KOINEU Logo
RovoDev Code Reviewer: A Large-Scale Online Evaluation of LLM-based Code Review Automation at Atlassian

RovoDev Code Reviewer: A Large-Scale Online Evaluation of LLM-based Code Review Automation at Atlassian

RovoDev ์ฝ”๋“œ ๋ฆฌ๋ทฐ์–ด๋Š” LLM ๊ธฐ๋ฐ˜์˜ ์ฝ”๋“œ ๊ฒ€ํ†  ์ž๋™ํ™” ๋„๊ตฌ๋กœ์„œ, ํ˜„๋Œ€ ์†Œํ”„ํŠธ์›จ์–ด ๊ฐœ๋ฐœ ํ”„๋กœ์„ธ์Šค์—์„œ ์ค‘์š”ํ•œ ์—ญํ• ์„ ์ˆ˜ํ–‰ํ•œ๋‹ค. ์ด ๋…ผ๋ฌธ์€ RovoDev์ด ์–ด๋–ป๊ฒŒ ๋ฐ์ดํ„ฐ ํ”„๋ผ์ด๋ฒ„์‹œ์™€ ๋ณด์•ˆ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ณ , ๋ฆฌ๋ทฐ ๊ฐ€์ด๋“œ๋ผ์ธ์— ๋”ฐ๋ฅธ ์ •ํ™•ํ•œ ์ฝ”๋“œ ๊ฒ€ํ† ๋ฅผ ์ œ๊ณตํ•˜๋ฉฐ, ์ƒˆ๋กœ์šด ํ”„๋กœ์ ํŠธ์—์„œ๋„ ํšจ๊ณผ์ ์œผ๋กœ ์ž‘๋™ํ•˜๋Š”์ง€ ์„ค๋ช…ํ•œ๋‹ค. ๊ธฐ์ˆ ์  ํ˜์‹ ์„ฑ: RovoDev์˜ ํ•ต์‹ฌ ๊ธฐ์ˆ ์€ ์ œ๋กœ์ƒท ์ปจํ…์ŠคํŠธ ์ธ์‹ ๋ฆฌ๋ทฐ ๋Œ“๊ธ€ ์ƒ์„ฑ, ์‚ฌ์‹ค์  ์ •ํ™•์„ฑ ํ’ˆ์งˆ ๊ฒ€์‚ฌ, ๊ทธ๋ฆฌ๊ณ  ํ–‰๋™์„ฑ ํ’ˆ์งˆ ๊ฒ€์‚ฌ๋ฅผ ํ†ตํ•œ ์œ ํšจํ•˜๊ณ  ํ–‰๋™ ๊ฐ€๋Šฅํ•œ ๋ฆฌ๋ทฐ ๋Œ“๊ธ€ ์ถ”์ฒœ์ด๋‹ค. ์ด ์ค‘ ํŠนํžˆ ์ œ๋กœ์ƒท ์ ‘๊ทผ ๋ฐฉ์‹์€ ๊ณ ๊ฐ

Computer Science Software Engineering
No Image

CoCo-Fed: A Unified Framework for Memory- and Communication-Efficient Federated Learning at the Wireless Edge

CoCoโ€‘Fed๊ฐ€ ์ œ์‹œํ•˜๋Š” ๋‘ ๊ฐ€์ง€ ํ•ต์‹ฌ ํ˜์‹ ์€ โ€˜์ด์ค‘ ์ฐจ์› ๋‹ค์šดํ”„๋กœ์ ์…˜โ€™๊ณผ โ€˜์ง๊ต ๋ถ€๋ถ„๊ณต๊ฐ„ ์ดˆ์ค‘์ฒฉ ์ „์†กโ€™์ด๋‹ค. ์ฒซ ๋ฒˆ์งธ ๋‹จ๊ณ„์—์„œ๋Š” ๊ธฐ์กด ์—ฐํ•ฉ ํ•™์Šต์—์„œ ๊ฐ gNB๊ฐ€ ์ „์ฒด ๋ชจ๋ธ ํŒŒ๋ผ๋ฏธํ„ฐ์— ๋Œ€ํ•œ ๊ทธ๋ž˜๋””์–ธํŠธ๋ฅผ ์ €์žฅยท์ „์†กํ•ด์•ผ ํ•˜๋Š” ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•œ๋‹ค. ์ €์ž๋“ค์€ ๊ทธ๋ž˜๋””์–ธํŠธ๋ฅผ ๋จผ์ € ์ฑ„๋„ ์ฐจ์›(์˜ˆ: ์ž…๋ ฅ ํ”ผ์ฒ˜)๊ณผ ๋ชจ๋ธ ์ฐจ์›(์˜ˆ: ์ถœ๋ ฅ ํ”ผ์ฒ˜) ๋‘ ์ถ•์—์„œ ๊ฐ๊ฐ ์ €โ€‘๋žญํฌ ํ–‰๋ ฌ๋กœ ๊ทผ์‚ฌํ•œ๋‹ค. ์ด๋•Œ ์‚ฌ์šฉ๋˜๋Š” ํˆฌ์‚ฌ ํ–‰๋ ฌ์€ ์‚ฌ์ „์— ํ•™์Šต๋œ ๊ณ ์ • ์ •๊ทœ ์ง๊ต ํ–‰๋ ฌ์ด๊ฑฐ๋‚˜, ๊ฐ ๋ผ์šด๋“œ๋งˆ๋‹ค ๋žœ๋คํ•˜๊ฒŒ ์ƒ์„ฑ๋œ ์Šค์ผ€์น˜ ํ–‰๋ ฌ์ผ ์ˆ˜ ์žˆ๋‹ค. ์ด๋ ‡๊ฒŒ ํ•˜๋ฉด ๋ฉ”๋ชจ๋ฆฌ ์š”๊ตฌ๋Ÿ‰์ด O(rankยท

Computer Science Learning Information Theory Framework
Detecting Performance Degradation under Data Shift in Pathology Vision-Language Model

Detecting Performance Degradation under Data Shift in Pathology Vision-Language Model

๋ณธ ๋…ผ๋ฌธ์€ ์ตœ๊ทผ ์˜๋ฃŒ ์˜์ƒ ๋ถ„์•ผ์—์„œ ๊ฐ๊ด‘๋ฐ›๊ณ  ์žˆ๋Š” ๋น„์ „โ€‘์–ธ์–ด ๋ชจ๋ธ(VLM)์˜ ์‹ค์ œ ์šด์˜ ๋‹จ๊ณ„์—์„œ ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ๋Š” โ€˜๋ฐ์ดํ„ฐ ์‹œํ”„ํŠธ(data shift)โ€™ ๋ฌธ์ œ์— ์ดˆ์ ์„ ๋งž์ถ”์—ˆ๋‹ค. ๋ฐ์ดํ„ฐ ์‹œํ”„ํŠธ๋Š” ํฌ๊ฒŒ ๋‘ ๊ฐ€์ง€ ์ฐจ์›์œผ๋กœ ๋‚˜๋‰œ๋‹ค. ์ฒซ ๋ฒˆ์งธ๋Š” ์ž…๋ ฅ ๋ฐ์ดํ„ฐ ์ž์ฒด๊ฐ€ ํ›ˆ๋ จ ์‹œ์™€ ๋‹ค๋ฅธ ๋ถ„ํฌ๋ฅผ ๋ณด์ด๋Š” ๊ฒฝ์šฐ์ด๋ฉฐ, ๋‘ ๋ฒˆ์งธ๋Š” ๋ชจ๋ธ์ด ์ถœ๋ ฅํ•˜๋Š” ์˜ˆ์ธก๊ฐ’์ด๋‚˜ ์‹ ๋ขฐ๋„(confidence)๊ฐ€ ๋ณ€ํ•˜๋Š” ๊ฒฝ์šฐ์ด๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค์€ ์ฃผ๋กœ ์ž…๋ ฅ ์ฐจ์›์˜ ํ†ต๊ณ„์  ๋ณ€ํ™”๋ฅผ ํƒ์ง€ํ•˜๋Š” ๋ฐฉ๋ฒ•์— ์˜์กดํ–ˆ์ง€๋งŒ, ์ด๋Ÿฌํ•œ ๋ณ€๋™์ด ๋ฐ˜๋“œ์‹œ ๋ชจ๋ธ ์„ฑ๋Šฅ ์ €ํ•˜์™€ ์ง๊ฒฐ๋˜์ง€ ์•Š๋Š”๋‹ค๋Š” ์ ์„ ๊ฐ„๊ณผํ•˜๊ณ  ์žˆ์—ˆ๋‹ค.

Computer Science Model Data Computer Vision
ElecTwit: A Framework for Studying Persuasion in Multi-Agent Social Systems

ElecTwit: A Framework for Studying Persuasion in Multi-Agent Social Systems

ElecTwit์ด ์ œ์‹œํ•˜๋Š” ๊ฐ€์žฅ ํฐ ํ˜์‹ ์€ ์„ค๋“ ์—ฐ๊ตฌ๋ฅผ ์œ„ํ•œ ์‹คํ—˜ ํ™˜๊ฒฝ์„ โ€˜๊ฒŒ์ž„โ€™์ด๋ผ๋Š” ์ธ์œ„์  ์„ค์ •์—์„œ ๋ฒ—์–ด๋‚˜ ์‹ค์ œ ์†Œ์…œ ๋ฏธ๋””์–ด ํ”Œ๋žซํผ์˜ ๊ตฌ์กฐ์™€ ํ–‰ํƒœ๋ฅผ ๋ชจ์‚ฌํ•œ ์ ์ด๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ์ €์ž๋“ค์€ ํŠธ์œ„ํ„ฐ์™€ ์œ ์‚ฌํ•œ ๊ฒŒ์‹œยท๋ฆฌํŠธ์œ—ยทํŒ”๋กœ์šฐ ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ๊ตฌํ˜„ํ•˜๊ณ , ์ •์น˜์  ์„ ๊ฑฐ๋ผ๋Š” ๊ตฌ์ฒด์  ์‹œ๋‚˜๋ฆฌ์˜ค๋ฅผ ์„ค์ •ํ•จ์œผ๋กœ์จ ์—์ด์ „ํŠธ ๊ฐ„์˜ ์ •๋ณด ํ๋ฆ„, ์˜๊ฒฌ ํ˜•์„ฑ, ๊ทธ๋ฆฌ๊ณ  ์„ค๋“ ์ „๋žต์˜ ์ „๊ฐœ ๊ณผ์ •์„ ์ •๋ฐ€ํ•˜๊ฒŒ ๊ด€์ฐฐํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ํŠนํžˆ 25๊ฐ€์ง€ ์„ค๋“ ๊ธฐ๋ฒ•์„ ์‚ฌ์ „ ์ •์˜ํ•˜๊ณ , ๊ฐ LLM์ด ์ด๋ฅผ ์–ด๋–ป๊ฒŒ ์„ ํƒยท์กฐํ•ฉํ•˜๋Š”์ง€๋ฅผ ์ •๋Ÿ‰ํ™”ํ•œ ๋ฐฉ๋ฒ•๋ก ์€ ์„ค๋“ ๊ธฐ์ˆ ์˜ โ€˜๋ ˆ์‹œํ”ผโ€™๋ฅผ ๋น„๊ต ๋ถ„์„ํ•˜๋Š” ๋ฐ

Computer Science Artificial Intelligence Framework System
No Image

LLM Agents for Combinatorial Efficient Frontiers: Investment Portfolio Optimization

๋ณธ ๋…ผ๋ฌธ์€ ์–ธ์–ด ๋ชจ๋ธ(LLM)์„ ํ™œ์šฉํ•œ ์—์ด์ „ํŠธ ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ํ†ตํ•ด ๋ณต์žกํ•œ ์กฐํ•ฉ ์ตœ์ ํ™” ๋ฌธ์ œ์— ์ƒˆ๋กœ์šด ์ ‘๊ทผ ๋ฐฉ์‹์„ ์ œ์‹œํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ด ์—ฐ๊ตฌ์˜ ํ•ต์‹ฌ ๊ฐ€์น˜๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์€ ๊ธฐ์ˆ ์  ํ˜์‹ ์„ฑ, ๋ฐฉ๋ฒ•๋ก , ์‹คํ—˜ ๊ฒฐ๊ณผ๋ฅผ ํ†ตํ•ด ๋ถ„์„ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. 1. ๊ธฐ์ˆ ์  ํ˜์‹ ์„ฑ: ๋ณธ ๋…ผ๋ฌธ์€ LLM์„ ํ™œ์šฉํ•œ ์—์ด์ „ํŠธ ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์‹œํ•จ์œผ๋กœ์จ, ๊ธฐ์กด์˜ ํ•™๋ฌธ์ ์ธ ์ตœ์ ํ™” ์ ‘๊ทผ๋ฒ•์—์„œ ๋ฒ—์–ด๋‚˜ ์‹ค์ œ ์ƒํ™œ ๋ฌธ์ œ์— ์ดˆ์ ์„ ๋งž์ถ”๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ํŠนํžˆ, NPhardํ•œ ์กฐํ•ฉ ์ตœ์ ํ™” ๋ฌธ์ œ ํ•ด๊ฒฐ์— ์žˆ์–ด LLM์„ ํ™œ์šฉํ•˜๋Š” ๊ฒƒ์€ ์ด์ „ ์—ฐ๊ตฌ์—์„œ๋Š” ์ฐพ์•„๋ณด๊ธฐ ์–ด๋ ค์šด ํ˜์‹ ์ ์ธ ์‹œ๋„์ž…๋‹ˆ๋‹ค. MOCO

Computer Science Computational Engineering
LOFA: Online Influence Maximization under Full-Bandit Feedback using Lazy Forward Selection

LOFA: Online Influence Maximization under Full-Bandit Feedback using Lazy Forward Selection

๋ณธ ๋…ผ๋ฌธ์ด ๋‹ค๋ฃจ๋Š” ์˜จ๋ผ์ธ ์˜ํ–ฅ๋ ฅ ์ตœ๋Œ€ํ™”(Online Influence Maximization, OIM) ๋ฌธ์ œ๋Š” ์ „ํ†ต์ ์ธ ์ •์  IM๊ณผ ๋‹ฌ๋ฆฌ ์‹œ๊ฐ„์— ๋”ฐ๋ผ ์‹œ๋“œ ์ง‘ํ•ฉ์„ ๋™์ ์œผ๋กœ ์„ ํƒํ•ด์•ผ ํ•˜๋Š” ์ƒํ™ฉ์„ ์ „์ œ๋กœ ํ•œ๋‹ค. ์—ฌ๊ธฐ์„œ โ€˜์ „์ฒด ๋ฐด๋”ง(fullโ€‘bandit) ํ”ผ๋“œ๋ฐฑโ€™์ด๋ผ๋Š” ๊ฐ€์ •์€ ์—์ด์ „ํŠธ๊ฐ€ ๋งค ๋ผ์šด๋“œ๋งˆ๋‹ค ์„ ํƒํ•œ ์‹œ๋“œ ์ง‘ํ•ฉ์— ์˜ํ•ด ์‹ค์ œ๋กœ ๋ฐœ์ƒํ•œ ํ™•์‚ฐ ๊ทœ๋ชจ(์ฆ‰, ์ „์ฒด ํ™œ์„ฑํ™”๋œ ๋…ธ๋“œ ์ˆ˜)๋งŒ์„ ๊ด€์ฐฐํ•œ๋‹ค๋Š” ์˜๋ฏธ์ด๋ฉฐ, ์ด๋Š” ๊ฐ ๋…ธ๋“œ๋ณ„ ํ™œ์„ฑํ™” ์—ฌ๋ถ€๋‚˜ ๋„คํŠธ์›Œํฌ์˜ ์ธ์ ‘ ํ–‰๋ ฌ ๋“ฑ ์ถ”๊ฐ€์ ์ธ ๊ตฌ์กฐ์  ์ •๋ณด๋ฅผ ์ „ํ˜€ ์ œ๊ณตํ•˜์ง€ ์•Š๋Š”๋‹ค. ์ด๋Ÿฌํ•œ ์ œํ•œ๋œ ํ”ผ๋“œ๋ฐฑ ํ™˜๊ฒฝ์—์„œ๋Š”

Machine Learning Computer Science
An AI Monkey Gets Grapes for Sure -- Sphere Neural Networks for Reliable Decision-Making

An AI Monkey Gets Grapes for Sure -- Sphere Neural Networks for Reliable Decision-Making

