KOINEU Logo
Reinforcement Learning-Augmented LLM Agents for Collaborative Decision Making and Performance Optimization

Reinforcement Learning-Augmented LLM Agents for Collaborative Decision Making and Performance Optimization

์ด ๋…ผ๋ฌธ์€ ๋Œ€๊ทœ๋ชจ ์–ธ์–ด ๋ชจ๋ธ(LLMs)์˜ ํ˜‘์—… ๋Šฅ๋ ฅ์„ ํ–ฅ์ƒ์‹œํ‚ค๊ธฐ ์œ„ํ•ด ๊ฐ•ํ™” ํ•™์Šต์„ ํ†ตํ•ฉํ•œ ์ƒˆ๋กœ์šด ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์‹œํ•ฉ๋‹ˆ๋‹ค. ์ด ํ”„๋ ˆ์ž„์›Œํฌ๋Š” ๋‹ค์ค‘ ์—์ด์ „ํŠธ ํ™˜๊ฒฝ์—์„œ ์ „์—ญ์ ์ธ ์„ฑ๋Šฅ ์ตœ์ ํ™”์— ์–ด๋ ค์›€์„ ๊ฒช๋Š” LLMs์˜ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๋ ค๊ณ  ํ•ฉ๋‹ˆ๋‹ค. ๋…ผ๋ฌธ์€ ํ˜‘์—…์„ ๋ถ„์‚ฐ ๋ถ€๋ถ„ๅฏ่ง‚ๆต‹้ฉฌๅฐ”ๅฏๅคซๅ†ณ็ญ–่ฟ‡็จ‹๏ผˆDec POMDP๏ผ‰็š„ๅฝขๅผๅŒ–๏ผŒๅนถ้‡‡็”จ้›†ไธญ่ฎญ็ปƒไธŽๅˆ†ๆ•ฃๆ‰ง่กŒ๏ผˆCTDE๏ผ‰ใ€‚่ฟ™็งๆ–นๆณ•้€š่ฟ‡ๅผ•ๅ…ฅ็ป„็›ธๅฏน็ญ–็•ฅไผ˜ๅŒ–๏ผˆGRPO๏ผ‰๏ผŒๅœจ่ฎญ็ปƒ่ฟ‡็จ‹ไธญๅˆฉ็”จๅ…จๅฑ€ไฟกๅทๆฅๅ…ฑๅŒไผ˜ๅŒ–ไปฃ็†็ญ–็•ฅ๏ผŒๅŒๆ—ถ็ฎ€ๅŒ–่”ๅˆๅฅ–ๅŠฑไปฅๅนณ่กกไปปๅŠก่ดจ้‡ใ€้€Ÿๅบฆๅ’Œๅ่ฐƒๆˆๆœฌใ€‚ๅฎž้ชŒ็ป“ๆžœ่กจๆ˜Ž๏ผŒๅœจๅไฝœๅ†™ไฝœๅ’Œ็ผ–็ ๅŸบๅ‡†ๆต‹่ฏ•ไธญ๏ผŒ่ฏฅๆก†ๆžถๆฏ”ๅ•ไปฃ็†ๅŸบ็บฟๆ้ซ˜ไบ†3ๅ€็š„ไปปๅŠกๅค„็†้€Ÿ

Learning
No Image

Toward Large-Scale Photonics-Empowered AI Systems: From Physical Design Automation to System-Algorithm Co-Exploration

์ด ๋…ผ๋ฌธ์€ ํฌํ† ๋‹‰์Šค ๊ธฐ๋ฐ˜ ์ธ๊ณต์ง€๋Šฅ ๊ฐ€์†๊ธฐ์˜ ์—ฐ๊ตฌ๊ฐ€ โ€œ๋””๋ฐ”์ด์Šคโ€‘๋ ˆ๋ฒจ ํ˜์‹ โ€์—์„œ โ€œ์‹œ์Šคํ…œโ€‘๋ ˆ๋ฒจ ์‹ค์šฉํ™”โ€ ๋‹จ๊ณ„๋กœ ์ „ํ™˜๋˜๋Š” ๋ฐ ํ•„์š”ํ•œ ํ•ต์‹ฌ ๊ณผ์ œ๋ฅผ ์ฒด๊ณ„์ ์œผ๋กœ ์ •๋ฆฌํ•˜๊ณ , ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•œ ํ†ตํ•ฉ ์„ค๊ณ„ ํ๋ฆ„์„ ์ œ์‹œํ•œ๋‹ค๋Š” ์ ์—์„œ ์˜๋ฏธ๊ฐ€ ํฌ๋‹ค. ์ฒซ ๋ฒˆ์งธ ๊ณ ๋ ค์‚ฌํ•ญ์ธ ๋™์  ํ…์„œ ์—ฐ์‚ฐ ์ง€์›์€ ํ˜„์žฌ AI ๋ชจ๋ธ์ด ๊ณ ์ •๋œ ๊ฐ€์ค‘์น˜ ๋งคํŠธ๋ฆญ์Šค๋งŒ์„ ํ™œ์šฉํ•˜๋Š” ์ „ํ†ต์ ์ธ ์ปจ๋ณผ๋ฃจ์…˜ ๊ฐ€์†๊ธฐ์™€๋Š” ๊ทผ๋ณธ์ ์œผ๋กœ ๋‹ค๋ฅธ ์š”๊ตฌ์‚ฌํ•ญ์ด๋‹ค. ํŠนํžˆ Transformer์™€ ๊ฐ™์€ ์–ดํ…์…˜ ๋ฉ”์ปค๋‹ˆ์ฆ˜์€ ์ž…๋ ฅ ์‹œํ€€์Šค ๊ธธ์ด์— ๋”ฐ๋ผ ์‹ค์‹œ๊ฐ„์œผ๋กœ ๊ฐ€์ค‘์น˜ ํ–‰๋ ฌ์„ ์žฌ๊ตฌ์„ฑํ•˜๊ณ , ๋‹ค์ค‘ ํ—ค๋“œ ์—ฐ์‚ฐ์„ ๋ณ‘๋ ฌ์ ์œผ๋กœ ์ˆ˜ํ–‰ํ•œ๋‹ค

