KOINEU Logo
TimesNet-Gen: Deep Learning-based Site Specific Strong Motion Generation

TimesNet-Gen: Deep Learning-based Site Specific Strong Motion Generation

๋ณธ ๋…ผ๋ฌธ์€ ์ง€์ง„๊ณตํ•™ ๋ถ„์•ผ์—์„œ ํ˜„์žฅ๋ณ„ ๊ฐ•์ง„ ๊ธฐ๋ก์„ ์ธ๊ณต์ ์œผ๋กœ ์ƒ์„ฑํ•  ์ˆ˜ ์žˆ๋Š” ์ƒˆ๋กœ์šด ๋ฐ์ดํ„ฐโ€‘๋“œ๋ฆฌ๋ธ ๋ชจ๋ธ์„ ์ œ์‹œํ•œ๋‹ค๋Š” ์ ์—์„œ ํฐ ์˜๋ฏธ๋ฅผ ๊ฐ€์ง„๋‹ค. ๊ธฐ์กด์˜ ๊ฐ•์ง„ ํ•ฉ์„ฑ ๋ฐฉ๋ฒ•์€ ์ฃผ๋กœ ์ŠคํŽ™ํŠธ๋Ÿผ ๊ธฐ๋ฐ˜ ํ˜น์€ ๋ฌผ๋ฆฌโ€‘๊ธฐ๋ฐ˜ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์— ์˜์กดํ–ˆ์œผ๋ฉฐ, ํ˜„์žฅ ํŠน์„ฑ์„ ์ถฉ๋ถ„ํžˆ ๋ฐ˜์˜ํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ๋ณต์žกํ•œ ํŒŒ๋ผ๋ฏธํ„ฐ ํŠœ๋‹์ด ํ•„์š”ํ–ˆ๋‹ค. ๋ฐ˜๋ฉด ๋ณธ ์—ฐ๊ตฌ๋Š” ์‹œ๊ฐ„ ์˜์—ญ์—์„œ ์ง์ ‘ ๊ฐ€์†๋„ ์‹ ํ˜ธ๋ฅผ ๋‹ค๋ฃจ๋Š” TimesNetโ€‘Gen์„ ๋„์ž…ํ•จ์œผ๋กœ์จ, ํ˜„์žฅ๋ณ„ ๊ณ ์œ ์˜ โ€œ์ž ์žฌ์  ๋ณ‘๋ชฉโ€(latent bottleneck)์ด๋ผ๋Š” ์ž‘์€ ์ฐจ์›์˜ ์ž„๋ฒ ๋”ฉ์„ ํ†ตํ•ด ํ˜„์žฅ ํŠน์„ฑ์„ ์••์ถ•ํ•˜๊ณ  ์žฌํ˜„ํ•œ๋‹ค. ์ด๋Š” ํ˜„์žฅ๋งˆ๋‹ค

Learning
Tokenizing Buildings: A Transformer for Layout Synthesis

Tokenizing Buildings: A Transformer for Layout Synthesis

๋ณธ ๋…ผ๋ฌธ์€ ๊ฑด์ถ• ์„ค๊ณ„ ์ž๋™ํ™”๋ผ๋Š” ์‹ค์šฉ์  ๊ณผ์ œ์— ํŠธ๋žœ์Šคํฌ๋จธ ๊ธฐ๋ฐ˜์˜ ์‹œํ€€์Šคโ€‘ํˆฌโ€‘์‹œํ€€์Šค ๋ชจ๋ธ์„ ์ ์šฉํ•œ ์ ์—์„œ ์˜๋ฏธ๊ฐ€ ํฌ๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค์€ ์ฃผ๋กœ 2D ํ‰๋ฉด๋„๋‚˜ 3D ๋ชจ๋ธ์„ ์ง์ ‘ ์ž…๋ ฅ์œผ๋กœ ์‚ฌ์šฉํ•˜๊ฑฐ๋‚˜, ๊ทœ์น™ ๊ธฐ๋ฐ˜ ์‹œ์Šคํ…œ์— ์˜์กดํ•ด ๋ ˆ์ด์•„์›ƒ์„ ์ƒ์„ฑํ•˜์˜€๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ด๋Ÿฌํ•œ ๋ฐฉ์‹์€ ๋ณต์žกํ•œ ๊ณต๊ฐ„ ์ œ์•ฝ์„ ์ถฉ๋ถ„ํžˆ ๋ฐ˜์˜ํ•˜๊ธฐ ์–ด๋ ต๊ณ , ๋ฐ์ดํ„ฐ ์š”๊ตฌ๋Ÿ‰์ด ๋†’์œผ๋ฉฐ, ์ผ๋ฐ˜ํ™” ๋Šฅ๋ ฅ์ด ์ œํ•œ์ ์ด๋‹ค. SBM์€ โ€˜๋ฃธ ์—”๋ฒจ๋กœํ”„โ€™๋ผ๋Š” ์ตœ์†Œํ•œ์˜ ์ž…๋ ฅ๋งŒ์œผ๋กœ๋„ ๋ฐฉ ๋‚ด๋ถ€์˜ ๊ฐ€๊ตฌ ๋ฐฐ์น˜, ๋™์„ , ๊ธฐ๋Šฅ ๊ตฌ์—ญ์„ ๋™์‹œ์— ๊ณ ๋ คํ•œ ๋ ˆ์ด์•„์›ƒ์„ ์ƒ์„ฑํ•œ๋‹ค๋Š” ์ ์—์„œ ์ž…๋ ฅ ํšจ์œจ์„ฑ์ด ๋›ฐ์–ด๋‚˜๋‹ค. ๋ชจ๋ธ ์•„ํ‚คํ…์ฒ˜๋Š”

When GenAI Meets Fake News: Understanding Image Cascade Dynamics on Reddit

When GenAI Meets Fake News: Understanding Image Cascade Dynamics on Reddit

๋ณธ ๋…ผ๋ฌธ์€ AIโ€‘์ƒ์„ฑ ์ด๋ฏธ์ง€์™€ ํ—ˆ์œ„ ์ •๋ณด๊ฐ€ ์†Œ์…œ ๋ฏธ๋””์–ด, ํŠนํžˆ Reddit์ด๋ผ๋Š” ํฌ๋Ÿผ ๊ธฐ๋ฐ˜ ํ”Œ๋žซํผ์—์„œ ์–ด๋–ป๊ฒŒ ํ™•์‚ฐ๋˜๋Š”์ง€๋ฅผ ์ •๋Ÿ‰์ ์œผ๋กœ ๊ทœ๋ช…ํ•œ ์ตœ์ดˆ์˜ ๋Œ€๊ทœ๋ชจ ์—ฐ๊ตฌ๋กœ ํ‰๊ฐ€ํ•  ์ˆ˜ ์žˆ๋‹ค. ์—ฐ๊ตฌ์ž๋Š” ์ด๋…์  ์ŠคํŽ™ํŠธ๋Ÿผ์ด ๋„“์€ ๋‹ค์„ฏ ๊ฐœ ์„œ๋ธŒ๋ ˆ๋”ง์„ ์„ ์ •ํ•จ์œผ๋กœ์จ, ์ขŒํŒŒยท์šฐํŒŒยท์ค‘๋„ยท๋Œ€์•ˆยท๊ธฐ์ˆ  ์ค‘์‹ฌ ์ปค๋ฎค๋‹ˆํ‹ฐ ๋“ฑ ๋‹ค์–‘ํ•œ ์ •์น˜ยท์‚ฌํšŒ์  ๋ฐฐ๊ฒฝ์„ ํฌ๊ด„ํ•˜์˜€๋‹ค. ๋ฐ์ดํ„ฐ ์ˆ˜์ง‘ ๋‹จ๊ณ„์—์„œ๋Š” 2022โ€‘2024๋…„ ์‚ฌ์ด์— ๊ฒŒ์‹œ๋œ 1๋ฐฑ๋งŒ ๊ฑด ์ด์ƒ์˜ ํฌ์ŠคํŠธ์™€ ๊ทธ์— ์—ฐ๊ฒฐ๋œ ์žฌ๊ฒŒ์‹œ(cascade) ๋ฐ์ดํ„ฐ๋ฅผ ํฌ๋กค๋งํ–ˆ์œผ๋ฉฐ, ๊ฐ ํฌ์ŠคํŠธ์— ํฌํ•จ๋œ ์ด๋ฏธ์ง€๊ฐ€ AIโ€‘์ƒ์„ฑ ์—ฌ๋ถ€๋ฅผ ํŒ๋ณ„ํ•˜๊ธฐ ์œ„ํ•ด ์ตœ์‹ 

Balancing Safety and Helpfulness in Healthcare AI Assistants through Iterative Preference Alignment

Balancing Safety and Helpfulness in Healthcare AI Assistants through Iterative Preference Alignment