๋ณธ ์—ฐ๊ตฌ๋Š” ํ˜„์žฌ ์ธ๊ณต์ง€๋Šฅ ์ถ”๋ก  ๋ถ„์•ผ์—์„œ ๊ฐ€์žฅ ๋…ผ์Ÿ์ด ๋˜๋Š” ์„ธ ๊ฐ€์ง€ ์ ‘๊ทผ๋ฒ•์„ ์ฒด๊ณ„์ ์œผ๋กœ ๋น„๊ตํ•จ์œผ๋กœ์จ, โ€œ์‹ ๋ขฐ์„ฑโ€์ด๋ผ๋Š” ๊ด€์ ์—์„œ ์ค‘์š”ํ•œ ํ†ต์ฐฐ์„ ์ œ๊ณตํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ ๋ฒ”์ฃผ์ธ ๋Œ€๊ทœ๋ชจ ์–ธ์–ด ๋ชจ๋ธ(LLM) ๊ธฐ๋ฐ˜ ์ถ”๋ก ์€ ๋ฐฉ๋Œ€ํ•œ ํ…์ŠคํŠธ ์ฝ”ํผ์Šค๋ฅผ ์‚ฌ์ „ ํ•™์Šตํ•จ์œผ๋กœ์จ ์–ธ์–ด์  ์œ ์—ฐ์„ฑ์„ ์–ป์ง€๋งŒ, ๋…ผ๋ฆฌ์  ์ผ๊ด€์„ฑ ์œ ์ง€์™€ ๊ฐ™์€ ์—„๊ฒฉํ•œ ํŒ๋‹จ์—์„œ๋Š” ์—ฌ์ „ํžˆ ๋ถˆ์•ˆ์ •ํ•œ ๊ฒฐ๊ณผ๋ฅผ ๋ณด์ธ๋‹ค. ์ด๋Š” LLM์ด ํ†ต๊ณ„์  ํŒจํ„ด์— ๊ธฐ๋ฐ˜ํ•œ ์˜ˆ์ธก์„ ์ˆ˜ํ–‰ํ•˜๊ธฐ ๋•Œ๋ฌธ์—, ๋ช…์‹œ์ ์ธ ๋…ผ๋ฆฌ ๊ทœ์น™์„ ๋‚ด์žฌํ™”ํ•˜์ง€ ๋ชปํ•œ๋‹ค๋Š” ๊ทผ๋ณธ์ ์ธ ํ•œ๊ณ„์™€ ์—ฐ๊ฒฐ๋œ๋‹ค. ๋‘ ๋ฒˆ์งธ์ธ ๊ฐ๋… ํ•™์Šต ๊ธฐ๋ฐ˜ ์ถ”๋ก ์€ ํŠน์ • ๋…ผ๋ฆฌ ๊ณผ์ œ์— ๋Œ€ํ•ด ๋ผ

Network Computer Science Artificial Intelligence
An Empirical Evaluation of LLM-Based Approaches for Code Vulnerability Detection: RAG, SFT, and Dual-Agent Systems

An Empirical Evaluation of LLM-Based Approaches for Code Vulnerability Detection: RAG, SFT, and Dual-Agent Systems

๋ณธ ์—ฐ๊ตฌ๋Š” LLM์„ ํ™œ์šฉํ•œ ์ฝ”๋“œ ์ทจ์•ฝ์  ํƒ์ง€์˜ ์‹ค์šฉ์„ฑ์„ ์ •๋Ÿ‰์ ์œผ๋กœ ํ‰๊ฐ€ํ•˜๊ธฐ ์œ„ํ•ด ์„ธ ๊ฐ€์ง€ ์ ‘๊ทผ๋ฒ•์„ ์ฒด๊ณ„์ ์œผ๋กœ ๋น„๊ตํ•˜์˜€๋‹ค. ์ฒซ ๋ฒˆ์งธ ์ ‘๊ทผ๋ฒ•์ธ Retrievalโ€‘Augmented Generation(RAG)์€ ์‚ฌ์ „ ํ•™์Šต๋œ LLM์— ์™ธ๋ถ€ ์ง€์‹ ๋ฒ ์ด์Šค๋ฅผ ๋™์ ์œผ๋กœ ์—ฐ๊ฒฐํ•œ๋‹ค. ๊ตฌ์ฒด์ ์œผ๋กœ, MITRE CWE ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค์™€ ์ตœ์‹  ์›น ๊ฒ€์ƒ‰ ๊ฒฐ๊ณผ๋ฅผ ์‹ค์‹œ๊ฐ„์œผ๋กœ ๊ฐ€์ ธ์™€ ํ”„๋กฌํ”„ํŠธ์— ์‚ฝ์ž…ํ•จ์œผ๋กœ์จ ๋ชจ๋ธ์ด ์ฝ”๋“œ ์กฐ๊ฐ์„ ํ•ด์„ํ•  ๋•Œ ์ตœ์‹  ๋ณด์•ˆ ํŒจํ„ด๊ณผ CWE ์ •์˜๋ฅผ ์ฐธ์กฐํ•˜๋„๋ก ์„ค๊ณ„๋˜์—ˆ๋‹ค. ์ด ๊ณผ์ •์€ ๋ฒกํ„ฐ ๊ฒ€์ƒ‰ ์—”์ง„(FAISS)๊ณผ ํ…์ŠคํŠธ ์ž„๋ฒ ๋”ฉ์„ ํ™œ์šฉํ•ด ๊ด€๋ จ ๋ฌธ์„œ๋ฅผ

System Computer Science Software Engineering Detection
Benchmarking Preprocessing and Integration Methods in Single-Cell Genomics

Benchmarking Preprocessing and Integration Methods in Single-Cell Genomics

๋ณธ ๋…ผ๋ฌธ์€ ๋‹จ์ผ์„ธํฌ ๋‹ค์ค‘๋ชจ๋‹ฌ ๋ฐ์ดํ„ฐ ๋ถ„์„ ํŒŒ์ดํ”„๋ผ์ธ์˜ ํ•ต์‹ฌ ๋‹จ๊ณ„์ธ ์ •๊ทœํ™”, ํ†ตํ•ฉ, ์ฐจ์› ์ถ•์†Œ๋ฅผ ์ฒด๊ณ„์ ์œผ๋กœ ๋น„๊ตํ•จ์œผ๋กœ์จ ํ˜„์žฌ ์‚ฌ์šฉ๋˜๋Š” ๋ฐฉ๋ฒ•๋“ค์˜ ์‹ค์ œ ์ ์šฉ ๊ฐ€๋Šฅ์„ฑ์„ ํ‰๊ฐ€ํ•œ๋‹ค. ๋จผ์ € ์ •๊ทœํ™” ๋‹จ๊ณ„์—์„œ๋Š” ์ด 7๊ฐ€์ง€ ๋ฐฉ๋ฒ•์„ ์‹œํ—˜ํ–ˆ๋Š”๋ฐ, ์ด๋Š” ์ „ํ†ต์ ์ธ ๋กœ๊ทธ ๋ณ€ํ™˜, SCTransform, CPM, TPM ๋“ฑ๋ถ€ํ„ฐ ์ตœ์‹ ์˜ ๋ฒ ์ด์ง€์•ˆ ๊ธฐ๋ฐ˜ ์ •๊ทœํ™”๊นŒ์ง€ ํฌ๊ด„ํ•œ๋‹ค. ์ •๊ทœํ™”๋Š” ๊ฐ ์„ธํฌ์˜ ๊ธฐ์ˆ ์  ๋ณ€๋™์„ฑ์„ ์ตœ์†Œํ™”ํ•˜๊ณ , ์„œ๋กœ ๋‹ค๋ฅธ ๋ชจ๋‹ฌ๋ฆฌํ‹ฐ ๊ฐ„์˜ ์Šค์ผ€์ผ ์ฐจ์ด๋ฅผ ์กฐ์ •ํ•˜๋Š” ๋ฐ ํ•„์ˆ˜์ ์ด๋ฉฐ, ๋…ผ๋ฌธ์€ ์ •๊ทœํ™” ์„ ํƒ์ด ํ†ตํ•ฉ ๊ฒฐ๊ณผ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ์ •๋Ÿ‰์ ์œผ๋กœ ์ œ์‹œํ•œ๋‹ค. ํ†ตํ•ฉ ๋‹จ๊ณ„์—์„œ

Quantitative Biology
Device-Native Autonomous Agents for Privacy-Preserving Negotiations

Device-Native Autonomous Agents for Privacy-Preserving Negotiations

๋ณธ ๋…ผ๋ฌธ์€ ๊ธฐ์กด ํด๋ผ์šฐ๋“œโ€‘์ค‘์‹ฌ ํ˜‘์ƒ ํ”Œ๋žซํผ์ด ๊ฐ–๋Š” โ€œ๋ฐ์ดํ„ฐ ์ค‘์•™์ง‘์ค‘ โ†’ ๋ณด์•ˆ ์œ„ํ˜‘ โ†’ ์‚ฌ์šฉ์ž ์‹ ๋ขฐ ์ €ํ•˜โ€๋ผ๋Š” ๊ตฌ์กฐ์  ๋ฌธ์ œ๋ฅผ ๊ทผ๋ณธ์ ์œผ๋กœ ์žฌ๊ตฌ์„ฑํ•œ๋‹ค๋Š” ์ ์—์„œ ํ•™์ˆ ์ ยท์‚ฐ์—…์  ์˜์˜๋ฅผ ๊ฐ€์ง„๋‹ค. ์ฒซ ๋ฒˆ์งธ๋กœ, ๋””๋ฐ”์ด์Šคโ€‘๋„ค์ดํ‹ฐ๋ธŒ( deviceโ€‘native ) ์•„ํ‚คํ…์ฒ˜๋Š” ๋ชจ๋“  ํ˜‘์ƒ ๋กœ์ง๊ณผ ์ œ์•ฝ ์กฐ๊ฑด์„ ์‚ฌ์šฉ์ž์˜ ๋กœ์ปฌ ํ™˜๊ฒฝ์— ๊ฒฉ๋ฆฌํ•จ์œผ๋กœ์จ ๋ฐ์ดํ„ฐ ํƒˆ์ทจ ์œ„ํ—˜์„ ์ตœ์†Œํ™”ํ•œ๋‹ค. ์ด๋Š” ํŠนํžˆ GDPRยทCCPA ๋“ฑ ๋ฐ์ดํ„ฐ ์ฃผ๊ถŒ ๊ทœ์ œ๊ฐ€ ๊ฐ•ํ™”๋˜๋Š” ํ˜„์žฌ ์ƒํ™ฉ์—์„œ ๋ฒ•์ ยท๊ทœ์ œ์  ์ปดํ”Œ๋ผ์ด์–ธ์Šค๋ฅผ ์ž์—ฐ์Šค๋Ÿฝ๊ฒŒ ์ถฉ์กฑํ•œ๋‹ค๋Š” ์žฅ์ ์ด ์žˆ๋‹ค. ๋‘ ๋ฒˆ์งธ๋กœ, ์ œ๋กœ ์ง€์‹ ์ฆ๋ช…(zeroโ€‘knowl

Computer Science Cryptography and Security
Do LLMs Judge Distantly Supervised Named Entity Labels Well? Constructing the JudgeWEL Dataset

Do LLMs Judge Distantly Supervised Named Entity Labels Well? Constructing the JudgeWEL Dataset

judgeWEL ๋…ผ๋ฌธ์€ ์ €์ž์› ์–ธ์–ด์ธ ๋ฃฉ์…ˆ๋ถ€๋ฅดํฌ์–ด์— ๋Œ€ํ•œ NER ๋ฐ์ดํ„ฐ ๊ตฌ์ถ•์ด๋ผ๋Š” ์‹ค์งˆ์ ์ธ ๋ฌธ์ œ์— ๋Œ€ํ•ด ์ฐฝ์˜์ ์ธ ํ•ด๊ฒฐ์ฑ…์„ ์ œ์‹œํ•œ๋‹ค. ๊ฐ€์žฅ ํฐ ๊ฐ•์ ์€ ๋‘ ๊ฐ€์ง€ ์ธก๋ฉด์—์„œ ์•ฝํ•œ ๊ฐ๋…์„ ํ™œ์šฉํ•œ๋‹ค๋Š” ์ ์ด๋‹ค. ์ฒซ์งธ, ์œ„ํ‚คํ”ผ๋””์•„ ๋‚ด๋ถ€ ๋งํฌ์™€ ์œ„ํ‚ค๋ฐ์ดํ„ฐ์˜ ๊ตฌ์กฐํ™”๋œ ๋ฉ”ํƒ€๋ฐ์ดํ„ฐ๋ฅผ ์—ฐ๊ฒฐํ•จ์œผ๋กœ์จ ์—”ํ„ฐํ‹ฐ ์œ ํ˜•์„ ์ž๋™์œผ๋กœ ์ถ”๋ก ํ•œ๋‹ค๋Š” ์•„์ด๋””์–ด๋Š” ๊ธฐ์กด์˜ ๊ทœ์น™ ๊ธฐ๋ฐ˜ ํ˜น์€ ์‚ฌ์ „ ๋งคํ•‘ ๋ฐฉ์‹๋ณด๋‹ค ํ™•์žฅ์„ฑ์ด ๋›ฐ์–ด๋‚˜๋‹ค. ์œ„ํ‚คํ”ผ๋””์•„๋Š” ์ง€์†์ ์œผ๋กœ ์—…๋ฐ์ดํŠธ๋˜๋ฉฐ ๋‹ค์–‘ํ•œ ๋„๋ฉ”์ธ์„ ํฌ๊ด„ํ•˜๋ฏ€๋กœ, ์ด ์ ‘๊ทผ๋ฒ•์€ ์ƒˆ๋กœ์šด ์—”ํ„ฐํ‹ฐ๊ฐ€ ๋“ฑ์žฅํ•ด๋„ ๋น„๊ต์  ์‰ฝ๊ฒŒ ๋ฐ˜์˜๋  ์ˆ˜ ์žˆ๋‹ค. ๋‘˜์งธ, ์ž๋™ ๋ผ๋ฒจ๋ง ๋‹จ

Computer Science NLP Data
AdaGReS:Adaptive Greedy Context Selection via Redundancy-Aware Scoring for Token-Budgeted RAG

AdaGReS:Adaptive Greedy Context Selection via Redundancy-Aware Scoring for Token-Budgeted RAG

AdaGReS ๋…ผ๋ฌธ์€ ํ˜„์žฌ RAG ์‹œ์Šคํ…œ์ด ์ง๋ฉดํ•œ ๋‘ ๊ฐ€์ง€ ํ•ต์‹ฌ ๋ฌธ์ œโ€”ํ† ํฐ ์˜ˆ์‚ฐ์˜ ์ œํ•œ๊ณผ ์ปจํ…์ŠคํŠธ ์ค‘๋ณตโ€”๋ฅผ ๋™์‹œ์— ํ•ด๊ฒฐํ•˜๋ ค๋Š” ์‹œ๋„๋กœ ๋ˆˆ์— ๋ˆ๋‹ค. ์ „ํ†ต์ ์ธ topโ€‘k ๊ฒ€์ƒ‰์€ ๋‹จ์ˆœํžˆ ์ ์ˆ˜ ์ˆœ์œผ๋กœ ์ฒญํฌ๋ฅผ ์„ ํƒํ•˜๊ธฐ ๋•Œ๋ฌธ์—, ์˜๋ฏธ์ ์œผ๋กœ ๊ฑฐ์˜ ๋™์ผํ•œ ๋ฌธ์žฅ์ด ์—ฌ๋Ÿฌ ๋ฒˆ ํฌํ•จ๋  ๊ฒฝ์šฐ ๋ถˆํ•„์š”ํ•œ ํ† ํฐ์„ ์†Œ๋ชจํ•œ๋‹ค. ์ด๋Š” ํŠนํžˆ ์ œํ•œ๋œ ์ปจํ…์ŠคํŠธ ๊ธธ์ด๋ฅผ ๊ฐ–๋Š” ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(Large Language Model, LLM)์—์„œ ์‹ฌ๊ฐํ•œ ์„ฑ๋Šฅ ์ €ํ•˜ ์š”์ธ์œผ๋กœ ์ž‘์šฉํ•œ๋‹ค. AdaGReS๋Š” ์ด๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด โ€œ๊ด€๋ จ๋„โ€‘์ค‘๋ณต ๋ณตํ•ฉ ๋ชฉํ‘œ ํ•จ์ˆ˜โ€๋ฅผ ์ •์˜ํ•œ๋‹ค. ๋ชฉํ‘œ ํ•จ์ˆ˜๋Š” (1

Computer Science NLP
AI-Driven Cloud Resource Optimization for Multi-Cluster Environments

AI-Driven Cloud Resource Optimization for Multi-Cluster Environments

์ด ๋…ผ๋ฌธ์ด ๋‹ค๋ฃจ๋Š” ๋ฌธ์ œ๋Š” ๋‹ค์ค‘ ํด๋Ÿฌ์Šคํ„ฐ ํ™˜๊ฒฝ์—์„œ ๋ฐœ์ƒํ•˜๋Š” ์ „ํ†ต์ ์ธ ์ž์› ๊ด€๋ฆฌ์˜ ํ•œ๊ณ„์ด๋‹ค. ํ˜„์žฌ ๋Œ€๋ถ€๋ถ„์˜ ํด๋ผ์šฐ๋“œ ์šด์˜์ž๋Š” ๊ฐ ํด๋Ÿฌ์Šคํ„ฐ๋ฅผ ๋…๋ฆฝ์ ์ธ ๊ด€๋ฆฌ ๋‹จ์œ„๋กœ ๋ณด๊ณ , ์Šค์ผ€์ผ๋ง์ด๋‚˜ ๋ฆฌ์†Œ์Šค ์žฌ๋ฐฐ์น˜๋ฅผ ์›Œํฌ๋กœ๋“œ ๋ณ€ํ™”์— ๋”ฐ๋ผ ์ฆ‰๊ฐ์ ์œผ๋กœ ๋ฐ˜์‘ํ•˜๋Š” ๋ฐฉ์‹์œผ๋กœ ์ˆ˜ํ–‰ํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ํด๋Ÿฌ์Šคํ„ฐโ€‘์ค‘์‹ฌ์  ์ ‘๊ทผ์€ ์ „์—ญ์ ์ธ ์‹œ์•ผ๋ฅผ ๊ฒฐ์—ฌํ•˜๊ฒŒ ๋งŒ๋“ค๋ฉฐ, ํŠนํžˆ ์ง€๋ฆฌ์ ์œผ๋กœ ๋ถ„์‚ฐ๋œ ๋ฐ์ดํ„ฐ์„ผํ„ฐ ๊ฐ„์— ๋ถ€ํ•˜๊ฐ€ ๋ถˆ๊ท ํ˜•ํ•˜๊ฒŒ ์ „ํŒŒ๋  ๊ฒฝ์šฐ ์ „์ฒด ์‹œ์Šคํ…œ์˜ ๋น„์šฉ ํšจ์œจ์„ฑ๊ณผ ์„œ๋น„์Šค ์ˆ˜์ค€์ด ํฌ๊ฒŒ ์ €ํ•˜๋œ๋‹ค. ๋…ผ๋ฌธ์€ ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ์„ธ ๊ฐ€์ง€ ํ•ต์‹ฌ ์š”์†Œ๋ฅผ ๊ฒฐํ•ฉํ•œ AIโ€‘๊ธฐ๋ฐ˜ ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์‹œํ•œ๋‹ค.

