Posts

Here are all published articles, sorted by date in descending order.

767 posts total
16 pages total
DARC: Drum accompaniment generation with fine-grained rhythm control

DARC: Drum accompaniment generation with fine-grained rhythm control

DARC๋Š” ํ˜„์žฌ ์Œ์•… ์ƒ์„ฑ ์—ฐ๊ตฌ์—์„œ ๋‘๋“œ๋Ÿฌ์ง„ ๋ฌธ์ œ์ , ์ฆ‰ โ€˜๊ตฌ์กฐ์  ์ œ์–ด์™€ ์Šคํƒ€์ผ์  ์ž์œ  ์‚ฌ์ด์˜ ํŠธ๋ ˆ์ด๋“œ์˜คํ”„โ€™๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ํ•ด์†Œํ•œ๋‹ค๋Š” ์ ์—์„œ ์˜๋ฏธ๊ฐ€ ํฌ๋‹ค. ๊ธฐ์กด ์Šคํ…œโ€‘ํˆฌโ€‘์Šคํ…œ ์ ‘๊ทผ๋ฒ•์€ ์•…๊ธฐ ๊ฐ„ ์ƒํ˜ธ์ž‘์šฉ์„ ๋ฐ˜์˜ํ•ด ์กฐํ™”๋กœ์šด ๋ฐ˜์ฃผ๋ฅผ ๋งŒ๋“ค ์ˆ˜ ์žˆ์ง€๋งŒ, ๋ฆฌ๋“ฌ ํŒจํ„ด์„ ์‚ฌ์šฉ์ž๊ฐ€ ์ง์ ‘ ์ง€์ •ํ•˜๊ฑฐ๋‚˜ ๋ฏธ์„ธ ์กฐ์ •ํ•˜๊ธฐ๋Š” ์–ด๋ ค์› ๋‹ค. ๋ฐ˜๋Œ€๋กœ timbreโ€‘transfer ๊ธฐ๋ฐ˜ ๋ชจ๋ธ์€ ์‚ฌ์šฉ์ž๊ฐ€ ์ง์ ‘ ๋งŒ๋“  ๋น„ํŠธ๋ฐ•์‹ฑยทํƒญํ•‘ ๊ฐ™์€ ๋ฆฌ๋“ฌ ์‹œํ€€์Šค๋ฅผ ์ž…๋ ฅ์œผ๋กœ ๋ฐ›์•„๋“ค์ผ ์ˆ˜ ์žˆ์ง€๋งŒ, ๊ทธ ๋ฆฌ๋“ฌ์ด ํ˜„์žฌ ์ง„ํ–‰ ์ค‘์ธ ํ™”์„ฑยท๋ฉœ๋กœ๋””์™€ ์–ผ๋งˆ๋‚˜ ์ž˜ ๋งž๋Š”์ง€๋Š” ๋ณด์žฅ๋˜์ง€ ์•Š๋Š”๋‹ค. DARC๋Š” ์ด ๋‘

Computer Science Sound
Jenius Agent: Towards Experience-Driven Accuracy Optimization in Real-World Scenarios

Jenius Agent: Towards Experience-Driven Accuracy Optimization in Real-World Scenarios

Jeniusโ€‘Agent ๋…ผ๋ฌธ์€ ์ตœ๊ทผ LLMโ€‘๊ธฐ๋ฐ˜ ์—์ด์ „ํŠธ๊ฐ€ ์ง๋ฉดํ•œ ๋‘ ๊ฐ€์ง€ ๊ทผ๋ณธ์ ์ธ ํ•œ๊ณ„๋ฅผ ๋ช…ํ™•ํžˆ ์งš๊ณ  ์žˆ๋‹ค. ์ฒซ ๋ฒˆ์งธ๋Š” โ€œ์‹คํ–‰ ๊ฐ€์‹œ์„ฑ ๋ถ€์กฑโ€์ด๋‹ค. ๊ธฐ์กด ๋ฒค์น˜๋งˆํฌ๋Š” ์ตœ์ข… ์ถœ๋ ฅ๋งŒ์„ ํ‰๊ฐ€ ์ง€ํ‘œ๋กœ ์‚ผ์•„, ์—์ด์ „ํŠธ๊ฐ€ ๋‚ด๋ถ€์ ์œผ๋กœ ์–ด๋–ค ํ”„๋กฌํ”„ํŠธ๋ฅผ ์ƒ์„ฑํ•˜๊ณ , ์–ด๋–ค ๋„๊ตฌ๋ฅผ ์–ธ์ œ ํ˜ธ์ถœํ–ˆ๋Š”์ง€, ์ƒํƒœ๋ฅผ ์–ด๋–ป๊ฒŒ ์—…๋ฐ์ดํŠธํ–ˆ๋Š”์ง€๋ฅผ ํŒŒ์•…ํ•  ๋ฐฉ๋ฒ•์„ ์ œ๊ณตํ•˜์ง€ ์•Š๋Š”๋‹ค. ์ด๋กœ ์ธํ•ด ๊ฐœ๋ฐœ์ž๋Š” ์˜ค๋ฅ˜ ์›์ธ์„ ์ถ”์ ํ•˜๊ธฐ ์œ„ํ•ด ๋กœ๊ทธ๋ฅผ ์ผ์ผ์ด ์ˆ˜์ž‘์—…์œผ๋กœ ๋ถ„์„ํ•ด์•ผ ํ•˜๋ฉฐ, ์žฌํ˜„์„ฑ๋„ ๋–จ์–ด์ง„๋‹ค. ๋‘ ๋ฒˆ์งธ๋Š” โ€œ์žฅ๊ธฐยท๋„๊ตฌโ€‘๋ณด๊ฐ• ์ž‘์—…์—์„œ์˜ ๋ถˆ์•ˆ์ •์„ฑโ€์ด๋‹ค. LLM์€ ์งง์€ ์ปจํ…์ŠคํŠธ์—์„œ๋Š” ๋›ฐ์–ด๋‚œ

Computer Science Artificial Intelligence
The Machine Learning Canvas: Empirical Findings on Why Strategy Matters More Than AI Code Generation

The Machine Learning Canvas: Empirical Findings on Why Strategy Matters More Than AI Code Generation

๋ณธ ๋…ผ๋ฌธ์€ ํ˜„์žฌ AI ๊ธฐ๋ฐ˜ ์ฝ”๋”ฉ ์–ด์‹œ์Šคํ„ดํŠธ๊ฐ€ ๊ฐœ๋ฐœ ํ˜„์žฅ์—์„œ ๋„๋ฆฌ ํ™œ์šฉ๋˜๋Š” ์ƒํ™ฉ์—์„œ, ์™œ ์—ฌ์ „ํžˆ ML ํ”„๋กœ์ ํŠธ์˜ ์„ฑ๊ณต๋ฅ ์ด ๋‚ฎ์€์ง€๋ฅผ ์ฒด๊ณ„์ ์œผ๋กœ ํƒ๊ตฌํ•œ๋‹ค. ์—ฐ๊ตฌ์ž๋Š” ๋จผ์ € ๊ธฐ์กด ๋ฌธํ—Œ์„ ๊ฒ€ํ† ํ•˜์—ฌ ์„ฑ๊ณต ์š”์ธ์„ ์ „๋žต, ํ”„๋กœ์„ธ์Šค, ์ƒํƒœ๊ณ„, ์ง€์› ๋„ค ๊ฐ€์ง€ ์ฐจ์›์œผ๋กœ ๊ตฌ๋ถ„ํ•˜๊ณ , ์ด๋ฅผ ์‹œ๊ฐํ™”ํ•œ โ€˜๋จธ์‹ ๋Ÿฌ๋‹ ์บ”๋ฒ„์Šคโ€™๋ฅผ ์ œ์•ˆํ•œ๋‹ค. ์„ค๋ฌธ ์„ค๊ณ„๋Š” ๊ฐ ์ฐจ์›์„ ์ •๋Ÿ‰ํ™”ํ•  ์ˆ˜ ์žˆ๋Š” ํ•ญ๋ชฉ๋“ค์„ ํฌํ•จํ–ˆ์œผ๋ฉฐ, 150๋ช…์˜ ๋ฐ์ดํ„ฐ ๊ณผํ•™์ž๋ฅผ ๋Œ€์ƒ์œผ๋กœ 6๊ฐœ์›”์— ๊ฑธ์ณ ๋ฐ์ดํ„ฐ๋ฅผ ์ˆ˜์ง‘ํ•˜์˜€๋‹ค. ํ†ต๊ณ„ ๋ถ„์„์—๋Š” ๊ตฌ์กฐ๋ฐฉ์ •์‹ ๋ชจ๋ธ๋ง(SEM)์„ ํ™œ์šฉํ•ด ์š”์ธ ๊ฐ„ ์ธ๊ณผ๊ด€๊ณ„๋ฅผ ๊ฒ€์ฆํ–ˆ์œผ๋ฉฐ, ฮฒ๊ฐ’๊ณผ p๊ฐ’์„

Learning
No Image

Yukthi Opus: A Multi-Chain Hybrid Metaheuristic for Large-Scale NP-Hard Optimization

Yukthi Opus(YO)๋Š” ๋ฉ”ํƒ€ํœด๋ฆฌ์Šคํ‹ฑ ์„ค๊ณ„์—์„œ ํ”ํžˆ ๋ฐœ์ƒํ•˜๋Š” โ€˜์ „์—ญ ํƒ์ƒ‰๊ณผ ์ง€์—ญ ํƒ์ƒ‰์˜ ๊ท ํ˜•โ€™ ๋ฌธ์ œ๋ฅผ ์„ธ ๋‹จ๊ณ„ ๊ตฌ์กฐ๋กœ ๋ช…ํ™•ํžˆ ๊ตฌ๋ถ„ํ•จ์œผ๋กœ์จ ํ•ด๊ฒฐ์ฑ…์„ ์ œ์‹œํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ ๋ ˆ์ด์–ด์ธ MCMC ๊ธฐ๋ฐ˜ ์ „์—ญ ํƒ์ƒ‰์€ ํ™•๋ฅ ์  ์ „์ด ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ์ด์šฉํ•ด ํƒ์ƒ‰ ๊ณต๊ฐ„์„ ๊ท ๋“ฑํ•˜๊ฒŒ ์ƒ˜ํ”Œ๋งํ•˜๊ณ , ์ดˆ๊ธฐ ๋ฒˆ์ธ ๋‹จ๊ณ„์—์„œ ์ถฉ๋ถ„ํžˆ ๋‹ค์–‘ํ•œ ์˜์—ญ์„ ๋ฐฉ๋ฌธํ•˜๋„๋ก ์„ค๊ณ„๋˜์—ˆ๋‹ค. ์ด๋•Œ ๋ธ”๋ž™๋ฆฌ์ŠคํŠธ๋ฅผ ๋„์ž…ํ•ด ์ด๋ฏธ ๋‚ฎ์€ ํ’ˆ์งˆ์„ ๋ณด์ธ ์ง€์—ญ์„ ์žฌ๋ฐฉ๋ฌธํ•˜์ง€ ์•Š๊ฒŒ ํ•จ์œผ๋กœ์จ ๋ถˆํ•„์š”ํ•œ ๊ณ„์‚ฐ์„ ํฌ๊ฒŒ ์ ˆ๊ฐํ•œ๋‹ค๋Š” ์ ์ด ๋ˆˆ์— ๋ˆ๋‹ค. ๋‘ ๋ฒˆ์งธ ๋ ˆ์ด์–ด๋Š” ์ „ํ†ต์ ์ธ ํƒ์š•์  ๋กœ์ปฌ ์„œ์น˜๋ฅผ ์ ์šฉํ•ด ํ˜„์žฌ ์œ„์น˜์—์„œ ๊ฐ€

Neural Computing Computer Science
No Image

A construction of an optimal base for conditional attribute and attributional condition implications in triadic contexts

์‚ผ์ค‘ ์ปจํ…์ŠคํŠธ๋Š” ์ „ํ†ต์ ์ธ ์ดํ•ญ ๊ด€๊ณ„๋ฅผ ๋„˜์–ด ๊ฐ์ฒดโ€‘์†์„ฑโ€‘์กฐ๊ฑด์ด๋ผ๋Š” ์„ธ ์ฐจ์›์„ ๋™์‹œ์— ๊ณ ๋ คํ•˜๋Š” ๋ฐ์ดํ„ฐ ๋ชจ๋ธ๋กœ, ์ง€์‹ ๋ฐœ๊ฒฌ ๋ฐ ์˜๋ฏธ๋ก ์  ๋ถ„์„์— ์žˆ์–ด ๊ฐ•๋ ฅํ•œ ํ‘œํ˜„๋ ฅ์„ ์ œ๊ณตํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ด๋Ÿฌํ•œ ๋‹ค์ฐจ์› ๊ตฌ์กฐ์—์„œ๋Š” ๊ธฐ์กด์˜ ์ดํ•ญ ์ปจํ…์ŠคํŠธ์—์„œ ์‚ฌ์šฉ๋˜๋Š” ํ•จ์ถ•(implication) ๊ธฐ๋ฐ˜ ์ถ”๋ก  ๊ธฐ๋ฒ•์„ ๊ทธ๋Œ€๋กœ ์ ์šฉํ•˜๊ธฐ ์–ด๋ ต๋‹ค. ํŠนํžˆ ์กฐ๊ฑด ์†์„ฑ(conditional attribute)๊ณผ ๊ท€์† ์กฐ๊ฑด(attributional condition)์ด๋ผ๋Š” ๋‘ ์ข…๋ฅ˜์˜ ํ•จ์ถ•์ด ๋™์‹œ์— ์กด์žฌํ•  ๊ฒฝ์šฐ, ์„œ๋กœ ์–ฝํžˆ๋Š” ์ „์ œ์™€ ๊ฒฐ๋ก  ์‚ฌ์ด์˜ ์ค‘๋ณต ๋ฐ ๋ถˆํ•„์š”ํ•œ ํ•จ์ถ•์ด ๊ธ‰์ฆํ•˜์—ฌ ํšจ์œจ

Computer Science Artificial Intelligence
Accelerating Storage-Based Training for Graph Neural Networks

Accelerating Storage-Based Training for Graph Neural Networks

๋ณธ ์—ฐ๊ตฌ๋Š” ๊ทธ๋ž˜ํ”„ ์‹ ๊ฒฝ๋ง(GNN) ํ•™์Šต์„ ๋Œ€๊ทœ๋ชจ ์‹ค์„ธ๊ณ„ ๊ทธ๋ž˜ํ”„์— ์ ์šฉํ•˜๊ธฐ ์œ„ํ•ด ์™ธ๋ถ€ ์Šคํ† ๋ฆฌ์ง€๋ฅผ ํ™œ์šฉํ•˜๋Š” โ€˜์Šคํ† ๋ฆฌ์ง€ ๊ธฐ๋ฐ˜โ€™ ์ ‘๊ทผ๋ฒ•์˜ ๊ทผ๋ณธ์ ์ธ ํ•œ๊ณ„๋ฅผ ์งš์–ด๋‚ธ๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค์€ ์ฃผ๋กœ ๋ฉ”๋ชจ๋ฆฌ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด NVMe SSD์™€ ๊ฐ™์€ ๊ณ ์† ์ €์žฅ์†Œ๋ฅผ ์ด์šฉํ–ˆ์ง€๋งŒ, ๊ทธ๋ž˜ํ”„ ๊ตฌ์กฐ๊ฐ€ ๋งค์šฐ ๋ถˆ๊ทœ์น™ํ•˜๊ณ  ์—ฃ์ง€์™€ ๋…ธ๋“œ๊ฐ€ ์ˆ˜๋ฐฑ๋งŒ~์ˆ˜์‹ญ์–ต ์ˆ˜์ค€์œผ๋กœ ๋ถ„์‚ฐ๋ผ ์žˆ๊ธฐ ๋•Œ๋ฌธ์— ํ•™์Šต ๊ณผ์ •์—์„œ ๋ฐœ์ƒํ•˜๋Š” ์ˆ˜์‹ญ๋งŒ~์ˆ˜๋ฐฑ๋งŒ ๊ฐœ์˜ ์ž‘์€ I/O ์š”์ฒญ์„ ํšจ์œจ์ ์œผ๋กœ ๋ณ‘ํ•ฉํ•˜๊ฑฐ๋‚˜ ์Šค์ผ€์ค„๋งํ•˜์ง€ ๋ชปํ•œ๋‹ค. ์ด๋Ÿฌํ•œ โ€˜์†Œํ˜• I/O ํญ์ฃผโ€™๋Š” ์Šคํ† ๋ฆฌ์ง€์˜ ์ˆœ์ฐจ ์ „์†ก ๋Œ€์—ญํญ์„ ํ™œ์šฉํ•˜์ง€ ๋ชปํ•˜๊ฒŒ ๋งŒ๋“ค๊ณ , ๊ฒฐ