๋ณธ ๋…ผ๋ฌธ์€ ์˜๋ฃŒ ํ˜„์žฅ์—์„œ LLM ๊ธฐ๋ฐ˜ ๋Œ€ํ™”ํ˜• ๋ณด์กฐ ์‹œ์Šคํ…œ์ด ์ง๋ฉดํ•œ ๋‘ ๊ฐ€์ง€ ํ•ต์‹ฌ ๊ณผ์ œโ€”โ€˜์œ„ํ—˜ํ•œ ์š”์ฒญ์— ๋Œ€ํ•œ ๊ณผ์ž‰ ์ˆœ์‘โ€™๊ณผ โ€˜๋ฌดํ•ดํ•œ ์š”์ฒญ์— ๋Œ€ํ•œ ๊ณผ์ž‰ ๊ฑฐ๋ถ€โ€™๋ฅผ ๋™์‹œ์— ํ•ด๊ฒฐํ•˜๊ณ ์ž ํ•˜๋Š” ์‹œ๋„๋ฅผ ๋‹ด๊ณ  ์žˆ๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ์ €์ž๋“ค์€ ๊ธฐ์กด ์‚ฌํ›„ ์ •๋ ฌ(Postโ€‘Deployment Alignment) ์ ‘๊ทผ๋ฒ•์— Kahnemanโ€‘Tversky Optimization(KTO)๊ณผ Direct Preference Optimization(DPO)์„ ๊ฒฐํ•ฉํ•œ ์ƒˆ๋กœ์šด ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์„ค๊ณ„ํ•˜์˜€๋‹ค. KTO๋Š” ์ธ๊ฐ„์˜ ์ธ์ง€ ํŽธํ–ฅ์„ ๋ชจ๋ธ๋งํ•ด ์œ„ํ—˜ ์‹ ํ˜ธ์— ๋Œ€ํ•œ ๋ฏผ๊ฐ๋„๋ฅผ ์กฐ์ ˆํ•˜๊ณ ,

SPARK: Stepwise Process-Aware Rewards for Reference-Free Reinforcement Learning

SPARK: Stepwise Process-Aware Rewards for Reference-Free Reinforcement Learning

๋ณธ ๋…ผ๋ฌธ์€ ๊ฐ•ํ™”ํ•™์Šต(RL)์—์„œ ํ•ต์‹ฌ์ ์ธ ๋ณด์ƒ ์„ค๊ณ„ ๋ฌธ์ œ๋ฅผ ์ƒˆ๋กœ์šด ๊ด€์ ์—์„œ ํ•ด๊ฒฐํ•œ๋‹ค. ์ „ํ†ต์ ์ธ PRM์€ ๋‹จ๊ณ„๋ณ„ ์ •๋‹ต ๋ ˆํผ๋Ÿฐ์Šค๋‚˜ ์ธ๊ฐ„ ์ฃผ์„์— ์˜์กดํ•ด ํ•™์Šต ๋ฐ์ดํ„ฐ๋ฅผ ๊ตฌ์ถ•ํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ด๋Ÿฌํ•œ ๋ฐ์ดํ„ฐ๋Š” ๋น„์šฉ์ด ๋งŽ์ด ๋“ค๊ณ , ํŠนํžˆ ์ˆ˜ํ•™ยท๊ณผํ•™ยท์ฝ”๋“œ์™€ ๊ฐ™์ด ์ •๋‹ต์ด ๋ณต์žกํ•˜๊ฑฐ๋‚˜ ์กด์žฌํ•˜์ง€ ์•Š์„ ๋•Œ๋Š” ์‹ค์šฉ์„ฑ์ด ๋–จ์–ด์ง„๋‹ค. SPARK๋Š” ์ด ํ•œ๊ณ„๋ฅผ โ€œ์ƒ์„ฑโ€‘๊ฒ€์ฆโ€ ๋ฃจํ”„๋ฅผ ํ†ตํ•ด ๊ทน๋ณตํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ ๋‹จ๊ณ„์—์„œ ์ƒ์„ฑ๊ธฐ ๋ชจ๋ธ์€ ํ”„๋กฌํ”„ํŠธ์— ๋”ฐ๋ผ ๋‹ค์ฑ„๋กœ์šด ํ’€์ด ๊ฒฝ๋กœ๋ฅผ ์ƒ์„ฑํ•œ๋‹ค. ์—ฌ๊ธฐ์„œ ์ค‘์š”ํ•œ ์ ์€ ๋‹ค์–‘์„ฑ์„ ํ™•๋ณดํ•˜๊ธฐ ์œ„ํ•ด ์˜จ๋„ ์กฐ์ ˆ, ์ƒ˜ํ”Œ๋ง ๊ธฐ๋ฒ• ๋“ฑ์„ ํ™œ์šฉํ•ด ๋‹ค์ˆ˜์˜ ํ›„๋ณด ํ’€์ด

Learning
Towards a fully differentiable digital twin for solar cells

Towards a fully differentiable digital twin for solar cells

๋ณธ ๋…ผ๋ฌธ์€ ํƒœ์–‘์ „์ง€ ์—ฐ๊ตฌ์—์„œ ๊ฐ€์žฅ ์‹ค์šฉ์ ์ธ ๋ชฉํ‘œ ์ค‘ ํ•˜๋‚˜์ธ ์—ฐ๊ฐ„ ์—๋„ˆ์ง€ ์ˆ˜์œจ(EY) ์ตœ์ ํ™”๋ฅผ ์œ„ํ•œ ํ†ตํ•ฉ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์‹œํ•œ๋‹ค. ๊ธฐ์กด์˜ ๊ณ„์‚ฐ ์ ‘๊ทผ๋ฒ•์€ ๊ด‘ํ•™, ์ „๊ธฐ, ์—ด, ์žฌ๋ฃŒ ๊ณผํ•™ ๋“ฑ ๊ฐ๊ฐ์˜ ๋ถ„์•ผ๋ฅผ ๋ณ„๋„๋กœ ๋‹ค๋ฃจ๋Š” ๊ฒฝ์šฐ๊ฐ€ ๋งŽ์•„, ์‹ค์ œ ํ˜„์žฅ ์ ์šฉ ์‹œ ๋ฐœ์ƒํ•˜๋Š” ๋ณตํ•ฉ์ ์ธ ๋ณ€์ˆ˜๋“ค์„ ๋™์‹œ์— ๊ณ ๋ คํ•˜๊ธฐ ์–ด๋ ต๋‹ค. ์ด๋Ÿฌํ•œ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด ์ €์ž๋“ค์€ โ€˜์ฐจ๋ณ„ ๊ฐ€๋Šฅํ•œ ๋””์ง€ํ„ธ ํŠธ์œˆ(Differentiable Digital Twin)โ€™์ด๋ผ๋Š” ๊ฐœ๋…์„ ๋„์ž…ํ•˜์˜€๋‹ค. ๋””์ง€ํ„ธ ํŠธ์œˆ์€ ๋ฌผ๋ฆฌ์  ์‹œ์Šคํ…œ์„ ๊ฐ€์ƒ ๊ณต๊ฐ„์— ์ •๋ฐ€ํžˆ ๋ณต์ œํ•˜๋Š” ๊ธฐ์ˆ ์ด๋ฉฐ, ์—ฌ๊ธฐ์„œ ์ฐจ๋ณ„ ๊ฐ€๋Šฅ

Video4Spatial: Towards Visuospatial Intelligence with Context-Guided Video Generation

Video4Spatial: Towards Visuospatial Intelligence with Context-Guided Video Generation

VIDEO4SPATIAL์€ ์ตœ๊ทผ ๋น„๋””์˜ค ๊ธฐ๋ฐ˜ ์ธ๊ณต์ง€๋Šฅ ์—ฐ๊ตฌ์—์„œ ๋ˆˆ์— ๋„๋Š” ์ „ํ™˜์ ์„ ์ œ๊ณตํ•œ๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค์€ ์ฃผ๋กœ RGBโ€‘D, ํฌ์ฆˆ ์ถ”์ •, ํ˜น์€ 3D ๋ฉ”์‰ฌ์™€ ๊ฐ™์€ ๋‹ค์ค‘ ๋ชจ๋‹ฌ๋ฆฌํ‹ฐ๋ฅผ ๊ฒฐํ•ฉํ•ด ๊ณต๊ฐ„ ์ •๋ณด๋ฅผ ๋ณด๊ฐ•ํ–ˆ์ง€๋งŒ, ์ด ๋…ผ๋ฌธ์€ ์ˆœ์ˆ˜ ๋น„๋””์˜ค ํ”„๋ ˆ์ž„๋งŒ์œผ๋กœ ๋™์ผํ•˜๊ฑฐ๋‚˜ ๊ทธ ์ด์ƒ์˜ ์„ฑ๋Šฅ์„ ๋‹ฌ์„ฑํ•œ๋‹ค๋Š” ์ ์—์„œ ํ˜์‹ ์ ์ด๋‹ค. ํ•ต์‹ฌ์€ ๋‘ ๊ฐ€์ง€ ์„ค๊ณ„ ์„ ํƒ์— ์žˆ๋‹ค. ์ฒซ์งธ, ๋ฐ์ดํ„ฐ ํ๋ ˆ์ด์…˜ ๋‹จ๊ณ„์—์„œ โ€˜์‹œ๊ณต๊ฐ„ ์ผ๊ด€์„ฑโ€™๊ณผ โ€˜๋‹ค์–‘ํ•œ ์‹œ์  ์ „์ดโ€™๋ฅผ ๊ฐ•์กฐํ•œ ๊ณ ํ’ˆ์งˆ ์‹œํ€€์Šค๋ฅผ ์„ ๋ณ„ํ•จ์œผ๋กœ์จ ๋ชจ๋ธ์ด ์ž์—ฐ์Šค๋Ÿฌ์šด ์›€์ง์ž„๊ณผ ๋ฌผ์ฒด ๋ณ€ํ™”๋ฅผ ํ•™์Šตํ•˜๋„๋ก ์œ ๋„ํ–ˆ๋‹ค. ๋‘˜์งธ, ํ”„๋ ˆ์ž„์›Œํฌ ๋‚ด๋ถ€์—