System Physics
No Image

Understanding and Steering the Cognitive Behaviors of Reasoning Models at Test-Time

๋ณธ ๋…ผ๋ฌธ์€ ํ˜„์žฌ LLM์ด ๋ณต์žกํ•œ ๋ฌธ์ œ ํ•ด๊ฒฐ์— ํ”ํžˆ ์‚ฌ์šฉํ•˜๋Š” CoT(Chainโ€‘ofโ€‘Thought) ๋ฐฉ์‹์ด โ€œ๊ณผ๋‹ค ํ† ํฐ ์ƒ์„ฑโ€๊ณผ โ€œ๋ถˆ์•ˆ์ •ํ•œ ์‚ฌ๊ณ  ํ๋ฆ„โ€์ด๋ผ๋Š” ๋‘ ๊ฐ€์ง€ ์ฃผ์š” ๋ณ‘๋ชฉ์„ ์•ˆ๊ณ  ์žˆ๋‹ค๋Š” ์ ์„ ์ •ํ™•ํžˆ ์งš์–ด๋‚ธ๋‹ค. ์ €์ž๋“ค์€ ๋จผ์ € ๋Œ€๊ทœ๋ชจ ๋ชจ๋ธ(์˜ˆ: GPTโ€‘NeoX, LLaMA)์—์„œ ์ถ”๋ก  ์‹œ ์ƒ์„ฑ๋˜๋Š” ํ† ํฐ ์‹œํ€€์Šค๋ฅผ ๋‹จ๊ณ„๋ณ„๋กœ ๋ถ„์„ํ•˜๊ณ , ๊ฐ ๋‹จ๊ณ„๊ฐ€ ์–ด๋–ค ์ธ์ง€์  ์—ญํ• ์„ ์ˆ˜ํ–‰ํ•˜๋Š”์ง€ ๋ฉ”ํƒ€๋ฐ์ดํ„ฐํ™”ํ•œ๋‹ค. ์ด ๊ณผ์ •์—์„œ ํŠนํžˆ โ€˜๊ฒ€์ฆ(verification)โ€™ ๋‹จ๊ณ„์™€ โ€˜์—ญ์ถ”์ (backtracking)โ€™ ๋‹จ๊ณ„๊ฐ€ ๋ณ„๋„์˜ ์–ดํ…์…˜ ํ—ค๋“œ์— ์ง‘์ค‘๋˜์–ด ์žˆ๋‹ค๋Š” ์‚ฌ์‹ค์„

Computer Science NLP Model
Comparing Approaches to Automatic Summarization in Less-Resourced Languages

Comparing Approaches to Automatic Summarization in Less-Resourced Languages

์ด ๋…ผ๋ฌธ์€ ์ž์›์ด ๋ถ€์กฑํ•œ ์–ธ์–ด(LRL, Lessโ€‘Resourced Languages)์—์„œ ์ž๋™ ์š”์•ฝ ๊ธฐ์ˆ ์˜ ํ˜„ํ™ฉ๊ณผ ํ•œ๊ณ„๋ฅผ ์ฒด๊ณ„์ ์œผ๋กœ ์กฐ๋ช…ํ•œ๋‹ค. ๋จผ์ €, ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(LLM)์˜ ์ œ๋กœ์ƒท ํ”„๋กฌํ”„ํŠธ ๋ฐฉ์‹์„ ๋‹ค์–‘ํ•œ ๋ชจ๋ธ ํฌ๊ธฐ(์˜ˆ: GPTโ€‘3.5, LLaMAโ€‘7B ๋“ฑ)์™€ ํ•จ๊ป˜ ์‹คํ—˜ํ–ˆ๋Š”๋ฐ, ํŒŒ๋ผ๋ฏธํ„ฐ ์ˆ˜๊ฐ€ ๋น„์Šทํ•˜๋”๋ผ๋„ ์‚ฌ์ „ ํ•™์Šต ๋ฐ์ดํ„ฐ์˜ ์–ธ์–ด ๋‹ค์–‘์„ฑ, ํ† ํฌ๋‚˜์ด์ € ์„ค๊ณ„, ๊ทธ๋ฆฌ๊ณ  ํ”„๋กฌํ”„ํŠธ ์—”์ง€๋‹ˆ์–ด๋ง ์ฐจ์ด์— ๋”ฐ๋ผ ์„ฑ๋Šฅ ํŽธ์ฐจ๊ฐ€ ํฌ๊ฒŒ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ์ด๋Š” LLM์ด ๊ณ ์ž์› ์–ธ์–ด์— ์ตœ์ ํ™”๋œ ๊ตฌ์กฐ๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ์–ด, LRL์— ๋Œ€ํ•œ ์ผ๋ฐ˜ํ™” ๋Šฅ๋ ฅ์ด ์ œํ•œ์ ์ž„์„ ์‹œ์‚ฌํ•œ๋‹ค.