Machine Learning Computer Science Network
Adaptive Hierarchical Evaluation of LLMs and SAST tools for CWE Prediction in Python

Adaptive Hierarchical Evaluation of LLMs and SAST tools for CWE Prediction in Python

๋ณธ ๋…ผ๋ฌธ์€ LLM๊ณผ ์ „ํ†ต์ ์ธ ์ •์  ๋ถ„์„ ๋„๊ตฌ(SAST)์˜ ์ทจ์•ฝ์  ํƒ์ง€ ๋Šฅ๋ ฅ์„ ๋น„๊ต ํ‰๊ฐ€ํ•˜๊ธฐ ์œ„ํ•ด ์ƒˆ๋กœ์šด ๋ฒค์น˜๋งˆํฌ ํ”„๋ ˆ์ž„์›Œํฌ์ธ ALPHA๋ฅผ ์„ค๊ณ„ํ•œ ์ ์—์„œ ํ•™์ˆ ์ ยท์‹ค๋ฌด์  ์˜์˜๊ฐ€ ํฌ๋‹ค. ๊ธฐ์กด์˜ ์ด์ง„ ๋ถ„๋ฅ˜ ๊ธฐ๋ฐ˜ ๋ฒค์น˜๋งˆํฌ๋Š” โ€œ์ทจ์•ฝ์  ์กด์žฌ ์—ฌ๋ถ€โ€๋งŒ์„ ํŒ๋‹จํ•˜๋„๋ก ์ œํ•œ๋ผ, ๊ฐœ๋ฐœ์ž๊ฐ€ ์‹ค์ œ ์ฝ”๋“œ ์ˆ˜์ •์— ํ™œ์šฉํ•  ์ˆ˜ ์žˆ๋Š” ๊ตฌ์ฒด์ ์ธ CWE(CWEโ€‘Common Weakness Enumeration) ์ •๋ณด๋ฅผ ์ œ๊ณตํ•˜์ง€ ๋ชปํ•œ๋‹ค๋Š” ํ•œ๊ณ„๊ฐ€ ์žˆ์—ˆ๋‹ค. ALPHA๋Š” ์ด๋Ÿฌํ•œ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด ํ•จ์ˆ˜ ์ˆ˜์ค€์—์„œ CWE ๋ ˆ์ด๋ธ”์„ ๋ถ€์—ฌํ•˜๊ณ , ์˜ค๋ฅ˜ ์œ ํ˜•์„ ์„ธ ๊ฐ€์ง€ ๊ณ„์ธต์  ํŒจ๋„ํ‹ฐ(

Computer Science Software Engineering
Data Complexity-aware Deep Model Performance Forecasting

Data Complexity-aware Deep Model Performance Forecasting

์ด ๋…ผ๋ฌธ์€ โ€œ๋ฐ์ดํ„ฐ ๋ณต์žก๋„ ์ธ์‹ ๋”ฅ ๋ชจ๋ธ ์„ฑ๋Šฅ ์˜ˆ์ธกโ€์ด๋ผ๋Š” ์ฃผ์ œ๋กœ, ๋ชจ๋ธ ์„ค๊ณ„ ๋‹จ๊ณ„์—์„œ ์‚ฌ์ „์ ์œผ๋กœ ์„ฑ๋Šฅ์„ ์ถ”์ •ํ•  ์ˆ˜ ์žˆ๋Š” ๊ฒฝ๋Ÿ‰ํ™”๋œ ๋‘ ๋‹จ๊ณ„ ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์‹œํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ ๋‹จ๊ณ„๋Š” ๋ฐ์ดํ„ฐ ์ž์ฒด์˜ ํ†ต๊ณ„์ ยท๊ตฌ์กฐ์  ํŠน์„ฑ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ๋ฒ ์ด์Šค๋ผ์ธ ์„ฑ๋Šฅ์„ ์˜ˆ์ธกํ•œ๋‹ค. ์—ฌ๊ธฐ์—๋Š” ๋ฐ์ดํ„ฐ ๋ถ„์‚ฐ, ํด๋ž˜์Šค ๋ถˆ๊ท ํ˜•, ์ด๋ฏธ์ง€ ํ•ด์ƒ๋„, ํ…์ŠคํŠธ ๊ธธ์ด ๋“ฑ ๋‹ค์–‘ํ•œ ๋ฉ”ํŠธ๋ฆญ์ด ํฌํ•จ๋˜๋ฉฐ, ์ด๋Ÿฌํ•œ ํŠน์„ฑ์€ ๊ธฐ์กด ์—ฐ๊ตฌ์—์„œ ๋ชจ๋ธ ๋ณต์žก๋„์™€ ์ง์ ‘์ ์ธ ์ƒ๊ด€๊ด€๊ณ„๋ฅผ ๋ณด์ธ ๋ฐ” ์žˆ๋‹ค. ๋‘ ๋ฒˆ์งธ ๋‹จ๊ณ„๋Š” ๋ชจ๋ธ ์•„ํ‚คํ…์ฒ˜(์˜ˆ: ๋ ˆ์ด์–ด ์ˆ˜, ํŒŒ๋ผ๋ฏธํ„ฐ ๊ทœ๋ชจ, ์—ฐ์‚ฐ๋Ÿ‰)์™€ ์ฃผ์š” ํ•˜์ดํผํŒŒ๋ผ๋ฏธํ„ฐ(ํ•™์Šต๋ฅ , ๋ฐฐ์น˜

Computer Science Data Machine Learning Model
No Image

DrivingGen: A Comprehensive Benchmark for Generative Video World Models in Autonomous Driving

DrivingGen ๋…ผ๋ฌธ์€ ํ˜„์žฌ ์ž์œจ์ฃผํ–‰ ๋ถ„์•ผ์—์„œ ๊ธ‰์ฆํ•˜๊ณ  ์žˆ๋Š” โ€˜์ƒ์„ฑ ๋น„๋””์˜ค ์„ธ๊ณ„ ๋ชจ๋ธโ€™ ์—ฐ๊ตฌ์˜ ํ‰๊ฐ€ ์ฒด๊ณ„๊ฐ€ ๋ถ€์žฌํ•จ์„ ์ •ํ™•ํžˆ ์งš์–ด๋‚ธ๋‹ค. ๊ธฐ์กด ๋ฒค์น˜๋งˆํฌ๊ฐ€ ์ฃผ๋กœ PSNR, SSIM, LPIPS์™€ ๊ฐ™์€ ์ „ํ†ต์ ์ธ ๋น„๋””์˜ค ํ’ˆ์งˆ ์ง€ํ‘œ์— ์˜์กดํ•˜๋Š”๋ฐ, ์ด๋Ÿฌํ•œ ์ง€ํ‘œ๋Š” ํ”ฝ์…€ ์ˆ˜์ค€์˜ ์ฐจ์ด๋ฅผ ์ •๋Ÿ‰ํ™”ํ•  ๋ฟ, ์ž์œจ์ฃผํ–‰์— ํ•„์ˆ˜์ ์ธ ๋ฌผ๋ฆฌ์  ์ผ๊ด€์„ฑ์ด๋‚˜ ์•ˆ์ „์„ฑ์„ ๋ฐ˜์˜ํ•˜์ง€ ๋ชปํ•œ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด, ์ฐจ๋Ÿ‰์ด ๊ฐ‘์ž๊ธฐ ์‚ฌ๋ผ์ง€๊ฑฐ๋‚˜ ๋ณดํ–‰์ž๊ฐ€ ๋น„ํ˜„์‹ค์ ์ธ ์†๋„๋กœ ์›€์ง์ด๋Š” ๊ฒฝ์šฐ, ์‹œ๊ฐ์ ์œผ๋กœ๋Š” ๋†’์€ SSIM์„ ๊ธฐ๋กํ•˜๋”๋ผ๋„ ์‹ค์ œ ์ฃผํ–‰ ์‹œ๋‚˜๋ฆฌ์˜ค์—์„œ๋Š” ์น˜๋ช…์ ์ธ ์˜ค๋ฅ˜๊ฐ€ ๋œ๋‹ค. ๋…ผ๋ฌธ์€ ์ด๋Ÿฌํ•œ

Computer Science Model Computer Vision
EscherVerse: An Open World Benchmark and Dataset for Teleo-Spatial Intelligence with Physical-Dynamic and Intent-Driven Understanding

EscherVerse: An Open World Benchmark and Dataset for Teleo-Spatial Intelligence with Physical-Dynamic and Intent-Driven Understanding

๋ณธ ๋…ผ๋ฌธ์€ ์ธ๊ณต์ง€๋Šฅยท๋กœ๋ณดํ‹ฑ์Šค ๋ถ„์•ผ์—์„œ ์ตœ๊ทผ ์ฃผ๋ชฉ๋ฐ›๊ณ  ์žˆ๋Š” โ€œํ…”๋ ˆ์˜คโ€‘์ŠคํŽ˜์ด์…œ ์ธํ…”๋ฆฌ์ „์Šค(TSI)โ€๋ผ๋Š” ์ƒˆ๋กœ์šด ๊ฐœ๋…์„ ์ œ์‹œํ•œ๋‹ค. ๊ธฐ์กด์˜ ๋Œ€๋ถ€๋ถ„ ์—ฐ๊ตฌ๋Š” ๋ฌผ์ฒดโ€‘์ค‘์‹ฌ(objectโ€‘centric) ์ ‘๊ทผ์„ ์ทจํ•ด, ๋ฌผ๋ฆฌโ€‘๋™์—ญํ•™(Physicalโ€‘Dynamic) ๋ชจ๋ธ๋ง์— ์ง‘์ค‘ํ•œ๋‹ค. ์˜ˆ์ปจ๋Œ€, ๋ฌผ์ฒด์˜ ์งˆ๋Ÿ‰ยท๋งˆ์ฐฐยท์ถฉ๋Œ ๋ฒ•์น™์„ ์ด์šฉํ•ด ์‹œ๋ฎฌ๋ ˆ์ด์…˜ํ•˜๊ฑฐ๋‚˜, ๋น„์ „ ๊ธฐ๋ฐ˜ ํŠธ๋ž˜ํ‚น์„ ํ†ตํ•ด ์›€์ง์ž„์„ ์˜ˆ์ธกํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฐฉ๋ฒ•์€ ์ •๋Ÿ‰์  ์ •ํ™•๋„์—์„œ๋Š” ๋›ฐ์–ด๋‚˜์ง€๋งŒ, ์ธ๊ฐ„์ด ๋ฌผ์ฒด๋ฅผ ์กฐ์ž‘ํ•˜๊ฑฐ๋‚˜ ๋ฐฐ์น˜ํ•˜๋Š” ๊ทผ๋ณธ์ ์ธ โ€˜์˜๋„โ€™๋ฅผ ํŒŒ์•…ํ•˜์ง€ ๋ชปํ•œ๋‹ค๋Š” ํ•œ๊ณ„๊ฐ€ ์žˆ๋‹ค. TSI๋Š” ์ด๋Ÿฌํ•œ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ

Computer Vision Computer Science Data
Exposing Hidden Interfaces: LLM-Guided Type Inference for Reverse Engineering macOS Private Frameworks

Exposing Hidden Interfaces: LLM-Guided Type Inference for Reverse Engineering macOS Private Frameworks

MOTIF๋Š” ํฌ๊ฒŒ ๋‘ ๊ฐ€์ง€ ํ•ต์‹ฌ ์š”์†Œ๋กœ ๊ตฌ์„ฑ๋œ๋‹ค. ์ฒซ ๋ฒˆ์งธ๋Š” Objectiveโ€‘C ๋Ÿฐํƒ€์ž„ ์ •๋ณด๋ฅผ ํ™œ์šฉํ•ด ๋ฉ”์„œ๋“œ ํ˜ธ์ถœ ๊ด€๊ณ„์™€ ํด๋ž˜์Šค ๊ณ„์ธต ๊ตฌ์กฐ๋ฅผ ์ถ”์ถœํ•˜๋Š” โ€˜๋ฉ”ํƒ€๋ฐ์ดํ„ฐ ์ˆ˜์ง‘ ๋ชจ๋“ˆโ€™์ด๋‹ค. ์ด ๋ชจ๋“ˆ์€ dyld shared cache์™€ Machโ€‘O ๋ฐ”์ด๋„ˆ๋ฆฌ๋ฅผ ๋™์ ์œผ๋กœ ๋กœ๋“œํ•˜๊ณ , objc getClass, method getImplementation ๋“ฑ์˜ ๋Ÿฐํƒ€์ž„ API๋ฅผ ํ˜ธ์ถœํ•ด ์‹ค์ œ ๋ฉ”๋ชจ๋ฆฌ ์ฃผ์†Œ์™€ ์‹ฌ๋ณผ ์ •๋ณด๋ฅผ ์ˆ˜์ง‘ํ•œ๋‹ค. ์ˆ˜์ง‘๋œ ๋ฐ์ดํ„ฐ๋Š” ๊ทธ๋ž˜ํ”„ ํ˜•ํƒœ๋กœ ์ •๊ทœํ™”๋˜์–ด ์ดํ›„ ๋‹จ๊ณ„์— ์ „๋‹ฌ๋œ๋‹ค. ๋‘ ๋ฒˆ์งธ๋Š” ํŒŒ์ธํŠœ๋‹๋œ ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(LLM)์ด๋‹ค. ์—ฐ๊ตฌํŒ€์€

Computer Science Framework Cryptography and Security
No Image

FALCON: Few-Shot Adversarial Learning for Cross-Domain Medical Image Segmentation

FALCON ๋…ผ๋ฌธ์€ ํ˜„์žฌ ์˜๋ฃŒ ์˜์ƒ ๋ถ„ํ•  ๋ถ„์•ผ๊ฐ€ ์ง๋ฉดํ•œ ์„ธ ๊ฐ€์ง€ ํ•ต์‹ฌ ๋ฌธ์ œโ€”๋ผ๋ฒจ ๋ฐ์ดํ„ฐ์˜ ํฌ์†Œ์„ฑ, ํ™˜์ž ๊ฐ„ ํ•ด๋ถ€ํ•™์  ๋ณ€์ด, ๊ทธ๋ฆฌ๊ณ  ์‹ค์‹œ๊ฐ„ ์ž„์ƒ ์ ์šฉ์„ ์œ„ํ•œ ์—ฐ์‚ฐ ํšจ์œจ์„ฑโ€”๋ฅผ ๋™์‹œ์— ํ•ด๊ฒฐํ•˜๋ ค๋Š” ์‹œ๋„๋กœ ํ‰๊ฐ€ํ•  ์ˆ˜ ์žˆ๋‹ค. ๊ฐ€์žฅ ๋ˆˆ์— ๋„๋Š” ์ ์€ โ€œ๋ฉ”ํƒ€โ€‘ํ•™์Šต โ†’ ์ ๋Œ€์  ํŒŒ์ธํŠœ๋‹ โ†’ ๊ฒฝ๊ณ„ ์ธ์‹ ํ•™์Šตโ€์ด๋ผ๋Š” 3๋‹จ๊ณ„ ์ „์ด ์ „๋žต์ด๋‹ค. ์ฒซ ๋‹จ๊ณ„์—์„œ ์ž์—ฐ ์ด๋ฏธ์ง€(์˜ˆ: PASCALโ€‘5โฑ, COCOโ€‘20โฑ)๋กœ ๋ฉ”ํƒ€โ€‘๋Ÿฌ๋‹์„ ์ˆ˜ํ–‰ํ•จ์œผ๋กœ์จ, ๋‹ค์–‘ํ•œ ํด๋ž˜์Šค์™€ ๋ณต์žกํ•œ ๋ฐฐ๊ฒฝ์„ ๊ฐ€์ง„ ์ƒํ™ฉ์—์„œ๋„ ๋น ๋ฅด๊ฒŒ ์ƒˆ๋กœ์šด ํƒœ์Šคํฌ์— ์ ์‘ํ•  ์ˆ˜ ์žˆ๋Š” โ€˜ํ•™์Šตโ€‘ํ•™์Šตโ€™ ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ๊ตฌ์ถ•ํ•œ๋‹ค.