AI-Enabled grading with near-domain data for scaling feedback with human-level accuracy

AI-Enabled grading with near-domain data for scaling feedback with human-level accuracy

๋ณธ ์—ฐ๊ตฌ๊ฐ€ ๋‹ค๋ฃจ๋Š” ํ•ต์‹ฌ ๋ฌธ์ œ๋Š” โ€˜๊ตฌ์„ฑํ˜• ์งง์€ ๋‹ต๋ณ€ ์ฑ„์ โ€™์ด๋ผ๋Š” ๊ต์œก ํ˜„์žฅ์˜ ๋‚œ์ œ์ด๋‹ค. ์ „ํ†ต์ ์ธ ์ž๋™ ์ฑ„์  ์‹œ์Šคํ…œ์€ ๊ฐ๊ด€์‹์ฒ˜๋Ÿผ ์ •๋‹ต์ด ๋ช…ํ™•ํžˆ ์ •์˜๋œ ๊ฒฝ์šฐ์—๋งŒ ๋†’์€ ์ •ํ™•๋„๋ฅผ ๋ณด์ด๋ฉฐ, ์ž์œ  ์„œ์ˆ ํ˜• ๋‹ต๋ณ€์€ ํ‘œํ˜„ ๋‹ค์–‘์„ฑ, ์–ดํœ˜ ์„ ํƒ, ๋ฌธ๋งฅ์  ์˜๋ฏธ ๋“ฑ ๋ณตํ•ฉ์ ์ธ ๋ณ€์ˆ˜๋ฅผ ํฌํ•จํ•œ๋‹ค. ๋”ฐ๋ผ์„œ ์‚ฌ์ „ ์ •์˜๋œ ๋ฃจ๋ธŒ๋ฆญ ์—†์ด๋„ ์ •ํ™•ํžˆ ์ฑ„์ ํ•˜๋ ค๋ฉด ๋ฐฉ๋Œ€ํ•œ ํ•™์Šต ๋ฐ์ดํ„ฐ์™€ ์ •๊ตํ•œ ์˜๋ฏธ ์ดํ•ด๊ฐ€ ํ•„์š”ํ•˜๋‹ค. ์ €์ž๋“ค์€ ์ด๋Ÿฌํ•œ ๋‚œ์ ์„ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด โ€˜๊ทผ์ ‘ ๋ฐ์ดํ„ฐ(nearโ€‘domain data)โ€™๋ผ๋Š” ๊ฐœ๋…์„ ๋„์ž…ํ•œ๋‹ค. ์ด๋Š” ๋™์ผํ•˜๊ฑฐ๋‚˜ ์œ ์‚ฌํ•œ ์ฃผ์ œยท๋‚œ์ด๋„์˜ ๊ณผ๊ฑฐ ์‹œํ—˜ ๋ฌธํ•ญ๊ณผ ํ•™

Data
An Empirical Study of Agent Developer Practices in AI Agent Frameworks

An Empirical Study of Agent Developer Practices in AI Agent Frameworks

๋ณธ ๋…ผ๋ฌธ์€ LLM(๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ) ๊ธฐ๋ฐ˜ ์—์ด์ „ํŠธ ํ”„๋ ˆ์ž„์›Œํฌ๋ผ๋Š” ๋น„๊ต์  ์ƒˆ๋กœ์šด ์—ฐ๊ตฌ ์˜์—ญ์— ๋Œ€ํ•œ ํฌ๊ด„์ ์ธ ์‹ค์ฆ ์กฐ์‚ฌ๋ฅผ ์ˆ˜ํ–‰ํ–ˆ๋‹ค๋Š” ์ ์—์„œ ํ•™์ˆ ์ ยท์‹ค๋ฌด์  ์˜๋ฏธ๊ฐ€ ํฌ๋‹ค. ์ฒซ ๋ฒˆ์งธ ๊ฐ•์ ์€ ๋ฐ์ดํ„ฐ ์ˆ˜์ง‘ ๊ทœ๋ชจ์ด๋‹ค. 1,575๊ฐœ์˜ ์‹ค์ œ ์˜คํ”ˆ์†Œ์Šค ํ”„๋กœ์ ํŠธ์™€ 8,710๊ฐœ์˜ ๊ฐœ๋ฐœ์ž ํ† ๋ก ์„ ๋ฉ”ํƒ€๋ฐ์ดํ„ฐ๋กœ ํ™œ์šฉํ•จ์œผ๋กœ์จ, ๋‹จ์ˆœํžˆ ๋ฌธํ—Œ ์กฐ์‚ฌ์— ๋จธ๋ฌด๋ฅด์ง€ ์•Š๊ณ  ํ˜„์žฅ ์‹ค๋ฌด์—์„œ ๋ฐœ์ƒํ•˜๋Š” ๊ตฌ์ฒด์ ์ธ ๋ฌธ์ œ์™€ ์‚ฌ์šฉ ํŒจํ„ด์„ ํฌ์ฐฉํ–ˆ๋‹ค. ํŠนํžˆ 10๊ฐœ์˜ ๋Œ€ํ‘œ ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์„ ์ •ํ•˜๋Š” ๊ณผ์ •์—์„œ โ€˜๋ณ„(star)โ€™ยทโ€˜ํฌํฌ(fork)โ€™ยทโ€˜ํ™œ๋™์„ฑโ€™ ๋“ฑ ๊ฐ๊ด€์ ์ธ ์ง€ํ‘œ์™€ ํ•จ๊ป˜ ํ† ๋ก  ๋‚ด์šฉ์˜ ์งˆ์ 

Framework
Community Quality and Influence Maximization: An Empirical Study

Community Quality and Influence Maximization: An Empirical Study

์ด ๋…ผ๋ฌธ์€ ์ธํ”Œ๋ฃจ์–ธ์Šค ์ตœ๋Œ€ํ™” ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•œ ๋‘ ๊ฐ€์ง€ ์ ‘๊ทผ๋ฒ•์„ ์ฒด๊ณ„์ ์œผ๋กœ ๋น„๊ตํ•จ์œผ๋กœ์จ, ์ปค๋ฎค๋‹ˆํ‹ฐ ํƒ์ง€ ํ’ˆ์งˆ์ด ์‹ค์ œ ํ™•์‚ฐ ์„ฑ๋Šฅ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ์‹ค์ฆ์ ์œผ๋กœ ๊ทœ๋ช…ํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ ์ ‘๊ทผ๋ฒ•์€ ๊ธฐ์กด์˜ ๊ณ„์ธต ๊ตฐ์ง‘(Hierarchical Clustering) ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์‚ฌ์šฉํ•ด ์–ป์€ ๋น„๊ต์  ์ €ํ’ˆ์งˆ์˜ ์ปค๋ฎค๋‹ˆํ‹ฐ ๊ตฌ์กฐ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ์‹œ๋“œ ๋…ธ๋“œ๋ฅผ ์„ ์ •ํ•œ๋‹ค. ๋‘ ๋ฒˆ์งธ ์ ‘๊ทผ๋ฒ•์€ ์ €์ž๋“ค์ด ์ด์ „ ์—ฐ๊ตฌ์—์„œ ์ œ์•ˆํ•œ ฮฑโ€‘๊ณ„์ธต ๊ตฐ์ง‘(ฮฑโ€‘Hierarchical Clustering) ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ ์šฉํ•ด, ๋ณด๋‹ค ๋ช…ํ™•ํ•œ ๋ชจ๋“ˆ์„ฑ(modularity)๊ณผ ๋‚ด๋ถ€ ๊ฒฐ์†๋ ฅ์„ ๊ฐ€์ง„ ๊ณ ํ’ˆ์งˆ

Data assimilation and discrepancy modeling with shallow recurrent decoders

Data assimilation and discrepancy modeling with shallow recurrent decoders

๋ณธ ๋…ผ๋ฌธ์€ ํ˜„๋Œ€ ์„ผ์„œ ๋„คํŠธ์›Œํฌ๊ฐ€ ์ง๋ฉดํ•œ ๋‘ ๊ฐ€์ง€ ๊ทผ๋ณธ์ ์ธ ํ•œ๊ณ„, ์ฆ‰ ์ธก์ • ํฌ์ธํŠธ์˜ ํฌ์†Œ์„ฑ ๋ฐ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๋ชจ๋ธ์˜ ๋ถˆ์™„์ „์„ฑ์„ ๋™์‹œ์— ํ•ด๊ฒฐํ•˜๋ ค๋Š” ์‹œ๋„๋กœ์„œ, ๋จธ์‹ ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜ ๋ฐ์ดํ„ฐ ๋™ํ™” ํ”„๋ ˆ์ž„์›Œํฌ DAโ€‘SHRED ๋ฅผ ์ œ์‹œํ•œ๋‹ค. ๊ธฐ์กด ๋ฐ์ดํ„ฐ ๋™ํ™” ๊ธฐ๋ฒ•์€ ์ฃผ๋กœ ์นผ๋งŒ ํ•„ํ„ฐ, ๋ณ€๋ถ„ ๋™ํ™”, ํ˜น์€ ์ตœ๊ทผ์˜ ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜ ์ ‘๊ทผ๋ฒ•์— ์˜์กดํ•ด ์™”์œผ๋ฉฐ, ์ด๋“ค์€ ๊ณ ์ฐจ์› ์ƒํƒœ ๊ณต๊ฐ„์„ ์ง์ ‘ ๋‹ค๋ฃจ๋Š” ๊ฒฝ์šฐ ๊ณ„์‚ฐ ๋น„์šฉ์ด ๊ธ‰๊ฒฉํžˆ ์ฆ๊ฐ€ํ•˜๊ฑฐ๋‚˜, ๋ฌผ๋ฆฌ์  ์ œ์•ฝ์„ ์ถฉ๋ถ„ํžˆ ๋ฐ˜์˜ํ•˜์ง€ ๋ชปํ•œ๋‹ค๋Š” ๋ฌธ์ œ์ ์„ ์•ˆ๊ณ  ์žˆ๋‹ค. DAโ€‘SHRED ๋Š” ์ด๋Ÿฌํ•œ ๋ฌธ์ œ์ ์„ ํšŒํ”ผํ•˜๊ธฐ ์œ„ํ•ด ๋จผ์ € SHRED ๋ผ๋Š” ์–•์€