Computer Science NLP
No Image

HOLOGRAPH: Active Causal Discovery via Sheaf-Theoretic Alignment of Large Language Model Priors

HOLOGRAPH ๋…ผ๋ฌธ์€ ์ธ๊ณผ ๊ตฌ์กฐ ํ•™์Šต์ด๋ผ๋Š” ์˜ค๋ž˜๋œ ๋ฌธ์ œ์— ์ตœ์‹  ์ธ๊ณต์ง€๋Šฅ ๊ธฐ์ˆ ์„ ์ˆ˜ํ•™์ ์œผ๋กœ ๊ฒฐํ•ฉํ•œ ์‹œ๋„๋ผ ํ•  ์ˆ˜ ์žˆ๋‹ค. ์ „ํ†ต์ ์ธ ์ธ๊ณผ ๋ฐœ๊ฒฌ ๋ฐฉ๋ฒ•์€ ์กฐ๊ฑด๋ถ€ ๋…๋ฆฝ์„ฑ ๊ฒ€์ •์ด๋‚˜ ๊ตฌ์กฐ์  ๋ฐฉ์ •์‹ ๋ชจ๋ธ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•˜์ง€๋งŒ, ๊ด€์ธก ๋ฐ์ดํ„ฐ๋งŒ์œผ๋กœ๋Š” ๋™์ผํ•œ ๋งˆ๋ฅด์ฝ”ํ”„ ๋“ฑ๊ฐ€ ํด๋ž˜์Šค ๋‚ด์˜ ์—ฌ๋Ÿฌ ๊ทธ๋ž˜ํ”„๋ฅผ ๊ตฌ๋ถ„ํ•˜๊ธฐ ์–ด๋ ต๋‹ค. ์ด ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด ์—ฐ๊ตฌ์ž๋“ค์€ ์™ธ๋ถ€ ์ง€์‹, ํŠนํžˆ ์ธ๊ฐ„์ด ๋งŒ๋“  ์ง€์‹ ๊ทธ๋ž˜ํ”„๋‚˜ ๋„๋ฉ”์ธ ์ „๋ฌธ๊ฐ€์˜ ์˜๊ฒฌ์„ ์‚ฌ์ „ํ™•๋ฅ ๋กœ ๋„์ž…ํ•ด ์™”๋‹ค. ์ตœ๊ทผ์—๋Š” LLM์ด ๋ฐฉ๋Œ€ํ•œ ํ…์ŠคํŠธ ์ฝ”ํผ์Šค๋ฅผ ํ•™์Šตํ•จ์œผ๋กœ์จ โ€œ์ธ๊ณผ์  ์ง๊ด€โ€์„ ๋‚ดํฌํ•˜๊ณ  ์žˆ๋‹ค๋Š” ์ ์— ์ฃผ๋ชฉํ•ด, LLM์„

Machine Learning Computer Science Model
iCLP: Large Language Model Reasoning with Implicit Cognition Latent Planning

iCLP: Large Language Model Reasoning with Implicit Cognition Latent Planning

iCLP๋Š” ๊ธฐ์กด โ€œ์ฒด์ธโ€‘์˜ค๋ธŒโ€‘์ƒ๊ฐโ€(CoT) ์ ‘๊ทผ๋ฒ•์˜ ๋‘ ๊ฐ€์ง€ ํ•œ๊ณ„๋ฅผ ๋™์‹œ์— ํ•ด๊ฒฐํ•˜๋ ค๋Š” ์‹œ๋„์ด๋‹ค. ์ฒซ ๋ฒˆ์งธ๋Š” ์ธ๊ฐ„์ด ๋ฌธ์ œ๋ฅผ ํ’€ ๋•Œ ํ…์ŠคํŠธ๋กœ ๋ช…์‹œ์ ์ธ ๊ณ„ํš์„ ์„ธ์šฐ์ง€ ์•Š๋”๋ผ๋„, ๊ณผ๊ฑฐ ๊ฒฝํ—˜์—์„œ ์ถ”์ถœ๋œ ์••์ถ•๋œ ํŒจํ„ด์„ ๋ฌด์˜์‹์ ์œผ๋กœ ํ™œ์šฉํ•œ๋‹ค๋Š” ์ ์ด๋‹ค. ์ด๋Ÿฌํ•œ ์•”๋ฌต์  ์ธ์ง€๋Š” LLM์ด ์ง์ ‘ ํ…์ŠคํŠธ ๊ณ„ํš์„ ์ƒ์„ฑํ•  ๋•Œ ๋ฐœ์ƒํ•˜๋Š” โ€œํ™˜๊ฐโ€(hallucination) ๋ฌธ์ œ๋ฅผ ํšŒํ”ผํ•  ์ˆ˜ ์žˆ๋Š” ๊ฐ€๋Šฅ์„ฑ์„ ์ œ๊ณตํ•œ๋‹ค. ๋‘ ๋ฒˆ์งธ๋Š” ๋‹ค์–‘ํ•œ ๋„๋ฉ”์ธ๊ณผ ์งˆ๋ฌธ ํ˜•ํƒœ์— ๋Œ€ํ•ด ์ผ๊ด€๋œ ํ…์ŠคํŠธ ๊ณ„ํš์„ ์„ค๊ณ„ํ•˜๋Š” ๊ฒƒ์ด ๋น„ํ˜„์‹ค์ ์ด๋ผ๋Š” ์ ์ด๋‹ค. iCLP๋Š” ๋ช…์‹œ์  ๊ณ„ํš์„ ๋จผ์ € ์ˆ˜์ง‘ํ•˜๊ณ , ์ด

Computer Science NLP Model
OptRot: Mitigating Weight Outliers via Data-Free Rotations for Post-Training Quantization