Computer Vision Computer Science Learning
HanoiWorld : A Joint Embedding Predictive Architecture BasedWorld Model for Autonomous Vehicle Controller

HanoiWorld : A Joint Embedding Predictive Architecture BasedWorld Model for Autonomous Vehicle Controller

๋ณธ ๋…ผ๋ฌธ์€ ์ž์œจ์ฃผํ–‰ ์ œ์–ด์— ์žˆ์–ด ๊ฐ•ํ™”ํ•™์Šต(RL)์ด ์ง๋ฉดํ•œ ๊ทผ๋ณธ์ ์ธ ํ•œ๊ณ„๋ฅผ ์งš์–ด๋‚ธ ๋’ค, JEPA ๊ธฐ๋ฐ˜ ์ž๊ธฐ์ง€๋„ ํ•™์Šต์ด ์ œ๊ณตํ•  ์ˆ˜ ์žˆ๋Š” ๋Œ€์•ˆ์„ ์ œ์‹œํ•œ๋‹ค. ๊ธฐ์กด RL ์ ‘๊ทผ๋ฒ•์€ ๋ณด์ƒ ์„ค๊ณ„๊ฐ€ ๋ณต์žกํ•˜๊ณ , ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ํ˜น์€ ์‹ค์ œ ๋„๋กœ์—์„œ ์ˆ˜๋ฐฑ๋งŒ ๋‹จ๊ณ„์— ๋‹ฌํ•˜๋Š” ๋ฐ์ดํ„ฐ๊ฐ€ ํ•„์š”ํ•˜๋‹ค. ํŠนํžˆ ํ”ฝ์…€ ์ˆ˜์ค€์˜ ์žฌ๊ตฌ์„ฑ ์†์‹ค์„ ์ตœ์†Œํ™”ํ•˜๋ ค๋Š” ๋ชฉํ‘œ๋Š” ๊ณ ์ฐจ์› ์ž…๋ ฅ ๊ณต๊ฐ„์—์„œ ์žก์Œ(๋…ธ์ด์ฆˆ) ํŠน์„ฑ์„ ๊ณผ๋„ํ•˜๊ฒŒ ํ•™์Šตํ•˜๊ฒŒ ๋งŒ๋“ค๋ฉฐ, ์ด๋Š” ์ •์ฑ…์˜ ๋ถˆ์•ˆ์ •์„ฑ๊ณผ ์•ˆ์ „์„ฑ ์ €ํ•˜๋กœ ์ด์–ด์ง„๋‹ค. ์ธ๊ฐ„์ด ์ƒˆ๋กœ์šด ๊ธฐ์ˆ ์„ ์Šต๋“ํ•  ๋•Œ โ€˜์ƒ์ƒโ€™๊ณผ โ€˜์˜ˆ์ธกโ€™ ๊ณผ์ •์„ ํ†ตํ•ด ์ ์€ ๊ฒฝํ—˜๋งŒ์œผ๋กœ๋„ ์ผ๋ฐ˜ํ™”๋œ ๋ชจ๋ธ์„ ๊ตฌ์ถ•

Computer Science Robotics Model
KGCE: Knowledge-Augmented Dual-Graph Evaluator for Cross-Platform Educational Agent Benchmarking with Multimodal Language Models

KGCE: Knowledge-Augmented Dual-Graph Evaluator for Cross-Platform Educational Agent Benchmarking with Multimodal Language Models

KGCE ๋…ผ๋ฌธ์€ ํ˜„์žฌ ๊ต์œก์šฉ AI ์—์ด์ „ํŠธ ํ‰๊ฐ€ ์ฒด๊ณ„๊ฐ€ ์ง๋ฉดํ•œ ๋‘ ๊ฐ€์ง€ ํ•ต์‹ฌ ํ•œ๊ณ„๋ฅผ ์ฒด๊ณ„์ ์œผ๋กœ ์ง„๋‹จํ•˜๊ณ , ์ด๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•œ ์„ค๊ณ„ ์›์น™์„ ๋ช…ํ™•ํžˆ ์ œ์‹œํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ ํ•œ๊ณ„๋Š” โ€˜ํ”„๋ผ์ด๋น— ๋„๋ฉ”์ธ ์†Œํ”„ํŠธ์›จ์–ดโ€™์— ๋Œ€ํ•œ ๊ตฌ์กฐ์  ์ดํ•ด ๋ถ€์กฑ์ด๋‹ค. XiaoYa Intelligent Assistant๋‚˜ HuaShi XiaZi์™€ ๊ฐ™์€ ํ•™๊ต ์ „์šฉ ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜์€ UI ํ๋ฆ„, API ํ˜ธ์ถœ ๋ฐฉ์‹, ๋ฐ์ดํ„ฐ ํฌ๋งท ๋“ฑ์ด ์ผ๋ฐ˜ ์ƒ์šฉ ์†Œํ”„ํŠธ์›จ์–ด์™€ ํฌ๊ฒŒ ๋‹ค๋ฅด๋‹ค. ๊ธฐ์กด ๋ฉ€ํ‹ฐ๋ชจ๋‹ฌ LLM ๊ธฐ๋ฐ˜ ์—์ด์ „ํŠธ๋Š” ์‚ฌ์ „ ํ•™์Šต ๋ฐ์ดํ„ฐ์— ์ด๋Ÿฌํ•œ ํŠน์ˆ˜ ์‚ฌ๋ก€๊ฐ€ ๊ฑฐ์˜ ํฌํ•จ๋˜์ง€ ์•Š์•„, ์‹ค์ œ ์‹คํ–‰

Computer Science Artificial Intelligence Model
Length-Aware Adversarial Training for Variable-Length Trajectories: Digital Twins for Mall Shopper Paths

Length-Aware Adversarial Training for Variable-Length Trajectories: Digital Twins for Mall Shopper Paths

๋ณธ ๋…ผ๋ฌธ์€ ๊ฐ€๋ณ€ ๊ธธ์ด ์‹œํ€€์Šค, ํŠนํžˆ ์‡ผํ•‘๋ชฐ ๋‚ด ๊ณ ๊ฐ์˜ ์ด๋™ ๊ฒฝ๋กœ์™€ ๊ฐ™์€ ๋ณตํ•ฉ์ ์ธ ์‹œ๊ฐ„ยท๊ณต๊ฐ„ ๋ฐ์ดํ„ฐ๋ฅผ ์ƒ์„ฑํ•˜๋Š” ๋ฌธ์ œ์— ์ดˆ์ ์„ ๋งž์ถ˜๋‹ค. ์ „ํ†ต์ ์ธ ๋ฏธ๋‹ˆ๋ฐฐ์น˜ ํ•™์Šต์—์„œ๋Š” ๋™์ผ ๋ฐฐ์น˜ ๋‚ด์— ๊ธธ์ด๊ฐ€ ํฌ๊ฒŒ ๋‹ค๋ฅธ ์‹œํ€€์Šค๊ฐ€ ์„ž์ด๊ฒŒ ๋˜๋Š”๋ฐ, ์ด๋Š” ๊ทธ๋ž˜๋””์–ธํŠธ์˜ ์Šค์ผ€์ผ ์ฐจ์ด๋ฅผ ์•ผ๊ธฐํ•˜๊ณ  ์ตœ์ ํ™” ๊ณผ์ •์—์„œ ๋ถˆ์•ˆ์ •์„ฑ์„ ์ดˆ๋ž˜ํ•œ๋‹ค. ํŠนํžˆ GAN ๊ธฐ๋ฐ˜ ์ƒ์„ฑ ๋ชจ๋ธ์€ ํŒ๋ณ„์ž๊ฐ€ โ€œ๊ธธ์ด ์ž์ฒดโ€๋ฅผ ์‰ฝ๊ฒŒ ๊ตฌ๋ถ„ํ•˜๋Š” ๋‹จ์ถ•(shortcut) ์ „๋žต์„ ์ทจํ•  ์œ„ํ—˜์ด ์žˆ๋Š”๋ฐ, ์ด๋Š” ์‹ค์ œ ์˜๋ฏธ ์žˆ๋Š” ํŒจํ„ด(์˜ˆ: ๋ฐฉ๋ฌธ ์ˆœ์„œ, ์ฒด๋ฅ˜ ์‹œ๊ฐ„)๋ณด๋‹ค ๊ธธ์ด ์ฐจ์ด์—๋งŒ ๋ฏผ๊ฐํ•˜๊ฒŒ ๋ฐ˜์‘ํ•˜๊ฒŒ ๋งŒ๋“ ๋‹ค. ๊ฒฐ๊ณผ์ ์œผ๋กœ ์ƒ์„ฑ

Machine Learning Computer Science
Logics-STEM: Empowering LLM Reasoning via Failure-Driven Post-Training and Document Knowledge Enhancement

Logics-STEM: Empowering LLM Reasoning via Failure-Driven Post-Training and Document Knowledge Enhancement

Logicsโ€‘STEM ๋…ผ๋ฌธ์€ ์ตœ๊ทผ LLM(Large Language Model) ๋ถ„์•ผ์—์„œ ๊ฐ€์žฅ ๋œจ๊ฑฐ์šด ์ด์Šˆ์ธ โ€œ์ถ”๋ก  ๋Šฅ๋ ฅ ๊ฐ•ํ™”โ€์— ๋Œ€ํ•ด ๋ฐ์ดํ„ฐ์™€ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ๋™์‹œ์— ์ตœ์ ํ™”ํ•˜๋Š” ์ „๋žต์„ ์ œ์‹œํ•œ๋‹ค. ๋จผ์ € ๋ฐ์ดํ„ฐ ์ธก๋ฉด์„ ์‚ดํŽด๋ณด๋ฉด, ์ €์ž๋“ค์€ 7.2 M ๊ทœ๋ชจ์˜ SFT( supervised fineโ€‘tuning ) ๋ฐ์ดํ„ฐ์…‹์„ ๊ตฌ์ถ•ํ•˜๊ธฐ ์œ„ํ•ด 5๋‹จ๊ณ„ ํŒŒ์ดํ”„๋ผ์ธ์„ ์ ์šฉํ–ˆ๋‹ค. ์ฃผ์„ ๋‹จ๊ณ„์—์„œ๋Š” ์ธ๊ฐ„ ์ „๋ฌธ๊ฐ€๊ฐ€ ์žฅ๊ธฐ ์‚ฌ๊ณ  ์‚ฌ์Šฌ(chainโ€‘ofโ€‘thought) ํ˜•ํƒœ์˜ ๋‹ต๋ณ€์„ ์ง์ ‘ ์ž‘์„ฑํ•˜๋„๋ก ํ•˜์—ฌ, ๋ชจ๋ธ์ด ๋‹จ์ˆœํžˆ ์ •๋‹ต์„ ๋งž์ถ”๋Š” ๊ฒƒ์ด ์•„๋‹ˆ๋ผ ์‚ฌ๊ณ  ๊ณผ์ •์„ ํ•™์Šตํ•˜๋„๋ก

Computer Science Artificial Intelligence
Online Estimation and Manipulation of Articulated Objects

Online Estimation and Manipulation of Articulated Objects

์ด ๋…ผ๋ฌธ์€ ์„œ๋น„์Šค ๋กœ๋ด‡์ด ์ผ์ƒ ๊ฐ€์ • ํ™˜๊ฒฝ์—์„œ ๋งˆ์ฃผ์น˜๋Š” ๋‹ค์–‘ํ•œ ๊ด€์ ˆํ˜• ๊ฐ์ฒด(์˜ˆ: ์„œ๋ž, ๋ฌธ, ํšŒ์ „์‹ ์†์žก์ด ๋“ฑ)๋ฅผ ์‚ฌ์ „ ์ง€์‹ ์—†์ด๋„ ์‹ ์†ํžˆ ํŒŒ์•…ํ•˜๊ณ  ์กฐ์ž‘ํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•˜๋Š” ํ†ตํ•ฉ ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์‹œํ•œ๋‹ค. ํ•ต์‹ฌ ์•„์ด๋””์–ด๋Š” โ€˜์‹œ๊ฐโ€‘์ด‰๊ฐ ์œตํ•ฉโ€™์ด๋‹ค. ๊ธฐ์กด ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜ ์–ดํฌ๋˜์Šค ์˜ˆ์ธก์€ ํ’๋ถ€ํ•œ ์ด๋ฏธ์ง€ ๋ฐ์ดํ„ฐ๋กœ๋ถ€ํ„ฐ ๊ฐ์ฒด์˜ ์ž ์žฌ์  ์›€์ง์ž„ ์ถ•์ด๋‚˜ ์ œํ•œ์„ ์ถ”์ •ํ•˜์ง€๋งŒ, ์‹ค์ œ ๋ฌผ๋ฆฌ์  ์ œ์•ฝ(๋งˆ์ฐฐ, ์Šคํ”„๋ง ์ €ํ•ญ ๋“ฑ)์„ ๋ฐ˜์˜ํ•˜์ง€ ๋ชปํ•œ๋‹ค. ๋ฐ˜๋ฉด, ๊ด€์ ˆ ์šด๋™์„ ์ง์ ‘ ๊ด€์ฐฐํ•ด ์ถ”์ •ํ•˜๋Š” ์ „ํ†ต์  ๋ฐฉ๋ฒ•์€ ์‹ค์ œ ์ ‘์ด‰์ด ์„ ํ–‰๋ผ์•ผ ํ•˜๋ฏ€๋กœ ์ดˆ๊ธฐ ํƒ์ƒ‰ ๋น„์šฉ์ด ํฌ๋‹ค. ์ €์ž๋“ค์€ ์ด ๋‘

Computer Science Robotics
REE-TTT: Highly Adaptive Radar Echo Extrapolation Based on Test-Time Training

REE-TTT: Highly Adaptive Radar Echo Extrapolation Based on Test-Time Training

๋ณธ ๋…ผ๋ฌธ์€ ๋ ˆ์ด๋” ์—์ฝ” ์™ธ์‚ฝ(Radar Echo Extrapolation, REE) ๋ถ„์•ผ์—์„œ ๊ฐ€์žฅ ์‹œ๊ธ‰ํ•œ ๋ฌธ์ œ์ธ ๋„๋ฉ”์ธ ์ „์ด์™€ ๋ฐ์ดํ„ฐ ๋ถ„ํฌ ๋ณ€ํ™” ์— ๋Œ€ํ•œ ํ•ด๊ฒฐ์ฑ…์„ ์ œ์‹œํ•œ๋‹ค. ๊ธฐ์กด์˜ ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜ REE ๋ชจ๋ธ์€ ๋Œ€๊ทœ๋ชจ ๋ ˆ์ด๋” ์‹œํ€€์Šค๋ฅผ ํ•™์Šตํ•ด ๋‹จ๊ธฐ ๊ฐ•์ˆ˜ ์˜ˆ๋ณด๋ฅผ ์ˆ˜ํ–‰ํ•˜์ง€๋งŒ, ํ•™์Šต ๋‹จ๊ณ„์—์„œ ์‚ฌ์šฉ๋œ ์ง€์—ญยท์‹œ์ฆŒยท๊ธฐํ›„ ์กฐ๊ฑด์— ๊ฐ•ํ•˜๊ฒŒ ์˜์กดํ•œ๋‹ค. ๋”ฐ๋ผ์„œ ์ƒˆ๋กœ์šด ์ง€์—ญ์ด๋‚˜ ๊ทนํ•œ ๊ฐ•์ˆ˜ ์ƒํ™ฉ์— ์ ์šฉํ•˜๋ฉด ์„ฑ๋Šฅ์ด ๊ธ‰๊ฒฉํžˆ ์ €ํ•˜๋˜๋Š” ๊ฒƒ์ด ์ผ๋ฐ˜์ ์ด๋‹ค. 1. ํ•ต์‹ฌ ์•„์ด๋””์–ด์™€ ๊ธฐ์—ฌ ํ…Œ์ŠคํŠธโ€‘์‹œ์  ํ•™์Šต(Testโ€‘Time Training, TTT) ์ ์šฉ : ๋ชจ๋ธ ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ

Computer Science Machine Learning
SwinIFS: Landmark Guided Swin Transformer For Identity Preserving Face Super Resolution

SwinIFS: Landmark Guided Swin Transformer For Identity Preserving Face Super Resolution