Data Model
fMRI2GES: Co-speech Gesture Reconstruction from fMRI Signal with Dual Brain Decoding Alignment

fMRI2GES: Co-speech Gesture Reconstruction from fMRI Signal with Dual Brain Decoding Alignment

๋ณธ ๋…ผ๋ฌธ์€ ๋‡Œ ์˜์ƒ(fMRI)๊ณผ ์–ธ์–ด, ๊ทธ๋ฆฌ๊ณ  ๋ชธ์ง“(gesture)์ด๋ผ๋Š” ์„ธ ๊ฐ€์ง€ ์„œ๋กœ ๋‹ค๋ฅธ ๋ชจ๋‹ฌ๋ฆฌํ‹ฐ ์‚ฌ์ด์˜ ๋งคํ•‘์„ ์ง์ ‘ ํ•™์Šตํ•˜๊ธฐ ์–ด๋ ค์šด ํ˜„์‹ค์ ์ธ ๋ฌธ์ œ๋ฅผ ์ฐฝ์˜์ ์œผ๋กœ ํ•ด๊ฒฐํ•œ๋‹ค๋Š” ์ ์—์„œ ํ•™์ˆ ์  ์˜์˜๊ฐ€ ํฌ๋‹ค. ์ฒซ ๋ฒˆ์งธ ํ•ต์‹ฌ์€ โ€˜๋น„์—ฐ๊ณ„ ๋ฐ์ดํ„ฐโ€™๋ฅผ ํ™œ์šฉํ•œ๋‹ค๋Š” ์ ์ด๋‹ค. ๊ธฐ์กด์˜ ๋‡Œโ€‘์ด๋ฏธ์ง€ ํ˜น์€ ๋‡Œโ€‘์–ธ์–ด ์žฌ๊ตฌ์„ฑ ์—ฐ๊ตฌ๋Š” fMRI์™€ ๋ชฉํ‘œ ์ถœ๋ ฅ(์ด๋ฏธ์ง€, ํ…์ŠคํŠธ) ์‚ฌ์ด์— 1:1 ๋งค์นญ์ด ๋ณด์žฅ๋œ ๋ฐ์ดํ„ฐ์…‹์„ ์ „์ œ๋กœ ํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๋‡Œ์™€ ๋™์‹œ์— ๊ธฐ๋ก๋œ ์ œ์Šค์ฒ˜ ๋ฐ์ดํ„ฐ๋Š” ์‹คํ—˜ ์„ค๊ณ„์ƒ์˜ ์ œ์•ฝ๊ณผ ๋น„์šฉ ๋•Œ๋ฌธ์— ๊ฑฐ์˜ ์กด์žฌํ•˜์ง€ ์•Š๋Š”๋‹ค. ์ €์ž๋“ค์€ ์ด๋Ÿฌํ•œ ์ œ์•ฝ์„ ์šฐํšŒํ•˜๊ธฐ ์œ„ํ•ด

From monoliths to modules: Decomposing transducers for efficient world modelling

From monoliths to modules: Decomposing transducers for efficient world modelling

์ด ๋…ผ๋ฌธ์ด ์ œ์‹œํ•˜๋Š” ํ•ต์‹ฌ ์•„์ด๋””์–ด๋Š” โ€˜ํŠธ๋žœ์Šค๋“€์„œโ€™๋ฅผ ์ด์šฉํ•ด ์„ธ๊ณ„ ๋ชจ๋ธ์„ ๋ชจ๋“ˆํ™”ํ•˜๊ณ , ๊ทธ ๋ชจ๋“ˆ๋“ค์„ ์—ญ์œผ๋กœ ๋ถ„ํ•ดํ•จ์œผ๋กœ์จ ๋ณ‘๋ ฌ ์ฒ˜๋ฆฌ์™€ ํ•ด์„ ๊ฐ€๋Šฅ์„ฑ์„ ๋™์‹œ์— ํ™•๋ณดํ•œ๋‹ค๋Š” ์ ์ด๋‹ค. ํŠธ๋žœ์Šค๋“€์„œ๋Š” ๊ด€์ธกยทํ–‰๋™ยท๋ณด์ƒ ๋“ฑ ๋ณตํ•ฉ์ ์ธ ์ƒํ˜ธ์ž‘์šฉ์„ ํ•˜๋‚˜์˜ ์ž…๋ ฅโ€‘์ถœ๋ ฅ ๊ด€๊ณ„๋กœ ์ถ”์ƒํ™”ํ•œ ๊ตฌ์กฐ๋กœ, POMDP(๋ถ€๋ถ„ ๊ด€์ธก ๋งˆ์ฝ”ํ”„ ๊ฒฐ์ • ๊ณผ์ •)๋ฅผ ์ผ๋ฐ˜ํ™”ํ•œ๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ์—์„œ๋Š” ์—ฌ๋Ÿฌ ํŠธ๋žœ์Šค๋“€์„œ๋ฅผ ์ˆœ์ฐจ์ ์œผ๋กœ ์—ฐ๊ฒฐํ•ด ๋ณต์žกํ•œ ์‹œ์Šคํ…œ์„ ๊ตฌ์„ฑํ•˜๋Š” โ€˜ํ•ฉ์„ฑโ€™ ๋ฐฉ๋ฒ•์ด ์ฃผ๋กœ ๋‹ค๋ฃจ์–ด์กŒ์œผ๋ฉฐ, ์ด๋Š” ์„ค๊ณ„ ๋‹จ๊ณ„์—์„œ๋Š” ์ง๊ด€์ ์ด์ง€๋งŒ ์‹ค์ œ ์šด์šฉ ๋‹จ๊ณ„์—์„œ๋Š” ์ „์ฒด ๋ชจ๋ธ์ด ๊ฑฐ๋Œ€ํ•ด์ ธ ์—ฐ์‚ฐ ๋น„์šฉ์ด ๊ธ‰์ฆํ•˜๊ณ , ๋‚ด๋ถ€

Model
InnoGym: Benchmarking the Innovation Potential of AI Agents

InnoGym: Benchmarking the Innovation Potential of AI Agents

InnoGym์ด ์ œ์‹œํ•˜๋Š” ๊ฐ€์žฅ ํฐ ํ˜์‹ ์€ โ€œํ˜์‹ ์„ฑโ€์ด๋ผ๋Š” ์ถ”์ƒ์  ๊ฐœ๋…์„ ์ •๋Ÿ‰ํ™”ํ•˜๋ ค๋Š” ์‹œ๋„์— ์žˆ๋‹ค. ๊ธฐ์กด์˜ LLMยท์—์ด์ „ํŠธ ํ‰๊ฐ€๋Š” ์ฃผ๋กœ ์ •๋‹ต๋ฅ , ์‹คํ–‰ ์‹œ๊ฐ„, ํ† ํฐ ๋น„์šฉ ๋“ฑ ํšจ์œจ์„ฑ ์ง€ํ‘œ์— ์ง‘์ค‘ํ–ˆ์œผ๋ฉฐ, ์ด๋Š” ๋ชจ๋ธ์ด ๊ธฐ์กด ์ง€์‹์„ ์žฌํ˜„ํ•˜๋Š” ๋Šฅ๋ ฅ์€ ์ž˜ ์ธก์ •ํ•˜์ง€๋งŒ, ์ƒˆ๋กœ์šด ์•„์ด๋””์–ด๋ฅผ ์ฐฝ์ถœํ•˜๋Š” ๋Šฅ๋ ฅ์€ ๊ฑฐ์˜ ๋“œ๋Ÿฌ๋‚ด์ง€ ๋ชปํ•œ๋‹ค. InnoGym์€ ์ด๋ฅผ ๋ณด์™„ํ•˜๊ธฐ ์œ„ํ•ด ๋‘ ์ถ•, ์ฆ‰ performance gain๊ณผ novelty๋ฅผ ๋™์‹œ์— ์ธก์ •ํ•œ๋‹ค. performance gain์€ ํ˜„์žฌ๊นŒ์ง€ ๋ณด๊ณ ๋œ ์ตœ์  ์†”๋ฃจ์…˜ ๋Œ€๋น„ ์–ผ๋งˆ๋‚˜ ๊ฐœ์„ ํ–ˆ๋Š”์ง€๋ฅผ ๋ฐฑ๋ถ„์œจ ํ˜น์€ ์ ˆ๋Œ€๊ฐ’์œผ๋กœ ๋‚˜