Computer Science Distributed Computing
Counterfactual Self-Questioning for Stable Policy Optimization in Language Models

Counterfactual Self-Questioning for Stable Policy Optimization in Language Models

๋ณธ ๋…ผ๋ฌธ์ด ์ œ์‹œํ•˜๋Š” Counterfactual Selfโ€‘Questioning(CSQ)์€ ๊ธฐ์กด ์ž๊ธฐ ๊ฐœ์„  ๋ฉ”์ปค๋‹ˆ์ฆ˜์ด ์•ˆ๊ณ  ์žˆ๋˜ โ€œ์™ธ๋ถ€ ์˜์กด์„ฑโ€์ด๋ผ๋Š” ๊ทผ๋ณธ์ ์ธ ๋ฌธ์ œ๋ฅผ ๊ทผ๋ณธ์ ์œผ๋กœ ํ•ด๊ฒฐํ•œ๋‹ค๋Š” ์ ์—์„œ ํ•™์ˆ ์ ยท์‹ค์šฉ์  ์˜๋ฏธ๊ฐ€ ํฌ๋‹ค. ๋จผ์ €, CSQ๋Š” ํ•˜๋‚˜์˜ ์–ธ์–ด ๋ชจ๋ธ์ด ์Šค์Šค๋กœ โ€œ์™œ ์ด ์ถ”๋ก ์ด ํ‹€๋ ธ๋Š”๊ฐ€โ€๋ฅผ ํƒ์ƒ‰ํ•˜๋„๋ก ์„ค๊ณ„๋œ ์„ธ ๋‹จ๊ณ„ ํŒŒ์ดํ”„๋ผ์ธ์„ ๋„์ž…ํ•œ๋‹ค. ์ดˆ๊ธฐ ๋กค์•„์›ƒ ๋‹จ๊ณ„์—์„œ ๋ชจ๋ธ์€ ์ผ๋ฐ˜์ ์ธ chainโ€‘ofโ€‘thought ๋ฐฉ์‹์œผ๋กœ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ณ , ๊ทธ ๊ณผ์ •์—์„œ ์ƒ์„ฑ๋œ ์ค‘๊ฐ„ ๋‹จ๊ณ„์™€ ์ตœ์ข… ๋‹ต์•ˆ์„ ๊ทธ๋Œ€๋กœ ๋ณด๊ด€ํ•œ๋‹ค. ์ด์–ด์ง€๋Š” ์ž๊ธฐ์งˆ๋ฌธ ๋‹จ๊ณ„์—์„œ๋Š” ๋ชจ๋ธ์ด โ€œ

Computer Science Artificial Intelligence Model
No Image

Do Large Language Models Know What They Are Capable Of?

์ด ๋…ผ๋ฌธ์€ โ€œ๋ฉ”ํƒ€โ€‘์ธ์ง€โ€๋ผ๋Š” ๊ด€์ ์—์„œ LLM์˜ ์ž๊ธฐ ํ‰๊ฐ€ ๋Šฅ๋ ฅ์„ ์ฒด๊ณ„์ ์œผ๋กœ ๊ฒ€์ฆํ•œ๋‹ค๋Š” ์ ์—์„œ ์˜๋ฏธ๊ฐ€ ํฌ๋‹ค. ๋จผ์ € ์—ฐ๊ตฌ์ง„์€ โ€œ์„ฑ๊ณต ์˜ˆ์ธกโ€์ด๋ผ๋Š” ์ด์ง„ ํŒ๋‹จ์„ ํ†ตํ•ด ๋ชจ๋ธ์ด ์ž์‹ ์˜ ํ•œ๊ณ„๋ฅผ ์–ผ๋งˆ๋‚˜ ์ •ํ™•ํžˆ ์ธ์‹ํ•˜๋Š”์ง€๋ฅผ ์ธก์ •ํ•˜์˜€๋‹ค. ์—ฌ๊ธฐ์„œ ์‚ฌ์šฉ๋œ ํ‰๊ฐ€์ง€ํ‘œ๋Š” ๋‹จ์ˆœ ์ •ํ™•๋„๋ฟ ์•„๋‹ˆ๋ผ ROCโ€‘AUC์™€ ๊ฐ™์€ ๊ตฌ๋ณ„๋ ฅ ์ง€ํ‘œ์ด๋ฉฐ, ์ด๋Š” ๋ชจ๋ธ์ด ๊ณผ์‹ (overโ€‘confidence)๊ณผ ๊ณผ์†Œ์‹ (underโ€‘confidence) ์‚ฌ์ด์—์„œ ์–ด๋А ์ •๋„ ๊ท ํ˜•์„ ์žก๋Š”์ง€๋ฅผ ๋ณด์—ฌ์ค€๋‹ค. ๊ฒฐ๊ณผ๋Š” ๋Œ€๋ถ€๋ถ„์˜ ์ตœ์‹  LLM์ด ๋†’์€ ํ™•์‹ ์„ ๋ณด์ด์ง€๋งŒ, ๋ฌด์ž‘์œ„๋ณด๋‹ค ๋†’์€ AUC๋ฅผ ๊ธฐ๋กํ•œ๋‹ค๋Š” ์ ์ด๋‹ค

Computer Science NLP Model
Evaluating Contextual Intelligence in Recyclability: A Comprehensive Study of Image-Based Reasoning Systems

Evaluating Contextual Intelligence in Recyclability: A Comprehensive Study of Image-Based Reasoning Systems

๋ณธ ๋…ผ๋ฌธ์€ ์žฌํ™œ์šฉ ์‹ค์ฒœ์„ ์ง€์›ํ•˜๊ธฐ ์œ„ํ•œ ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๋„๊ตฌ์˜ ๊ฐ€๋Šฅ์„ฑ์„ ํƒ์ƒ‰ํ•œ๋‹ค๋Š” ์ ์—์„œ ์‚ฌํšŒ์ ยทํ™˜๊ฒฝ์  ์˜๋ฏธ๊ฐ€ ํฌ๋‹ค. ์—ฐ๊ตฌ์ง„์€ ๋จผ์ € ์žฌํ™œ์šฉ ๋Œ€์ƒ ๋ฌผํ’ˆ์„ ๋‹ค์–‘ํ•œ ๊ฐ๋„์™€ ์กฐ๋ช… ์กฐ๊ฑด์—์„œ ์ดฌ์˜ํ•œ ์ด๋ฏธ์ง€์™€, ๊ฐ ๋ฌผํ’ˆ์ด ์†ํ•ด์•ผ ํ•  ์žฌํ™œ์šฉํ†ต(ํ”Œ๋ผ์Šคํ‹ฑ, ๊ธˆ์†, ์ข…์ด ๋“ฑ) ๋ฐ ๋ฌผ๋ฆฌ์  ์น˜์ˆ˜ ์ •๋ณด๋ฅผ ํฌํ•จํ•œ ๋ฉ”ํƒ€๋ฐ์ดํ„ฐ๋ฅผ ๊ฒฐํ•ฉํ•œ ๋ฐ์ดํ„ฐ์…‹์„ ๊ตฌ์ถ•ํ•˜์˜€๋‹ค. ๋ฐ์ดํ„ฐ์…‹์€ 5,000์—ฌ ์žฅ์˜ ์ด๋ฏธ์ง€์™€ 1,200๊ฐœ์˜ ๋‹ค์ค‘ ์žฌ์งˆ ์‚ฌ๋ก€๋ฅผ ํฌํ•จํ•ด, ์‹ค์ œ ๊ฐ€์ •์—์„œ ๋งˆ์ฃผ์น˜๋Š” ๋ณตํ•ฉ ์ƒํ™ฉ์„ ์ถฉ๋ถ„ํžˆ ๋ฐ˜์˜ํ•œ๋‹ค. ๋ชจ๋ธ ํ‰๊ฐ€์—์„œ๋Š” ๋‘ ๋‹จ๊ณ„์˜ ์งˆ๋ฌธ์„ ์ œ์‹œํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ๋Š” โ€œ์ด ๋ฌผ๊ฑด์€ ์–ด๋А ์žฌ

System Computer Vision Computer Science
Evaluating the Impact of Compression Techniques on the Robustness of CNNs under Natural Corruptions

Evaluating the Impact of Compression Techniques on the Robustness of CNNs under Natural Corruptions

๋ณธ ์—ฐ๊ตฌ๋Š” ๋ชจ๋ธ ์••์ถ•์ด CNN์˜ ๊ฒฌ๊ณ ์„ฑ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ์ฒด๊ณ„์ ์œผ๋กœ ๊ทœ๋ช…ํ•˜๊ธฐ ์œ„ํ•ด ์„ธ ๊ฐ€์ง€ ๋Œ€ํ‘œ์ ์ธ ์••์ถ• ๊ธฐ๋ฒ•โ€”์–‘์žํ™”(Quantization), ํ”„๋ฃจ๋‹(Pruning), ๊ฐ€์ค‘์น˜ ํด๋Ÿฌ์Šคํ„ฐ๋ง(Weight Clustering)โ€”์„ ์„ ํƒํ•˜์˜€๋‹ค. ๊ฐ๊ฐ์˜ ๊ธฐ๋ฒ•์€ ๋ฉ”๋ชจ๋ฆฌ ์‚ฌ์šฉ๋Ÿ‰๊ณผ ์—ฐ์‚ฐ๋Ÿ‰์„ ๊ฐ์†Œ์‹œํ‚ค๋Š” ๋ฉ”์ปค๋‹ˆ์ฆ˜์€ ์œ ์‚ฌํ•˜์ง€๋งŒ, ํŒŒ๋ผ๋ฏธํ„ฐ ๋ถ„ํฌ์™€ ํ™œ์„ฑํ™” ํŒจํ„ด์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์ด ๋‹ค๋ฅด๋‹ค. ์–‘์žํ™”๋Š” ๊ฐ€์ค‘์น˜๋ฅผ ๋‚ฎ์€ ๋น„ํŠธ ํญ์œผ๋กœ ํ‘œํ˜„ํ•จ์œผ๋กœ์จ ์—ฐ์‚ฐ ์ •๋ฐ€๋„๋ฅผ ๋‚ฎ์ถ”์ง€๋งŒ, ์ •๊ทœํ™”๋œ ๋ ˆ์ด์–ด์—์„œ๋Š” ์˜ค์ฐจ๊ฐ€ ๋ถ€๋ถ„์ ์œผ๋กœ ์ƒ์‡„๋˜๋Š” ๊ฒฝํ–ฅ์ด ์žˆ๋‹ค. ํ”„๋ฃจ๋‹์€ ์ค‘์š”๋„๊ฐ€ ๋‚ฎ์€ ์ฑ„๋„์ด๋‚˜ ํ•„ํ„ฐ๋ฅผ

Computer Science Computer Vision
HiGR: Efficient Generative Slate Recommendation via Hierarchical Planning and Multi-Objective Preference Alignment

HiGR: Efficient Generative Slate Recommendation via Hierarchical Planning and Multi-Objective Preference Alignment

HiGR ๋…ผ๋ฌธ์€ ์Šฌ๋ ˆ์ดํŠธ ์ถ”์ฒœ์ด๋ผ๋Š” ๋ณตํ•ฉ์ ์ธ ๋ฌธ์ œ๋ฅผ ๋‘ ๊ฐ€์ง€ ํ•ต์‹ฌ ์ฐจ์›์—์„œ ํ˜์‹ ์ ์œผ๋กœ ์ ‘๊ทผํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ๋Š” ์•„์ดํ…œ ํ† ํฌ๋‚˜์ด์ œ์ด์…˜ ๋‹จ๊ณ„์ด๋‹ค. ๊ธฐ์กด์˜ ์ž๋™ํšŒ๊ท€ ๊ธฐ๋ฐ˜ ๋ชจ๋ธ์€ ์•„์ดํ…œ์„ ๋‹จ์ˆœํžˆ ๊ณ ์œ  ๋ฒˆํ˜ธ ํ˜น์€ ์ž„๋ฒ ๋”ฉ ๋ฒกํ„ฐ๋กœ ๋ณ€ํ™˜ํ•œ ๋’ค ์ˆœ์ฐจ์ ์œผ๋กœ ์˜ˆ์ธกํ•œ๋‹ค. ์ด ๊ฒฝ์šฐ ์•„์ดํ…œ ๊ฐ„ ์˜๋ฏธ์  ์—ฐ๊ด€์„ฑ์ด ํ† ํฐ ์ˆ˜์ค€์—์„œ ์ถฉ๋ถ„ํžˆ ๋ฐ˜์˜๋˜์ง€ ์•Š์•„, โ€œ์Œ์•…โ€‘ํŒโ€๊ณผ โ€œ์Œ์•…โ€‘์žฌ์ฆˆโ€์™€ ๊ฐ™์€ ์œ ์‚ฌ ์•„์ดํ…œ์ด ์„œ๋กœ ๋‹ค๋ฅธ ํ† ํฐ์œผ๋กœ ์ทจ๊ธ‰๋ผ ๋ชจ๋ธ์ด ๋ถˆํ•„์š”ํ•œ ํ˜ผ๋™์„ ๊ฒช๋Š”๋‹ค. HiGR์€ ์ž”์ฐจ ์–‘์žํ™”(residual quantization)์™€ ๋Œ€๋น„ ํ•™์Šต(contrastive learn

Computer Science Information Retrieval
LeanCat: A Benchmark Suite for Formal Category Theory in Lean (Part I: 1-Categories)

LeanCat: A Benchmark Suite for Formal Category Theory in Lean (Part I: 1-Categories)