SwinIFS๋Š” ์–ผ๊ตด ์ดˆํ•ด์ƒ๋„(Face Superโ€‘Resolution, FSR) ๋ถ„์•ผ์—์„œ ๋‘ ๊ฐ€์ง€ ํ•ต์‹ฌ ๋ฌธ์ œ, ์ฆ‰ โ€˜์„ธ๋ฐ€ํ•œ ๊ตฌ์กฐ ์†์‹คโ€™๊ณผ โ€˜์•„์ด๋ดํ‹ฐํ‹ฐ ๋ณ€ํ˜•โ€™์— ๋™์‹œ์— ๋Œ€์‘ํ•˜๋ ค๋Š” ์‹œ๋„๋กœ ๋ˆˆ์— ๋ˆ๋‹ค. ๊ธฐ์กด CNN ๊ธฐ๋ฐ˜ ๋ฐฉ๋ฒ•๋“ค์€ ์ง€์—ญ์ ์ธ ํŠน์ง•์„ ์ž˜ ํฌ์ฐฉํ•˜์ง€๋งŒ, ์žฅ๊ฑฐ๋ฆฌ ์˜์กด์„ฑ์„ ๋ชจ๋ธ๋งํ•˜๊ธฐ์—” ํ•œ๊ณ„๊ฐ€ ์žˆ๋‹ค. ๋ฐ˜๋ฉด Vision Transformer(ViT) ๊ณ„์—ด์€ ์ „์—ญ ์ •๋ณด๋ฅผ ํšจ์œจ์ ์œผ๋กœ ํ•™์Šตํ•˜์ง€๋งŒ, ์–ผ๊ตด๊ณผ ๊ฐ™์ด ๊ณ ์ •๋œ ๊ตฌ์กฐ์  ํŒจํ„ด์„ ๋‹ค๋ฃฐ ๋•Œ๋Š” ์‚ฌ์ „ ์ง€์‹์ด ๋ถ€์กฑํ•ด ์„ธ๋ถ€ ๋””ํ…Œ์ผ ๋ณต์›์— ์•ฝ์ ์ด ์žˆ๋‹ค. SwinIFS๋Š” ์ด๋Ÿฌํ•œ ๋”œ๋ ˆ๋งˆ๋ฅผ โ€˜๋žœ๋“œ๋งˆํฌ ๊ฐ€์ด๋“œ

Computer Science Computer Vision
No Image

The Optimal Sample Complexity of Linear Contracts

์ด ๋…ผ๋ฌธ์€ ๋””์ง€ํ„ธ ์Œ์•… ํ”Œ๋žซํผ์—์„œ ์ƒˆ๋กœ์šด ๋กœ์—ดํ‹ฐ ๋ชจ๋ธ ๋„์ž…์— ๋Œ€ํ•œ ํ•ต์‹ฌ ๋ฌธ์ œ, ์ฆ‰ ๋ถˆํ™•์‹คํ•œ ์•„ํ‹ฐ์ŠคํŠธ ํŠน์„ฑ์˜ ํ•™์Šต์„ ๋‹ค๋ฃจ๋ฉฐ, ์ด๋ฅผ ์œ„ํ•œ ์ตœ์  ์ƒ˜ํ”Œ ๋ณต์žก๋„๋ฅผ ๋ถ„์„ํ•˜๊ณ  ์ œ์‹œํ•ฉ๋‹ˆ๋‹ค. ๋…ผ๋ฌธ์€ (Dรผtting ๋“ฑ, 2025)์˜ ํ‘œ๋ณธ ๊ธฐ๋ฐ˜ ํ•™์Šต ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ํ™•์žฅํ•˜์—ฌ ์„ ํ˜• ๊ณ„์•ฝ์ด๋ผ๋Š” ํŠน์ • ๊ณ„์•ฝ ํด๋ž˜์Šค์— ๋Œ€ํ•œ ์ตœ์  ํ•™์Šต์„ ์œ„ํ•œ ์ƒ˜ํ”Œ ๋ณต์žก๋„๋ฅผ ๋ถ„์„ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ๊ธฐ์ˆ ์  ํ˜์‹ ์„ฑ: ๋…ผ๋ฌธ์€ ๋””์ง€ํ„ธ ์Œ์•… ํ”Œ๋žซํผ์ด ์ƒˆ๋กœ์šด ๋กœ์—ดํ‹ฐ ๋ชจ๋ธ์„ ๋„์ž…ํ•  ๋•Œ ์ง๋ฉดํ•˜๋Š” ํ•ต์‹ฌ ๋ฌธ์ œ์ธ ๋ถˆํ™•์‹คํ•œ ์•„ํ‹ฐ์ŠคํŠธ ํŠน์„ฑ์˜ ํ•™์Šต์„ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•œ ๋ฐฉ๋ฒ•๋ก ์„ ์ œ์‹œํ•ฉ๋‹ˆ๋‹ค. ํŠนํžˆ, ์ด ๋…ผ๋ฌธ์—์„œ ์ œ์•ˆ

Computer Science Game Theory
An Explainable Agentic AI Framework for Uncertainty-Aware and Abstention-Enabled Acute Ischemic Stroke Imaging Decisions

An Explainable Agentic AI Framework for Uncertainty-Aware and Abstention-Enabled Acute Ischemic Stroke Imaging Decisions

๋ณธ ๋…ผ๋ฌธ์€ ๊ธ‰์„ฑ ๋‡Œ์กธ์ค‘ ์˜์ƒ ์ง„๋‹จ์„ ์œ„ํ•œ AI ์‹œ์Šคํ…œ์˜ ๊ฐœ์„  ๋ฐฉํ–ฅ์„ ์ œ์‹œํ•˜๋ฉฐ, ํŠนํžˆ ๋ถˆํ™•์‹ค์„ฑ ์ธ์‹๊ณผ ์˜์‚ฌ๊ฒฐ์ • ์ œ์–ด ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ํ†ตํ•ฉํ•œ ์—์ด์ „ํŠธ ๊ธฐ๋ฐ˜ ์ ‘๊ทผ ๋ฐฉ์‹์— ์ดˆ์ ์„ ๋งž์ถ”๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ด ์—ฐ๊ตฌ๋Š” ์˜๋ฃŒ AI ๋ถ„์•ผ์—์„œ ์ค‘์š”ํ•œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๋ ค๋Š” ์‹œ๋„๋กœ, ์•ˆ์ „์„ฑ, ํ•ด์„ ๊ฐ€๋Šฅ์„ฑ ๋ฐ ์ž„์ƒ ๊ด€๋ จ์„ฑ์„ ๊ฐ•์กฐํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ๊ธฐ์ˆ ์  ํ˜์‹ ์„ฑ ๋ณธ ๋…ผ๋ฌธ์˜ ํ•ต์‹ฌ ํ˜์‹ ์€ ์—์ด์ „ํŠธ ๊ธฐ๋ฐ˜ AI ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ํ†ตํ•ด ๋ถˆํ™•์‹ค์„ฑ ์ธ์‹๊ณผ ์˜์‚ฌ๊ฒฐ์ • ์ œ์–ด ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ํ†ตํ•ฉํ•œ ๊ฒƒ์ž…๋‹ˆ๋‹ค. ์ด ์ ‘๊ทผ ๋ฐฉ์‹์€ ๋‹จ์ˆœํžˆ ์˜ˆ์ธก์„ ์ œ๊ณตํ•˜๋Š” ๊ฒƒ์ด ์•„๋‹ˆ๋ผ, ๋ถˆํ™•์‹ค์„ฑ์ด ๋†’์€ ๊ฒฝ์šฐ ๋ณด๋ฅ˜ ๊ฒฐ์ •์„ ๋‚ด๋ฆด ์ˆ˜

Framework Image Processing Electrical Engineering and Systems Science
Correctness isnt Efficiency: Runtime Memory Divergence in LLM-Generated Code

Correctness isnt Efficiency: Runtime Memory Divergence in LLM-Generated Code

์ด ๋…ผ๋ฌธ์€ ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(LLM)์—์„œ ์ƒ์„ฑ๋œ ์ฝ”๋“œ์˜ ์‹คํ–‰ ์•ˆ์ •์„ฑ์— ์ค‘์ ์„ ๋‘๊ณ , ํŠนํžˆ ๋ฉ”๋ชจ๋ฆฌ ๋™์—ญํ•™ ์ธก๋ฉด์—์„œ ๊ทธ ์ค‘์š”์„ฑ์„ ๊ฐ•์กฐํ•œ๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ์—์„œ๋Š” ์ฃผ๋กœ LLM์˜ ์ถœ๋ ฅ ์ •ํ™•๋„์™€ ๋‹ค์–‘์„ฑ์— ์ดˆ์ ์„ ๋งž์ถ”์—ˆ์ง€๋งŒ, ์ด ๋…ผ๋ฌธ์€ ์ด๋Ÿฌํ•œ ์ •ํ™•ํ•œ ๊ฒฐ๊ณผ๊ฐ€ ๋ฐ˜๋“œ์‹œ ์‹คํ–‰ ์‹œ๊ฐ„ ๋ฉ”๋ชจ๋ฆฌ ํ”„๋กœํŒŒ์ผ๋ง์—์„œ๋„ ์•ˆ์ •์ ์ธ ์„ฑ๋Šฅ์„ ๋ณด์žฅํ•˜์ง€ ์•Š๋Š”๋‹ค๋Š” ์ ์„ ์ง€์ ํ•œ๋‹ค. ๋…ผ๋ฌธ์—์„œ ์ œ์‹œ๋œ ์ฃผ์š” ๊ธฐ์—ฌ ์ค‘ ํ•˜๋‚˜๋Š” Monotonic Peak Profile (MPP) ์™€ Dynamic Time Warping (DTW) ๋ฅผ ํ™œ์šฉํ•œ ์‹คํ–‰ ์‹œ๊ฐ„ ๋ฉ”๋ชจ๋ฆฌ ํ”„๋กœํŒŒ์ผ๋ง ๋ฐฉ๋ฒ•์ด๋‹ค. ์ด ๋ฐฉ๋ฒ•์€ ์• ํ”Œ

Computer Science Software Engineering
Data-Driven Assessment of Concrete Mixture Compositions on Chloride Transport via Standalone Machine Learning Algorithms

Data-Driven Assessment of Concrete Mixture Compositions on Chloride Transport via Standalone Machine Learning Algorithms

์ด ๋…ผ๋ฌธ์€ ์ฝ˜ํฌ๋ฆฌํŠธ ๊ตฌ์กฐ๋ฌผ ๋‚ด์—์„œ ์—ผํ™”๋ฌผ์˜ ์‹œ๊ฐ„ ๊ฒฝ๊ณผ ๋ณ€ํ™”์— ๋ฏธ์น˜๋Š” ํ˜ผํ•ฉ๋ฌผ ์กฐ์„ฑ์˜ ์˜ํ–ฅ์„ ๋ถ„์„ํ•˜๋Š”๋ฐ ์ดˆ์ ์„ ๋งž์ถ”๊ณ  ์žˆ๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ๋‹ค์–‘ํ•œ ๋จธ์‹ ๋Ÿฌ๋‹ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์‚ฌ์šฉํ•˜์—ฌ ๋ฐ์ดํ„ฐ ์ฃผ๋„์  ์ ‘๊ทผ๋ฒ•์„ ์ ์šฉํ•œ๋‹ค. ์—ฐ๊ตฌ ๋ฐฉ๋ฒ•๋ก ์€ ๊ฐ„๋‹จํ•œ ์„ ํ˜• ํšŒ๊ท€, k ์ตœ๊ทผ์ ‘ ์ด์›ƒ ํšŒ๊ท€, ์ปค๋„ ๋ฆฌ์ง€ ํšŒ๊ท€์™€ ๋ณต์žกํ•œ ์„œํฌํŠธ ๋ฒกํ„ฐ ํšŒ๊ท€, ๊ฐ€์šฐ์‹œ์•ˆ ํ”„๋กœ์„ธ์Šค ํšŒ๊ท€, ๋‹ค์ธต ํผ์…‰ํŠธ๋ก (MLP), ๊ฒŒ์ดํŠธ ์ˆœํ™˜ ์œ ๋‹›(GRU)์„ ํฌํ•จํ•œ๋‹ค. ๊ฐ ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ์„ฑ๋Šฅ์€ ๋‹ค์–‘ํ•œ ์ง€ํ‘œ๋ฅผ ํ†ตํ•ด ํ‰๊ฐ€๋˜๋ฉฐ, ํŠนํžˆ GPR ๋ชจ๋ธ์€ ๋ช…ํ™•ํ•˜๊ณ  ์„ค๋ช… ๊ฐ€๋Šฅํ•œ ์ถ”์„ธ๋ฅผ ์ œ๊ณตํ•˜์—ฌ ์ˆจ๊ฒจ์ง„ ์ƒ๊ด€๊ด€๊ณ„๋ฅผ ๋“œ๋Ÿฌ๋‚ด๋Š” ๋ฐ ํšจ๊ณผ

Computer Science Learning Data Machine Learning
No Image

EgoGrasp: World-Space Hand-Object Interaction Estimation from Egocentric Videos

EgoGrasp ๋…ผ๋ฌธ์€ ์ด๋จธ์‹œ๋ธŒ(egocentric) ์˜์ƒ์—์„œ ์„ธ๊ณ„ ์ขŒํ‘œ๊ณ„์˜ ์†โ€‘๋ฌผ์ฒด ์ƒํ˜ธ์ž‘์šฉ์„ ๋ณต์›ํ•œ๋‹ค๋Š” ๋งค์šฐ ์•ผ์‹ฌ์ฐฌ ๋ชฉํ‘œ๋ฅผ ์„ค์ •ํ•œ๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋Š” ํฌ๊ฒŒ ๋‘ ๊ฐ€์ง€ ํ•œ๊ณ„์— ๋ด‰์ฐฉํ•œ๋‹ค. ์ฒซ์งธ, ์ •์  ์ด๋ฏธ์ง€ ๊ธฐ๋ฐ˜ ๋ฐฉ๋ฒ•์€ ์‹œ๊ฐ„์  ์—ฐ์†์„ฑ์„ ํ™œ์šฉํ•˜์ง€ ๋ชปํ•ด ๋™์ ์ธ ์†๋™์ž‘๊ณผ ๋ฌผ์ฒด ๋ณ€ํ™”๋ฅผ ์ •ํ™•ํžˆ ํฌ์ฐฉํ•˜์ง€ ๋ชปํ•œ๋‹ค. ๋‘˜์งธ, ์นด๋ฉ”๋ผ ์ขŒํ‘œ๊ณ„์— ๊ตญํ•œ๋œ ์ ‘๊ทผ๋ฒ•์€ ์ „์—ญ์ ์ธ ์œ„์น˜์™€ ์ž์„ธ ์ •๋ณด๋ฅผ ์ œ๊ณตํ•˜์ง€ ๋ชปํ•œ๋‹ค. ํŠนํžˆ ์ผ์ƒ ์ƒํ™œ์—์„œ ์ดฌ์˜๋˜๋Š” ์ด๋จธ์‹œ๋ธŒ ์˜์ƒ์€ ๊ธ‰๊ฒฉํ•œ ์นด๋ฉ”๋ผ ์›€์ง์ž„, ์กฐ๋ช… ๋ณ€ํ™”, ๊ทธ๋ฆฌ๊ณ  ์†๊ณผ ๋ฌผ์ฒด์˜ ๋นˆ๋ฒˆํ•œ ๊ฐ€๋ฆผ ํ˜„์ƒ์ด ํŠน์ง•์ด๋‹ค. ์ด๋Ÿฌํ•œ ํ™˜๊ฒฝ์—์„œ๋Š” 2D