Spatiotemporal Pyramid Flow Matching for Climate Emulation

Spatiotemporal Pyramid Flow Matching for Climate Emulation

๋ณธ ๋…ผ๋ฌธ์€ ๊ธฐํ›„ ๊ณผํ•™๊ณผ ๋จธ์‹ ๋Ÿฌ๋‹์ด ๊ต์ฐจํ•˜๋Š” ์ตœ์ „์„ ์—์„œ, ๊ธฐ์กด ์ƒ์„ฑ ๋ชจ๋ธ์ด ๊ฐ–๋Š” ๊ทผ๋ณธ์ ์ธ ํ•œ๊ณ„๋ฅผ ๋›ฐ์–ด๋„˜๋Š” ํ˜์‹ ์ ์ธ ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์‹œํ•œ๋‹ค. ํ˜„์žฌ ๋Œ€๋ถ€๋ถ„์˜ ๊ธฐํ›„ ์—๋ฎฌ๋ ˆ์ด์…˜์€ ๊ณ ํ•ด์ƒ๋„ ๋ฌผ๋ฆฌ ๊ธฐ๋ฐ˜ ๋ชจ๋ธ์„ ์ง์ ‘ ์‹คํ–‰ํ•˜๊ฑฐ๋‚˜, ์ €ํ•ด์ƒ๋„ ํ†ต๊ณ„ ๋ชจ๋ธ์— ์˜์กดํ•œ๋‹ค. ์ „์ž๋Š” ๊ณ„์‚ฐ ๋น„์šฉ์ด ์ฒœ๋ฌธํ•™์ ์œผ๋กœ ๋†’๊ณ , ํ›„์ž๋Š” ๋ณต์žกํ•œ ๋น„์„ ํ˜• ์ƒํ˜ธ์ž‘์šฉ์„ ์ถฉ๋ถ„ํžˆ ํฌ์ฐฉํ•˜์ง€ ๋ชปํ•œ๋‹ค. ํŠนํžˆ, ๋‚ ์”จ ์ˆ˜์ค€์˜ ์ž๊ธฐํšŒ๊ท€ ๋ฐฉ์‹์€ ์‹œ๊ฐ„ ๋‹จ๊ณ„๋งˆ๋‹ค ์ˆœ์ฐจ์ ์œผ๋กœ ์ƒ˜ํ”Œ๋งํ•ด์•ผ ํ•˜๋ฏ€๋กœ ์žฅ๊ธฐ ์‹œ๋ฎฌ๋ ˆ์ด์…˜(์ˆ˜์‹ญ ๋…„~์ˆ˜๋ฐฑ ๋…„)์—์„œ๋Š” ์‹œ๊ฐ„ ๋ณต์žก๋„๊ฐ€ ์„ ํ˜•์ ์œผ๋กœ ์ฆ๊ฐ€ํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ๊ตฌ์กฐ์  ์ œ์•ฝ์€ ๋น„์ •์ƒ์ ์ธ ์™ธ๋ถ€ ๊ฐ•

Zero-Overhead Introspection for Adaptive Test-Time Compute

Zero-Overhead Introspection for Adaptive Test-Time Compute

๋ณธ ๋…ผ๋ฌธ์€ ํ˜„์žฌ ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(LLM)์ด ์ง๋ฉดํ•œ ๋ฉ”ํƒ€์ธ์ง€ ๋ถ€์žฌ ๋ฌธ์ œ๋ฅผ ์งš๊ณ , ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•œ ์ƒˆ๋กœ์šด ์ธํ”„๋ผ์ŠคํŠธ๋Ÿญ์ฒ˜์ธ ZIPโ€‘RC(Zeroโ€‘overhead Introspective Prediction of Reward and Cost)๋ฅผ ์ œ์‹œํ•œ๋‹ค. ๊ธฐ์กด์˜ Bestโ€‘ofโ€‘N ๋ฐฉ์‹์€ ๊ณ ์ •๋œ ์ƒ˜ํ”Œ ์ˆ˜๋ฅผ ๋ฏธ๋ฆฌ ์ •ํ•ด๋‘๊ณ  ๋ชจ๋“  ํ›„๋ณด์— ๋Œ€ํ•ด ๋™์ผํ•œ ๋น„์šฉ์„ ์†Œ๋ชจํ•œ๋‹ค. ์ด๋Š” ์ƒ์„ฑ ๊ณผ์ • ์ค‘์— โ€œ์ด ์ •๋„๋ฉด ์ถฉ๋ถ„ํ•œ๊ฐ€?โ€๋ผ๋Š” ํŒ๋‹จ์„ ๋‚ด๋ฆด ๊ทผ๊ฑฐ๊ฐ€ ๋ถ€์กฑํ•ด, ์‹ค์ œ๋กœ๋Š” marginal benefit๊ฐ€ ๊ฑฐ์˜ ์—†๋Š” ์ถ”๊ฐ€ ์ƒ˜ํ”Œ๊นŒ์ง€๋„ ์ˆ˜ํ–‰ํ•˜๊ฒŒ ๋งŒ๋“ ๋‹ค. ๋˜ํ•œ, ๋ชจ๋ธ

ChromouVQA: Benchmarking Vision-Language Models under Chromatic Camouflaged Images

ChromouVQA: Benchmarking Vision-Language Models under Chromatic Camouflaged Images

๋ณธ ๋…ผ๋ฌธ์€ ํ˜„์žฌ Visionโ€‘Language Model(VLM)์ด ์ง๋ฉดํ•œ ํ•ต์‹ฌ ํ•œ๊ณ„์ธ โ€˜ํ”ผ๊ฒจโ€‘๊ทธ๋ผ์šด๋“œ ๊ตฌ๋ถ„โ€™ ๋ฌธ์ œ๋ฅผ ์ •๋Ÿ‰์ ์œผ๋กœ ํ‰๊ฐ€ํ•˜๊ธฐ ์œ„ํ•ด ๋งค์šฐ ์ฒด๊ณ„์ ์ธ ๋ฒค์น˜๋งˆํฌ๋ฅผ ์„ค๊ณ„ํ–ˆ๋‹ค๋Š” ์ ์—์„œ ์˜๋ฏธ๊ฐ€ ํฌ๋‹ค. ๊ธฐ์กด VLM ํ‰๊ฐ€ ๋ฐ์ดํ„ฐ์…‹์€ ์ฃผ๋กœ ๋ช…ํ™•ํ•œ ๊ฐ์ฒด์™€ ๋ฐฐ๊ฒฝ์„ ๊ตฌ๋ถ„ํ•  ์ˆ˜ ์žˆ๋Š” ์ด๋ฏธ์ง€์— ์ดˆ์ ์„ ๋งž์ถ”์—ˆ์œผ๋ฉฐ, ์ƒ‰์ฑ„ ์œ„์žฅ(camouflage)๊ณผ ๊ฐ™์ด ์ธ๊ฐ„์˜ ์‹œ๊ฐ ์‹œ์Šคํ…œ์กฐ์ฐจ๋„ ์ธ์ง€ํ•˜๊ธฐ ์–ด๋ ค์šด ์ƒํ™ฉ์„ ์ถฉ๋ถ„ํžˆ ๋ฐ˜์˜ํ•˜์ง€ ๋ชปํ–ˆ๋‹ค. ChromouVQA๋Š” ์ด๋Ÿฌํ•œ ๊ณต๋ฐฑ์„ ๋ฉ”์šฐ๊ธฐ ์œ„ํ•ด ์ด์‹œํ•˜๋ผ ์  ํ”Œ๋ ˆ์ดํŠธ(Ishihara plates)๋ฅผ ๋ณ€ํ˜•ํ•œ ์ƒ‰์ฑ„ ์œ„์žฅ ์ด๋ฏธ์ง€

Model
IndiMathBench: Autoformalizing Mathematical Reasoning Problems with a Human Touch

IndiMathBench: Autoformalizing Mathematical Reasoning Problems with a Human Touch

์ž๋™ ํ˜•์‹ํ™”(autoโ€‘formalization) ๋ฌธ์ œ๋Š” ์ž์—ฐ์–ด๋กœ ์„œ์ˆ ๋œ ์ˆ˜ํ•™ ๋ฌธ์ œ๋ฅผ ๊ธฐ๊ณ„๊ฐ€ ์ดํ•ดํ•  ์ˆ˜ ์žˆ๋Š” ํ˜•์‹ ์–ธ์–ด, ์—ฌ๊ธฐ์„œ๋Š” Lean 4์™€ ๊ฐ™์€ ์ •๋ฆฌ ์ฆ๋ช… ์‹œ์Šคํ…œ์œผ๋กœ ๋ณ€ํ™˜ํ•˜๋Š” ๊ณผ์ •์„ ์˜๋ฏธํ•œ๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ์—์„œ๋Š” ์ฃผ๋กœ ์„œ์–‘ ์ˆ˜ํ•™ ๊ต๊ณผ์„œ๋‚˜ ๊ณต๊ฐœ๋œ ์ •๋ฆฌ ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค๋ฅผ ํ™œ์šฉํ–ˆ์ง€๋งŒ, ์ด๋Ÿฌํ•œ ์ž๋ฃŒ๋Š” ์ด๋ฏธ ๋งŽ์€ ์ž๋™ ํ˜•์‹ํ™” ๋„๊ตฌ์— ์˜ํ•ด ํ•™์Šต๋˜์–ด ๊ณผ์ ํ•ฉ(overโ€‘fitting) ์œ„ํ—˜์ด ์žˆ๋‹ค. ๋ฐ˜๋ฉด INDIMATHBENCH๋Š” ์ธ๋„ ์ˆ˜ํ•™ ์˜ฌ๋ฆผํ”ผ์•„๋“œ๋ผ๋Š” ๋น„๊ต์  ๋…๋ฆฝ์ ์ธ ์ถœ์ฒ˜์—์„œ 312๊ฐœ์˜ ๋ฌธ์ œ๋ฅผ ์ˆ˜์ง‘ํ•จ์œผ๋กœ์จ ๋ฐ์ดํ„ฐ ๋‹ค์–‘์„ฑ์„ ํฌ๊ฒŒ ํ™•๋Œ€ํ•œ๋‹ค. ์ด๋Š” LL