OptRot: Mitigating Weight Outliers via Data-Free Rotations for Post-Training Quantization

๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(LLM)์€ ์ˆ˜์–ต์—์„œ ์ˆ˜์กฐ ๊ฐœ์˜ ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ๋ณด์œ ํ•˜๊ณ  ์žˆ์–ด, ์‹ค์ œ ์„œ๋น„์Šค ํ™˜๊ฒฝ์—์„œ ๋ฉ”๋ชจ๋ฆฌ์™€ ์—ฐ์‚ฐ ๋น„์šฉ์„ ํฌ๊ฒŒ ์ ˆ๊ฐํ•˜๊ธฐ ์œ„ํ•ด ์‚ฌํ›„ ์–‘์žํ™”(postโ€‘training quantization, PTQ)๊ฐ€ ํ•„์ˆ˜์ ์ด๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ LLM์˜ ๊ฐ€์ค‘์น˜์™€ ํ™œ์„ฑ๊ฐ’์—๋Š” โ€œ์ด์ƒ์น˜(outlier)โ€๋ผ ๋ถˆ๋ฆฌ๋Š” ๊ทน๋‹จ์ ์ธ ๊ฐ’๋“ค์ด ์กด์žฌํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ์ด์ƒ์น˜๋Š” ์–‘์žํ™” ๋‹จ๊ณ„์—์„œ ์Šค์ผ€์ผ๋ง์„ ํฌ๊ฒŒ ์žก์•„์•ผ ํ•˜๋ฏ€๋กœ, ์ „์ฒด ๋ถ„ํฌ๊ฐ€ ๊ณผ๋„ํ•˜๊ฒŒ ์••์ถ•๋˜๊ณ  ๊ฒฐ๊ณผ์ ์œผ๋กœ ์ •๋ฐ€๋„๊ฐ€ ํฌ๊ฒŒ ๋–จ์–ด์ง„๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋Š” ์ด ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ํšŒ์ „(rotation) ๊ธฐ๋ฒ•์„ ๋„์ž…ํ–ˆ๋Š”๋ฐ, ํšŒ์ „์€

Computer Science Data Machine Learning
No Image

Pathology Context Recalibration Network for Ocular Disease Recognition

๋ณธ ๋…ผ๋ฌธ์€ ์•ˆ๊ณผ ์˜์ƒ ์ง„๋‹จ ๋ถ„์•ผ์—์„œ โ€˜๋ณ‘๋ฆฌํ•™์  ๋งฅ๋ฝโ€™๊ณผ โ€˜์ „๋ฌธ๊ฐ€ ๊ฒฝํ—˜โ€™์ด๋ผ๋Š” ๋‘ ๊ฐ€์ง€ ์ธ๊ฐ„ ์ค‘์‹ฌ์˜ ์‚ฌ์ „ ์ •๋ณด๋ฅผ ๋”ฅ๋Ÿฌ๋‹ ๋ชจ๋ธ์— ์ฒด๊ณ„์ ์œผ๋กœ ํ†ตํ•ฉํ•˜๋ ค๋Š” ์‹œ๋„๋ฅผ ์ œ์‹œํ•œ๋‹ค. ๋จผ์ € ์ œ์•ˆ๋œ Pathology Recalibration Module(PRM)์€ ๋‘ ๋‹จ๊ณ„๋กœ ๊ตฌ์„ฑ๋œ๋‹ค. ์ฒซ ๋ฒˆ์งธ ๋‹จ๊ณ„์ธ ํ”ฝ์…€โ€‘๋‹จ์œ„ ๋งฅ๋ฝ ์••์ถ• ์—ฐ์‚ฐ์ž๋Š” ๊ณ ํ•ด์ƒ๋„ ์•ˆ๊ตฌ ์ด๋ฏธ์ง€์—์„œ ์ง€์—ญ์  ํŠน์ง•์„ ์ €์ฐจ์› ํ‘œํ˜„์œผ๋กœ ์••์ถ•ํ•จ์œผ๋กœ์จ ์—ฐ์‚ฐ ํšจ์œจ์„ฑ์„ ๋†’์ด๊ณ , ๋™์‹œ์— ๋ณ‘๋ณ€์ด ๋‚˜ํƒ€๋‚˜๋Š” ์˜์—ญ์˜ ์ „๋ฐ˜์ ์ธ ๊ตฌ์กฐ์  ์ •๋ณด๋ฅผ ๋ณด์กดํ•œ๋‹ค. ๋‘ ๋ฒˆ์งธ ๋‹จ๊ณ„์ธ ๋ณ‘๋ฆฌํ•™์  ๋ถ„ํฌ ์ง‘์ค‘ ์—ฐ์‚ฐ์ž๋Š” ์••์ถ•๋œ ํŠน์ง• ๋งต์„ ๊ธฐ๋ฐ˜์œผ๋กœ