Computer Vision Computer Science
No Image

Harm in AI-Driven Societies: An Audit of Toxicity Adoption on Chirper.ai

๋ณธ ๋…ผ๋ฌธ์€ AI ๊ธฐ๋ฐ˜ ์†Œ์…œ ์—์ด์ „ํŠธ๊ฐ€ ์˜จ๋ผ์ธ ํ”Œ๋žซํผ์—์„œ ์–ด๋–ป๊ฒŒ ํ–‰๋™ํ•˜๋Š”์ง€์— ๋Œ€ํ•œ ๊นŠ์ด ์žˆ๋Š” ์ดํ•ด๋ฅผ ์ œ๊ณตํ•˜๋ฉฐ, ํŠนํžˆ ๋…์„ฑ ์ฝ˜ํ…์ธ  ์ƒ์„ฑ๊ณผ ๊ด€๋ จ๋œ ๋ฌธ์ œ์ ์„ ์ง‘์ค‘์ ์œผ๋กœ ๋ถ„์„ํ•œ๋‹ค. ์ด ์—ฐ๊ตฌ๋Š” Chirper.ai๋ผ๋Š” ํ”Œ๋žซํผ์„ ํ†ตํ•ด LLM ๊ธฐ๋ฐ˜ ์—์ด์ „ํŠธ์˜ ๋™์ž‘ ํŒจํ„ด์„ ๊ฒฝํ—˜์ ์œผ๋กœ ๊ฐ์‚ฌํ•˜๊ณ , ์ด๋Ÿฌํ•œ ์—์ด์ „ํŠธ๋“ค์ด ์–ด๋–ป๊ฒŒ ๋…์„ฑ์„ ์ƒ์„ฑํ•˜๊ณ  ์ฑ„ํƒํ•˜๋Š”์ง€์— ๋Œ€ํ•œ ์ค‘์š”ํ•œ ํ†ต์ฐฐ๋ ฅ์„ ์ œ๊ณตํ•œ๋‹ค. ๊ธฐ์ˆ ์  ํ˜์‹ ์„ฑ ๋ณธ ๋…ผ๋ฌธ์€ AI ๊ธฐ๋ฐ˜ ์†Œ์…œ ์—์ด์ „ํŠธ์˜ ํ–‰๋™ ์ดํ•ด๋ฅผ ์œ„ํ•œ ์ƒˆ๋กœ์šด ์ ‘๊ทผ๋ฒ•์„ ์ œ์‹œํ•œ๋‹ค. ํŠนํžˆ, Chirper.ai ํ”Œ๋žซํผ์„ ํ™œ์šฉํ•˜์—ฌ LLM ๊ธฐ๋ฐ˜ ์—์ด์ „ํŠธ๊ฐ€ ๋…์„ฑ ์ฝ˜

Computer Science Multiagent Systems
No Image

Improved Object-Centric Diffusion Learning with Registers and Contrastive Alignment

๋ณธ ๋…ผ๋ฌธ์€ ๊ฐ์ฒด ์ค‘์‹ฌ ํ•™์Šต(Object centric Learning, OCL) ๋ถ„์•ผ์—์„œ ์ค‘์š”ํ•œ ๊ธฐ์ˆ ์  ํ˜์‹ ์„ ์ œ์‹œํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. CODA(Contrastive Object centric Diffusion Alignment)๋Š” ์‚ฌ์ „ ํ•™์Šต๋œ ๋””ํ“จ์ „ ๋ชจ๋ธ์„ ํ™œ์šฉํ•˜์—ฌ ์Šฌ๋กฏ ์—ฎ์ž„๊ณผ ์•ฝํ•œ ์ •๋ ฌ์ด๋ผ๋Š” ์ฃผ์š” ๋„์ „ ๊ณผ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๋Š” ์ƒˆ๋กœ์šด ์ ‘๊ทผ ๋ฐฉ์‹์ž…๋‹ˆ๋‹ค. ๊ธฐ์ˆ ์  ํ˜์‹ ์„ฑ: 1. ๋“ฑ๋ก ์Šฌ๋กฏ(Register Slots): ๋“ฑ๋ก ์Šฌ๋กฏ์€ ๋…๋ฆฝ์ ์ธ ์ž…๋ ฅ ๋ฐ์ดํ„ฐ๋กœ ์ถ”๊ฐ€๋˜์–ด ์ž”์—ฌ ์ฃผ์˜๋ฅผ ํก์ˆ˜ํ•˜๊ณ  ๊ฐ์ฒด ์Šฌ๋กฏ ๊ฐ„์˜ ๊ฐ„์„ญ์„ ์ค„์ด๋Š” ์—ญํ• ์„ ํ•ฉ๋‹ˆ๋‹ค. ์ด๋Š” ์Šฌ๋กฏ ์—ฎ์ž„ ๋ฌธ

Computer Science Learning Computer Vision
Learning from Historical Activations in Graph Neural Networks

Learning from Historical Activations in Graph Neural Networks

HISTOGRAPH๋Š” ๊ทธ๋ž˜ํ”„ ์‹ ๊ฒฝ๋ง(GNN) ๋ถ„์•ผ์˜ ์ค‘์š”ํ•œ ๋ฐœ์ „์„ ์ด๋Œ์–ด๋‚ด๋ฉฐ, ํŠนํžˆ ๋…ธ๋“œ ์ž„๋ฒ ๋”ฉ์˜ ์ง„ํ™”์™€ ๊ณต๊ฐ„์  ์ƒํ˜ธ์ž‘์šฉ์„ ๋™์‹œ์— ๋ชจ๋ธ๋งํ•˜๋Š” ๋ฐ ์ค‘์ ์„ ๋‘๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ์ ‘๊ทผ๋ฒ•์€ ๊ธฐ์กด GNN ์•„ํ‚คํ…์ฒ˜๋ฅผ ๊ฐœ์„ ํ•˜๊ณ , ๋‹ค์–‘ํ•œ ๊ทธ๋ž˜ํ”„ ๊ด€๋ จ ์ž‘์—…์—์„œ ์šฐ์ˆ˜ํ•œ ์„ฑ๋Šฅ์„ ๋‹ฌ์„ฑํ•  ์ˆ˜ ์žˆ๋Š” ์ƒˆ๋กœ์šด ๋ฐฉํ–ฅ์„ฑ์„ ์ œ์‹œํ•ฉ๋‹ˆ๋‹ค. ๊ธฐ์ˆ ์  ํ˜์‹ ์„ฑ: HISTOGRAPH์˜ ํ•ต์‹ฌ ํ˜์‹  ์ค‘ ํ•˜๋‚˜๋Š” ์—ญ์‚ฌ์  ํ™œ์„ฑํ™” ์ถ”์  ์ž…๋‹ˆ๋‹ค. ์ด ์ ‘๊ทผ๋ฒ•์€ GNN์ด ๋ฉ”์‹œ์ง€ ์ „๋‹ฌ๊ณผ ์ง‘๊ณ„๋ฅผ ํ†ตํ•ด ๋…ธ๋“œ ์ž„๋ฒ ๋”ฉ์„ ์ƒ์„ฑํ•˜๋Š” ๊ณผ์ •์—์„œ ๋ฐœ์ƒํ•œ ์‹œ๊ฐ„์  ๊ฒฝ๋กœ๋ฅผ ๊ณ ๋ คํ•ฉ๋‹ˆ๋‹ค. ๊ฐ ๋…ธ๋“œ์˜ ์ธต๋ณ„ ํ‘œํ˜„์„ ์‹œํ€€์Šค

Computer Science Network Learning Machine Learning
LLM Collusion

LLM Collusion

๋ณธ ๋…ผ๋ฌธ์€ ์•Œ๊ณ ๋ฆฌ์ฆ˜ ๊ธฐ๋ฐ˜ ๊ฐ€๊ฒฉ ๊ฒฐ์ • ์ฒด๊ณ„์—์„œ ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(LLM)์ด ๋ถˆ๋ฒ•์ ์ธ ๋‹ดํ•ฉ์„ ์œ ๋ฐœํ•  ์ˆ˜ ์žˆ๋Š” ์ž ์žฌ์  ์œ„ํ—˜์— ๋Œ€ํ•ด ๊นŠ์ด ์žˆ๊ฒŒ ๋ถ„์„ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ด ์—ฐ๊ตฌ๋Š” LLM์˜ ๊ณต์œ ๋œ ์ง€์‹ ์ธํ”„๋ผ์™€ ๋ฐ์ดํ„ฐ ์ง‘์  ์ •์ฑ…์ด ์–ด๋–ป๊ฒŒ ์‹œ์žฅ ์ˆ˜์ค€์—์„œ ์กฐ์œจ๋˜์ง€ ์•Š์€ ํ˜‘๋ ฅ์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•˜๋Š”์ง€, ๊ทธ๋ฆฌ๊ณ  ์ด๋Ÿฌํ•œ ๋ฉ”์ปค๋‹ˆ์ฆ˜์€ ์–ด๋–ป๊ฒŒ ์‹ค์ œ ๋น„์ฆˆ๋‹ˆ์Šค ํ™˜๊ฒฝ์—์„œ ์œ„ํ—˜์„ฑ์„ ๋†’์ด๋Š”์ง€๋ฅผ ์„ค๋ช…ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ๊ธฐ์ˆ ์  ํ˜์‹ ์„ฑ ๋ณธ ๋…ผ๋ฌธ์˜ ์ฃผ์š” ๊ธฐ์ˆ ์  ํ˜์‹ ์„ฑ์€ LLM์ด ๊ฐ€๊ฒฉ ์ฑ…์ •์— ํ™œ์šฉ๋  ๋•Œ ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ๋Š” ์ฝœ๋ฃจ์…˜ ์œ„ํ—˜์„ ์ด๋ก ์ ์œผ๋กœ ๋ถ„์„ํ•˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค. ํŠนํžˆ, ๋ณธ ์—ฐ๊ตฌ๋Š” LLM์ด

Economics
Multi-Dimensional Prompt Chaining to Improve Open-Domain Dialogue Generation

Multi-Dimensional Prompt Chaining to Improve Open-Domain Dialogue Generation

๋ณธ ๋…ผ๋ฌธ์€ ์ตœ๊ทผ ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(LLM)์ด ๋Œ€ํ™” ์‹œ์Šคํ…œ์—์„œ ๋ณด์—ฌ์ฃผ๋Š” ๋›ฐ์–ด๋‚œ ์„ฑ๋Šฅ๊ณผ๋Š” ๋‹ฌ๋ฆฌ, ์†Œํ˜• ์–ธ์–ด ๋ชจ๋ธ(SLM)์ด ๊ฐ–๋Š” ๋ฐฐํฌยท์šด์˜์ƒ์˜ ์žฅ์ ์„ ์‚ด๋ฆฌ๋ฉด์„œ๋„ ํ’ˆ์งˆ ๊ฒฉ์ฐจ๋ฅผ ๋ฉ”์šฐ๊ธฐ ์œ„ํ•œ ์‹ค์šฉ์ ์ธ ์ ‘๊ทผ๋ฒ•์„ ์ œ์‹œํ•œ๋‹ค. ํ•ต์‹ฌ ์•„์ด๋””์–ด๋Š” โ€˜ํ”„๋กฌํ”„ํŠธ ์ฒด์ด๋‹(prompt chaining)โ€™์ด๋ผ๋Š” ๊ธฐ๋ฒ•์„ ๋‹ค์ฐจ์›์ ์œผ๋กœ ํ™•์žฅํ•˜์—ฌ, ๊ฐ๊ฐ์˜ ๋Œ€ํ™” ํ’ˆ์งˆ ์š”์†Œ์ธ ์ž์—ฐ์Šค๋Ÿฌ์›€(Naturalness), ์ผ๊ด€์„ฑ(Coherence), ํฅ๋ฏธ์„ฑ(Engagingness)์„ ๋…๋ฆฝ์ ์œผ๋กœ ๊ฐ•ํ™”ํ•˜๊ณ , ์ตœ์ข… ์‘๋‹ต์—์„œ ์ด๋“ค์„ ์กฐํ™”๋กญ๊ฒŒ ๊ฒฐํ•ฉํ•˜๋„๋ก ์„ค๊ณ„ํ•œ ๊ฒƒ์ด๋‹ค. 1. ํ”„๋ ˆ์ž„์›Œํฌ ์„ค๊ณ„ N

Computer Science NLP
RovoDev Code Reviewer: A Large-Scale Online Evaluation of LLM-based Code Review Automation at Atlassian

RovoDev Code Reviewer: A Large-Scale Online Evaluation of LLM-based Code Review Automation at Atlassian

RovoDev ์ฝ”๋“œ ๋ฆฌ๋ทฐ์–ด๋Š” LLM ๊ธฐ๋ฐ˜์˜ ์ฝ”๋“œ ๊ฒ€ํ†  ์ž๋™ํ™” ๋„๊ตฌ๋กœ์„œ, ํ˜„๋Œ€ ์†Œํ”„ํŠธ์›จ์–ด ๊ฐœ๋ฐœ ํ”„๋กœ์„ธ์Šค์—์„œ ์ค‘์š”ํ•œ ์—ญํ• ์„ ์ˆ˜ํ–‰ํ•œ๋‹ค. ์ด ๋…ผ๋ฌธ์€ RovoDev์ด ์–ด๋–ป๊ฒŒ ๋ฐ์ดํ„ฐ ํ”„๋ผ์ด๋ฒ„์‹œ์™€ ๋ณด์•ˆ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ณ , ๋ฆฌ๋ทฐ ๊ฐ€์ด๋“œ๋ผ์ธ์— ๋”ฐ๋ฅธ ์ •ํ™•ํ•œ ์ฝ”๋“œ ๊ฒ€ํ† ๋ฅผ ์ œ๊ณตํ•˜๋ฉฐ, ์ƒˆ๋กœ์šด ํ”„๋กœ์ ํŠธ์—์„œ๋„ ํšจ๊ณผ์ ์œผ๋กœ ์ž‘๋™ํ•˜๋Š”์ง€ ์„ค๋ช…ํ•œ๋‹ค. ๊ธฐ์ˆ ์  ํ˜์‹ ์„ฑ: RovoDev์˜ ํ•ต์‹ฌ ๊ธฐ์ˆ ์€ ์ œ๋กœ์ƒท ์ปจํ…์ŠคํŠธ ์ธ์‹ ๋ฆฌ๋ทฐ ๋Œ“๊ธ€ ์ƒ์„ฑ, ์‚ฌ์‹ค์  ์ •ํ™•์„ฑ ํ’ˆ์งˆ ๊ฒ€์‚ฌ, ๊ทธ๋ฆฌ๊ณ  ํ–‰๋™์„ฑ ํ’ˆ์งˆ ๊ฒ€์‚ฌ๋ฅผ ํ†ตํ•œ ์œ ํšจํ•˜๊ณ  ํ–‰๋™ ๊ฐ€๋Šฅํ•œ ๋ฆฌ๋ทฐ ๋Œ“๊ธ€ ์ถ”์ฒœ์ด๋‹ค. ์ด ์ค‘ ํŠนํžˆ ์ œ๋กœ์ƒท ์ ‘๊ทผ ๋ฐฉ์‹์€ ๊ณ ๊ฐ

Computer Science Software Engineering
No Image

Warp-Cortex: An Asynchronous, Memory-Efficient Architecture for Million-Agent Cognitive Scaling on Consumer Hardware

๋ณธ ๋…ผ๋ฌธ์€ ์›Œํ”„ ์ฝ”๋ฅดํ…์Šค ์•„ํ‚คํ…์ฒ˜๋ฅผ ํ†ตํ•ด ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(LLM)์˜ ๋ณ‘๋ ฌ ์ถ”๋ก  ๋Šฅ๋ ฅ์„ ํฌ๊ฒŒ ํ–ฅ์ƒ์‹œํ‚ค๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์‹œํ•œ๋‹ค. ์ด ์•„ํ‚คํ…์ฒ˜๋Š” ์—์ด์ „ํŠธ๊ฐ€ ๋…๋ฆฝ์ ์ธ ํ”„๋กœ์„ธ์Šค๊ฐ€ ์•„๋‹Œ ๋น„๋™๊ธฐ ์Šค๋ ˆ๋“œ๋กœ์„œ ๋™์ž‘ํ•˜๋„๋ก ์„ค๊ณ„๋˜์–ด, ๊ฐ€์ค‘์น˜์™€ ์ปจํ…์ŠคํŠธ ๋ฉ”๋ชจ๋ฆฌ์˜ ๋ณต์žก๋„๋ฅผ ํฌ๊ฒŒ ์ค„์ธ๋‹ค. ํŠนํžˆ, ํ† ํด๋กœ์ง€ ๋ฐ์ดํ„ฐ ๋ถ„์„(TDA)์—์„œ ์œ ๋ž˜ํ•œ ํ•˜์ด๋ธŒ๋ฆฌ๋“œ ๋žœ๋“œ๋งˆํฌ ๊ธฐ๋ฒ•์„ ํ†ตํ•ด KV ์บ์‹œ๋ฅผ ์  ํด๋ผ์šฐ๋“œ๋กœ ์ทจ๊ธ‰ํ•˜๊ณ , ์ฆ์ธ ๋ณต์žก์ฒด์— ์˜๊ฐ์„ ๋ฐ›์€ ํฌ๋ฐ•ํ™” ๋ฐฉ๋ฒ•์„ ์ ์šฉํ•˜์—ฌ ์ปจํ…์ŠคํŠธ์˜ ์ง€์†์  ํ˜ธ๋ชจ๋กœ์ง€ ํŠน์„ฑ์„ ์œ ์ง€ํ•˜๋ฉด์„œ ๋ฉ”๋ชจ๋ฆฌ ์‚ฌ์šฉ๋Ÿ‰์„ ํฌ๊ฒŒ ์ค„์ผ ์ˆ˜ ์žˆ๋‹ค. ๋…ผ๋ฌธ์—์„œ ์ œ์‹œ๋œ ์›Œํ”„ ์ฝ”๋ฅดํ…