์ด ๋…ผ๋ฌธ์€ ํ˜•์‹ํ™”๋œ ์ˆ˜ํ•™ ์—ฐ๊ตฌ์— ์žˆ์–ด โ€œ๊ตฌ์กฐ์  ์ถ”๋ก โ€์ด๋ผ๋Š” ํ•ต์‹ฌ ๊ณผ์ œ๋ฅผ ๋ช…ํ™•ํžˆ ์ œ์‹œํ•œ๋‹ค๋Š” ์ ์—์„œ ์˜๋ฏธ๊ฐ€ ํฌ๋‹ค. ๊ธฐ์กด์˜ ์ •๋ฆฌ ์ฆ๋ช… ๋ฒค์น˜๋งˆํฌ๋Š” ์ฃผ๋กœ ๊ตฌ์ฒด์ ์ธ ๊ณ„์‚ฐ์ด๋‚˜ ์ „ํ†ต์ ์ธ ์œ„์ƒยท๋Œ€์ˆ˜์  ๋ช…์ œ์— ์ดˆ์ ์„ ๋งž์ถ”์–ด ์™”์œผ๋ฉฐ, ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ(์˜ˆ: Mathlib)์™€์˜ ์ƒํ˜ธ์ž‘์šฉ์„ ์ตœ์†Œํ™”ํ–ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ํ˜„๋Œ€ ์ˆ˜ํ•™์€ ๋ฒ”์ฃผ๋ก ๊ณผ ๊ฐ™์€ ๊ณ ์ฐจ ๊ตฌ์กฐ๋ฅผ ํ†ตํ•ด ๋‹ค์–‘ํ•œ ๋ถ„์•ผ๋ฅผ ์—ฐ๊ฒฐํ•˜๊ณ , ์ด๋Ÿฌํ•œ ๊ตฌ์กฐ๋Š” ์ •์˜, ํ•จ์ž, ์ž์—ฐ ๋ณ€ํ™˜ ๋“ฑ ๋ณตํ•ฉ์ ์ธ ์ธํ„ฐํŽ˜์ด์Šค๋ฅผ ์š”๊ตฌํ•œ๋‹ค. ๋”ฐ๋ผ์„œ LLM์ด ์‹ค์ œ ์—ฐ๊ตฌ์ž ์ˆ˜์ค€์˜ ๋Šฅ๋ ฅ์„ ๋ณด์ด๋ ค๋ฉด ๋‹จ์ˆœํžˆ โ€œ์ •๋ฆฌ๋ฅผ ์ฆ๋ช…โ€ํ•˜๋Š” ๊ฒƒ์„ ๋„˜์–ด, ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ ์•ˆ์—์„œ ์ 

Computer Science Logic
Let It Flow: Agentic Crafting on Rock and Roll, Building the ROME Model within an Open Agentic Learning Ecosystem

Let It Flow: Agentic Crafting on Rock and Roll, Building the ROME Model within an Open Agentic Learning Ecosystem

๋ณธ ๋…ผ๋ฌธ์€ โ€œ์—์ด์ „ํŠธ ์ œ์ž‘(agentic crafting)โ€์ด๋ผ๋Š” ๊ฐœ๋…์„ ๊ธฐ์กด์˜ ์ผํšŒ์„ฑ ํ…์ŠคํŠธ ์ƒ์„ฑ๊ณผ ๊ตฌ๋ณ„ํ•˜์—ฌ, ์‹ค์ œ ์„ธ๊ณ„์—์„œ ๋‹ค์ค‘ ํ„ด์„ ๊ฑฐ์ณ ํ–‰๋™ํ•˜๊ณ  ๊ทธ ๊ฒฐ๊ณผ๋ฅผ ๊ด€์ฐฐยทํ”ผ๋“œ๋ฐฑํ•˜๋Š” ๋ฐ˜๋ณต์  ํ”„๋กœ์„ธ์Šค๋กœ ์ •์˜ํ•œ๋‹ค. ์ด๋Š” ๋‹จ์ˆœํžˆ ์ฝ”๋“œ๋ฅผ ์ž๋™ ์ƒ์„ฑํ•˜๋Š” ์ˆ˜์ค€์„ ๋„˜์–ด, ๋ณตํ•ฉ์ ์ธ ํˆด ์ฒด์ธ๊ณผ ์–ธ์–ด ๊ธฐ๋ฐ˜ ์›Œํฌํ”Œ๋กœ ์ „๋ฐ˜์— ๊ฑธ์ณ ๋ชจ๋ธ์ด ๊ณ„ํšยท์‹คํ–‰ยท๋ชจ๋‹ˆํ„ฐ๋งยท์ˆ˜์ •๊นŒ์ง€ ์ „ ๊ณผ์ •์„ ๋‹ด๋‹นํ•ด์•ผ ํ•จ์„ ์˜๋ฏธํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ์š”๊ตฌ๋ฅผ ์ถฉ์กฑํ•˜๋ ค๋ฉด ๋ชจ๋ธ ์ž์ฒด๋ฟ ์•„๋‹ˆ๋ผ, ๋ชจ๋ธ์ด ์ž‘๋™ํ•  ํ™˜๊ฒฝ, ๋ฐ์ดํ„ฐ ํŒŒ์ดํ”„๋ผ์ธ, ํ•™์Šตยท๋ฐฐํฌ ์ธํ”„๋ผ๊ฐ€ ๋ชจ๋‘ ์œ ๊ธฐ์ ์œผ๋กœ ์—ฐ๊ฒฐ๋œ โ€˜์—์ด์ „ํŠธ ํ•™์Šต ์ƒํƒœ๊ณ„(AL

Model Artificial Intelligence System Computer Science Learning
R-Debater: Retrieval-Augmented Debate Generation through Argumentative Memory

R-Debater: Retrieval-Augmented Debate Generation through Argumentative Memory

Rโ€‘Debater๋Š” โ€œ๋…ผ์ฆ ๋ฉ”๋ชจ๋ฆฌโ€๋ผ๋Š” ๊ฐœ๋…์„ ํ† ๋ก  ์ƒ์„ฑ์— ์ ์šฉํ•จ์œผ๋กœ์จ ๊ธฐ์กด LLM ๊ธฐ๋ฐ˜ ํ† ๋ก  ์‹œ์Šคํ…œ์ด ๊ฐ–๋Š” ๋ช‡ ๊ฐ€์ง€ ๊ทผ๋ณธ์ ์ธ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•œ๋‹ค. ์ฒซ์งธ, ์ผ๋ฐ˜์ ์ธ LLM์€ ๋Œ€๊ทœ๋ชจ ์‚ฌ์ „ํ•™์Šต์„ ํ†ตํ•ด ํ’๋ถ€ํ•œ ์–ธ์–ด ๋Šฅ๋ ฅ์„ ๋ณด์œ ํ•˜์ง€๋งŒ, ํŠน์ • ์ฃผ์žฅ์ด๋‚˜ ์ฆ๊ฑฐ๋ฅผ ์ผ๊ด€๋˜๊ฒŒ ์ธ์šฉํ•˜๋Š” ๋Šฅ๋ ฅ์€ ์ œํ•œ์ ์ด๋‹ค. ์ด๋Š” ํŠนํžˆ ๋‹ค์ค‘ ํ„ด ํ† ๋ก ์—์„œ โ€˜์ž…์žฅ ์ผ๊ด€์„ฑโ€™๊ณผ โ€˜์ฆ๊ฑฐ ๊ธฐ๋ฐ˜ ์ฃผ์žฅโ€™์ด ์š”๊ตฌ๋  ๋•Œ, ๋ชจ๋ธ์ด ์•ž์„  ๋ฐœ์–ธ์„ ๋ง๊ฐํ•˜๊ฑฐ๋‚˜ ๋ถ€์ •ํ™•ํ•œ ์ •๋ณด๋ฅผ ์‚ฝ์ž…ํ•˜๋Š” ์˜ค๋ฅ˜๋ฅผ ์ดˆ๋ž˜ํ•œ๋‹ค. Rโ€‘Debater๋Š” ๋ณ„๋„์˜ ํ† ๋ก  ์ง€์‹๋ฒ ์ด์Šค๋ฅผ ๊ตฌ์ถ•ํ•ด ์‚ฌ๋ก€โ€‘ํ˜• ์ฆ๊ฑฐ์™€ ๊ณผ๊ฑฐ ํ† ๋ก  ์ „๊ฐœ๋ฅผ ์ธ๋ฑ์‹ฑํ•˜๊ณ ,

Computer Science NLP
An Comparative Analysis about KYC on a Recommendation System Toward Agentic Recommendation System

An Comparative Analysis about KYC on a Recommendation System Toward Agentic Recommendation System

๋ณธ ๋…ผ๋ฌธ์€ KYC ๋ฐ์ดํ„ฐ๋ฅผ ์—์ด์ „ํŠธํ˜• ์ธ๊ณต์ง€๋Šฅ(AI)๊ณผ ๊ฒฐํ•ฉํ•จ์œผ๋กœ์จ ๊ฐœ์ธํ™” ์ถ”์ฒœ์˜ ์ •ํ™•๋„์™€ ์‹ ๋ขฐ์„ฑ์„ ๋™์‹œ์— ํ–ฅ์ƒ์‹œํ‚ค๋Š” ์ƒˆ๋กœ์šด ํŒจ๋Ÿฌ๋‹ค์ž„์„ ์ œ์‹œํ•œ๋‹ค. ๋จผ์ €, KYC๋Š” ์ „ํ†ต์ ์œผ๋กœ ๊ธˆ์œต ๊ธฐ๊ด€์ด ๊ณ ๊ฐ์˜ ์‹ ์›ยท๊ฑฐ๋ž˜ ์œ„ํ—˜์„ ํ‰๊ฐ€ํ•˜๊ธฐ ์œ„ํ•ด ์ˆ˜์ง‘ํ•˜๋Š” ์ •ํ˜•ยท๋น„์ •ํ˜• ๋ฐ์ดํ„ฐ ์ง‘ํ•ฉ์ด๋ฉฐ, ๊ฐœ์ธ์ •๋ณด ๋ณดํ˜ธ์™€ ๊ทœ์ œ ์ค€์ˆ˜ ์ธก๋ฉด์—์„œ ๋†’์€ ๋ฏผ๊ฐ์„ฑ์„ ๊ฐ€์ง„๋‹ค. ์ด๋Ÿฌํ•œ ๋ฐ์ดํ„ฐ๋ฅผ ์ถ”์ฒœ ์‹œ์Šคํ…œ์— ์ง์ ‘ ํˆฌ์ž…ํ•˜๋ฉด ์‚ฌ์šฉ์ž์˜ ์‹ ์šฉ๋„ยท์†Œ๋“ ์ˆ˜์ค€ยท๊ฑฐ๋ž˜ ํŒจํ„ด ๋“ฑ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ๋งž์ถคํ˜• ์ฝ˜ํ…์ธ ๋ฅผ ์ œ๊ณตํ•  ์ˆ˜ ์žˆ์–ด, ํŠนํžˆ ๊ด‘๊ณ (Ad)์™€ ๊ธฐ์ˆ (Tech) ๋ถ„์•ผ์—์„œ ์ „ํ™˜์œจ์„ ํฌ๊ฒŒ ๋Œ์–ด์˜ฌ๋ฆด ๊ฐ€๋Šฅ์„ฑ์ด ์žˆ๋‹ค.

Computer Science Analysis Information Retrieval System
Causify DataFlow: A Framework For High-performance Machine Learning Stream Computing

Causify DataFlow: A Framework For High-performance Machine Learning Stream Computing

๋ณธ ๋…ผ๋ฌธ์€ ๋ฐ์ดํ„ฐ ๊ณผํ•™ ์‹ค๋ฌด์—์„œ ๊ฐ€์žฅ ๋นˆ๋ฒˆํžˆ ๋งˆ์ฃผ์น˜๋Š” โ€˜๋ฐ์ดํ„ฐ๋Š” ์œ ํ•œํ•˜๊ณ  ์™„์ „ํ•˜๋‹คโ€™๋Š” ๊ฐ€์ •์„ ๊ทผ๋ณธ์ ์œผ๋กœ ๋’คํ”๋“ ๋‹ค. ์ „ํ†ต์ ์ธ ๋ฐฐ์น˜ ๊ธฐ๋ฐ˜ ์›Œํฌํ”Œ๋กœ์šฐ๋Š” ๊ณ ์ •๋œ ๋ฐ์ดํ„ฐ์…‹์„ ํ•œ ๋ฒˆ์— ๋ฉ”๋ชจ๋ฆฌ๋กœ ๋กœ๋“œํ•˜๊ฑฐ๋‚˜ ๋‹จ์ผ ํŒจ์Šค๋กœ ์ฒ˜๋ฆฌํ•œ๋‹ค๋Š” ์ „์ œํ•˜์— ์„ค๊ณ„๋˜์—ˆ์œผ๋ฉฐ, ์ด๋Š” ์„ผ์„œ ์ŠคํŠธ๋ฆผ, ๊ธˆ์œต ๊ฑฐ๋ž˜ ๋กœ๊ทธ, ์‹œ์Šคํ…œ ์ด๋ฒคํŠธ์™€ ๊ฐ™์ด ์‹œ๊ฐ„์— ๋”ฐ๋ผ ์ง€์†์ ์œผ๋กœ ์ƒ์„ฑ๋˜๋Š” ๋ฐ์ดํ„ฐ์™€๋Š” ๊ทผ๋ณธ์ ์œผ๋กœ ๋งž์ง€ ์•Š๋Š”๋‹ค. ์ €์ž๋Š” ์ด๋Ÿฌํ•œ ๋ถˆ์ผ์น˜๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด Causify DataFlow๋ผ๋Š” ํ†ตํ•ฉ ์ปดํ“จํ…Œ์ด์…”๋„ ๋ชจ๋ธ์„ ์ œ์•ˆํ•œ๋‹ค. ์ฒซ์งธ, ํ”„๋ ˆ์ž„์›Œํฌ๋Š” DAG๋ฅผ ์„ ์–ธ์ ์œผ๋กœ ์ •์˜ํ•˜๊ณ , ๋™์ผํ•œ ์ •์˜๋ฅผ

Framework Machine Learning Computer Science Learning Data
DRL-TH: Jointly Utilizing Temporal Graph Attention and Hierarchical Fusion for UGV Navigation in Crowded Environments

DRL-TH: Jointly Utilizing Temporal Graph Attention and Hierarchical Fusion for UGV Navigation in Crowded Environments

๋ณธ ๋…ผ๋ฌธ์€ ๋ณต์žกํ•œ ์ธ๊ฐ„ยท๋กœ๋ด‡ ํ˜ผ์žฌ ํ™˜๊ฒฝ์—์„œ UGV๊ฐ€ ์‹ค์‹œ๊ฐ„์œผ๋กœ ์•ˆ์ „ํ•˜๊ณ  ํšจ์œจ์ ์œผ๋กœ ์ด๋™ํ•˜๊ธฐ ์œ„ํ•ด ํ•„์š”ํ•œ ๋‘ ๊ฐ€์ง€ ํ•ต์‹ฌ ์š”์†Œ, ์ฆ‰ โ€˜์‹œ๊ฐ„์  ์—ฐ์†์„ฑโ€™๊ณผ โ€˜๋‹ค์ค‘ ์„ผ์„œ ์œตํ•ฉโ€™์„ ๋™์‹œ์— ๋งŒ์กฑ์‹œํ‚ค๋Š” ์ƒˆ๋กœ์šด DRL ๊ธฐ๋ฐ˜ ์•„ํ‚คํ…์ฒ˜๋ฅผ ์ œ์‹œํ•œ๋‹ค. ๊ธฐ์กด DRL ๊ธฐ๋ฐ˜ ๋‚ด๋น„๊ฒŒ์ด์…˜ ์—ฐ๊ตฌ๋“ค์€ ์ฃผ๋กœ ํ˜„์žฌ ์‹œ์ ์˜ RGB ์ด๋ฏธ์ง€ ํ˜น์€ LiDAR ํฌ์ธํŠธ ํด๋ผ์šฐ๋“œ์™€ ๊ฐ™์€ ๋‹จ์ผ ํ”„๋ ˆ์ž„ ๋ฐ์ดํ„ฐ๋ฅผ ์ž…๋ ฅ์œผ๋กœ ์‚ฌ์šฉํ•˜๊ณ , ์—ฌ๋Ÿฌ ๋ชจ๋‹ฌ๋ฆฌํ‹ฐ๋ฅผ ๊ฒฐํ•ฉํ•  ๋•Œ๋Š” ๋‹จ์ˆœํžˆ ๋ฒกํ„ฐ๋ฅผ ์ด์–ด ๋ถ™์ด๋Š”(concatenation) ๋ฐฉ์‹์„ ์ฑ„ํƒํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ์„ค๊ณ„๋Š” (1) ๊ณผ๊ฑฐ ํ”„๋ ˆ์ž„์—์„œ ๊ด€์ฐฐ๋œ ์›€์ง์ด๋Š” ์žฅ์• 

Computer Science Robotics
No Image

Improving Multi-step RAG with Hypergraph-based Memory for Long-Context Complex Relational Modeling