Integrating Causal Foundation Model in Prescriptive Maintenance Framework for Optimizing Production Line OEE

Integrating Causal Foundation Model in Prescriptive Maintenance Framework for Optimizing Production Line OEE

๋ณธ ๋…ผ๋ฌธ์€ ์ œ์กฐ ํ˜„์žฅ์—์„œ ์˜ˆ์ธก ์ค‘์‹ฌ์˜ ์œ ์ง€๋ณด์ˆ˜์—์„œ ํ•œ ๋‹จ๊ณ„ ๋‚˜์•„๊ฐ€ ์ธ๊ณผ๊ด€๊ณ„๋ฅผ ๋ช…์‹œ์ ์œผ๋กœ ๋ชจ๋ธ๋งํ•จ์œผ๋กœ์จ โ€˜์ฒ˜๋ฐฉํ˜• ์œ ์ง€๋ณด์ˆ˜(prescriptive maintenance)โ€™๋ฅผ ๊ตฌํ˜„ํ•˜๋ ค๋Š” ์‹œ๋„๋ฅผ ์ƒ์„ธํžˆ ์ œ์‹œํ•œ๋‹ค. ๋จผ์ € ๊ธฐ์กด ์˜ˆ์ธก ๋ชจ๋ธ์ด โ€œ์Šคํ‘ธ๋ฆฌ์–ด์Šค(correlational) ํŒจํ„ดโ€์— ์˜์กดํ•œ๋‹ค๋Š” ๋น„ํŒ์€ ์‹ค์ œ ํ˜„์žฅ ์‚ฌ๋ก€์™€ ์ผ์น˜ํ•œ๋‹ค. ์„ผ์„œ ๋ฐ์ดํ„ฐ๊ฐ€ ํ’๋ถ€ํ•˜์ง€๋งŒ, ๊ณ ์žฅ ์›์ธ์— ๋Œ€ํ•œ ๋„๋ฉ”์ธ ์ง€์‹์ด ๋ถ€์กฑํ•œ ๊ฒฝ์šฐ ๋ชจ๋ธ์ด ์žก์•„๋‚ด๋Š” ์‹ ํ˜ธ๋Š” ์ข…์ข… ์šฐ์—ฐํžˆ ๋ฐœ์ƒํ•œ ์ƒ๊ด€๊ด€๊ณ„์— ๋ถˆ๊ณผํ•˜๋‹ค. ์ด๋Ÿฌํ•œ ์ƒํ™ฉ์—์„œ ๋‹จ์ˆœํžˆ ๊ณ ์žฅ ํ™•๋ฅ ๋งŒ์„ ์ œ๊ณต๋ฐ›์•„๋„, ํ˜„์žฅ ์—”์ง€๋‹ˆ์–ด๋Š” โ€œ์–ด๋””๋ฅผ ๊ณ 

Framework Model
No Image

Optimizing Text Search: A Novel Pattern Matching Algorithm Based on Ukkonen's Approach

์ด ๋…ผ๋ฌธ์€ ํ…์ŠคํŠธ ๊ฒ€์ƒ‰ ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ํšจ์œจ์„ฑ์„ ํฌ๊ฒŒ ๋†’์ด๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์‹œํ•œ๋‹ค. ํŠนํžˆ ์ ‘๋ฏธ์‚ฌ ํŠธ๋ฆฌ๋ฅผ ์ตœ์ ํ™”ํ•จ์œผ๋กœ์จ, ํ˜„๋Œ€ ๋ฐ์ดํ„ฐ์…‹์—์„œ ๋ฐœ์ƒํ•˜๋Š” ๋ณต์žก์„ฑ๊ณผ ๊ทœ๋ชจ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ณ ์ž ํ•œ๋‹ค. ์ „ํ†ต์ ์ธ Naive Search, KMP, Boyer Moore ์•Œ๊ณ ๋ฆฌ์ฆ˜๋“ค์€ ๊ธฐ๋ณธ์ ์ด์ง€๋งŒ, ๊ทธ ํšจ์œจ์„ฑ์ด ํ˜„๋Œ€์˜ ๋ฐฉ๋Œ€ํ•œ ๋ฐ์ดํ„ฐ ์ฒ˜๋ฆฌ ์š”๊ตฌ์‚ฌํ•ญ์— ๋ถ€ํ•ฉํ•˜์ง€ ๋ชปํ•œ๋‹ค. ์ด ์—ฐ๊ตฌ์—์„œ๋Š” ์ ‘๋ฏธ์‚ฌ ํŠธ๋ฆฌ๋ฅผ Splitting ๋ฐ Ukkonen ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ํ†ตํ•ด ์ตœ์ ํ™”ํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์‹œํ•˜๋ฉฐ, ์ด๋ฅผ ํ†ตํ•ด ์„ ํ˜• ์‹œ๊ฐ„๊ณผ ๊ณต๊ฐ„ ํšจ์œจ์„ฑ์„ ๋‹ฌ์„ฑํ•  ์ˆ˜ ์žˆ์Œ์„ ๋ณด์—ฌ์ค€๋‹ค. ํŠนํžˆ, Ukkonen ์•Œ๊ณ ๋ฆฌ

Hierarchical clustering of complex energy systems using pretopology

Hierarchical clustering of complex energy systems using pretopology

์ด ์—ฐ๊ตฌ๋Š” ์—๋„ˆ์ง€ ๊ด€๋ฆฌ ๋ถ„์•ผ์—์„œ ๊ธฐ์กด์— ํ”ํžˆ ์‚ฌ์šฉ๋˜๋˜ ๊ฐœ๋ณ„ ๊ฑด๋ฌผ ๋‹จ์œ„์˜ ํ˜„์žฅ ์กฐ์‚ฌ ๋ฐฉ์‹์ด ๊ฐ–๋Š” ๋น„ํšจ์œจ์„ฑ์„ ๊ทผ๋ณธ์ ์œผ๋กœ ํ•ด๊ฒฐํ•˜๋ ค๋Š” ์‹œ๋„๋กœ ํ‰๊ฐ€ํ•  ์ˆ˜ ์žˆ๋‹ค. ์ €์ž๋Š” ํ”„๋ฆฌํ† ํด๋กœ์ง€(pretopology)๋ผ๋Š” ์ˆ˜ํ•™์  ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์„ ํƒํ–ˆ๋Š”๋ฐ, ์ด๋Š” ์ „ํ†ต์ ์ธ ์œ„์ƒ์ˆ˜ํ•™์ด ์ œ๊ณตํ•˜๋Š” ๊ฐœ๋…๋ณด๋‹ค ๋” ์œ ์—ฐํ•˜๊ฒŒ โ€˜๊ทผ์ ‘์„ฑโ€™๊ณผ โ€˜ํฌํ•จ ๊ด€๊ณ„โ€™๋ฅผ ์ •์˜ํ•  ์ˆ˜ ์žˆ๋‹ค. ํ”„๋ฆฌํ† ํด๋กœ์ง€ ๊ณต๊ฐ„์—์„œ๋Š” ์ ๋“ค์˜ ๊ทผ์ ‘์„ฑ์„ ๋‚˜ํƒ€๋‚ด๋Š” โ€˜ํ”„๋ฆฌํด๋กœ์ €โ€™ ์—ฐ์‚ฐ๊ณผ, ์ง‘ํ•ฉ์„ ํ™•์žฅ์‹œํ‚ค๋Š” โ€˜ํ”„๋ฆฌ๋‚ด๋ถ€โ€™ ์—ฐ์‚ฐ์„ ํ†ตํ•ด ๋ฐ์ดํ„ฐ ๊ฐ„์˜ ๊ตฌ์กฐ์  ๊ด€๊ณ„๋ฅผ ์ •๋Ÿ‰ํ™”ํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ์—ฐ์‚ฐ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ๋‹ค์ค‘ ๊ธฐ์ค€(์˜ˆ: ์œ„์น˜, ํฌ๊ธฐ

System
Enhancing Geo-localization for Crowdsourced Flood Imagery via LLM-Guided Attention

Enhancing Geo-localization for Crowdsourced Flood Imagery via LLM-Guided Attention