Machine Learning Computer Science
No Image

A Comprehensive Dataset for Human vs. AI Generated Image Detection

๋ณธ ๋…ผ๋ฌธ์ด ์ œ์‹œํ•˜๋Š” MS COCOAI ๋ฐ์ดํ„ฐ์…‹์€ ํ˜„์žฌ ์ด๋ฏธ์ง€ ์ง„์œ„ ํƒ์ง€ ์—ฐ๊ตฌ์—์„œ ๊ฐ€์žฅ ์‹œ๊ธ‰ํžˆ ์š”๊ตฌ๋˜๋Š” โ€˜๋‹ค์–‘์„ฑโ€™๊ณผ โ€˜๊ทœ๋ชจโ€™๋ฅผ ๋™์‹œ์— ๋งŒ์กฑํ•œ๋‹ค๋Š” ์ ์—์„œ ํฐ ์˜๋ฏธ๋ฅผ ๊ฐ€์ง„๋‹ค. ์ฒซ์งธ, ๊ธฐ์กด ๋ฐ์ดํ„ฐ์…‹๋“ค์€ ์ฃผ๋กœ ๋‹จ์ผ ์ƒ์„ฑ ๋ชจ๋ธ์ด๋‚˜ ์ œํ•œ๋œ ํ”„๋กฌํ”„ํŠธ ์„ธํŠธ๋ฅผ ์‚ฌ์šฉํ•ด ๋งŒ๋“  ์ด๋ฏธ์ง€์— ๊ตญํ•œ๋ผ ์žˆ์—ˆ์œผ๋ฉฐ, ์ด๋Š” ์‹ค์ œ ํ˜„์žฅ์—์„œ ๋งˆ์ฃผ์น˜๋Š” ๋‹ค์–‘ํ•œ AI ํˆด๊ณผ์˜ ๊ฒฉ์ฐจ๋ฅผ ์ดˆ๋ž˜ํ•œ๋‹ค. ๋ฐ˜๋ฉด ๋ณธ ๋ฐ์ดํ„ฐ์…‹์€ Stable Diffusion 3ยท2.1ยทSDXL, DALLโ€‘E 3, MidJourney v6 ๋“ฑ ์ตœ์‹  ๋ชจ๋ธ์„ ๋ชจ๋‘ ํฌํ•จํ•จ์œผ๋กœ์จ, ํ˜„์žฌ ์‹œ์žฅ์—์„œ ๋„๋ฆฌ ์‚ฌ์šฉ๋˜๋Š” ์ฃผ์š” ์ƒ์„ฑ

Computer Vision Computer Science Data Detection
No Image

CoCo-Fed: A Unified Framework for Memory- and Communication-Efficient Federated Learning at the Wireless Edge

CoCoโ€‘Fed๊ฐ€ ์ œ์‹œํ•˜๋Š” ๋‘ ๊ฐ€์ง€ ํ•ต์‹ฌ ํ˜์‹ ์€ โ€˜์ด์ค‘ ์ฐจ์› ๋‹ค์šดํ”„๋กœ์ ์…˜โ€™๊ณผ โ€˜์ง๊ต ๋ถ€๋ถ„๊ณต๊ฐ„ ์ดˆ์ค‘์ฒฉ ์ „์†กโ€™์ด๋‹ค. ์ฒซ ๋ฒˆ์งธ ๋‹จ๊ณ„์—์„œ๋Š” ๊ธฐ์กด ์—ฐํ•ฉ ํ•™์Šต์—์„œ ๊ฐ gNB๊ฐ€ ์ „์ฒด ๋ชจ๋ธ ํŒŒ๋ผ๋ฏธํ„ฐ์— ๋Œ€ํ•œ ๊ทธ๋ž˜๋””์–ธํŠธ๋ฅผ ์ €์žฅยท์ „์†กํ•ด์•ผ ํ•˜๋Š” ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•œ๋‹ค. ์ €์ž๋“ค์€ ๊ทธ๋ž˜๋””์–ธํŠธ๋ฅผ ๋จผ์ € ์ฑ„๋„ ์ฐจ์›(์˜ˆ: ์ž…๋ ฅ ํ”ผ์ฒ˜)๊ณผ ๋ชจ๋ธ ์ฐจ์›(์˜ˆ: ์ถœ๋ ฅ ํ”ผ์ฒ˜) ๋‘ ์ถ•์—์„œ ๊ฐ๊ฐ ์ €โ€‘๋žญํฌ ํ–‰๋ ฌ๋กœ ๊ทผ์‚ฌํ•œ๋‹ค. ์ด๋•Œ ์‚ฌ์šฉ๋˜๋Š” ํˆฌ์‚ฌ ํ–‰๋ ฌ์€ ์‚ฌ์ „์— ํ•™์Šต๋œ ๊ณ ์ • ์ •๊ทœ ์ง๊ต ํ–‰๋ ฌ์ด๊ฑฐ๋‚˜, ๊ฐ ๋ผ์šด๋“œ๋งˆ๋‹ค ๋žœ๋คํ•˜๊ฒŒ ์ƒ์„ฑ๋œ ์Šค์ผ€์น˜ ํ–‰๋ ฌ์ผ ์ˆ˜ ์žˆ๋‹ค. ์ด๋ ‡๊ฒŒ ํ•˜๋ฉด ๋ฉ”๋ชจ๋ฆฌ ์š”๊ตฌ๋Ÿ‰์ด O(rankยท

Computer Science Learning Information Theory Framework
Detecting Performance Degradation under Data Shift in Pathology Vision-Language Model

Detecting Performance Degradation under Data Shift in Pathology Vision-Language Model

๋ณธ ๋…ผ๋ฌธ์€ ์ตœ๊ทผ ์˜๋ฃŒ ์˜์ƒ ๋ถ„์•ผ์—์„œ ๊ฐ๊ด‘๋ฐ›๊ณ  ์žˆ๋Š” ๋น„์ „โ€‘์–ธ์–ด ๋ชจ๋ธ(VLM)์˜ ์‹ค์ œ ์šด์˜ ๋‹จ๊ณ„์—์„œ ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ๋Š” โ€˜๋ฐ์ดํ„ฐ ์‹œํ”„ํŠธ(data shift)โ€™ ๋ฌธ์ œ์— ์ดˆ์ ์„ ๋งž์ถ”์—ˆ๋‹ค. ๋ฐ์ดํ„ฐ ์‹œํ”„ํŠธ๋Š” ํฌ๊ฒŒ ๋‘ ๊ฐ€์ง€ ์ฐจ์›์œผ๋กœ ๋‚˜๋‰œ๋‹ค. ์ฒซ ๋ฒˆ์งธ๋Š” ์ž…๋ ฅ ๋ฐ์ดํ„ฐ ์ž์ฒด๊ฐ€ ํ›ˆ๋ จ ์‹œ์™€ ๋‹ค๋ฅธ ๋ถ„ํฌ๋ฅผ ๋ณด์ด๋Š” ๊ฒฝ์šฐ์ด๋ฉฐ, ๋‘ ๋ฒˆ์งธ๋Š” ๋ชจ๋ธ์ด ์ถœ๋ ฅํ•˜๋Š” ์˜ˆ์ธก๊ฐ’์ด๋‚˜ ์‹ ๋ขฐ๋„(confidence)๊ฐ€ ๋ณ€ํ•˜๋Š” ๊ฒฝ์šฐ์ด๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค์€ ์ฃผ๋กœ ์ž…๋ ฅ ์ฐจ์›์˜ ํ†ต๊ณ„์  ๋ณ€ํ™”๋ฅผ ํƒ์ง€ํ•˜๋Š” ๋ฐฉ๋ฒ•์— ์˜์กดํ–ˆ์ง€๋งŒ, ์ด๋Ÿฌํ•œ ๋ณ€๋™์ด ๋ฐ˜๋“œ์‹œ ๋ชจ๋ธ ์„ฑ๋Šฅ ์ €ํ•˜์™€ ์ง๊ฒฐ๋˜์ง€ ์•Š๋Š”๋‹ค๋Š” ์ ์„ ๊ฐ„๊ณผํ•˜๊ณ  ์žˆ์—ˆ๋‹ค.

Computer Science Model Data Computer Vision
ElecTwit: A Framework for Studying Persuasion in Multi-Agent Social Systems

ElecTwit: A Framework for Studying Persuasion in Multi-Agent Social Systems

ElecTwit์ด ์ œ์‹œํ•˜๋Š” ๊ฐ€์žฅ ํฐ ํ˜์‹ ์€ ์„ค๋“ ์—ฐ๊ตฌ๋ฅผ ์œ„ํ•œ ์‹คํ—˜ ํ™˜๊ฒฝ์„ โ€˜๊ฒŒ์ž„โ€™์ด๋ผ๋Š” ์ธ์œ„์  ์„ค์ •์—์„œ ๋ฒ—์–ด๋‚˜ ์‹ค์ œ ์†Œ์…œ ๋ฏธ๋””์–ด ํ”Œ๋žซํผ์˜ ๊ตฌ์กฐ์™€ ํ–‰ํƒœ๋ฅผ ๋ชจ์‚ฌํ•œ ์ ์ด๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ์ €์ž๋“ค์€ ํŠธ์œ„ํ„ฐ์™€ ์œ ์‚ฌํ•œ ๊ฒŒ์‹œยท๋ฆฌํŠธ์œ—ยทํŒ”๋กœ์šฐ ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ๊ตฌํ˜„ํ•˜๊ณ , ์ •์น˜์  ์„ ๊ฑฐ๋ผ๋Š” ๊ตฌ์ฒด์  ์‹œ๋‚˜๋ฆฌ์˜ค๋ฅผ ์„ค์ •ํ•จ์œผ๋กœ์จ ์—์ด์ „ํŠธ ๊ฐ„์˜ ์ •๋ณด ํ๋ฆ„, ์˜๊ฒฌ ํ˜•์„ฑ, ๊ทธ๋ฆฌ๊ณ  ์„ค๋“ ์ „๋žต์˜ ์ „๊ฐœ ๊ณผ์ •์„ ์ •๋ฐ€ํ•˜๊ฒŒ ๊ด€์ฐฐํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ํŠนํžˆ 25๊ฐ€์ง€ ์„ค๋“ ๊ธฐ๋ฒ•์„ ์‚ฌ์ „ ์ •์˜ํ•˜๊ณ , ๊ฐ LLM์ด ์ด๋ฅผ ์–ด๋–ป๊ฒŒ ์„ ํƒยท์กฐํ•ฉํ•˜๋Š”์ง€๋ฅผ ์ •๋Ÿ‰ํ™”ํ•œ ๋ฐฉ๋ฒ•๋ก ์€ ์„ค๋“ ๊ธฐ์ˆ ์˜ โ€˜๋ ˆ์‹œํ”ผโ€™๋ฅผ ๋น„๊ต ๋ถ„์„ํ•˜๋Š” ๋ฐ

Computer Science Artificial Intelligence Framework System
No Image

LLM Agents for Combinatorial Efficient Frontiers: Investment Portfolio Optimization

๋ณธ ๋…ผ๋ฌธ์€ ์–ธ์–ด ๋ชจ๋ธ(LLM)์„ ํ™œ์šฉํ•œ ์—์ด์ „ํŠธ ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ํ†ตํ•ด ๋ณต์žกํ•œ ์กฐํ•ฉ ์ตœ์ ํ™” ๋ฌธ์ œ์— ์ƒˆ๋กœ์šด ์ ‘๊ทผ ๋ฐฉ์‹์„ ์ œ์‹œํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ด ์—ฐ๊ตฌ์˜ ํ•ต์‹ฌ ๊ฐ€์น˜๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์€ ๊ธฐ์ˆ ์  ํ˜์‹ ์„ฑ, ๋ฐฉ๋ฒ•๋ก , ์‹คํ—˜ ๊ฒฐ๊ณผ๋ฅผ ํ†ตํ•ด ๋ถ„์„ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. 1. ๊ธฐ์ˆ ์  ํ˜์‹ ์„ฑ: ๋ณธ ๋…ผ๋ฌธ์€ LLM์„ ํ™œ์šฉํ•œ ์—์ด์ „ํŠธ ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์‹œํ•จ์œผ๋กœ์จ, ๊ธฐ์กด์˜ ํ•™๋ฌธ์ ์ธ ์ตœ์ ํ™” ์ ‘๊ทผ๋ฒ•์—์„œ ๋ฒ—์–ด๋‚˜ ์‹ค์ œ ์ƒํ™œ ๋ฌธ์ œ์— ์ดˆ์ ์„ ๋งž์ถ”๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ํŠนํžˆ, NPhardํ•œ ์กฐํ•ฉ ์ตœ์ ํ™” ๋ฌธ์ œ ํ•ด๊ฒฐ์— ์žˆ์–ด LLM์„ ํ™œ์šฉํ•˜๋Š” ๊ฒƒ์€ ์ด์ „ ์—ฐ๊ตฌ์—์„œ๋Š” ์ฐพ์•„๋ณด๊ธฐ ์–ด๋ ค์šด ํ˜์‹ ์ ์ธ ์‹œ๋„์ž…๋‹ˆ๋‹ค. MOCO

Computer Science Computational Engineering
LOFA: Online Influence Maximization under Full-Bandit Feedback using Lazy Forward Selection

LOFA: Online Influence Maximization under Full-Bandit Feedback using Lazy Forward Selection

๋ณธ ๋…ผ๋ฌธ์ด ๋‹ค๋ฃจ๋Š” ์˜จ๋ผ์ธ ์˜ํ–ฅ๋ ฅ ์ตœ๋Œ€ํ™”(Online Influence Maximization, OIM) ๋ฌธ์ œ๋Š” ์ „ํ†ต์ ์ธ ์ •์  IM๊ณผ ๋‹ฌ๋ฆฌ ์‹œ๊ฐ„์— ๋”ฐ๋ผ ์‹œ๋“œ ์ง‘ํ•ฉ์„ ๋™์ ์œผ๋กœ ์„ ํƒํ•ด์•ผ ํ•˜๋Š” ์ƒํ™ฉ์„ ์ „์ œ๋กœ ํ•œ๋‹ค. ์—ฌ๊ธฐ์„œ โ€˜์ „์ฒด ๋ฐด๋”ง(fullโ€‘bandit) ํ”ผ๋“œ๋ฐฑโ€™์ด๋ผ๋Š” ๊ฐ€์ •์€ ์—์ด์ „ํŠธ๊ฐ€ ๋งค ๋ผ์šด๋“œ๋งˆ๋‹ค ์„ ํƒํ•œ ์‹œ๋“œ ์ง‘ํ•ฉ์— ์˜ํ•ด ์‹ค์ œ๋กœ ๋ฐœ์ƒํ•œ ํ™•์‚ฐ ๊ทœ๋ชจ(์ฆ‰, ์ „์ฒด ํ™œ์„ฑํ™”๋œ ๋…ธ๋“œ ์ˆ˜)๋งŒ์„ ๊ด€์ฐฐํ•œ๋‹ค๋Š” ์˜๋ฏธ์ด๋ฉฐ, ์ด๋Š” ๊ฐ ๋…ธ๋“œ๋ณ„ ํ™œ์„ฑํ™” ์—ฌ๋ถ€๋‚˜ ๋„คํŠธ์›Œํฌ์˜ ์ธ์ ‘ ํ–‰๋ ฌ ๋“ฑ ์ถ”๊ฐ€์ ์ธ ๊ตฌ์กฐ์  ์ •๋ณด๋ฅผ ์ „ํ˜€ ์ œ๊ณตํ•˜์ง€ ์•Š๋Š”๋‹ค. ์ด๋Ÿฌํ•œ ์ œํ•œ๋œ ํ”ผ๋“œ๋ฐฑ ํ™˜๊ฒฝ์—์„œ๋Š”

Machine Learning Computer Science
Measuring Social Media Polarization Using Large Language Models and Heuristic Rules

Measuring Social Media Polarization Using Large Language Models and Heuristic Rules

์ด ๋…ผ๋ฌธ์€ ๊ธฐ์กด ๊ฐ์„ฑ ๋ถ„์„์ด๋‚˜ ์‚ฌ์ „ ํ•™์Šต๋œ ๋ถ„๋ฅ˜๊ธฐ ์ค‘์‹ฌ์˜ ์–‘๊ทนํ™” ์—ฐ๊ตฌ์™€ ์ฐจ๋ณ„ํ™”๋˜๋Š” ๋‘ ๊ฐ€์ง€ ํ•ต์‹ฌ ์š”์†Œ๋ฅผ ์ œ์‹œํ•œ๋‹ค. ์ฒซ์งธ, ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ์„ ํ™œ์šฉํ•ด ํ…์ŠคํŠธ์—์„œ โ€˜์ž…์žฅ(stance)โ€™, โ€˜๊ฐ์ •์  ์–ด์กฐ(affective tone)โ€™, โ€˜๋™์˜ยท๋ฐ˜๋Œ€ ํŒจํ„ด(agreement dynamics)โ€™์„ ๋‹ค์ธต์ ์œผ๋กœ ์ถ”์ถœํ•œ๋‹ค๋Š” ์ ์ด๋‹ค. ๊ธฐ์กด ๋ฐฉ๋ฒ•์€ ์ฃผ๋กœ ๋‹จ์ผ ์ฐจ์›์˜ ๊ฐ์„ฑ ์ ์ˆ˜(๊ธ์ •/๋ถ€์ •) ํ˜น์€ ์‚ฌ์ „ ์ •์˜๋œ ๋ ˆ์ด๋ธ”(์ฐฌ์„ฑ/๋ฐ˜๋Œ€)๋งŒ์„ ์ œ๊ณตํ–ˆ์ง€๋งŒ, LLM์€ ๋ฌธ๋งฅ์„ ๊ณ ๋ คํ•ด ๋ฏธ๋ฌ˜ํ•œ ์ž…์žฅ ๋ณ€ํ™”๋ฅผ ํฌ์ฐฉํ•˜๊ณ , ๊ฐ์ •์˜ ๊ฐ•๋„์™€ ์œ ํ˜•(๋ถ„๋…ธ, ์Šฌํ””, ํ˜์˜ค ๋“ฑ)๊นŒ์ง€ ์„ธ๋ถ„ํ™”ํ•œ๋‹ค.