๋ณธ ๋…ผ๋ฌธ์€ ๋‹ค๋‹จ๊ณ„ RAG ์‹œ์Šคํ…œ์—์„œ ๋ฉ”๋ชจ๋ฆฌ์˜ ์—ญํ• ์„ ๊ทผ๋ณธ์ ์œผ๋กœ ์žฌ์ •์˜ํ•œ๋‹ค๋Š” ์ ์—์„œ ํ•™์ˆ ์ ยท์‹ค์šฉ์  ์˜์˜๊ฐ€ ํฌ๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค์€ ๋ฉ”๋ชจ๋ฆฌ๋ฅผ โ€œ์ˆ˜๋™์  ์ €์žฅ์†Œโ€๋กœ ๊ฐ„์ฃผํ•˜๊ณ , ๊ฒ€์ƒ‰๋œ ํ…์ŠคํŠธ ์กฐ๊ฐ๋“ค์„ ๋‹จ์ˆœํžˆ ์••์ถ•ํ•˜๊ฑฐ๋‚˜ ์ˆœ์ฐจ์ ์œผ๋กœ ์—ฐ๊ฒฐํ•˜๋Š” ๋ฐฉ์‹์— ๋จธ๋ฌผ๋ €๋‹ค. ์ด๋Ÿฌํ•œ ์ ‘๊ทผ์€ ๊ฐœ๋ณ„ ์‚ฌ์‹ค์„ ๋‚˜์—ดํ•˜๋Š” ์ˆ˜์ค€์— ๊ทธ์น˜๋ฉฐ, ์‚ฌ์‹ค ๊ฐ„์˜ ๋ณตํ•ฉ์  ๊ด€๊ณ„โ€”์˜ˆ๋ฅผ ๋“ค์–ด, ์ธ๊ณผ๊ด€๊ณ„, ๊ณตํ†ต ์›์ธ, ์ƒํ˜ธ ๋ณด์™„์  ์ฆ๊ฑฐ ๋“ฑโ€”๋ฅผ ํฌ์ฐฉํ•˜์ง€ ๋ชปํ•œ๋‹ค. ๊ฒฐ๊ณผ์ ์œผ๋กœ ์žฅ๊ธฐ ๋ฌธ๋งฅ์—์„œ ์—ฌ๋Ÿฌ ๋‹จ๊ณ„์— ๊ฑธ์นœ ์ถ”๋ก ์ด ๋‹จ์ ˆ๋˜๊ณ , ์ „์—ญ์  ์˜๋ฏธ๋ง์„ ํ˜•์„ฑํ•˜๋Š” ๋ฐ ํ•œ๊ณ„๊ฐ€ ๋ฐœ์ƒํ•œ๋‹ค. HGMEM์€ ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜

Computer Science NLP Model
Fuzzy-Logic and Deep Learning for Environmental Condition-Aware Road Surface Classification

Fuzzy-Logic and Deep Learning for Environmental Condition-Aware Road Surface Classification

๋ณธ ์—ฐ๊ตฌ๋Š” ์‹ค์‹œ๊ฐ„ ๋„๋กœ ์ƒํƒœ ๋ชจ๋‹ˆํ„ฐ๋ง ์‹œ์Šคํ…œ์˜ ๊ฐœ๋ฐœ์„ ๋ชฉํ‘œ๋กœ ํ•˜๋ฉฐ, ์ด๋ฅผ ํ†ตํ•ด ์ฐจ๋Ÿ‰ ๊ด€๋ฆฌ ๋ฐ ํ™œ์„ฑ ์ฐจ๋Ÿ‰ ์ œ์–ด ์‹œ์Šคํ…œ์— ํ•„์š”ํ•œ ์ •๋ณด๋ฅผ ์ œ๊ณตํ•˜๊ณ ์ž ํ•ฉ๋‹ˆ๋‹ค. ์ „ํ†ต์ ์ธ ๋ฐฉ๋ฒ•๋“ค์ด ๋น„์šฉ๊ณผ ์‹œ๊ฐ„์ด ๋งŽ์ด ์†Œ์š”๋˜๋Š” ๋ฐ˜๋ฉด, ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋‚ ์”จ ์กฐ๊ฑด ๋ฐ์ดํ„ฐ์™€ ๋„๋กœ ํ‘œ๋ฉด ์ƒํƒœ ๋ฐ์ดํ„ฐ๋ฅผ ํ™œ์šฉํ•œ ์ƒˆ๋กœ์šด ์ ‘๊ทผ๋ฒ•์„ ์ œ์‹œํ•ฉ๋‹ˆ๋‹ค. ํŠนํžˆ, ์นผ์Šค๋ฃจ์— ๊ณต๊ณผ๋Œ€ํ•™๊ต ์ฃผ๋ณ€ ๋„๋กœ์—์„œ ๋ชจ๋ฐ”์ผ ํฐ ์นด๋ฉ”๋ผ๋ฅผ ์ด์šฉํ•ด ์ˆ˜์ง‘๋œ ์ด๋ฏธ์ง€ ๋ฐ์ดํ„ฐ์™€ ๊ฐ€์†๋„ ๋ฐ์ดํ„ฐ๋ฅผ ํ†ตํ•ด ๋‹ค์–‘ํ•œ ๋”ฅ๋Ÿฌ๋‹ ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ์„ฑ๋Šฅ์„ ๋น„๊ตํ•˜์˜€์Šต๋‹ˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” Alexnet, LeNet, VGG ๋ฐ Resnet ๋“ฑ ๋„ค ๊ฐ€

Learning
PathFound: An Agentic Multimodal Model Activating Evidence-seeking Pathological Diagnosis

PathFound: An Agentic Multimodal Model Activating Evidence-seeking Pathological Diagnosis

PathFound ๋…ผ๋ฌธ์€ ๊ธฐ์กด ๋ณ‘๋ฆฌํ•™ ์ธ๊ณต์ง€๋Šฅ ๋ชจ๋ธ์ด ๊ฐ–๋Š” โ€˜ํ•œ ๋ฒˆ์— ์ „์ฒด ์Šฌ๋ผ์ด๋“œ ์ฒ˜๋ฆฌโ€™๋ผ๋Š” ํ•œ๊ณ„๋ฅผ ๋ช…ํ™•ํžˆ ์ง€์ ํ•˜๊ณ , ์‹ค์ œ ๋ณ‘๋ฆฌํ•™์ž์˜ ์ง„๋‹จ ๊ณผ์ •๊ณผ ์œ ์‚ฌํ•œ ์ฆ๊ฑฐโ€‘์ค‘์‹ฌ์  ์ˆœํ™˜ ํ”„๋กœ์„ธ์Šค ๋ฅผ ๋„์ž…ํ•จ์œผ๋กœ์จ ์ƒˆ๋กœ์šด ์—ฐ๊ตฌ ๋ฐฉํ–ฅ์„ ์ œ์‹œํ•œ๋‹ค. ๋จผ์ €, ๋ชจ๋ธ ์•„ํ‚คํ…์ฒ˜๋Š” ์„ธ ๊ฐ€์ง€ ํ•ต์‹ฌ ๋ชจ๋“ˆ๋กœ ๊ตฌ์„ฑ๋œ๋‹ค. โ‘  ์‹œ๊ฐ ๊ธฐ๋ฐ˜ ํŒŒ์šด๋ฐ์ด์…˜ ๋ชจ๋ธ ์€ ๋Œ€์šฉ๋Ÿ‰ ๋””์ง€ํ„ธ ์Šฌ๋ผ์ด๋“œ์—์„œ ๊ณ ํ•ด์ƒ๋„ ํŠน์ง•์„ ์ถ”์ถœํ•˜๊ณ , โ‘ก ๋น„์ „โ€‘์–ธ์–ด ๋ชจ๋ธ(VLM) ์€ ์ด๋ฏธ์ง€ ํŠน์ง•์„ ํ…์ŠคํŠธ ํ˜•ํƒœ์˜ ์ž„์ƒ ์งˆ๋ฌธ์ด๋‚˜ ์„ค๋ช…๊ณผ ์—ฐ๊ฒฐํ•œ๋‹ค. โ‘ข ๊ฐ•ํ™”ํ•™์Šต(RL) ๊ธฐ๋ฐ˜ ์ถ”๋ก  ์—์ด์ „ํŠธ ๋Š” ํ˜„์žฌ ์ง„๋‹จ ๊ฐ€์„ค์„ ํ‰๊ฐ€ํ•˜๊ณ ,

Computer Science Model Computer Vision
PathoSyn: Imaging-Pathology MRI Synthesis via Disentangled Deviation Diffusion

PathoSyn: Imaging-Pathology MRI Synthesis via Disentangled Deviation Diffusion

PathoSyn ๋…ผ๋ฌธ์€ MRI ํ•ฉ์„ฑ ๋ถ„์•ผ์—์„œ ๊ธฐ์กด ์ ‘๊ทผ๋ฒ•์ด ์•ˆ๊ณ  ์žˆ๋˜ ๋‘ ๊ฐ€์ง€ ํ•ต์‹ฌ ํ•œ๊ณ„๋ฅผ ์ฒด๊ณ„์ ์œผ๋กœ ํ•ด๊ฒฐํ•œ๋‹ค๋Š” ์ ์—์„œ ํ•™์ˆ ์ ยท์‹ค์šฉ์  ์˜์˜๋ฅผ ๊ฐ€์ง„๋‹ค. ์ฒซ ๋ฒˆ์งธ ํ•œ๊ณ„๋Š” โ€œ์ „์—ญ ํ”ฝ์…€โ€‘๋ ˆ๋ฒจโ€ ์ƒ์„ฑ ๋ชจ๋ธ์ด ํ•ด๋ถ€ํ•™์  ๊ตฌ์กฐ๋ฅผ ์ถฉ๋ถ„ํžˆ ๋ณด์กดํ•˜์ง€ ๋ชปํ•œ๋‹ค๋Š” ์ ์ด๋‹ค. GANโ€‘๊ธฐ๋ฐ˜ ํ˜น์€ ์ „์ฒด ํ™•์‚ฐ ๋ชจ๋ธ์€ ์ด๋ฏธ์ง€ ์ „์ฒด๋ฅผ ํ•œ ๋ฒˆ์— ์ƒ˜ํ”Œ๋งํ•˜๊ธฐ ๋•Œ๋ฌธ์—, ๋ณ‘๋ณ€๊ณผ ์ •์ƒ ์กฐ์ง ์‚ฌ์ด์˜ ๋ฏธ์„ธํ•œ ๊ฒฝ๊ณ„๊ฐ€ ํ๋ ค์ง€๊ฑฐ๋‚˜ ๋น„ํ˜„์‹ค์ ์ธ ํ˜•ํƒœ๋กœ ๋ณ€ํ˜•๋  ์œ„ํ—˜์ด ์žˆ๋‹ค. ๋‘ ๋ฒˆ์งธ ํ•œ๊ณ„๋Š” โ€œ์ด์ง„ ๋งˆ์Šคํฌ ๊ธฐ๋ฐ˜โ€ ์กฐ๊ฑด๋ถ€ ์ƒ์„ฑ์ด ๋ณ‘๋ณ€ ์˜์—ญ์„ ์ง€๋‚˜์น˜๊ฒŒ ๋‹จ์ˆœํ™”ํ•œ๋‹ค๋Š” ์ ์ด๋‹ค. ๋งˆ์Šคํฌ๋Š” ๋ณ‘๋ณ€์˜ ์œ„์น˜์™€ ๋Œ€

Computer Science Computer Vision
Benchmark Success, Clinical Failure: When Reinforcement Learning Optimizes for Benchmarks, Not Patients

Benchmark Success, Clinical Failure: When Reinforcement Learning Optimizes for Benchmarks, Not Patients

๋ณธ ๋…ผ๋ฌธ์€ ์˜๋ฃŒ ์˜์ƒ ๋ถ„์•ผ์—์„œ ์ตœ๊ทผ ๊ฐ๊ด‘๋ฐ›๊ณ  ์žˆ๋Š” ๊ฐ•ํ™”ํ•™์Šต(RL) ๊ธฐ๋ฐ˜ ํŒŒ์ธํŠœ๋‹์ด ์‹ค์ œ ์ž„์ƒ ์ ์šฉ์— ์–ด๋–ค ํ•จ์˜๋ฅผ ๊ฐ–๋Š”์ง€ ์‹ฌ๋„ ์žˆ๊ฒŒ ํƒ๊ตฌํ•œ๋‹ค. ๋จผ์ € ์ €์ž๋“ค์€ โ€œR1โ€‘styleโ€์ด๋ผ ๋ช…๋ช…ํ•œ ๋‘ ๋‹จ๊ณ„ ํ•™์Šต ํŒŒ์ดํ”„๋ผ์ธ์„ ์ œ์‹œํ•œ๋‹ค. ์ฒซ ๋‹จ๊ณ„๋Š” ๋น„๊ต์  ์ ์€ ์–‘(2,000๊ฐœ)์˜ ๋ผ๋ฒจ๋ง๋œ ์ด๋ฏธ์ง€โ€‘ํ…์ŠคํŠธ ์Œ์„ ์ด์šฉํ•œ ์ง€๋„ํ•™์Šต(Supervised Fineโ€‘Tuning, SFT)์ด๋ฉฐ, ๋‘ ๋ฒˆ์งธ ๋‹จ๊ณ„๋Š” 1,000๊ฐœ์˜ RL ์ƒ˜ํ”Œ์„ ํ™œ์šฉํ•ด GRPO(Goalโ€‘oriented Rewardโ€‘based Policy Optimization)๋ผ๋Š” ์ •์ฑ… ์ตœ์ ํ™” ๊ธฐ๋ฒ•์„

Computer Science Artificial Intelligence Learning
Comment on 'There is No Quantum World' by Jeffrey Bub

Comment on 'There is No Quantum World' by Jeffrey Bub

์ด ๋…ผํ‰์€ ์–‘์ž ๋…ผ๋ฆฌ์™€ ํ™•๋ฅ  ์ด๋ก  ์‚ฌ์ด์˜ ๊นŠ์€ ๊ตฌ์กฐ์  ์—ฐ๊ด€์„ฑ์„ ๊ฐ•์กฐํ•œ๋‹ค. ์ง๊ต ๊ณต๊ฐ„(orthogonal space)์€ ํž๋ฒ ๋ฅดํŠธ ๊ณต๊ฐ„์˜ ํ•œ ํ˜•ํƒœ๋กœ, ์–‘์ž์—ญํ•™์—์„œ ์ƒํƒœ๋ฒกํ„ฐ๊ฐ€ ์„œ๋กœ ์ง๊ตํ•  ๋•Œ ์„œ๋กœ ๋ฐฐํƒ€์ ์ธ ๋ฌผ๋ฆฌ์  ์ƒํƒœ๋ฅผ ๋‚˜ํƒ€๋‚ธ๋‹ค. ์ด๋Ÿฌํ•œ ๊ณต๊ฐ„์— ๋Œ€ํ•ด โ€œ์ง๊ต์„ฑ์„ ๋ณด์กดํ•˜๋Š” ์‚ฌ์ƒโ€์ด๋ผ ํ•จ์€ ๋‘ ๋ฒกํ„ฐ๊ฐ€ ์ง๊ต์ผ ๋•Œ ๊ทธ ์ด๋ฏธ์ง€ ์—ญ์‹œ ์ง๊ต๊ฐ€ ๋˜๋Š” ์„ ํ˜• ํ˜น์€ ๋ฐ˜์„ ํ˜• ๋ณ€ํ™˜์„ ์˜๋ฏธํ•œ๋‹ค. Uhlhorn ์ •๋ฆฌ๋Š” ์ด๋Ÿฌํ•œ ์‚ฌ์ƒ์ด ์‹ค์ œ๋กœ๋Š” ์ „์ฒด ๋‚ด์ ์„ ๋ณด์กดํ•˜๋Š”(์ฆ‰, ์œ ๋‹ˆํ„ฐ๋ฆฌ ํ˜น์€ ๋ฐ˜์œ ๋‹ˆํ„ฐ๋ฆฌ) ๋ณ€ํ™˜์— ํ•œ์ •๋œ๋‹ค๋Š” ๊ฐ•๋ ฅํ•œ ๊ฒฐ๊ณผ๋ฅผ ์ œ๊ณตํ•œ๋‹ค. ์ฆ‰, ์ง๊ต์„ฑ์„ ๋ณด์กดํ•˜๋ฉด ์ž๋™์ 

