจ๋ณ„์ ์ด๋‹ค. ๋„ค ๊ฐ€์ง€ ์ถ”๋ก  ์ฐจ์›(์˜ˆ: ๋ฌผ์ฒด ๊ด€๊ณ„ ์ดํ•ด,

Computer Science Robotics
From Clay to Code: Typological and Material Reasoning in AI Interpretations of Iranian Pigeon Towers

From Clay to Code: Typological and Material Reasoning in AI Interpretations of Iranian Pigeon Towers

์ด ๋…ผ๋ฌธ์€ ์ƒ์„ฑ AI ์‹œ์Šคํ…œ์ด ๊ฑด์ถ•๋ฌผ์˜ ์ „ํ†ต์ ์ธ ๋””์ž์ธ ์š”์†Œ์™€ ๊ทธ ์˜๋ฏธ๋ฅผ ์–ด๋–ป๊ฒŒ ํ•ด์„ํ•˜๊ณ  ์žฌํ˜„ํ•˜๋Š”์ง€์— ๋Œ€ํ•œ ๊นŠ์ด ์žˆ๋Š” ๋ถ„์„์„ ์ œ๊ณตํ•œ๋‹ค. ํŠนํžˆ ์ด๋ž€์˜ ๋น„๋‘˜๊ธฐ ํƒ‘์ด๋ผ๋Š” ํŠน์ • ์‚ฌ๋ก€๋ฅผ ํ†ตํ•ด ์„ธ ๊ฐ€์ง€ ์ฃผ์š” AI ๋ชจ๋ธ, ์ฆ‰ Midjourney v6, DALLโ€ขE 3, ๊ทธ๋ฆฌ๊ณ  Stable Diffusion XL (SDXL) ๊ธฐ๋ฐ˜์˜ DreamStudio๋ฅผ ํ‰๊ฐ€ํ•˜๊ณ  ์žˆ๋‹ค. ์—ฐ๊ตฌ๋Š” ์ฐธ์กฐ์  ๋‹จ๊ณ„์—์„œ ์ด๋ฏธ์ง€๋ฅผ ์ง์ ‘์ ์œผ๋กœ ์žฌํ˜„ํ•˜๋Š” ๋Šฅ๋ ฅ๋ถ€ํ„ฐ ์‹œ์ž‘ํ•˜์—ฌ, ์ ์‘์  ๋‹จ๊ณ„์—์„œ๋Š” ์ฃผ์–ด์ง„ ์ •๋ณด์— ๋”ฐ๋ผ ๊ฑด์ถ•๋ฌผ์˜ ํŠน์„ฑ์„ ์–ด๋–ป๊ฒŒ ๋ณ€ํ˜•์‹œํ‚ค๋Š”์ง€๊นŒ์ง€ ์‚ดํŽด๋ณธ๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ ์ถ”์ธก์ 

Fuzzy-Logic and Deep Learning for Environmental Condition-Aware Road Surface Classification

Fuzzy-Logic and Deep Learning for Environmental Condition-Aware Road Surface Classification

๋ณธ ์—ฐ๊ตฌ๋Š” ์‹ค์‹œ๊ฐ„ ๋„๋กœ ์ƒํƒœ ๋ชจ๋‹ˆํ„ฐ๋ง ์‹œ์Šคํ…œ์˜ ๊ฐœ๋ฐœ์„ ๋ชฉํ‘œ๋กœ ํ•˜๋ฉฐ, ์ด๋ฅผ ํ†ตํ•ด ์ฐจ๋Ÿ‰ ๊ด€๋ฆฌ ๋ฐ ํ™œ์„ฑ ์ฐจ๋Ÿ‰ ์ œ์–ด ์‹œ์Šคํ…œ์— ํ•„์š”ํ•œ ์ •๋ณด๋ฅผ ์ œ๊ณตํ•˜๊ณ ์ž ํ•ฉ๋‹ˆ๋‹ค. ์ „ํ†ต์ ์ธ ๋ฐฉ๋ฒ•๋“ค์ด ๋น„์šฉ๊ณผ ์‹œ๊ฐ„์ด ๋งŽ์ด ์†Œ์š”๋˜๋Š” ๋ฐ˜๋ฉด, ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋‚ ์”จ ์กฐ๊ฑด ๋ฐ์ดํ„ฐ์™€ ๋„๋กœ ํ‘œ๋ฉด ์ƒํƒœ ๋ฐ์ดํ„ฐ๋ฅผ ํ™œ์šฉํ•œ ์ƒˆ๋กœ์šด ์ ‘๊ทผ๋ฒ•์„ ์ œ์‹œํ•ฉ๋‹ˆ๋‹ค. ํŠนํžˆ, ์นผ์Šค๋ฃจ์— ๊ณต๊ณผ๋Œ€ํ•™๊ต ์ฃผ๋ณ€ ๋„๋กœ์—์„œ ๋ชจ๋ฐ”์ผ ํฐ ์นด๋ฉ”๋ผ๋ฅผ ์ด์šฉํ•ด ์ˆ˜์ง‘๋œ ์ด๋ฏธ์ง€ ๋ฐ์ดํ„ฐ์™€ ๊ฐ€์†๋„ ๋ฐ์ดํ„ฐ๋ฅผ ํ†ตํ•ด ๋‹ค์–‘ํ•œ ๋”ฅ๋Ÿฌ๋‹ ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ์„ฑ๋Šฅ์„ ๋น„๊ตํ•˜์˜€์Šต๋‹ˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” Alexnet, LeNet, VGG ๋ฐ Resnet ๋“ฑ ๋„ค ๊ฐ€