Computer Science Social Networks Model
Optimizing LSTM Neural Networks for Resource-Constrained Retail Sales Forecasting: A Model Compression Study

Optimizing LSTM Neural Networks for Resource-Constrained Retail Sales Forecasting: A Model Compression Study

์ด ๋…ผ๋ฌธ์€ ์†Œ๋งค ํŒ๋งค ์˜ˆ์ธก ๋ถ„์•ผ์—์„œ LSTM ๋„คํŠธ์›Œํฌ์˜ ํšจ์œจ์„ฑ๊ณผ ์ •ํ™•์„ฑ์„ ๊ทน๋Œ€ํ™”ํ•˜๋Š” ๋ฐฉ๋ฒ•์— ๋Œ€ํ•ด ๊นŠ์ด ์žˆ๊ฒŒ ํƒ๊ตฌํ•˜๊ณ  ์žˆ๋‹ค. ํŠนํžˆ, ์ด ์—ฐ๊ตฌ๋Š” ์ž์› ์ œ์•ฝ์„ ๊ฐ€์ง„ ์†Œ๊ทœ๋ชจ ๋ฐ ์ค‘์†Œ ๊ทœ๋ชจ ๋งค์žฅ์—์„œ๋„ ํšจ๊ณผ์ ์ธ AI ๊ธฐ๋ฐ˜ ์˜ˆ์ธก ์‹œ์Šคํ…œ์„ ๊ตฌ์ถ•ํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•˜๋Š” ๋ชจ๋ธ ์••์ถ• ๊ธฐ๋ฒ•์˜ ์ค‘์š”์„ฑ์„ ๊ฐ•์กฐํ•œ๋‹ค. ๊ธฐ์ˆ ์  ํ˜์‹ ์„ฑ ์ด ๋…ผ๋ฌธ์€ LSTM ๋„คํŠธ์›Œํฌ๋ฅผ ์••์ถ•ํ•˜๋Š” ๋‹ค์–‘ํ•œ ๋ฐฉ๋ฒ•๋ก ์„ ์ฒด๊ณ„์ ์œผ๋กœ ํ‰๊ฐ€ํ•˜๊ณ , ํŠนํžˆ 64๊ฐœ ์€๋‹‰ ์œ ๋‹›์„ ๊ฐ€์ง„ ๋ชจ๋ธ์ด ๊ฐ€์žฅ ๋†’์€ ์˜ˆ์ธก ์ •ํ™•๋„๋ฅผ ๋ณด์ด๋Š” ๊ฒƒ์„ ๋ฐœ๊ฒฌํ–ˆ๋‹ค. ์ด๋Š” ํ‘œ์ค€ LSTM(128๊ฐœ ์€๋‹‰ ์œ ๋‹›)๋ณด๋‹ค ๋ฉ”๋ชจ๋ฆฌ ์‚ฌ์šฉ๋Ÿ‰์„ ์ค„์ด๊ณ  ์ถ”๋ก 

Computer Science Network Machine Learning Model
Scale-aware Adaptive Supervised Network with Limited Medical Annotations

Scale-aware Adaptive Supervised Network with Limited Medical Annotations

SASNet์€ ์˜๋ฃŒ ์˜์ƒ ๋ถ„์•ผ์—์„œ ํ”ํžˆ ๋งˆ์ฃผ์น˜๋Š” ๋ผ๋ฒจ๋ง ๋น„์šฉ์˜ ์ œ์•ฝ์„ ๊ทน๋ณตํ•˜๊ณ ์ž ์„ค๊ณ„๋œ ๋ฐ˜์ง€๋„ ํ•™์Šต ํ”„๋ ˆ์ž„์›Œํฌ์ด๋‹ค. ๊ธฐ์กด์˜ ๋ฐ˜์ง€๋„ ์„ธ๊ทธ๋ฉ˜ํ…Œ์ด์…˜ ๋ฐฉ๋ฒ•๋“ค์€ ์ฃผ๋กœ ๋‹จ์ผ ์Šค์ผ€์ผ์˜ ํŠน์ง•์„ ํ™œ์šฉํ•˜๊ฑฐ๋‚˜, ๋ผ๋ฒจ์ด ์—†๋Š” ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•ด ๋‹จ์ˆœํžˆ ์ผ๊ด€์„ฑ ์†์‹ค์„ ์ ์šฉํ•˜๋Š” ๋ฐ ๊ทธ์ณค๋‹ค. ์ด๋Ÿฌํ•œ ์ ‘๊ทผ๋ฒ•์€ ๋ณต์žกํ•œ ํ•ด๋ถ€ํ•™์  ๊ตฌ์กฐ๋ฅผ ๋‹ค์–‘ํ•œ ํ•ด์ƒ๋„์—์„œ ํฌ์ฐฉํ•˜๊ธฐ ์–ด๋ ค์›Œ, ํŠนํžˆ ์ž‘์€ ๋ณ‘๋ณ€์ด๋‚˜ ๊ฒฝ๊ณ„๊ฐ€ ํ๋ฆฟํ•œ ์˜์—ญ์—์„œ ์„ฑ๋Šฅ ์ €ํ•˜๋ฅผ ๋ณด์ธ๋‹ค. SASNet์€ ๋‘ ๊ฐœ์˜ ๋ณ‘๋ ฌ ๋ธŒ๋žœ์น˜๋ฅผ ๊ฐ–๋Š”๋‹ค. ํ•˜๋‚˜๋Š” ๋ผ๋ฒจ์ด ์ถฉ๋ถ„ํžˆ ์ œ๊ณต๋œ ์†Œ๋Ÿ‰์˜ ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•ด ์ „ํ†ต์ ์ธ ์ง€๋„ ํ•™์Šต์„ ์ˆ˜ํ–‰ํ•˜๊ณ , ๋‹ค๋ฅธ ํ•˜

Image Processing Network Electrical Engineering and Systems Science
No Image

The Illusion of Insight in Reasoning Models

์ด ๋…ผ๋ฌธ์€ ์ตœ๊ทผ AI ์ปค๋ฎค๋‹ˆํ‹ฐ์—์„œ ํ™”์ œ๊ฐ€ ๋œ โ€œ์ถ”๋ก  ์ค‘ โ€˜์•„ํ•˜!โ€™ ์ˆœ๊ฐ„โ€์ด๋ผ๋Š” ํ˜„์ƒ์„ ๊ณผํ•™์ ์œผ๋กœ ๊ฒ€์ฆํ•˜๋ ค๋Š” ์‹œ๋„์ด๋‹ค. ์ €์ž๋“ค์€ ๋จผ์ € ๊ธฐ์กด ์—ฐ๊ตฌ๊ฐ€ ์ œ์‹œํ•œ ์‚ฌ๋ก€, ์ฆ‰ DeepSeekโ€‘R1โ€‘Zero๊ฐ€ ์ค‘๊ฐ„ ๋‹จ๊ณ„์—์„œ ๊ฐ‘์ž‘์Šค๋Ÿฌ์šด ์ „๋žต ์ „ํ™˜์„ ๋ณด์ด๋ฉฐ ์ •๋‹ต์„ ๋„์ถœํ•œ๋‹ค๋Š” ์ฃผ์žฅ์„ ์žฌํ˜„ํ•˜๋ ค ํ–ˆ๋‹ค. ์ด๋ฅผ ์œ„ํ•ด 1๋ฐฑ๋งŒ ๊ฐœ๊ฐ€ ๋„˜๋Š” ์ถ”๋ก  ํŠธ๋ ˆ์ด์Šค๋ฅผ ์ˆ˜์ง‘ํ•˜๊ณ , ๊ฐ ํŠธ๋ ˆ์ด์Šค์—์„œ ํ† ํฐ ์ˆ˜์ค€์˜ ํ™•๋ฅ  ๋ณ€ํ™”, ๋‚ด๋ถ€ ํ‘œํ˜„์˜ ๋ณ€๋™, ๊ทธ๋ฆฌ๊ณ  ์ถœ๋ ฅ ์ •ํ™•๋„๋ฅผ ๋™์‹œ์— ๊ธฐ๋กํ–ˆ๋‹ค. ๋ถ„์„ ๋Œ€์ƒ์€ ์ž์—ฐ์–ด ์งˆ๋ฌธโ€‘๋‹ต๋ณ€, ์ˆ˜ํ•™ ๋ฌธ์ œ ํ’€์ด, ์ฝ”๋”ฉ ์ƒ์„ฑ์ด๋ผ๋Š” ์„ธ ๊ฐ€์ง€ ๋„๋ฉ”์ธ์œผ๋กœ, ๊ฐ๊ฐ์˜ ๋„๋ฉ”์ธ

Computer Science Artificial Intelligence Model
VEAT Quantifies Implicit Associations in Text-to-Video Generator Sora and Reveals Challenges in Bias Mitigation

VEAT Quantifies Implicit Associations in Text-to-Video Generator Sora and Reveals Challenges in Bias Mitigation

๋ณธ ๋…ผ๋ฌธ์€ ํ…์ŠคํŠธํˆฌ๋น„๋””์˜ค ์ƒ์„ฑ ๋ชจ๋ธ์ด ์‚ฌํšŒ์  ํŽธํ–ฅ์„ ์–ด๋–ป๊ฒŒ ๋‚ด์žฌํ•˜๊ณ  ์žฌ์ƒ์‚ฐํ•˜๋Š”์ง€๋ฅผ ์ •๋Ÿ‰์ ์œผ๋กœ ๋ฐํžˆ๋ ค๋Š” ์‹œ๋„๋กœ, ๊ธฐ์กด์˜ Implicit Association Test(IAT)์™€ ์ด๋ฏธ์ง€ ๊ธฐ๋ฐ˜ ์—ฐ๊ด€์„ฑ ํ…Œ์ŠคํŠธ๋ฅผ ๋น„๋””์˜ค ์ž„๋ฒ ๋”ฉ์— ์ ์šฉํ•œ ์ ์—์„œ ํ•™์ˆ ์  ์˜์˜๊ฐ€ ํฌ๋‹ค. VEAT๋Š” ๋น„๋””์˜ค ํ”„๋ ˆ์ž„๋“ค์˜ ์‹œ๊ฐยท์Œํ–ฅ ํŠน์ง•์„ ๊ณ ์ฐจ์› ์ž„๋ฒ ๋”ฉ ๊ณต๊ฐ„์— ๋งคํ•‘ํ•œ ๋’ค, ๋ชฉํ‘œ ์ง‘๋‹จ(์˜ˆ: ์•„ํ”„๋ฆฌ์นด๊ณ„ ๋ฏธ๊ตญ์ธ, ์œ ๋Ÿฝ๊ณ„ ๋ฏธ๊ตญ์ธ)๊ณผ ์†์„ฑ(pleasant, unpleasant) ์‚ฌ์ด์˜ ๊ฑฐ๋ฆฌ ์ฐจ์ด๋ฅผ ํšจ๊ณผํฌ๊ธฐ(d)๋กœ ์ธก์ •ํ•œ๋‹ค. SCโ€‘VEAT๋Š” ๋‹จ์ผ ์นดํ…Œ๊ณ ๋ฆฌ(์˜ˆ: ํŠน์ • ์ง์—…)์™€ ๋‘ ์ง‘

Computers and Society Computer Science
An AI Monkey Gets Grapes for Sure -- Sphere Neural Networks for Reliable Decision-Making

An AI Monkey Gets Grapes for Sure -- Sphere Neural Networks for Reliable Decision-Making

๋ณธ ์—ฐ๊ตฌ๋Š” ํ˜„์žฌ ์ธ๊ณต์ง€๋Šฅ ์ถ”๋ก  ๋ถ„์•ผ์—์„œ ๊ฐ€์žฅ ๋…ผ์Ÿ์ด ๋˜๋Š” ์„ธ ๊ฐ€์ง€ ์ ‘๊ทผ๋ฒ•์„ ์ฒด๊ณ„์ ์œผ๋กœ ๋น„๊ตํ•จ์œผ๋กœ์จ, โ€œ์‹ ๋ขฐ์„ฑโ€์ด๋ผ๋Š” ๊ด€์ ์—์„œ ์ค‘์š”ํ•œ ํ†ต์ฐฐ์„ ์ œ๊ณตํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ ๋ฒ”์ฃผ์ธ ๋Œ€๊ทœ๋ชจ ์–ธ์–ด ๋ชจ๋ธ(LLM) ๊ธฐ๋ฐ˜ ์ถ”๋ก ์€ ๋ฐฉ๋Œ€ํ•œ ํ…์ŠคํŠธ ์ฝ”ํผ์Šค๋ฅผ ์‚ฌ์ „ ํ•™์Šตํ•จ์œผ๋กœ์จ ์–ธ์–ด์  ์œ ์—ฐ์„ฑ์„ ์–ป์ง€๋งŒ, ๋…ผ๋ฆฌ์  ์ผ๊ด€์„ฑ ์œ ์ง€์™€ ๊ฐ™์€ ์—„๊ฒฉํ•œ ํŒ๋‹จ์—์„œ๋Š” ์—ฌ์ „ํžˆ ๋ถˆ์•ˆ์ •ํ•œ ๊ฒฐ๊ณผ๋ฅผ ๋ณด์ธ๋‹ค. ์ด๋Š” LLM์ด ํ†ต๊ณ„์  ํŒจํ„ด์— ๊ธฐ๋ฐ˜ํ•œ ์˜ˆ์ธก์„ ์ˆ˜ํ–‰ํ•˜๊ธฐ ๋•Œ๋ฌธ์—, ๋ช…์‹œ์ ์ธ ๋…ผ๋ฆฌ ๊ทœ์น™์„ ๋‚ด์žฌํ™”ํ•˜์ง€ ๋ชปํ•œ๋‹ค๋Š” ๊ทผ๋ณธ์ ์ธ ํ•œ๊ณ„์™€ ์—ฐ๊ฒฐ๋œ๋‹ค. ๋‘ ๋ฒˆ์งธ์ธ ๊ฐ๋… ํ•™์Šต ๊ธฐ๋ฐ˜ ์ถ”๋ก ์€ ํŠน์ • ๋…ผ๋ฆฌ ๊ณผ์ œ์— ๋Œ€ํ•ด ๋ผ