Quantum Physics
No Image

Flexible Multitask Learning with Factorized Diffusion Policy

๋ณธ ๋…ผ๋ฌธ์€ ๋‹ค์ค‘ ์ž‘์—… ํ•™์Šต์˜ ๋ณต์žก์„ฑ์„ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ์ƒˆ๋กœ์šด ์ ‘๊ทผ๋ฒ•์„ ์ œ์‹œํ•ฉ๋‹ˆ๋‹ค. ๋กœ๋ด‡ ํ–‰๋™ ๋ถ„ํฌ๋Š” ๋งค์šฐ ๋‹ค์–‘ํ•˜๊ณ , ์ด๋กœ ์ธํ•ด ์ผ๊ด€๋œ ๋ชจ๋ธ์ด ์ด๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ํ•™์Šตํ•˜๋Š” ๋ฐ ์–ด๋ ค์›€์„ ๊ฒช์Šต๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ๋…ผ๋ฌธ์€ ๋ชจ๋“ˆํ™”๋œ ํ™•์‚ฐ ์ •์ฑ… ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. ์ด ํ”„๋ ˆ์ž„์›Œํฌ๋Š” ๋ณต์žกํ•œ ํ–‰๋™ ๋ถ„ํฌ๋ฅผ ์—ฌ๋Ÿฌ ๊ฐœ์˜ ํŠน์ˆ˜ํ™”๋œ ํ™•์‚ฐ ๋ชจ๋ธ๋กœ ๋ถ„ํ•ดํ•˜์—ฌ ๊ฐ๊ฐ์ด ํŠน์ • ํ•˜์œ„ ๋ชจ๋“œ๋ฅผ ํฌ์ฐฉํ•˜๋„๋ก ํ•ฉ๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ์ ‘๊ทผ๋ฒ•์€ ๊ฐ ๋ชจ๋“ˆ์ด ๋…๋ฆฝ์ ์œผ๋กœ ํ•™์Šตํ•˜๊ณ , ํ•„์š”์— ๋”ฐ๋ผ ์ถ”๊ฐ€ํ•˜๊ฑฐ๋‚˜ ์กฐ์ •ํ•  ์ˆ˜ ์žˆ์–ด ์ƒˆ๋กœ์šด ์ž‘์—…์— ๋Œ€ํ•œ ์œ ์—ฐํ•œ ์ ์‘์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•ฉ๋‹ˆ๋‹ค. ๋˜ํ•œ,

Learning
Introducing TrGLUE and SentiTurca: A Comprehensive Benchmark for Turkish General Language Understanding and Sentiment Analysis

Introducing TrGLUE and SentiTurca: A Comprehensive Benchmark for Turkish General Language Understanding and Sentiment Analysis

์ด ๋…ผ๋ฌธ์€ ํ„ฐํ‚ค์–ด ์ž์—ฐ์–ด ์ฒ˜๋ฆฌ(NLP)์˜ ์„ฑ๋Šฅ ํ‰๊ฐ€๋ฅผ ์œ„ํ•ด ํ•„์š”ํ•œ ์ข…ํ•ฉ์ ์ธ ๋ฒค์น˜๋งˆํฌ๋ฅผ ์ œ์‹œํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ํŠนํžˆ, TrGLUE์™€ SentiTurca๋ผ๋Š” ๋‘ ๊ฐ€์ง€ ์ƒˆ๋กœ์šด ๋ฒค์น˜๋งˆํฌ๋ฅผ ์†Œ๊ฐœํ•˜๋ฉฐ, ์ด๋Š” ํ„ฐํ‚ค์–ด NLU ๋Šฅ๋ ฅ์„ ํ‰๊ฐ€ํ•˜๋Š” ๋ฐ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•ฉ๋‹ˆ๋‹ค. GLUE ๋ฒค์น˜๋งˆํฌ๊ฐ€ ์˜์–ด NLU์˜ ์„ฑ๋Šฅ ํ‰๊ฐ€์— ๋Œ€ํ•œ ํ‘œ์ค€์„ ์ œ๊ณตํ•œ ๊ฒƒ์ฒ˜๋Ÿผ, TrGLUE๋Š” ํ„ฐํ‚ค์–ด์—์„œ๋„ ์œ ์‚ฌํ•œ ๊ธฐ๋Šฅ์„ ์ˆ˜ํ–‰ํ•ฉ๋‹ˆ๋‹ค. ๋…ผ๋ฌธ์€ ๋‹ค์–‘ํ•œ ์–ธ์–ด๋ณ„๋กœ ๊ฐœ๋ฐœ๋œ ๋ฒค์น˜๋งˆํฌ๋ฅผ ์†Œ๊ฐœํ•˜๋ฉฐ, ์ด๋Ÿฌํ•œ ๋ฒค์น˜๋งˆํฌ์˜ ์ค‘์š”์„ฑ์„ ๊ฐ•์กฐํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ํŠนํžˆ, ํ„ฐํ‚ค์–ด์— ๋Œ€ํ•œ ์ข…ํ•ฉ์ ์ธ NLU ํ‰๊ฐ€ ๋ฒค์น˜๋งˆํฌ๊ฐ€ ๋ถ€์žฌํ•œ

Analysis
No Image

LibContinual: A Comprehensive Library towards Realistic Continual Learning

์ด ๋…ผ๋ฌธ์€ ๊ณ„์†ํ•™์Šต(Continual Learning) ๋ถ„์•ผ์—์„œ ์ค‘์š”ํ•œ ๋ฌธ์ œ์ธ ์น˜๋ช…์ ์ธ ์žŠ์Œ์„ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด LibContinual์ด๋ผ๋Š” ์ƒˆ๋กœ์šด ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ๋ฅผ ์ œ์•ˆํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ด ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ๋Š” ๊ณ ๊ฒฐํ•ฉ ์ €๊ฒฐ์ฐฉ ๋ชจ๋“ˆํ˜• ์•„ํ‚คํ…์ฒ˜๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ, 5๊ฐœ์˜ ์ฃผ์š” ๋ฐฉ๋ฒ•๋ก  ์นดํ…Œ๊ณ ๋ฆฌ์— ๊ฑธ์ณ 19๊ฐœ์˜ ๋Œ€ํ‘œ์ ์ธ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ํ†ตํ•ฉํ•˜์—ฌ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ๊ตฌ์กฐ๋Š” ๋‹ค์–‘ํ•œ CL ๋ฐฉ๋ฒ•๋“ค์„ ๋น„๊ตํ•˜๊ณ  ์žฌํ˜„ ๊ฐ€๋Šฅํ•œ ์—ฐ๊ตฌ ํ™˜๊ฒฝ์„ ์ œ๊ณตํ•˜๋Š” ๋ฐ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•ฉ๋‹ˆ๋‹ค. ๋…ผ๋ฌธ์€ ๋˜ํ•œ ํ˜„์žฌ ํ‰๊ฐ€์—์„œ ์ผ๋ฐ˜์ ์œผ๋กœ ๋ฐœ๊ฒฌ๋˜๋Š” ์„ธ ๊ฐ€์ง€ ์•”๋ฌต์ ์ธ ๊ฐ€์ •(์˜คํ”„๋ผ์ธ ๋ฐ์ดํ„ฐ ์ ‘๊ทผ ๊ฐ€๋Šฅ์„ฑ, ์ œํ•œ ์—†๋Š”

Learning
S&P 500 Stock's Movement Prediction using CNN

S&P 500 Stock's Movement Prediction using CNN

์ด ๋…ผ๋ฌธ์€ S&P 500 ์ง€์ˆ˜๋ฅผ ๊ตฌ์„ฑํ•˜๋Š” ์ฃผ์‹์˜ ์›€์ง์ž„์„ ์˜ˆ์ธกํ•˜๋Š”๋ฐ ์ดˆ์ ์„ ๋งž์ถ”๊ณ  ์žˆ๋‹ค. ๊ณผ๊ฑฐ์—๋Š” ๋‹ค์–‘ํ•œ ๋ฐฉ๋ฒ•๋ก ์„ ์‚ฌ์šฉํ•˜์—ฌ ์ฃผ๊ฐ€ ์˜ˆ์ธก์— ๋Œ€ํ•œ ๋งŽ์€ ์ ‘๊ทผ๋ฒ•๋“ค์ด ์‹œ์žฅ์—์„œ ์•Œ๊ณ ๋ฆฌ์ฆ˜ ๊ฑฐ๋ž˜์™€ ์•ŒํŒŒ ์ƒ์„ฑ ์‹œ์Šคํ…œ์— ํ™œ์šฉ๋˜์–ด ์™”๋‹ค. ์ตœ๊ทผ ์ธ๊ณต ์‹ ๊ฒฝ๋ง์˜ ์„ฑ๊ณต์€ ๊ธฐ๊ณ„ ํ•™์Šต๊ณผ ๋”ฅ๋Ÿฌ๋‹ ๋ถ„์•ผ์˜ ์ตœ์‹  ์—ฐ๊ตฌ๋ฅผ ํ†ตํ•ด ์˜ˆ์ธก์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•˜๋Š” ๊ธธ์„ ์—ด์—ˆ๋‹ค. ์ด ๋…ผ๋ฌธ์—์„œ๋Š” ์‹ค์„ธ๊ณ„ ์‹œ์žฅ ๋ฐ์ดํ„ฐ์—์„œ ๋ฐœ์ƒํ•˜๋Š” ์ฃผ์‹ ๋ถ„ํ• /๋ฐฐ๋‹น ์ด๋ฒคํŠธ๋ฅผ ํฌํ•จํ•œ ๋‹ค๋ณ€๋Ÿ‰ ์›์‹œ ๋ฐ์ดํ„ฐ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ, ์ด๋ฏธ์ง€ ๋ถ„๋ฅ˜์— ๊ฐ€์žฅ ์ž˜ ์•Œ๋ ค์ง„ ๋„๊ตฌ์ธ ์ปจ๋ณผ๋ฃจ์…˜ ์‹ ๊ฒฝ๋ง(CNN)์„ ์ ์šฉํ•˜๊ณ  ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ์ ‘๊ทผ๋ฒ•์€ ๊ฐ๊ฐ

The Illusion of Clinical Reasoning: A Benchmark Reveals the Pervasive Gap in Vision-Language Models for Clinical Competency

The Illusion of Clinical Reasoning: A Benchmark Reveals the Pervasive Gap in Vision-Language Models for Clinical Competency

์ด ๋…ผ๋ฌธ์€ ์˜๋ฃŒ ๋ถ„์•ผ์—์„œ ์ธ๊ณต ์ง€๋Šฅ(AI)์˜ ์‹ค์ œ ์„ฑ๋Šฅ์„ ํ‰๊ฐ€ํ•˜๋Š” ์ค‘์š”ํ•œ ์—ฐ๊ตฌ๋ฅผ ์ œ๊ณตํ•œ๋‹ค. ํŠนํžˆ, ์ด ์—ฐ๊ตฌ๋Š” AI ๋ชจ๋ธ๋“ค์ด ์‹ค์ œ ์ž„์ƒ ์ƒํ™ฉ์—์„œ ์–ผ๋งˆ๋‚˜ ํšจ๊ณผ์ ์œผ๋กœ ์ž‘๋™ํ•˜๋Š”์ง€์— ๋Œ€ํ•œ ๊นŠ์ด ์žˆ๋Š” ํ†ต์ฐฐ๋ ฅ์„ ์ œ๊ณตํ•œ๋‹ค. B&J ๋ฒค์น˜๋งˆํฌ๋Š” ์˜๋ฃŒ ๋ถ„์•ผ์—์„œ AI์˜ ์„ฑ๋Šฅ์„ ์ข…ํ•ฉ์ ์œผ๋กœ ํ‰๊ฐ€ํ•˜๊ธฐ ์œ„ํ•œ ์ฒด๊ณ„์ ์ธ ์ ‘๊ทผ๋ฒ•์„ ์ œ์‹œํ•˜๋ฉฐ, ์ด๋Š” ๊ธฐ์กด์˜ ๋‹จ์ˆœํ•œ ์„ ํƒ์ง€ ๋ฌธ์ œ๋ฅผ ๋„˜์–ด ์‹ค์ œ ํ™˜์ž ์น˜๋ฃŒ์— ํ•„์š”ํ•œ ๋‹ค์–‘ํ•œ ์ถ”๋ก  ๋Šฅ๋ ฅ์„ ํ‰๊ฐ€ํ•œ๋‹ค. ์—ฐ๊ตฌ ๊ฒฐ๊ณผ๋Š” AI ๋ชจ๋ธ๋“ค์ด ๊ตฌ์กฐํ™”๋œ ์งˆ๋ฌธ์—์„œ๋Š” ๋†’์€ ์„ฑ๋Šฅ์„ ๋ณด์ด์ง€๋งŒ, ์‹ค์ œ ์ž„์ƒ ์ƒํ™ฉ์—์„œ ์š”๊ตฌ๋˜๋Š” ๋ณต์žกํ•˜๊ณ  ๋‹ค์ค‘๋ชจ๋‹ฌ์ ์ธ ์ถ”๋ก ์—๋Š” ์•„์ง

Model
No Image

BALLAST: Bandit-Assisted Learning for Latency-Aware Stable Timeouts in Raft

์ด ๋…ผ๋ฌธ์€ Raft ํ•ฉ์˜ ํ”„๋กœํ† ์ฝœ์—์„œ ๊ฐ€์žฅ ํ”ํžˆ ์‚ฌ์šฉ๋˜๋Š” ๋ฌด์ž‘์œ„ ์„ ์ถœ ํƒ€์ž„์•„์›ƒ์ด ์žฅ๊ธฐ ์ง€์—ฐ(longโ€‘tail latency)์ด๋‚˜ ๋„คํŠธ์›Œํฌ ํŒŒํ‹ฐ์…˜ ๋ณต๊ตฌ ์‹œ์— ๋ฐœ์ƒํ•˜๋Š” โ€œ๋ถ„ํ•  ํˆฌํ‘œ(split vote)โ€ ํ˜„์ƒ์œผ๋กœ ์ธํ•ด ์‹œ์Šคํ…œ ๊ฐ€์šฉ์„ฑ์ด ๊ธ‰๊ฒฉํžˆ ์ €ํ•˜๋˜๋Š” ๋ฌธ์ œ์ ์„ ์ •ํ™•ํžˆ ์งš์–ด๋‚ธ๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค์€ ํƒ€์ž„์•„์›ƒ ๊ฐ’์„ ๊ณ ์ •ํ•˜๊ฑฐ๋‚˜ ๋‹จ์ˆœํžˆ ํ‰๊ท  ์ง€์—ฐ์— ๊ธฐ๋ฐ˜ํ•œ ์กฐ์ • ๋ฐฉ์‹์„ ์ œ์•ˆํ–ˆ์ง€๋งŒ, ์ด๋Ÿฌํ•œ ์ ‘๊ทผ๋ฒ•์€ ๋„คํŠธ์›Œํฌ ์ƒํƒœ๊ฐ€ ๊ธ‰๋ณ€ํ•˜๊ฑฐ๋‚˜ ๋น„์ •์ƒ์ ์ธ ์ง€์—ฐ ๋ถ„ํฌ๊ฐ€ ๋‚˜ํƒ€๋‚  ๋•Œ ์ ์‘์„ฑ์ด ๋ถ€์กฑํ•˜๋‹ค. BALLAST๋Š” ์ด๋Ÿฌํ•œ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด โ€˜์ปจํ…์ŠคํŠธ ๋ฐด๋”ง(contextu

Learning
Leveraging Lightweight Entity Extraction for Scalable Event-Based Image Retrieval

Leveraging Lightweight Entity Extraction for Scalable Event-Based Image Retrieval

๋ถ„์„ ์š”์•ฝ 1. ๋…ผ๋ฌธ์˜ ์ฃผ์š” ๋‚ด์šฉ ๋ฐ ๋ชฉ์ : ์ด ๋…ผ๋ฌธ์€ ์ž์—ฐ์–ด ์„ค๋ช…์„ ๊ธฐ๋ฐ˜์œผ๋กœ ์ด๋ฏธ์ง€๋ฅผ ๊ฒ€์ƒ‰ํ•˜๋Š” ๊ฒฝ๋Ÿ‰ ๋‘ ๋‹จ๊ณ„ ํŒŒ์ดํ”„๋ผ์ธ ์‹œ์Šคํ…œ์„ ์ œ์•ˆํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ด ์‹œ์Šคํ…œ์€ ์‹ค์ œ ์„ธ๊ณ„ ์บก์…˜์—์„œ ์‹œ๊ฐ„์ , ๋ฌธ๋งฅ์  ์‹ ํ˜ธ๋ฅผ ํฌํ•จํ•œ ๋ณต์žกํ•œ ์ •๋ณด๋ฅผ ์ฒ˜๋ฆฌํ•  ์ˆ˜ ์žˆ๋„๋ก ์„ค๊ณ„๋˜์—ˆ์Šต๋‹ˆ๋‹ค. 2. ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ: ์‘์šฉ ๋ถ„์•ผ : ์ด๋ฏธ์ง€ ๊ฒ€์ƒ‰์€ ์›น ๊ฒ€์ƒ‰, ๋‰ด์Šค ์•„์นด์ด๋ธŒ, ์ „์ž์ƒ๊ฑฐ๋ž˜ ๋“ฑ ๋‹ค์–‘ํ•œ ๋ถ„์•ผ์—์„œ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•ฉ๋‹ˆ๋‹ค. ๋ฌธ์ œ์  : ๊ธฐ์กด ๋ชจ๋ธ๋“ค์€ ์งง์€ ์บก์…˜์— ์ตœ์ ํ™”๋˜์–ด ์žˆ์–ด ๋ณต์žกํ•œ ์‹ค์ œ ์„ธ๊ณ„ ์ฟผ๋ฆฌ ์ฒ˜๋ฆฌ ๋Šฅ๋ ฅ์ด ๋ถ€์กฑํ•ฉ๋‹ˆ๋‹ค. ์ด๋กœ ์ธํ•ด ๋‰ด์Šค๋‚˜ ์ด๋ฒคํŠธ ๊ฒ€์ƒ‰๊ณผ ๊ฐ™์€ ๋„๋ฉ”์ธ