๋ณธ ๋…ผ๋ฌธ์€ ์‚ฌํšŒ ๋ฏธ๋””์–ด์—์„œ ์ˆ˜์ง‘๋œ ์ŠคํŠธ๋ฆฌํŠธ ๋ทฐ ์ด๋ฏธ์ง€๋ฅผ ํ™œ์šฉํ•˜์—ฌ ๋„์‹œ ํ™์ˆ˜์™€ ๊ฐ™์€ ์œ„๊ธฐ ์ƒํ™ฉ์„ ์‹ค์‹œ๊ฐ„์œผ๋กœ ๋ชจ๋‹ˆํ„ฐ๋งํ•˜๋Š” ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด VPR AttLLM ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์•ˆํ•œ๋‹ค. ๊ธฐ์กด์˜ VPR ๋ชจ๋ธ๋“ค์€ ๊ต์ฐจ ์†Œ์Šค ์‹œ๋‚˜๋ฆฌ์˜ค์—์„œ ๋ฐœ์ƒํ•˜๋Š” ์‹œ๊ฐ์  ์™œ๊ณก๊ณผ ๋„๋ฉ”์ธ ์ด๋™์œผ๋กœ ์ธํ•ด ์„ฑ๋Šฅ์ด ์ €ํ•˜๋˜๋Š” ํ•œ๊ณ„๊ฐ€ ์žˆ๋‹ค. ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด, ๋ณธ ๋…ผ๋ฌธ์€ LLMs์˜ ์˜๋ฏธ๋ก ์  ์ถ”๋ก  ๋ฐ ์ง€๋ฆฌ ๊ณต๊ฐ„ ์ง€์‹์„ ์ฃผ์˜ ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ํ†ตํ•ด ๊ธฐ์กด VPR ํŒŒ์ดํ”„๋ผ์ธ์— ํ†ตํ•ฉํ•˜๋Š” ๋ชจ๋ธ์— ๋ฌด๊ด€ํ•œ ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์‹œํ•œ๋‹ค. VPR AttLLM์€ LLMs์„ ํ™œ์šฉํ•˜์—ฌ ์ด๋ฏธ์ง€ ๋‚ด์—์„œ ์œ„์น˜

Space Alignment Matters: The Missing Piece for Inducing Neural Collapse in Long-Tailed Learning

Space Alignment Matters: The Missing Piece for Inducing Neural Collapse in Long-Tailed Learning

์ด ๋…ผ๋ฌธ์€ ์ตœ๊ทผ ๊ฐ๊ด‘๋ฐ›๊ณ  ์žˆ๋Š” โ€˜์‹ ๊ฒฝ ๋ถ•๊ดด(Neural Collapse, NC)โ€™ ํ˜„์ƒ์„ ๊ธด ๊ผฌ๋ฆฌ ๋ฐ์ดํ„ฐ ๋ถ„๋ฅ˜ ๋ฌธ์ œ์— ์ ์šฉํ•จ์œผ๋กœ์จ, ๊ธฐ์กด ๋ฐฉ๋ฒ•๋ก ์ด ๋†“์น˜๊ณ  ์žˆ๋˜ ํ•ต์‹ฌ์ ์ธ ์ •๋ ฌ ๋ฌธ์ œ๋ฅผ ์ƒˆ๋กญ๊ฒŒ ์กฐ๋ช…ํ•œ๋‹ค. NC๋Š” ํ•™์Šต์ด ์ง„ํ–‰๋ ์ˆ˜๋ก ํด๋ž˜์Šค๋ณ„ ํŠน์ง• ํ‰๊ท (feature means)๊ณผ ์ตœ์ข… ์„ ํ˜• ๋ถ„๋ฅ˜๊ธฐ์˜ ๊ฐ€์ค‘์น˜๊ฐ€ ์„œ๋กœ ์ •๋ ฌ๋˜๊ณ , ์ „์ฒด ํด๋ž˜์Šค๊ฐ€ ๋‹จ์ˆœ์ฒด ๋“ฑ๊ฐ ๊ธด๋ฐ€ ํ”„๋ ˆ์ž„(simplex ETF) ๊ตฌ์กฐ๋ฅผ ์ด๋ฃจ๋Š” ํ˜„์ƒ์ด๋‹ค. ์ด ๊ตฌ์กฐ๋Š” ํด๋ž˜์Šค ๊ฐ„ ๊ฐ๋„๊ฐ€ ๋™์ผํ•˜๊ณ , ๊ฐ ํด๋ž˜์Šค์˜ ํŠน์ง•์ด ์„œ๋กœ ์ •๊ทœ ์ง๊ตํ•˜๋Š” ์ตœ์ ์˜ ๊ธฐํ•˜ํ•™์  ๋ฐฐ์น˜๋ฅผ ์ œ๊ณตํ•œ๋‹ค๋Š” ์ ์—์„œ ์ด๋ก ์ ยท์‹ค์šฉ์ 

Learning
Learning Solution Operators for Partial Differential Equations via Monte Carlo-Type Approximation

Learning Solution Operators for Partial Differential Equations via Monte Carlo-Type Approximation

Monte Carloํ˜• ์‹ ๊ฒฝ ์—ฐ์‚ฐ์ž(MCNO)๋Š” ๊ธฐ์กด ์‹ ๊ฒฝ ์—ฐ์‚ฐ์ž ์—ฐ๊ตฌ์—์„œ ๋‘๋“œ๋Ÿฌ์ง„ ๋‘ ๊ฐ€์ง€ ํ•œ๊ณ„๋ฅผ ๋™์‹œ์— ํ•ด๊ฒฐํ•˜๋ ค๋Š” ์‹œ๋„๋กœ ๋ณผ ์ˆ˜ ์žˆ๋‹ค. ์ฒซ ๋ฒˆ์งธ๋Š” Fourier Neural Operator(FNO)์™€ ๊ฐ™์€ ์ŠคํŽ™ํŠธ๋Ÿผ ๊ธฐ๋ฐ˜ ๋ฐฉ๋ฒ•์ด ์ „์ œํ•˜๋Š” ์ฃผ๊ธฐ์„ฑยทํ‰ํ–‰์ด๋™ ๋ถˆ๋ณ€์„ฑ ๊ฐ€์ •์ด๋‹ค. ์ด๋Ÿฌํ•œ ๊ฐ€์ •์€ ์ •๊ทœ ๊ฒฉ์ž๋‚˜ ์ฃผ๊ธฐ์  ๊ฒฝ๊ณ„์กฐ๊ฑด์„ ๊ฐ–๋Š” ๋ฌธ์ œ์—์„  ํšจ์œจ์ ์ด์ง€๋งŒ, ๋ณต์žกํ•œ ์ง€์˜ค๋ฉ”ํŠธ๋ฆฌยท๋น„์ฃผ๊ธฐ์  ๊ฒฝ๊ณ„ยท๋น„๊ท ์ผ ๊ฒฉ์ž์—์„œ๋Š” ์ ์šฉ์ด ์–ด๋ ค์›Œ์ง„๋‹ค. MCNO๋Š” ์ปค๋„์„ ์ž„์˜์˜ ์  ์ง‘ํ•ฉ ์œ„์— ์ •์˜ํ•˜๊ณ , ์ด ์ ๋“ค์„ Monte Carlo ์ƒ˜ํ”Œ๋ง์œผ๋กœ ์„ ํƒํ•จ์œผ๋กœ์จ ์ŠคํŽ™ํŠธ๋Ÿผ ๊ฐ€์ •์„

Learning
State Synchronization for Homogeneous Networks of Non-introspective   Agents in Presence of Input Saturation -A Scale-free Protocol Design

State Synchronization for Homogeneous Networks of Non-introspective Agents in Presence of Input Saturation -A Scale-free Protocol Design

This paper addresses the challenge of achieving global and semi global regulated state synchronization in homogeneous networks of non introspective agents, particularly under input saturation conditions. The key contribution is a scalable protocol design that does not require detailed knowledge abou

Computer Science Systems and Control Network Electrical Engineering and Systems Science
Shenjing: A low power reconfigurable neuromorphic accelerator with   partial-sum and spike networks-on-chip

Shenjing: A low power reconfigurable neuromorphic accelerator with partial-sum and spike networks-on-chip

This paper introduces Shenjing, a novel architecture that aims to achieve energy efficient deep neural networks (DNNs). The primary focus is on addressing the high energy consumption of DNNs, especially in on device AI applications where both computation and communication consume significant amounts

Emerging Technologies Neural Computing Network Computer Science Hardware Architecture
No Image

Indian EmoSpeech Command Dataset: A dataset for emotion based speech recognition in the wild

This paper introduces the Indian EmoSpeech Command Dataset, a new dataset for speech emotion analysis that takes into account both verbal and non verbal components of speech in real life scenarios. The research addresses the challenge faced by traditional models which often operate under controlled

Multimedia Electrical Engineering and Systems Science Computer Science Sound Audio Processing Data
E(A+M)PEC - An OpenCL Atomic & Molecular Plasma Emission Code For   Interstellar Medium Simulations

E(A+M)PEC - An OpenCL Atomic & Molecular Plasma Emission Code For Interstellar Medium Simulations