Network Computer Science Artificial Intelligence
An Empirical Evaluation of LLM-Based Approaches for Code Vulnerability Detection: RAG, SFT, and Dual-Agent Systems

An Empirical Evaluation of LLM-Based Approaches for Code Vulnerability Detection: RAG, SFT, and Dual-Agent Systems

๋ณธ ์—ฐ๊ตฌ๋Š” LLM์„ ํ™œ์šฉํ•œ ์ฝ”๋“œ ์ทจ์•ฝ์  ํƒ์ง€์˜ ์‹ค์šฉ์„ฑ์„ ์ •๋Ÿ‰์ ์œผ๋กœ ํ‰๊ฐ€ํ•˜๊ธฐ ์œ„ํ•ด ์„ธ ๊ฐ€์ง€ ์ ‘๊ทผ๋ฒ•์„ ์ฒด๊ณ„์ ์œผ๋กœ ๋น„๊ตํ•˜์˜€๋‹ค. ์ฒซ ๋ฒˆ์งธ ์ ‘๊ทผ๋ฒ•์ธ Retrievalโ€‘Augmented Generation(RAG)์€ ์‚ฌ์ „ ํ•™์Šต๋œ LLM์— ์™ธ๋ถ€ ์ง€์‹ ๋ฒ ์ด์Šค๋ฅผ ๋™์ ์œผ๋กœ ์—ฐ๊ฒฐํ•œ๋‹ค. ๊ตฌ์ฒด์ ์œผ๋กœ, MITRE CWE ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค์™€ ์ตœ์‹  ์›น ๊ฒ€์ƒ‰ ๊ฒฐ๊ณผ๋ฅผ ์‹ค์‹œ๊ฐ„์œผ๋กœ ๊ฐ€์ ธ์™€ ํ”„๋กฌํ”„ํŠธ์— ์‚ฝ์ž…ํ•จ์œผ๋กœ์จ ๋ชจ๋ธ์ด ์ฝ”๋“œ ์กฐ๊ฐ์„ ํ•ด์„ํ•  ๋•Œ ์ตœ์‹  ๋ณด์•ˆ ํŒจํ„ด๊ณผ CWE ์ •์˜๋ฅผ ์ฐธ์กฐํ•˜๋„๋ก ์„ค๊ณ„๋˜์—ˆ๋‹ค. ์ด ๊ณผ์ •์€ ๋ฒกํ„ฐ ๊ฒ€์ƒ‰ ์—”์ง„(FAISS)๊ณผ ํ…์ŠคํŠธ ์ž„๋ฒ ๋”ฉ์„ ํ™œ์šฉํ•ด ๊ด€๋ จ ๋ฌธ์„œ๋ฅผ

System Computer Science Software Engineering Detection
Application of deep learning techniques in non-contrast computed tomography pulmonary angiogram for pulmonary embolism diagnosis

Application of deep learning techniques in non-contrast computed tomography pulmonary angiogram for pulmonary embolism diagnosis

๋ณธ ๋…ผ๋ฌธ์€ ์ž„์ƒ ํ˜„์žฅ์—์„œ ์กฐ์˜์ œ ์‚ฌ์šฉ์— ๋”ฐ๋ฅธ ๋ถ€์ž‘์šฉ๊ณผ ์‹œ๊ฐ„ ์ง€์—ฐ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ณ ์ž, ๋น„์กฐ์˜ CT ์˜์ƒ๋งŒ์„ ์ด์šฉํ•ด ํ์ƒ‰์ „์ฆ์„ ์ž๋™์œผ๋กœ ํŒ๋ณ„ํ•˜๋Š” 3D ํ•ฉ์„ฑ๊ณฑ ์‹ ๊ฒฝ๋ง(3Dโ€‘CNN) ๋ชจ๋ธ์„ ๊ฐœ๋ฐœํ•˜์˜€๋‹ค. ๋จผ์ € ๋ฐ์ดํ„ฐ์…‹ ๊ตฌ์ถ• ๋‹จ๊ณ„์—์„œ ์กฐ์˜์ œ ์‚ฌ์šฉ์ด ๊ธˆ์ง€๋œ ํ™˜์ž๊ตฐ๊ณผ ๊ธฐ์กด CTPA ์˜์ƒ์—์„œ ๋ผ๋ฒจ๋ง๋œ ํ์ƒ‰์ „์ฆ ์‚ฌ๋ก€๋ฅผ ๋งค์นญ์‹œ์ผœ, ๋น„์กฐ์˜ CT์™€ ๋ผ๋ฒจ ์ •๋ณด๋ฅผ ์ผ์น˜์‹œ์ผฐ๋‹ค. ์ด๋Š” ๋ผ๋ฒจ๋ง ๋น„์šฉ์„ ํฌ๊ฒŒ ์ ˆ๊ฐํ•˜๋ฉด์„œ๋„ ์‹ค์ œ ์ž„์ƒ ์ƒํ™ฉ์„ ๋ฐ˜์˜ํ•œ ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค๋ฅผ ํ™•๋ณดํ•˜๋Š” ์ „๋žต์ด๋‹ค. ๋ชจ๋ธ ๊ตฌ์กฐ๋Š” ์ž…๋ ฅ ๋ณผ๋ฅจ์„ 3์ฐจ์›์œผ๋กœ ์ฒ˜๋ฆฌํ•˜์—ฌ ํํ˜ˆ๊ด€ ๋ฐ ์ฃผ๋ณ€ ์กฐ์ง์˜ ๋ฏธ์„ธํ•œ ๋ฐ€๋„ ์ฐจ์ด๋ฅผ

Computer Vision Computer Science Learning
Benchmarking Preprocessing and Integration Methods in Single-Cell Genomics

Benchmarking Preprocessing and Integration Methods in Single-Cell Genomics

๋ณธ ๋…ผ๋ฌธ์€ ๋‹จ์ผ์„ธํฌ ๋‹ค์ค‘๋ชจ๋‹ฌ ๋ฐ์ดํ„ฐ ๋ถ„์„ ํŒŒ์ดํ”„๋ผ์ธ์˜ ํ•ต์‹ฌ ๋‹จ๊ณ„์ธ ์ •๊ทœํ™”, ํ†ตํ•ฉ, ์ฐจ์› ์ถ•์†Œ๋ฅผ ์ฒด๊ณ„์ ์œผ๋กœ ๋น„๊ตํ•จ์œผ๋กœ์จ ํ˜„์žฌ ์‚ฌ์šฉ๋˜๋Š” ๋ฐฉ๋ฒ•๋“ค์˜ ์‹ค์ œ ์ ์šฉ ๊ฐ€๋Šฅ์„ฑ์„ ํ‰๊ฐ€ํ•œ๋‹ค. ๋จผ์ € ์ •๊ทœํ™” ๋‹จ๊ณ„์—์„œ๋Š” ์ด 7๊ฐ€์ง€ ๋ฐฉ๋ฒ•์„ ์‹œํ—˜ํ–ˆ๋Š”๋ฐ, ์ด๋Š” ์ „ํ†ต์ ์ธ ๋กœ๊ทธ ๋ณ€ํ™˜, SCTransform, CPM, TPM ๋“ฑ๋ถ€ํ„ฐ ์ตœ์‹ ์˜ ๋ฒ ์ด์ง€์•ˆ ๊ธฐ๋ฐ˜ ์ •๊ทœํ™”๊นŒ์ง€ ํฌ๊ด„ํ•œ๋‹ค. ์ •๊ทœํ™”๋Š” ๊ฐ ์„ธํฌ์˜ ๊ธฐ์ˆ ์  ๋ณ€๋™์„ฑ์„ ์ตœ์†Œํ™”ํ•˜๊ณ , ์„œ๋กœ ๋‹ค๋ฅธ ๋ชจ๋‹ฌ๋ฆฌํ‹ฐ ๊ฐ„์˜ ์Šค์ผ€์ผ ์ฐจ์ด๋ฅผ ์กฐ์ •ํ•˜๋Š” ๋ฐ ํ•„์ˆ˜์ ์ด๋ฉฐ, ๋…ผ๋ฌธ์€ ์ •๊ทœํ™” ์„ ํƒ์ด ํ†ตํ•ฉ ๊ฒฐ๊ณผ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ์ •๋Ÿ‰์ ์œผ๋กœ ์ œ์‹œํ•œ๋‹ค. ํ†ตํ•ฉ ๋‹จ๊ณ„์—์„œ

Quantitative Biology
Can Large Language Models Still Explain Themselves? Investigating the Impact of Quantization on Self-Explanations

Can Large Language Models Still Explain Themselves? Investigating the Impact of Quantization on Self-Explanations

๋ณธ ๋…ผ๋ฌธ์€ ์–‘์žํ™”๊ฐ€ ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(Large Language Model, LLM)์˜ ์ž๊ธฐ์„ค๋ช…(selfโ€‘explanations, SE) ๋Šฅ๋ ฅ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ์ฒด๊ณ„์ ์œผ๋กœ ์กฐ์‚ฌํ•œ ์ตœ์ดˆ์˜ ์—ฐ๊ตฌ๋ผ ํ•  ์ˆ˜ ์žˆ๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ์—์„œ๋Š” ์–‘์žํ™”๊ฐ€ ๋ชจ๋ธ์˜ ์ถ”๋ก  ์†๋„์™€ ๋ฉ”๋ชจ๋ฆฌ ์‚ฌ์šฉ๋Ÿ‰์„ ํฌ๊ฒŒ ๊ฐœ์„ ํ•œ๋‹ค๋Š” ์ ์— ์ดˆ์ ์„ ๋งž์ถ”์—ˆ์ง€๋งŒ, SE์™€ ๊ฐ™์ด ๋ชจ๋ธ ๋‚ด๋ถ€์˜ ์ถ”๋ก  ๊ณผ์ •์„ ์™ธ๋ถ€์— ์„ค๋ช…ํ•˜๋„๋ก ์š”๊ตฌ๋˜๋Š” ๊ณ ์ฐจ์› ์ž‘์—…์— ๋Œ€ํ•œ ์˜ํ–ฅ์€ ๊ฐ„๊ณผ๋˜์–ด ์™”๋‹ค. ์ด ์ ์„ ๋ฉ”์šฐ๊ธฐ ์œ„ํ•ด ์ €์ž๋“ค์€ ๋‘ ๊ฐ€์ง€ SE ์œ ํ˜•, ์ฆ‰ ์ž์—ฐ์–ด ์„ค๋ช…(NLE)๊ณผ ๋ฐ˜์‚ฌ์‹ค ์˜ˆ์‹œ(counterfactual exa

Computer Science NLP Model
No Image

Can Semantic Methods Enhance Team Sports Tactics? A Methodology for Football with Broader Applications

์ด ๋…ผ๋ฌธ์€ ์˜๋ฏธ๋ก ์  ๋ฒกํ„ฐ ๊ณต๊ฐ„์„ ํŒ€ ์Šคํฌ์ธ  ์ „์ˆ ์— ์ ์šฉํ•œ๋‹ค๋Š” ๋…์ฐฝ์ ์ธ ์•„์ด๋””์–ด๋ฅผ ์ œ์‹œํ•จ์œผ๋กœ์จ, ๊ธฐ์กด ์ „์ˆ  ๋ถ„์„ ๋ฐฉ๋ฒ•๋ก ๊ณผ๋Š” ์ฐจ๋ณ„ํ™”๋œ ํ•™์ˆ ์  ๊ฐ€์น˜๋ฅผ ์ œ๊ณตํ•œ๋‹ค. ์ฒซ์งธ, ์„ ์ˆ˜ ๊ฐœ๊ฐœ์ธ์„ ๋‹ค์ฐจ์› ๋ฒกํ„ฐ๋กœ ๋ชจ๋ธ๋งํ•œ๋‹ค๋Š” ์ ‘๊ทผ์€ ๊ธฐ์กด์˜ ๋‹จ์ˆœ ํ†ต๊ณ„ ๊ธฐ๋ฐ˜ ํ‰๊ฐ€๋ฅผ ๋„˜์–ด, ๊ธฐ์ˆ ยท์‹ ์ฒดยท์‹ฌ๋ฆฌ์  ํŠน์„ฑ์„ ๋™์‹œ์— ๊ณ ๋ คํ•œ ๋ณตํ•ฉ์ ์ธ ํŠน์„ฑ ํ‘œํ˜„์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•œ๋‹ค. ํŠนํžˆ, ์‹ฌ๋ฆฌ์  ๋ณ€์ˆ˜(์˜ˆ: ๊ฒฝ๊ธฐ ์ง‘์ค‘๋„, ์ŠคํŠธ๋ ˆ์Šค ์ˆ˜์ค€)๋ฅผ ์ˆ˜์น˜ํ™”ํ•˜์—ฌ ๋ฒกํ„ฐ์— ํฌํ•จ์‹œํ‚ค๋Š” ์‹œ๋„๋Š” ํ˜„์žฌ ์Šคํฌ์ธ  ๊ณผํ•™์—์„œ ์•„์ง ์ถฉ๋ถ„ํžˆ ๋‹ค๋ฃจ์–ด์ง€์ง€ ์•Š์€ ์˜์—ญ์ด๋ฉฐ, ์ „์ˆ ์  ์˜์‚ฌ๊ฒฐ์ •์— ์ธ๊ฐ„์ ์ธ ์š”์†Œ๋ฅผ ๋ฐ˜์˜ํ•œ๋‹ค๋Š” ์ ์—์„œ ์˜๋ฏธ๊ฐ€

Computer Science Artificial Intelligence
Conformal Prediction Under Distribution Shift: A COVID-19 Natural Experiment

Conformal Prediction Under Distribution Shift: A COVID-19 Natural Experiment

์ด ๋…ผ๋ฌธ์€ ์ปจํฌ๋ฉ€ ์˜ˆ์ธก์ด ์‹ค์ œ ์šด์˜ ํ™˜๊ฒฝ์—์„œ ๋งˆ์ฃผ์น˜๋Š” โ€˜๋ถ„ํฌ ๋ณ€๋™(distribution shift)โ€™์— ์–ผ๋งˆ๋‚˜ ์ทจ์•ฝํ•œ์ง€๋ฅผ ์ฝ”๋กœ๋‚˜19๋ผ๋Š” ์ „ ์„ธ๊ณ„์  ์ถฉ๊ฒฉ์„ ์ด์šฉํ•ด ์‹ค์ฆ์ ์œผ๋กœ ๋ณด์—ฌ์ค€๋‹ค. ์—ฐ๊ตฌ์ž๋Š” 8๊ฐœ์˜ ๊ณต๊ธ‰๋ง ๊ด€๋ จ ํƒœ์Šคํฌ๋ฅผ ์„ ์ •ํ•˜๊ณ , ํŒฌ๋ฐ๋ฏน ์ด์ „๊ณผ ์ดํ›„์˜ ๋ฐ์ดํ„ฐ ํŠน์„ฑ์„ Jaccard ์ง€์ˆ˜๋ฅผ ํ†ตํ•ด ์ •๋Ÿ‰ํ™”ํ•˜์˜€๋‹ค. ํฅ๋ฏธ๋กญ๊ฒŒ๋„, Jaccard ์ง€์ˆ˜๊ฐ€ ๊ฑฐ์˜ 0์— ๊ฐ€๊นŒ์›Œ ํŠน์ง• ์ž์ฒด๋Š” ๊ฑฐ์˜ ๋ณ€ํ•˜์ง€ ์•Š์•˜์Œ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ , ์˜ˆ์ธก ๊ตฌ๊ฐ„์˜ ์‹ค์ œ ์ปค๋ฒ„๋ฆฌ์ง€๋Š” 0 %์—์„œ 86.7 %๊นŒ์ง€ ๊ทน๋‹จ์ ์ธ ์ฐจ์ด๋ฅผ ๋ณด์˜€๋‹ค. ์ด๋Š” ์ปจํฌ๋ฉ€ ๋ฐฉ๋ฒ•์ด ๋‹จ์ˆœํžˆ ํŠน์ง• ๋ถ„ํฌ์˜ ๋ณ€ํ™”๋ฅผ ๊ฐ

Machine Learning Computer Science

< Category Statistics (Total: 769) >

Electrical Engineering and Systems Science
7
General
272
General Relativity
9
HEP-EX
7
HEP-PH
12
HEP-TH
7
MATH-PH
4
NUCL-TH
1
Quantum Physics
10

Start searching

Enter keywords to search articles

โ†‘โ†“
โ†ต
ESC
โŒ˜K Shortcut