Computer Vision Computer Science Network
No Image

Tubular Riemannian Laplace Approximations for Bayesian Neural Networks

๋ณธ ์—ฐ๊ตฌ๋Š” ๋ฒ ์ด์ง€์•ˆ ์‹ ๊ฒฝ๋ง(BNN)์—์„œ ๋ผํ”Œ๋ผ์Šค ๊ทผ์‚ฌ์˜ ํ•œ๊ณ„๋ฅผ ์ •ํ™•ํžˆ ์งš์–ด๋‚ธ ๋’ค, ๋ฆฌ๋งŒ ๊ธฐํ•˜ํ•™์„ ๋„์ž…ํ•ด ์ด๋ฅผ ๊ทน๋ณตํ•˜๋ ค๋Š” ์‹œ๋„๋ฅผ ๋ณด์—ฌ์ค€๋‹ค. ์ „ํ†ต์ ์ธ ๋ผํ”Œ๋ผ์Šค ๊ทผ์‚ฌ๋Š” MAP(์ตœ๋Œ€ ์‚ฌํ›„ ํ™•๋ฅ ) ์ถ”์ •์  ์ฃผ๋ณ€์„ ์œ ํด๋ฆฌ๋“œ ๊ฑฐ๋ฆฌ ๊ธฐ๋ฐ˜์˜ ๋‹ค๋ณ€๋Ÿ‰ ์ •๊ทœ๋ถ„ํฌ๋กœ ๊ทผ์‚ฌํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๋”ฅ๋Ÿฌ๋‹ ๋ชจ๋ธ์€ ์ˆ˜๋ฐฑ๋งŒ ์ฐจ์›์˜ ํŒŒ๋ผ๋ฏธํ„ฐ ๊ณต๊ฐ„์— ๋ณต์žกํ•œ ๋น„์„ ํ˜• ๊ตฌ์กฐ์™€ ๋‹ค์ค‘ ๋Œ€์นญ(์˜ˆ: ๋ ˆ์ด์–ด ์ˆœ์—ด, ์Šค์ผ€์ผ ๋ณ€ํ™˜ ๋“ฑ)๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ์–ด, ์†์‹ค ํ‘œ๋ฉด์€ ๊ทน๋„๋กœ ์–‡๊ณ  ๊ธด ๊ณจ์งœ๊ธฐ ํ˜•ํƒœ๋ฅผ ๋ค๋‹ค. ์ด๋Ÿฐ ์ƒํ™ฉ์—์„œ ์œ ํด๋ฆฌ๋“œ ๋ฉ”ํŠธ๋ฆญ์€ ์‹ค์ œ ๊ณก๋ฅ ์„ ๋ฌด์‹œํ•˜๊ณ , ๊ฒฐ๊ณผ์ ์œผ๋กœ ๊ณผ๋„ํ•˜๊ฒŒ ์ถ•์†Œ๋œ ํ˜น์€ ๊ณผ๋„ํ•˜๊ฒŒ

Computer Science Network Machine Learning
From Clay to Code: Typological and Material Reasoning in AI Interpretations of Iranian Pigeon Towers

From Clay to Code: Typological and Material Reasoning in AI Interpretations of Iranian Pigeon Towers

์ด ๋…ผ๋ฌธ์€ ์ƒ์„ฑ AI ์‹œ์Šคํ…œ์ด ๊ฑด์ถ•๋ฌผ์˜ ์ „ํ†ต์ ์ธ ๋””์ž์ธ ์š”์†Œ์™€ ๊ทธ ์˜๋ฏธ๋ฅผ ์–ด๋–ป๊ฒŒ ํ•ด์„ํ•˜๊ณ  ์žฌํ˜„ํ•˜๋Š”์ง€์— ๋Œ€ํ•œ ๊นŠ์ด ์žˆ๋Š” ๋ถ„์„์„ ์ œ๊ณตํ•œ๋‹ค. ํŠนํžˆ ์ด๋ž€์˜ ๋น„๋‘˜๊ธฐ ํƒ‘์ด๋ผ๋Š” ํŠน์ • ์‚ฌ๋ก€๋ฅผ ํ†ตํ•ด ์„ธ ๊ฐ€์ง€ ์ฃผ์š” AI ๋ชจ๋ธ, ์ฆ‰ Midjourney v6, DALLโ€ขE 3, ๊ทธ๋ฆฌ๊ณ  Stable Diffusion XL (SDXL) ๊ธฐ๋ฐ˜์˜ DreamStudio๋ฅผ ํ‰๊ฐ€ํ•˜๊ณ  ์žˆ๋‹ค. ์—ฐ๊ตฌ๋Š” ์ฐธ์กฐ์  ๋‹จ๊ณ„์—์„œ ์ด๋ฏธ์ง€๋ฅผ ์ง์ ‘์ ์œผ๋กœ ์žฌํ˜„ํ•˜๋Š” ๋Šฅ๋ ฅ๋ถ€ํ„ฐ ์‹œ์ž‘ํ•˜์—ฌ, ์ ์‘์  ๋‹จ๊ณ„์—์„œ๋Š” ์ฃผ์–ด์ง„ ์ •๋ณด์— ๋”ฐ๋ผ ๊ฑด์ถ•๋ฌผ์˜ ํŠน์„ฑ์„ ์–ด๋–ป๊ฒŒ ๋ณ€ํ˜•์‹œํ‚ค๋Š”์ง€๊นŒ์ง€ ์‚ดํŽด๋ณธ๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ ์ถ”์ธก์ 