Shape of Thought: When Distribution Matters More than Correctness in Reasoning Tasks

Shape of Thought: When Distribution Matters More than Correctness in Reasoning Tasks

์ด ๋…ผ๋ฌธ์€ ์–ธ์–ด ๋ชจ๋ธ์˜ ์ถ”๋ก  ๋Šฅ๋ ฅ์„ ํ–ฅ์ƒ์‹œํ‚ค๋Š” ์ƒˆ๋กœ์šด ์ ‘๊ทผ๋ฒ•์„ ์ œ์‹œํ•ฉ๋‹ˆ๋‹ค. ํ•ต์‹ฌ ์•„์ด๋””์–ด๋Š” ๋” ์šฐ์ˆ˜ํ•œ ๋ชจ๋ธ์—์„œ ์ƒ์„ฑ๋œ ์‚ฌ์Šฌํ˜• ์‚ฌ๊ณ (CoT) ์ถ”์ ์„ ์‚ฌ์šฉํ•˜์—ฌ ํ•ฉ์„ฑ ๋ฐ์ดํ„ฐ์…‹์„ ๋งŒ๋“ค์–ด ์ด๋ฅผ ํ†ตํ•ด ํ•™์Šตํ•˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค. ์ด ๋ฐฉ๋ฒ•์˜ ๋†€๋ผ์šด ์ ์€ ์ด๋Ÿฌํ•œ CoT ์ถ”์ ์ด ์ž˜๋ชป๋œ ์ตœ์ข… ๋‹ต์•ˆ์œผ๋กœ ์ด์–ด์ง„๋‹ค ํ•˜๋”๋ผ๋„, ์–ธ์–ด ๋ชจ๋ธ์˜ ์„ฑ๋Šฅ์ด ํ–ฅ์ƒ๋œ๋‹ค๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค. ๋…ผ๋ฌธ์—์„œ๋Š” ๋‘ ๊ฐ€์ง€ ์ฃผ์š” ๊ฐ€์„ค์„ ์ œ์‹œํ•ฉ๋‹ˆ๋‹ค: ์ฒซ์งธ, ํ•ฉ์„ฑ ๋ฐ์ดํ„ฐ์˜ ๋ถ„ํฌ๊ฐ€ ์–ธ์–ด ๋ชจ๋ธ ์ž์ฒด์˜ ๋ถ„ํฌ์™€ ๋” ๊ฐ€๊น๊ธฐ ๋•Œ๋ฌธ์— ํ•™์Šต์ด ์šฉ์ดํ•˜๋‹ค๋Š” ์ ์ž…๋‹ˆ๋‹ค. ์ด๋ฅผ ๊ฒ€์ฆํ•˜๊ธฐ ์œ„ํ•ด ์ธ๊ฐ„ ์ฃผ์„ ์ถ”์ ์„ ๋ฌธ์žฅ ๋ณ€ํ™˜ํ•˜์—ฌ ๋ถ„ํฌ

Zero-Shot Segmentation through Prototype-Guidance for Multi-Label Plant Species Identification

Zero-Shot Segmentation through Prototype-Guidance for Multi-Label Plant Species Identification

์ด ์—ฐ๊ตฌ๋Š” PlantCLEF 2025๋ผ๋Š” ๋Œ€๊ทœ๋ชจ ์‹๋ฌผ ์ด๋ฏธ์ง€ ์ธ์‹ ๋Œ€ํšŒ์—์„œ ๊ณ ํ•ด์ƒ๋„ ํ”Œ๋กฏ ์ด๋ฏธ์ง€์˜ ๋‹ค์ค‘ ๋ผ๋ฒจ ์‹๋ณ„์ด๋ผ๋Š” ์–ด๋ ค์šด ๊ณผ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ๋‘ ๊ฐ€์ง€ ํ•ต์‹ฌ ์•„์ด๋””์–ด๋ฅผ ๊ฒฐํ•ฉํ•˜์˜€๋‹ค. ์ฒซ ๋ฒˆ์งธ๋Š” ํด๋ž˜์Šค ํ”„๋กœํ† ํƒ€์ž… ์„ ํ™œ์šฉํ•œ ์ง€๋„ ํ•™์Šต์ด๋‹ค. ๊ธฐ์กด์˜ ๋‹ค์ค‘ ํด๋ž˜์Šค ๋ถ„๋ฅ˜์™€ ๋‹ฌ๋ฆฌ, ์—ฌ๊ธฐ์„œ๋Š” ํ›ˆ๋ จ ๋ฐ์ดํ„ฐ์—์„œ ๊ฐ ์ข…๋งˆ๋‹ค ๋Œ€ํ‘œ์ ์ธ ํŠน์ง• ๋ฒกํ„ฐ(ํ”„๋กœํ† ํƒ€์ž…)๋ฅผ Kโ€‘Means ๊ตฐ์ง‘ํ™”๋กœ ์ถ”์ถœํ•œ๋‹ค. K๊ฐ’์„ ํด๋ž˜์Šค ์ˆ˜์™€ ๋™์ผํ•˜๊ฒŒ ์„ค์ •ํ•จ์œผ๋กœ์จ, ๊ฐ ๊ตฐ์ง‘ ์ค‘์‹ฌ์ด ๊ณง ํ•ด๋‹น ์ข…์„ ๋Œ€ํ‘œํ•˜๋„๋ก ์„ค๊ณ„ํ•˜์˜€๋‹ค. ์ด๋Ÿฌํ•œ ํ”„๋กœํ† ํƒ€์ž…์€ ํ…Œ์ŠคํŠธ ์ด๋ฏธ์ง€์— ๋Œ€ํ•œ ์„ธ๊ทธ๋ฉ˜ํ…Œ์ด์…˜ ๋ชจ๋ธ์ด

Signal-SGN++: Topology-Enhanced Time-Frequency Spiking Graph Network for Skeleton-Based Action Recognition

Signal-SGN++: Topology-Enhanced Time-Frequency Spiking Graph Network for Skeleton-Based Action Recognition

์ด ๋…ผ๋ฌธ์€ ์‹ ํ˜ธ SGN++๋ผ๋Š” ์ƒˆ๋กœ์šด ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์•ˆํ•˜์—ฌ ๊ทธ๋ž˜ํ”„ ์ปจ๋ณผ๋ฃจ์…˜ ๋„คํŠธ์›Œํฌ(GCNs)์™€ ์ŠคํŒฝํ‚น ์‹ ๊ฒฝ๋ง(SNNs)์˜ ์žฅ์ ์„ ๊ฒฐํ•ฉํ•˜๊ณ ์ž ํ•ฉ๋‹ˆ๋‹ค. GCNs๋Š” ๊ด€์ ˆ ๊ตฌ์กฐ๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ๋ชจ๋ธ๋งํ•  ์ˆ˜ ์žˆ์ง€๋งŒ, ์‹ค์ˆ˜ ๊ณ„์‚ฐ์— ๋”ฐ๋ฅธ ์—๋„ˆ์ง€ ์†Œ๋น„๊ฐ€ ๋†’์€ ๋ฐ˜๋ฉด, SNNs๋Š” ์—๋„ˆ์ง€ ํšจ์œจ์ ์ด์ง€๋งŒ ์ธ๊ฐ„ ๋™์ž‘์˜ ๋ณต์žกํ•œ ์‹œ๊ฐ„ ์ฃผํŒŒ์ˆ˜ ๋ฐ ์œ„์ƒ ์˜์กด์„ฑ์„ ํฌ์ฐฉํ•˜๋Š” ๋ฐ ํ•œ๊ณ„๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค. ์‹ ํ˜ธ SGN++์€ ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด 1D Spiking Graph Convolution(1D SGC)๊ณผ Frequency Spiking Convolution(FSC)

Network
ChronoDreamer: Action-Conditioned World Model as an Online Simulator for Robotic Planning

ChronoDreamer: Action-Conditioned World Model as an Online Simulator for Robotic Planning

ChronoDreamer๋Š” ๋กœ๋ด‡ ๋งค๋‹ˆํ“ฐ๋ ˆ์ด์…˜ ๋ถ„์•ผ์—์„œ ๊ฐ€์žฅ ๋‚œํ•ดํ•œ ๋ฌธ์ œ ์ค‘ ํ•˜๋‚˜์ธ โ€˜์ ‘์ด‰ ์˜ˆ์ธกโ€™์„ ์‹œ๊ฐโ€‘์–ธ์–ดโ€‘๋ฌผ๋ฆฌ ํ†ตํ•ฉ ํ”„๋ ˆ์ž„์›Œํฌ๋กœ ํ’€์–ด๋‚ธ ์ ์ด ํ˜์‹ ์ ์ด๋‹ค. ๊ธฐ์กด ์„ธ๊ณ„ ๋ชจ๋ธ์€ ์ฃผ๋กœ ์ด๋ฏธ์ง€์™€ ๊ด€์ ˆ ์ƒํƒœ๋งŒ์„ ์ด์šฉํ•ด ๋ฏธ๋ž˜ ํ”„๋ ˆ์ž„์„ ์˜ˆ์ธกํ–ˆ์ง€๋งŒ, ์ ‘์ด‰ ์ •๋ณด๊ฐ€ ๊ฒฐ์—ฌ๋ผ ์‹ค์ œ ๋ฌผ๋ฆฌ์  ์ƒํ˜ธ์ž‘์šฉ์„ ์•ˆ์ „ํ•˜๊ฒŒ ๊ณ„ํšํ•˜๊ธฐ ์–ด๋ ค์› ๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ์ ‘์ด‰์„ โ€˜๊นŠ์ด ๊ฐ€์ค‘ ๊ฐ€์šฐ์‹œ์•ˆ ์Šคํ”Œ๋žซโ€™์ด๋ผ๋Š” 2D ์ด๋ฏธ์ง€ ํ˜•ํƒœ๋กœ ๋ณ€ํ™˜ํ•จ์œผ๋กœ์จ, ๊ธฐ์กด ๋น„์ „ ๋ฐฑ๋ณธ(ViT ๋“ฑ)๊ณผ ์ž์—ฐ์Šค๋Ÿฝ๊ฒŒ ๊ฒฐํ•ฉํ•œ๋‹ค. ์ด ๋ฐฉ์‹์€ 3D ํž˜ ๋ฒกํ„ฐ๋ฅผ ์นด๋ฉ”๋ผ ์ขŒํ‘œ๊ณ„์— ํˆฌ์‚ฌํ•ด ์‹œ๊ฐ์  ํŠน์ง•๊ณผ ๋™์‹œ ํ•™์Šต์ด ๊ฐ€๋Šฅํ•˜๋„๋ก

Model
An Agentic AI Framework for Training General Practitioner Student Skills

An Agentic AI Framework for Training General Practitioner Student Skills

๋ณธ ์—ฐ๊ตฌ๋Š” ์˜๋ฃŒ ๊ต์œก ๋ถ„์•ผ์—์„œ ๊ฐ€์ƒ ํ™˜์ž ์‹œ๋ฎฌ๋ ˆ์ด์…˜(VSP)์˜ ์‹ค์šฉ์„ฑ์„ ํฌ๊ฒŒ ํ–ฅ์ƒ์‹œํ‚ฌ ์ˆ˜ ์žˆ๋Š” ์ƒˆ๋กœ์šด ํŒจ๋Ÿฌ๋‹ค์ž„์„ ์ œ์‹œํ•œ๋‹ค. ๊ธฐ์กด VSP๋Š” ์‹ค์ œ ํ™˜์ž๋ฅผ ๋Œ€์ฒดํ•˜๊ธฐ ์œ„ํ•ด ๊ณ ๋„๋กœ ์ •๊ตํ•œ ์‹œ๋‚˜๋ฆฌ์˜ค์™€ ํ”ผ๋“œ๋ฐฑ์„ ์ œ๊ณตํ•ด์•ผ ํ•จ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ , ์ธ๋ ฅยท์‹œ๊ฐ„ยท๋น„์šฉ ์ธก๋ฉด์—์„œ ํ•œ๊ณ„๊ฐ€ ์žˆ์—ˆ๋‹ค. ํŠนํžˆ, ์˜๋ฃŒ ์ •ํ™•์„ฑ ๋ถ€์กฑ๊ณผ ์—ญํ•  ์—ฐ๊ธฐ์˜ ์ผ๊ด€์„ฑ ๊ฒฐ์—ฌ๋Š” ํ•™์Šต ํšจ๊ณผ๋ฅผ ์ €ํ•ดํ•˜๋Š” ์ฃผ์š” ์š”์ธ์œผ๋กœ ์ง€์ ๋˜์–ด ์™”๋‹ค. ์ด ๋…ผ๋ฌธ์ด ์ œ์•ˆํ•˜๋Š” โ€˜์—์ด์ „ํŠธ ๊ธฐ๋ฐ˜ ํ”„๋ ˆ์ž„์›Œํฌโ€™๋Š” ์„ธ ๊ฐ€์ง€ ํ•ต์‹ฌ ๋ชจ๋“ˆ์„ ๋ช…ํ™•ํžˆ ๋ถ„๋ฆฌํ•œ๋‹ค. ์ฒซ์งธ, ๊ตฌ์„ฑ ๊ฐ€๋Šฅํ•œ ์ฆ๊ฑฐ ๊ธฐ๋ฐ˜ ์‚ฌ๋ก€ ์ƒ์„ฑ ๋ชจ๋“ˆ์€ ์ตœ์‹  ์ž„์ƒ ๊ฐ€์ด๋“œ๋ผ์ธ๊ณผ ๋ฐ์ด

Framework
MatSpray: Fusing 2D Material World Knowledge on 3D Geometry

MatSpray: Fusing 2D Material World Knowledge on 3D Geometry

MatSpray๋Š” ์ตœ๊ทผ ๊ธ‰๋ถ€์ƒํ•œ 2์ฐจ์› ํ™•์‚ฐ ๋ชจ๋ธ์˜ ํ’๋ถ€ํ•œ ์žฌ์งˆ ํ‘œํ˜„ ๋Šฅ๋ ฅ์„ 3์ฐจ์› ๊ฐ€์šฐ์‹œ์•ˆ ์Šคํ”Œ๋ž˜ํŒ… ํŒŒ์ดํ”„๋ผ์ธ์— ์ ‘๋ชฉํ•จ์œผ๋กœ์จ, ๊ธฐ์กด 3D ์žฌ๊ตฌ์„ฑ ๋ฐฉ๋ฒ•์ด ์ง๋ฉดํ•˜๋˜ ๋ฌผ๋ฆฌ ๊ธฐ๋ฐ˜ ๋ Œ๋”๋ง(PBR) ์žฌ์งˆ์˜ ์ •ํ™•๋„์™€ ์ผ๊ด€์„ฑ ๋ฌธ์ œ๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ํ•ด๊ฒฐํ•œ๋‹ค. ์ฒซ ๋‹จ๊ณ„์—์„œ๋Š” ๋‹ค์ค‘ ์‹œ์  ์ด๋ฏธ์ง€๋กœ๋ถ€ํ„ฐ ๊ฐ ์‹œ์ ๋งˆ๋‹ค ๋ฒ ์ด์Šค ์ปฌ๋Ÿฌ, ๋Ÿฌํ”„๋‹ˆ์Šค, ๋ฉ”ํƒˆ๋ฆญ๊ณผ ๊ฐ™์€ PBR ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ์ถ”์ถœํ•œ๋‹ค. ์—ฌ๊ธฐ์„œ ์ค‘์š”ํ•œ ์ ์€ โ€˜any 2D diffusionโ€‘based material modelโ€™์„ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ์ ์ด๋‹ค. ์ฆ‰, Stable Diffusion, Imagen ๋“ฑ ์ตœ์‹ 

Prediction and Forecast of Short-Term Drought Impacts Using Machine Learning to Support Mitigation and Adaptation Efforts

Prediction and Forecast of Short-Term Drought Impacts Using Machine Learning to Support Mitigation and Adaptation Efforts