Learning
PathFound: An Agentic Multimodal Model Activating Evidence-seeking Pathological Diagnosis

PathFound: An Agentic Multimodal Model Activating Evidence-seeking Pathological Diagnosis

PathFound ๋…ผ๋ฌธ์€ ๊ธฐ์กด ๋ณ‘๋ฆฌํ•™ ์ธ๊ณต์ง€๋Šฅ ๋ชจ๋ธ์ด ๊ฐ–๋Š” โ€˜ํ•œ ๋ฒˆ์— ์ „์ฒด ์Šฌ๋ผ์ด๋“œ ์ฒ˜๋ฆฌโ€™๋ผ๋Š” ํ•œ๊ณ„๋ฅผ ๋ช…ํ™•ํžˆ ์ง€์ ํ•˜๊ณ , ์‹ค์ œ ๋ณ‘๋ฆฌํ•™์ž์˜ ์ง„๋‹จ ๊ณผ์ •๊ณผ ์œ ์‚ฌํ•œ ์ฆ๊ฑฐโ€‘์ค‘์‹ฌ์  ์ˆœํ™˜ ํ”„๋กœ์„ธ์Šค ๋ฅผ ๋„์ž…ํ•จ์œผ๋กœ์จ ์ƒˆ๋กœ์šด ์—ฐ๊ตฌ ๋ฐฉํ–ฅ์„ ์ œ์‹œํ•œ๋‹ค. ๋จผ์ €, ๋ชจ๋ธ ์•„ํ‚คํ…์ฒ˜๋Š” ์„ธ ๊ฐ€์ง€ ํ•ต์‹ฌ ๋ชจ๋“ˆ๋กœ ๊ตฌ์„ฑ๋œ๋‹ค. โ‘  ์‹œ๊ฐ ๊ธฐ๋ฐ˜ ํŒŒ์šด๋ฐ์ด์…˜ ๋ชจ๋ธ ์€ ๋Œ€์šฉ๋Ÿ‰ ๋””์ง€ํ„ธ ์Šฌ๋ผ์ด๋“œ์—์„œ ๊ณ ํ•ด์ƒ๋„ ํŠน์ง•์„ ์ถ”์ถœํ•˜๊ณ , โ‘ก ๋น„์ „โ€‘์–ธ์–ด ๋ชจ๋ธ(VLM) ์€ ์ด๋ฏธ์ง€ ํŠน์ง•์„ ํ…์ŠคํŠธ ํ˜•ํƒœ์˜ ์ž„์ƒ ์งˆ๋ฌธ์ด๋‚˜ ์„ค๋ช…๊ณผ ์—ฐ๊ฒฐํ•œ๋‹ค. โ‘ข ๊ฐ•ํ™”ํ•™์Šต(RL) ๊ธฐ๋ฐ˜ ์ถ”๋ก  ์—์ด์ „ํŠธ ๋Š” ํ˜„์žฌ ์ง„๋‹จ ๊ฐ€์„ค์„ ํ‰๊ฐ€ํ•˜๊ณ ,

Computer Science Model Computer Vision

< Category Statistics (Total: 793) >

Electrical Engineering and Systems Science
7
General
272
General Relativity
9
HEP-EX
7
HEP-PH
12
HEP-TH
7
MATH-PH
4
NUCL-TH
1
Quantum Physics
11

Start searching

Enter keywords to search articles

โ†‘โ†“
โ†ต
ESC
โŒ˜K Shortcut