AMBIT: Augmenting Mobility Baselines with Interpretable Trees

AMBIT: Augmenting Mobility Baselines with Interpretable Trees

๋ณธ ์—ฐ๊ตฌ๋Š” ๋„์‹œ ์ด๋™์„ฑ ์˜ˆ์ธก ๋ถ„์•ผ์—์„œ โ€˜์ •ํ™•๋„โ€™์™€ โ€˜ํ•ด์„ ๊ฐ€๋Šฅ์„ฑโ€™์ด๋ผ๋Š” ๋‘ ์ถ•์„ ๋™์‹œ์— ๋งŒ์กฑ์‹œํ‚ค๋ ค๋Š” ์‹œ๋„๋ผ๋Š” ์ ์—์„œ ํ•™๋ฌธ์ ยท์‹ค๋ฌด์  ์˜์˜๊ฐ€ ํฌ๋‹ค. ๋จผ์ € ์ €์ž๋“ค์€ 1๋…„ ๋™์•ˆ ์‹œ๊ฐ„๋‹น์œผ๋กœ ๊ธฐ๋ก๋œ ๋‰ด์š•์‹œ ํƒ์‹œ OD ๋ฐ์ดํ„ฐ๋ฅผ ํ™œ์šฉํ•ด ์ „ํ†ต์ ์ธ ๊ณต๊ฐ„ ์ƒํ˜ธ์ž‘์šฉ ๋ชจ๋ธ๋“ค์„ ์ฒด๊ณ„์ ์œผ๋กœ ๊ฒ€์ฆํ•˜์˜€๋‹ค. ์—ฌ๊ธฐ์„œ PPML(Poisson Pseudoโ€‘Maximum Likelihood) ๊ธฐ๋ฐ˜์˜ Gravity ๋ชจ๋ธ์ด ๊ฐ€์žฅ ๋†’์€ ์„ค๋ช…๋ ฅ์„ ๋ณด์˜€์ง€๋งŒ, ์‹œ๊ฐ„ ํ•ด์ƒ๋„๊ฐ€ ์„ธ๋ถ„ํ™”๋ ์ˆ˜๋ก ๋Œ€๋ถ€๋ถ„์˜ ๋ฌผ๋ฆฌ ๋ชจ๋ธ์ด ๊ณผ์ ํ•ฉ์ด๋‚˜ ๋ฐ์ดํ„ฐ ํฌ์†Œ์„ฑ ๋ฌธ์ œ์— ์ง๋ฉดํ•œ๋‹ค๋Š” ์‚ฌ์‹ค์„ ๋ฐํ˜€๋ƒˆ๋‹ค. ํŠนํžˆ, ์ „์ฒด

No Image

Geometry-Aware Optimization for Respiratory Sound Classification: Enhancing Sensitivity with SAM-Optimized Audio Spectrogram Transformers

๋ณธ ๋…ผ๋ฌธ์€ ํ˜ธํก์Œ ๋ถ„๋ฅ˜ ๋ฌธ์ œ์— ๋Œ€ํ•œ ํ•ด๊ฒฐ์ฑ…์œผ๋กœ ํŠธ๋žœ์Šคํฌ๋จธ ๊ธฐ๋ฐ˜์˜ Audio Spectrogram Transformer (AST) ๋ชจ๋ธ๊ณผ Sharpness Aware Minimization (SAM) ๊ธฐ๋ฒ•์„ ๊ฒฐํ•ฉํ•œ ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. ์ด ์—ฐ๊ตฌ๋Š” ICBHI 2017 ๋ฐ์ดํ„ฐ์…‹์—์„œ ์ผ๋ฐ˜์ ์œผ๋กœ ๊ฒช๋Š” ๋ฌธ์ œ์ , ์ฆ‰ ์ž‘์€ ๊ทœ๋ชจ์˜ ๋ฐ์ดํ„ฐ์…‹, ๋†’์€ ๋…ธ์ด์ฆˆ ์ˆ˜์ค€ ๋ฐ ํด๋ž˜์Šค ๋ถˆ๊ท ํ˜•์— ์ดˆ์ ์„ ๋งž์ถ”๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ํŠธ๋žœ์Šคํฌ๋จธ ๋ชจ๋ธ์€ ๋ณต์žกํ•œ ํŒจํ„ด์„ ์ถ”์ถœํ•˜๋Š” ๋ฐ ๊ฐ•๋ ฅํ•˜์ง€๋งŒ, ์ œ์•ฝ๋œ ์˜๋ฃŒ ๋ฐ์ดํ„ฐ์—์„œ ํ•™์Šต๋  ๋•Œ ๊ณผ์ ํ•ฉ์˜ ์œ„ํ—˜์ด ์žˆ์œผ๋ฉฐ, ์ด๋Š” ๋ชจ๋ธ์ด ์†์‹ค ๊ฒฝ์‚ฌ๋ฉด์˜

Investigating Deep Learning Models for Ejection Fraction Estimation from Echocardiography Videos

Investigating Deep Learning Models for Ejection Fraction Estimation from Echocardiography Videos