๋ณธ ๋…ผ๋ฌธ์€ ์ตœ๊ทผ ์ฆ๊ฐ€ํ•˜๋Š” ๊ฑด์กฐ์˜ ์‹ฌ๊ฐ์„ฑ๊ณผ ๋นˆ๋„์— ๋Œ€์‘ํ•˜๊ธฐ ์œ„ํ•ด ๋จธ์‹ ๋Ÿฌ๋‹ ๊ธฐ๋ฒ•์„ ํ™œ์šฉํ•œ ๊ฑด์กฐ ์˜ํ–ฅ ์˜ˆ์ธก ๋ชจ๋ธ ๊ฐœ๋ฐœ์— ์ดˆ์ ์„ ๋งž์ถ”๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ํŠนํžˆ, Drought Severity and Coverage Index (DSCI)์™€ Evaporative Stress Index (ESI)๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๊ฑด์กฐ์˜ ์˜ํ–ฅ์„ ์˜ˆ์ธกํ•˜๊ณ ์ž ํ•˜์˜€์Šต๋‹ˆ๋‹ค. ์—ฐ๊ตฌ๋Š” 2005๋…„๋ถ€ํ„ฐ 2024๋…„๊นŒ์ง€์˜ ๋ฐ์ดํ„ฐ๋ฅผ ํ™œ์šฉํ•˜์˜€์œผ๋ฉฐ, Fire์™€ Relief ์˜์—ญ์—์„œ ๊ฐ€์žฅ ๋†’์€ ์˜ˆ์ธก ์ •ํ™•๋„๋ฅผ ๋ณด์˜€๊ณ , Agriculture์™€ Water ๋ถ„์•ผ์—์„œ๋Š” ๊ทธ ๋‹ค์Œ์œผ๋กœ ๋†’์€ ์ •ํ™•๋„๊ฐ€ ๋‚˜ํƒ€๋‚ฌ์Šต๋‹ˆ

Learning
From Priors to Predictions: Explaining and Visualizing Human Reasoning in a Graph Neural Network Framework

From Priors to Predictions: Explaining and Visualizing Human Reasoning in a Graph Neural Network Framework

์ด ๋…ผ๋ฌธ์€ ์ธ๊ฐ„์˜ ์ถ”์ƒ์  ์‚ฌ๊ณ ์™€ ๋ฌธ์ œ ํ•ด๊ฒฐ ๋Šฅ๋ ฅ์— ์ดˆ์ ์„ ๋งž์ถ”๋ฉฐ, ์ด๋ฅผ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•˜๋Š” ๊ท€๋‚ฉ์  ํŽธํ–ฅ์„ฑ์˜ ๊ณ„์‚ฐ์  ๊ตฌ์กฐ์™€ ์‹ ๊ฒฝํ•™์  ๊ตฌํ˜„์„ ํƒ๊ตฌํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์—ฐ๊ตฌ์ง„์€ ๊ทธ๋ž˜ํ”„ ์ด๋ก ๊ณผ GNN์„ ๊ฒฐํ•ฉํ•œ ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์‹œํ•˜์—ฌ ์ด๋Ÿฌํ•œ ํŽธํ–ฅ์„ฑ์„ ๋ช…ํ™•ํžˆ ์ •์‹ํ™”ํ•˜๊ณ , ์ด๋ฅผ ํ†ตํ•ด ์ธ๊ฐ„์˜ ์ถ”๋ก  ๊ณผ์ •์„ ๋” ์ž˜ ์ดํ•ดํ•  ์ˆ˜ ์žˆ๋Š” ๋ฐฉ๋ฒ•์„ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค. ํŠนํžˆ, ๋ณธ ๋…ผ๋ฌธ์—์„œ ์‚ฌ์šฉ๋œ ๋ฐ์ดํ„ฐ์…‹์€ Abstraction and Reasoning Corpus (ARC)์—์„œ ์ ์‘๋œ ๊ฒƒ์œผ๋กœ, ์ด๋Š” ์ธ๊ฐ„ ํ–‰๋™ ๋ฐ์ดํ„ฐ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•˜์—ฌ ์‹ค์ œ ์ธ๊ฐ„์˜ ๋ฌธ์ œ ํ•ด๊ฒฐ ๋Šฅ๋ ฅ์„ ๋ฐ˜์˜ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.

Network Framework
No Image

MedNeXt-v2: Scaling 3D ConvNeXts for Large-Scale Supervised Representation Learning in Medical Image Segmentation

๋ณธ ๋…ผ๋ฌธ์€ ์ตœ๊ทผ ์˜๋ฃŒ ์˜์ƒ ๋ถ„์•ผ์—์„œ ๊ธ‰๋ถ€์ƒํ•˜๊ณ  ์žˆ๋Š” โ€˜๋Œ€๊ทœ๋ชจ ๊ฐ๋… ์‚ฌ์ „ํ•™์Šต(Supervised Preโ€‘training)โ€™ ํ๋ฆ„์— ์ค‘์š”ํ•œ ์งˆ๋ฌธ์„ ์ œ๊ธฐํ•œ๋‹ค. ๋Œ€๋ถ€๋ถ„์˜ ์—ฐ๊ตฌ๊ฐ€ ๋ฐ์ดํ„ฐ ์–‘์„ ๋Š˜๋ฆฌ๋Š” ๋ฐฉํ–ฅ์—๋งŒ ์ง‘์ค‘ํ•œ ๋ฐ˜๋ฉด, ์‹ค์ œ ๋ชจ๋ธ์ด ๋Œ€๊ทœ๋ชจ ๋ฐ์ดํ„ฐ์—์„œ ์–ผ๋งˆ๋‚˜ ํšจ์œจ์ ์œผ๋กœ ํŠน์ง•์„ ์ถ”์ถœํ•˜๊ณ  ์ผ๋ฐ˜ํ™”ํ•  ์ˆ˜ ์žˆ๋Š”์ง€๋Š” ์ถฉ๋ถ„ํžˆ ๊ฒ€์ฆ๋˜์ง€ ์•Š์•˜๋‹ค. ์ €์ž๋“ค์€ ์ด๋Ÿฌํ•œ ๊ณต๋ฐฑ์„ ๋ฉ”์šฐ๊ธฐ ์œ„ํ•ด ConvNeXt๋ผ๋Š” ์ตœ์‹  2D ๋น„์ „ ๋ฐฑ๋ณธ์„ 3์ฐจ์› ๋ณผ๋ฅ˜๋ฉ”ํŠธ๋ฆญ ์ž‘์—…์— ๋งž๊ฒŒ ์žฌ์„ค๊ณ„ํ•˜๊ณ , ์ด๋ฅผ โ€˜MedNeXtโ€‘v2โ€™๋ผ๋Š” ์ด๋ฆ„์œผ๋กœ ์ œ์‹œํ•œ๋‹ค. ํ•ต์‹ฌ ๊ธฐ์—ฌ๋Š” ํฌ๊ฒŒ ๋„ค ๊ฐ€์ง€๋กœ ์ •๋ฆฌํ•  ์ˆ˜

Learning
Preventing AI Deepfake Abuse: An Islamic Ethics Framework

Preventing AI Deepfake Abuse: An Islamic Ethics Framework

๋”ฅํŽ˜์ดํฌ ๊ธฐ์ˆ ์€ AI์˜ ๋ฐœ์ „์œผ๋กœ ์ธํ•ด ๊ธ‰์†๋„๋กœ ์ง„๋ณดํ•˜๋ฉด์„œ, ์ •๋ณด ์กฐ์ž‘๊ณผ ๋””์ง€ํ„ธ ์‹ ๋ถ„ ์นจํ•ด ๋“ฑ์— ๋Œ€ํ•œ ์šฐ๋ ค๊ฐ€ ์ฆ๊ฐ€ํ•˜์˜€์Šต๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋Š” ๋‹จ์ˆœํžˆ ๊ธฐ์ˆ ์  ์ธก๋ฉด์„ ๋„˜์–ด ์œค๋ฆฌ์  ์ฐจ์›๊นŒ์ง€ ํ™•์žฅ๋˜๋ฉฐ, ๊ธฐ์กด์˜ ๋ฐ˜์‘์ ์ธ ๊ด€๋ฆฌ ๋ฐฉ์‹๋งŒ์œผ๋กœ ํ•ด๊ฒฐํ•˜๊ธฐ ์–ด๋ ต์Šต๋‹ˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ด์Šฌ๋žŒ ์œค๋ฆฌ ์›์น™์„ ๋ฐ”ํƒ•์œผ๋กœ ๋”ฅํŽ˜์ดํฌ ๊ธฐ์ˆ ์˜ ์˜ค๋‚จ์šฉ์„ ์˜ˆ๋ฐฉํ•˜๊ณ ์ž ํ•ฉ๋‹ˆ๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ์‹œ์Šคํ…œ ๋ฆฌํ„ฐ๋Ÿฌ์ฒ˜ ๊ฒ€ํ† ๋ฅผ ํ†ตํ•ด 2018๋…„๋ถ€ํ„ฐ 2025๋…„ ์‚ฌ์ด์— ๋ฐœํ‘œ๋œ ์ฃผ์š” ์ถœํŒ๋ฌผ์„ ๋ถ„์„ํ•˜์˜€์Šต๋‹ˆ๋‹ค. ์—ฐ๊ตฌ ๊ฒฐ๊ณผ, ์ด์Šฌ๋žŒ ์œค๋ฆฌ ์›์น™์ธ Maqฤs . id al Sharฤซ'ah์˜ h . ifz al

Framework
No Image

Adversarial VR: An Open-Source Testbed for Evaluating Adversarial Robustness of VR Cybersickness Detection and Mitigation

์ด ๋…ผ๋ฌธ์€ ๊ฐ€์ƒํ˜„์‹ค(VR) ํ™˜๊ฒฝ์—์„œ ์‚ฌ์ด๋ฒ„์งˆ๋ณ‘(CS)์˜ ์‹ฌ๊ฐ๋„ ์กฐ์ž‘ ๋ฐ ๊ทธ์— ๋”ฐ๋ฅธ ์ ์ ˆํ•˜์ง€ ์•Š์€ ์™„ํ™” ์ „๋žต์„ ์—ฐ๊ตฌํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ํŠนํžˆ, ๋กœ์ปฌ VR ํ™˜๊ฒฝ๊ณผ ํด๋ผ์šฐ๋“œ ๊ธฐ๋ฐ˜ VR ํ™˜๊ฒฝ์ด ๊ฒฐํ•ฉ๋œ ํ…Œ์ŠคํŠธ๋ฒ ๋“œ๋ฅผ ๊ฐœ๋ฐœํ•˜์—ฌ ์ด ๋ฌธ์ œ๋ฅผ ํƒ๊ตฌํ•ฉ๋‹ˆ๋‹ค. ๋กœ์ปฌ ํ™˜๊ฒฝ์—์„œ๋Š” ์‚ฌ์šฉ์ž์˜ ์ฒดํ—˜ ์ค‘์— CS ์™„ํ™”๊ฐ€ ์ด๋ฃจ์–ด์ง€๋ฉฐ, ํด๋ผ์šฐ๋“œ ํ™˜๊ฒฝ์—์„œ๋Š” ๋”ฅ๋Ÿฌ๋‹(DL) ๋ชจ๋ธ์„ ํ™œ์šฉํ•ด CS ๊ฐ์ง€๋ฅผ ์ˆ˜ํ–‰ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ๋…ผ๋ฌธ์˜ ํ•ต์‹ฌ์€ ์ ๋Œ€์  ์˜ˆ์ œ๋ฅผ ์ƒ์„ฑํ•˜์—ฌ DL ๋ชจ๋ธ์— ์ž…๋ ฅํ•จ์œผ๋กœ์จ CS์˜ ์‹ฌ๊ฐ๋„๋ฅผ ์กฐ์ž‘ํ•˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ์ ‘๊ทผ๋ฒ•์€ VR ์‚ฌ์šฉ์ž์˜ ์ฒดํ—˜ ์งˆ์„ ์ €ํ•˜์‹œํ‚ค๊ฑฐ๋‚˜, ์‹ฌ์ง€์–ด๋Š”

Detection
Design and Evaluation of Cost-Aware PoQ for Decentralized LLM Inference

Design and Evaluation of Cost-Aware PoQ for Decentralized LLM Inference

์ด ๋…ผ๋ฌธ์€ ๋ถ„์‚ฐ ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(LLM) ์ถ”๋ก ์˜ ํ’ˆ์งˆ ๊ฒ€์ฆ์— ๋Œ€ํ•œ ์ƒˆ๋กœ์šด ์ ‘๊ทผ ๋ฐฉ์‹์„ ์ œ์‹œํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ๊ธฐ์กด์˜ ํ’ˆ์งˆ ์ฆ๋ช…(PoQ) ๋ฐฉ๋ฒ•์€ ๊ณ„์‚ฐ ๊ฒฐ๊ณผ์˜ ์•”ํ˜ธํ•™์  ๊ฒ€์ฆ์„ ์‚ฌ์šฉํ•˜์ง€๋งŒ, ์ด ๋…ผ๋ฌธ์—์„œ๋Š” ์ถœ๋ ฅ ํ’ˆ์งˆ์— ๋Œ€ํ•œ ํ•ฉ์˜๋ฅผ ํ†ตํ•ด ์ด๋ฅผ ๋Œ€์ฒดํ•ฉ๋‹ˆ๋‹ค. ํŠนํžˆ, ์ถ”๋ก  ๋…ธ๋“œ์™€ ํ‰๊ฐ€์ž ๋…ธ๋“œ ๊ฐ„์˜ ์ด์งˆ์ ์ธ ์ปดํ“จํŒ… ๋น„์šฉ์„ ๊ณ ๋ คํ•˜์—ฌ ๋ณด์ƒ ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ๊ฐœ์„ ํ•˜๋Š” ๋ฐ ์ดˆ์ ์„ ๋งž์ถ”๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ๋…ผ๋ฌธ์€ ๋‹ค์–‘ํ•œ LLM๊ณผ ํ‰๊ฐ€ ๋ชจ๋ธ์„ ์‚ฌ์šฉํ•œ ์‹คํ—˜ ๊ฒฐ๊ณผ๋ฅผ ํ†ตํ•ด, ํŠน์ • ์•„ํ‚คํ…์ฒ˜์˜ ์ค‘์š”์„ฑ์„ ๊ฐ•์กฐํ•ฉ๋‹ˆ๋‹ค. ํŠนํžˆ, ์‹ฌ๋ฏธ์  ํ…์ŠคํŠธ ์œ ์‚ฌ์„ฑ(bi encoder)์ด ๊ต์ฐจ ์ธ์ฝ”๋”๋ณด๋‹ค ๋”

No Image

Towards AI-Supported Research: a Vision of the TIB AIssistant

๋ณธ ๋…ผ๋ฌธ์€ ์ƒ์„ฑํ˜• ์ธ๊ณต์ง€๋Šฅ(AI)๊ณผ ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(Large Language Models, LLMs)์˜ ๋ฐœ์ „์ด ์—ฐ๊ตฌ ๋ฐฉ๋ฒ•๋ก ์— ๋ฏธ์น˜๋Š” ์ž ์žฌ์  ๋ณ€ํ™”๋ฅผ ํƒ๊ตฌํ•˜๊ณ  ์žˆ๋‹ค. ํŠนํžˆ, AI๊ฐ€ ์ œ๊ณตํ•˜๋Š” ์ƒˆ๋กœ์šด ๊ธฐํšŒ์™€ ๊ทธ๋กœ ์ธํ•ด ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ๋Š” ๋„์ „ ๊ณผ์ œ๋“ค์„ ๋ถ„์„ํ•œ๋‹ค. ๋…ผ๋ฌธ์€ TIB AIssistant๋ผ๋Š” ํ”Œ๋žซํผ์„ ์ œ์•ˆํ•˜๋ฉฐ, ์ด ํ”Œ๋žซํผ์€ ๋‹ค์–‘ํ•œ ํ•™๋ฌธ ๋ถ„์•ผ์˜ ์—ฐ๊ตฌ์ž๋“ค์ด AI๋ฅผ ํ™œ์šฉํ•˜์—ฌ ์—ฐ๊ตฌ ์ƒ๋ช… ์ฃผ๊ธฐ ์ „๋ฐ˜์— ๊ฑธ์นœ ์ž‘์—…์„ ์ˆ˜ํ–‰ํ•˜๋„๋ก ์ง€์›ํ•˜๋Š” ๊ฒƒ์„ ๋ชฉํ‘œ๋กœ ํ•œ๋‹ค. TIB AIssistant๋Š” ํ”„๋กฌํ”„ํŠธ์™€ ๋„๊ตฌ ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ, ๊ณต์œ  ๋ฐ์ดํ„ฐ ์ €์žฅ์†Œ, ์œ ์—ฐํ•œ ์กฐ์ •

< Category Statistics (Total: 769) >

Electrical Engineering and Systems Science
7
General
272
General Relativity
9
HEP-EX
7
HEP-PH
12
HEP-TH
7
MATH-PH
4
NUCL-TH
1
Quantum Physics
10

Start searching

Enter keywords to search articles

โ†‘โ†“
โ†ต
ESC
โŒ˜K Shortcut