: E(A+M)PEC ์ฝ”๋“œ๋Š” ISM์˜ ์—ด์  ์ง„ํ™”์™€ ์—ญํ•™์  ์ง„ํ™”๋ฅผ ์ผ๊ด€์„ฑ ์žˆ๊ฒŒ ๋ชจ๋ธ๋งํ•˜๊ธฐ ์œ„ํ•œ ์ค‘์š”ํ•œ ๋„๊ตฌ๋กœ, ์ด์˜จํ™” ๋ฐ ์žฌ๊ฒฐํ•ฉ ๊ณผ์ •์„ ํฌํ•จํ•˜์—ฌ ๋‹ค์–‘ํ•œ ๋ฌผ๋ฆฌ์  ํ˜„์ƒ์„ ๊ณ ๋ คํ•ฉ๋‹ˆ๋‹ค. ํŠนํžˆ, ์ž์—ฐ์—์„œ ๊ฐ€์žฅ ํ’๋ถ€ํ•œ 10๊ฐ€์ง€ ์›์†Œ์— ๋Œ€ํ•œ ๋ฐ์ดํ„ฐ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•˜๋ฉฐ, ์ตœ์‹  ํƒœ์–‘ ์›์†Œ์™€ ์›์ž ๋ฐ ๋ถ„์ž ๋ฐ์ดํ„ฐ๋ฅผ ํ™œ์šฉํ•จ์œผ๋กœ์จ ์ •ํ™•๋„๋ฅผ ๋†’์˜€์Šต๋‹ˆ๋‹ค. ์ด ์ฝ”๋“œ๋Š” ISM์˜ ์—ด์  ์ง„ํ™” ๊ณผ์ •์—์„œ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•˜๋Š” ์—ฌ๋Ÿฌ ๋ฌผ๋ฆฌ์  ํ˜„์ƒ์„ ํฌํ•จํ•ฉ๋‹ˆ๋‹ค. ์ด ์ค‘ ์ „์ž ์ถฉ๊ฒฉ ์ด์˜จํ™”, ํฅ๋ถ„ ์ž๋™ ์ด์˜จํ™”, ๋ณต์‚ฌ ๋ฐ ๋‹ค์ด์ผ๋ ‰ํŠธ๋ก  ์žฌ๊ฒฐํ•ฉ, ์ „ํ•˜ ๊ตํ™˜ ๋ฐ˜์‘ ๋“ฑ์€ ISM์˜ ์—ด์  ์ƒํƒœ๋ฅผ

Astrophysics
Floating Extensional Flows

Floating Extensional Flows

๋ณธ ๋…ผ๋ฌธ์€ ๋น™ํ•˜ ์‹œํŠธ์˜ ํ™•์žฅ ํ๋ฆ„์— ๋Œ€ํ•œ ์‹ฌ๋„ ์žˆ๋Š” ๋ชจ๋ธ๋ง๊ณผ ๋ถ„์„์„ ํ†ตํ•ด, ๋‰ดํ„ด ์œ ์ฒด์™€ ๋น„๋‰ดํ„ด ์œ ์ฒด ์‚ฌ์ด์˜ ์ค‘์š”ํ•œ ์—ญํ•™์  ์ฐจ์ด๋ฅผ ํƒ๊ตฌํ•œ๋‹ค. ์ด ์—ฐ๊ตฌ๋Š” ํŠนํžˆ ๋น™ํ•˜๊ฐ€ ๋ฐ”๋‹ค ์œ„๋กœ ๋– ์˜ค๋ฅด๋ฉด์„œ ๋ฐœ์ƒํ•˜๋Š” ํ™•์žฅ ํ๋ฆ„์— ์ดˆ์ ์„ ๋งž์ถ”๊ณ  ์žˆ๋‹ค. 1. ๋น™ํ•˜ ์‹œํŠธ์˜ ๊ธฐ๋ณธ ํŠน์„ฑ ์ „๋‹จ ํ๋ฆ„ : ๋น™ํ•˜์˜ ์ค‘์‹ฌ๋ถ€๋Š” ์ง€๋ฐ˜์— ๊ณ ์ •๋˜์–ด ์žˆ์œผ๋ฉฐ, ์ฃผ๋œ ํ๋ฆ„์€ ์ „๋‹จ ํ๋ฆ„์ด๋‹ค. ํ™•์žฅ ํ๋ฆ„ : ์ค‘๋ ฅ์— ์˜ํ•ด ๋ณ€ํ˜•๋˜๋Š” ๋น™ํ•˜๋Š” ๋‘๊ป˜๊ฐ€ ์ถฉ๋ถ„ํžˆ ์–‡์•„์ง€๋ฉด ๋ฐ”๋‹ค ์œ„๋ฅผ ๋– ๋‹ค๋‹ ์ˆ˜ ์žˆ๋‹ค. ์ด๋•Œ์˜ ํ๋ฆ„์„ ํ™•์žฅ ํ๋ฆ„์ด๋ผ ๋ถ€๋ฅธ๋‹ค. 2. ๋‰ดํ„ด ์œ ์ฒด์™€ ๋น„๋‰ดํ„ด ์œ ์ฒด์˜ ๋น„๊ต ๋‰ดํ„ด ์œ ์ฒด : ์ ์„ฑ์ด ์ผ์ •ํ•œ

Physics
No Image

Radius and magnetic field from Synchrotron-self-absorbed radio and Inverse Compton X-ray observations of Supernovae

: ๋ณธ ์—ฐ๊ตฌ๋Š” ์ดˆ์‹ ์„ฑ ํญ๋ฐœ์—์„œ ๋ฐœ์ƒํ•˜๋Š” ๋ณต์žกํ•œ ๋ฌผ๋ฆฌ ํ˜„์ƒ์„ ์ดํ•ดํ•˜๊ธฐ ์œ„ํ•œ ์ค‘์š”ํ•œ ๋‹จ๊ณ„๋ฅผ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค. ํŠนํžˆ, Synchrotron Self Absorbed (SSA) ๋ผ๋””์˜คํŒŒ์™€ Inverse Compton X ์„  ๋ฐฉ์ถœ์„ ํ†ตํ•ด ๊ด€์ฐฐ๋˜๋Š” ์ดˆ์‹ ์„ฑ ํญ๋ฐœํŒŒ์˜ ํŠน์„ฑ์„ ๋ถ„์„ํ•˜๊ณ ์ž ํ•ฉ๋‹ˆ๋‹ค. ์ดˆ์‹ ์„ฑ ํญ๋ฐœ์€ ๋งค์šฐ ๊ฐ•๋ ฅํ•œ ์—๋„ˆ์ง€ ๋ฐฉ์ถœ๊ณผ ํ•จ๊ป˜ ๋ฐœ์ƒํ•˜๋ฉฐ, ์ด ๊ณผ์ •์—์„œ ์ƒ์„ฑ๋œ ๊ณ ์—๋„ˆ์ง€ ์ „์ž๋Š” ์ž๊ธฐ์žฅ์— ์˜ํ•ด ์‹ฑํฌ๋กœํŠธ๋ก  ๋ฐฉ์ถœ์„ ์ผ์œผํ‚ต๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฐฉ์ถœ์€ SSA ๋ผ๋””์˜คํŒŒ ํ˜•ํƒœ๋กœ ๊ด€์ฐฐ๋˜๋ฉฐ, ์ด๋Š” ๊ด€์ธก ๊ฐ€๋Šฅํ•œ ๋ณต์‚ฌ๋Ÿ‰์˜ ์ค‘์š”ํ•œ ๋ถ€๋ถ„์„ ์ฐจ์ง€ํ•ฉ๋‹ˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” SSA

Astrophysics
GRBs in the SWIFT and Fermi era: a new view of the prompt emission

GRBs in the SWIFT and Fermi era: a new view of the prompt emission

1. ์„œ๋ก  ๋ฐ ๋ฐฐ๊ฒฝ ๊ฐ๋งˆ์„  ํญ๋ฐœ(GRB)์€ ์šฐ์ฃผ์—์„œ ๊ฐ€์žฅ ๊ฐ•๋ ฅํ•œ ์—๋„ˆ์ง€๋ฅผ ๋ฐฉ์ถœํ•˜๋Š” ํ˜„์ƒ ์ค‘ ํ•˜๋‚˜๋กœ, ๊ทธ ์ŠคํŽ™ํŠธ๋Ÿผ๊ณผ ๋น› ๊ณก์„ ์€ ๋‹ค์–‘ํ•œ ํŠน์„ฑ์„ ๋ณด์ž…๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ๋ณต์žก์„ฑ ๋•Œ๋ฌธ์— GRB์˜ ๊ธ‰์„ฑ ๋ฐฉ์ถœ์— ๋Œ€ํ•œ ์„ค๋ช…์€ ์—ฌ์ „ํžˆ ํ™œ๋ฐœํ•˜๊ฒŒ ์—ฐ๊ตฌ๋˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. 1993๋…„ Band ๋“ฑ์ด ์ œ์•ˆํ•œ Band ํ•จ์ˆ˜๋Š” GRB ์ŠคํŽ™ํŠธ๋Ÿผ ๋ชจ์–‘์„ ์„ค๋ช…ํ•˜๋Š” ์ค‘์š”ํ•œ ๋„๊ตฌ๋กœ ์‚ฌ์šฉ๋˜์–ด ์™”์Šต๋‹ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ด ํ•จ์ˆ˜๋Š” ๊ณ ์—๋„ˆ์ง€ ์ชฝ์œผ๋กœ ๊ฐ€ํŒŒ๋ฅด๊ฒŒ ๊ธฐ์šธ์–ด์ง€๋Š” ๊ฒฝํ–ฅ ๋•Œ๋ฌธ์—, ๋ชจ๋“  ๊ฒฝ์šฐ์— ์ ํ•ฉํ•˜์ง€ ์•Š๋‹ค๋Š” ํ•œ๊ณ„๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค. 2. ๋กœ๊ทธ ํŒŒ๋ผ๋ณผ๋ฆญ ๋ชจ๋ธ์˜ ์ œ์•ˆ ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” GRB SEDs์˜ ๊ณก

Astrophysics

< Category Statistics (Total: 743) >

Electrical Engineering and Systems Science
7
General
272
General Relativity
7
HEP-EX
5
HEP-PH
12
HEP-TH
5
MATH-PH
3
NUCL-TH
1
Quantum Physics
10

Start searching

Enter keywords to search articles

โ†‘โ†“
โ†ต
ESC
โŒ˜K Shortcut