๋ณธ ๋…ผ๋ฌธ์€ ์‹ฌ์žฅ๊ธฐ๋Šฅ ์ง„๋‹จ์— ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•˜๋Š” LVEF๋ฅผ ์ถ”์ •ํ•˜๊ธฐ ์œ„ํ•ด ๋‹ค์–‘ํ•œ ๋”ฅ๋Ÿฌ๋‹ ์•„ํ‚คํ…์ฒ˜์˜ ์„ฑ๋Šฅ์„ ํ‰๊ฐ€ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ดˆ์ŒํŒŒๅฟƒๅŠจๅ›พไฝœไธบไธ€็งๅธธ็”จ็š„ไธดๅบŠๅทฅๅ…ท๏ผŒ็”จไบŽ่ฏ„ไผฐๅฟƒ่„ๅŠŸ่ƒฝ๏ผŒไฝ†ๆ‰‹ๅŠจๅˆ†ๆžๅญ˜ๅœจๆ—ถ้—ดๆˆๆœฌ้ซ˜ๅ’Œ่ง‚ๅฏŸ่€…้—ดๅ˜ๅผ‚ๆ€งๅคง็š„้—ฎ้ข˜ใ€‚ๆทฑๅบฆๅญฆไน ๆ–นๆณ•็š„ๅผ•ๅ…ฅไธบ่ฟ™ไธช้—ฎ้ข˜ๆไพ›ไบ†ไธ€ไธชๆœ‰ๆฝœๅŠ›็š„่งฃๅ†ณๆ–นๆกˆใ€‚ๆœฌ็ ”็ฉถไธญ๏ผŒไฝœ่€…ๆŽข่ฎจไบ†ไธ‰็งไธๅŒ็š„ๆทฑๅบฆๅญฆไน ๆžถๆž„๏ผš3D Inceptionใ€ๅŒๆตๆจกๅž‹ไปฅๅŠCNN RNNๆจกๅž‹๏ผŒๅนถๅฏน่ฟ™ไบ›ๆจกๅž‹่ฟ›่กŒไบ†็ณป็ปŸๆ€ง็š„่ฏ„ไผฐไปฅ็กฎๅฎšๆœ€ไฝณ้…็ฝฎใ€‚ๅฎž้ชŒ็ป“ๆžœ่กจๆ˜Ž๏ผŒ็ป่ฟ‡ไฟฎๆ”นๅŽ็š„3D Inceptionๆžถๆž„่กจ็Žฐๆœ€ไผ˜๏ผŒๅ…ถๅ‡ๆ–นๆ น่ฏฏๅทฎ๏ผˆRMSE๏ผ‰ไธบ6.79%ใ€‚ๆญคๅค–๏ผŒ็ ”็ฉถ่ฟ˜ๅ‘็Žฐ่พƒๅฐไธ”็ฎ€ๅ•็š„ๆจกๅž‹ๅœจๆณ›ๅŒ–่ƒฝๅŠ›ไธŠไผ˜ไบŽๅคๆ‚

Model Learning
Learning Multi-Modal Mobility Dynamics for Generalized Next Location Recommendation

Learning Multi-Modal Mobility Dynamics for Generalized Next Location Recommendation

๋ณธ ๋…ผ๋ฌธ์€ ์ธ๊ฐ„ ์ด๋™์„ฑ ์˜ˆ์ธก์„ ์œ„ํ•œ ์œ„์น˜ ์ถ”์ฒœ ์‹œ์Šคํ…œ์— ๋‹ค์ค‘๋ชจ๋‹ฌ ์ •๋ณด๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ํ†ตํ•ฉํ•˜๋ ค๋Š” ์‹œ๋„๋กœ, ๊ธฐ์กด ์—ฐ๊ตฌ๊ฐ€ ์•ˆ๊ณ  ์žˆ๋˜ ๋‘ ๊ฐ€์ง€ ์ฃผ์š” ํ•œ๊ณ„๋ฅผ ๋ช…ํ™•ํžˆ ์งš๊ณ  ์žˆ๋‹ค. ์ฒซ ๋ฒˆ์งธ๋Š” ๋‹จ์ผ ๋ชจ๋‹ฌ(์˜ˆ: GPS ๋กœ๊ทธ, ์†Œ์…œ ๋ฏธ๋””์–ด ํ…์ŠคํŠธ ๋“ฑ)๋งŒ์„ ์ด์šฉํ•  ๊ฒฝ์šฐ ๋ฐ์ดํ„ฐ ํฌ์†Œ์„ฑ ๋ฐ ํŽธํ–ฅ ๋ฌธ์ œ์— ์ง๋ฉดํ•œ๋‹ค๋Š” ์ ์ด๋‹ค. ๋‘ ๋ฒˆ์งธ๋Š” ๋‹ค์ค‘ ๋ชจ๋‹ฌ์„ ํ™œ์šฉํ•˜๋”๋ผ๋„ ์ •์  ์ด๋ฏธ์ง€๋‚˜ ํ…์ŠคํŠธ์™€ ๊ฐ™์€ ํ‘œํ˜„์ด ๊ณต๊ฐ„โ€‘์‹œ๊ฐ„์ ์ธ ๋ณ€ํ™”๋ฅผ ์ถฉ๋ถ„ํžˆ ๋ฐ˜์˜ํ•˜์ง€ ๋ชปํ•ด, ์‹ค์ œ ์ด๋™ ํŒจํ„ด์„ ์ •ํ™•ํžˆ ๋ชจ๋ธ๋งํ•˜์ง€ ๋ชปํ•œ๋‹ค๋Š” ์ ์ด๋‹ค. ์ด๋Ÿฌํ•œ ๋ฌธ์ œ์ ์„ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ์ €์ž๋“ค์€ ์„ธ ๊ฐ€์ง€ ํ•ต์‹ฌ ๊ธฐ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค

Learning
Unleashing Foundation Vision Models: Adaptive Transfer for Diverse Data-Limited Scientific Domains

Unleashing Foundation Vision Models: Adaptive Transfer for Diverse Data-Limited Scientific Domains

๋ณธ ์—ฐ๊ตฌ๋Š” ํ˜„์žฌ ์ปดํ“จํ„ฐ ๋น„์ „ ๋ถ„์•ผ์—์„œ ๊ฐ€์žฅ ํฐ ๋„์ „ ๊ณผ์ œ ์ค‘ ํ•˜๋‚˜์ธ โ€œ๋Œ€๊ทœ๋ชจ ์‚ฌ์ „ ํ•™์Šต ๋ชจ๋ธ์„ ๋ฐ์ดํ„ฐ๊ฐ€ ๋ถ€์กฑํ•œ ํŠน์ˆ˜ ๋„๋ฉ”์ธ์— ํšจ๊ณผ์ ์œผ๋กœ ์ „์ด์‹œํ‚ค๋Š” ๋ฐฉ๋ฒ•โ€์„ ํ•ด๊ฒฐํ•˜๊ณ ์ž ํ•œ๋‹ค. ๊ธฐ์กด์˜ ํŒŒ์ธํŠœ๋‹ ๋ฐฉ์‹์€ ์‚ฌ์ „ ํ•™์Šต๋œ ๊ฐ€์ค‘์น˜๋ฅผ ๊ทธ๋Œ€๋กœ ์‚ฌ์šฉํ•˜๊ฑฐ๋‚˜, ์ „์ฒด ๋„คํŠธ์›Œํฌ๋ฅผ ๋ฏธ์„ธ์กฐ์ •ํ•˜๋Š” ๋ฐฉ์‹์— ๋จธ๋ฌผ๋Ÿฌ ์žˆ์–ด, ๋„๋ฉ”์ธ ๊ฐ„ ๋ถ„ํฌ ์ฐจ์ด๊ฐ€ ํด ๊ฒฝ์šฐ ๊ณผ์ ํ•ฉ์ด๋‚˜ ํ‘œํ˜„ ์†์‹ค์ด ๋ฐœ์ƒํ•œ๋‹ค. CLAdapter๋Š” ์ด๋Ÿฌํ•œ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด ๋‘ ๊ฐ€์ง€ ํ•ต์‹ฌ ์•„์ด๋””์–ด๋ฅผ ๊ฒฐํ•ฉํ•œ๋‹ค. ์ฒซ์งธ, ํด๋Ÿฌ์Šคํ„ฐ ์ค‘์‹ฌ์„ ํ™œ์šฉํ•ด ์ž…๋ ฅ ํŠน์ง• ๊ณต๊ฐ„์„ ์—ฌ๋Ÿฌ ๊ฐœ์˜ ์˜๋ฏธ๋ก ์  ๊ทธ๋ฃน์œผ๋กœ ๋‚˜๋ˆ„๊ณ , ๊ฐ ํด๋Ÿฌ์Šคํ„ฐ์—

Data Model
BLISS: Bandit Layer Importance Sampling Strategy for Efficient Training of Graph Neural Networks

BLISS: Bandit Layer Importance Sampling Strategy for Efficient Training of Graph Neural Networks

๋ณธ ๋…ผ๋ฌธ์€ ๊ทธ๋ž˜ํ”„ ์‹ ๊ฒฝ๋ง(GNN)์˜ ํ™•์žฅ์„ฑ ๋ฌธ์ œ๋ฅผ ๊ทผ๋ณธ์ ์œผ๋กœ ์žฌ๊ณ ํ•˜๋Š” ์ ‘๊ทผ๋ฒ•์„ ์ œ์‹œํ•œ๋‹ค. ์ „ํ†ต์ ์ธ GNN ํ•™์Šต์—์„œ๋Š” ๊ฐ ๋…ธ๋“œ๊ฐ€ ์ž์‹ ์˜ 1โ€‘hop ์ด์›ƒ์„ ๋ชจ๋‘ ์ง‘๊ณ„ํ•˜๋Š” ๊ณผ์ •์ด ํ•„์ˆ˜์ ์ด๋‹ค. ์ด ๊ณผ์ •์€ ๊ทธ๋ž˜ํ”„๊ฐ€ ์ปค์งˆ์ˆ˜๋ก ์ธ์ ‘ ํ–‰๋ ฌ์˜ ํฌ์†Œ์„ฑ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ  ๋ฉ”๋ชจ๋ฆฌ ์‚ฌ์šฉ๋Ÿ‰๊ณผ ์—ฐ์‚ฐ ๋ณต์žก๋„๊ฐ€ ๊ธ‰๊ฒฉํžˆ ์ฆ๊ฐ€ํ•œ๋‹ค๋Š” ํ•œ๊ณ„๋ฅผ ๊ฐ–๋Š”๋‹ค. ์ตœ๊ทผ์—๋Š” GraphSAGE, FastGCN, LADIES์™€ ๊ฐ™์€ ์ •์  ํ˜น์€ ํ™•๋ฅ ์  ์ƒ˜ํ”Œ๋ง ๊ธฐ๋ฒ•์ด ์ œ์•ˆ๋˜์—ˆ์ง€๋งŒ, ์ด๋“ค ๋ฐฉ๋ฒ•์€ ์‚ฌ์ „์— ์ •์˜๋œ ์ƒ˜ํ”Œ๋ง ๋น„์œจ์ด๋‚˜ ํ™•๋ฅ  ๋ถ„ํฌ์— ์˜์กดํ•œ๋‹ค. ๋”ฐ๋ผ์„œ ๊ทธ๋ž˜ํ”„ ๊ตฌ์กฐ๊ฐ€ ํ•™์Šต ์ง„ํ–‰ ์ค‘์— ๋ณ€ํ™”ํ•˜๊ฑฐ๋‚˜,

Network
Efficient Multi-Model Orchestration for Self-Hosted Large Language Models

Efficient Multi-Model Orchestration for Self-Hosted Large Language Models

๋ณธ ์—ฐ๊ตฌ๋Š” ๋Œ€๊ทœ๋ชจ ์–ธ์–ด ๋ชจ๋ธ์„ ์ž์ฒด ๋ฐ์ดํ„ฐ์„ผํ„ฐ์— ๊ตฌ์ถ•ํ•˜๋ ค๋Š” ๊ธฐ์—…ยท๊ธฐ๊ด€์„ ๋Œ€์ƒ์œผ๋กœ, ๊ธฐ์กด์˜ ์ •์  ๋ฐฐํฌ ๋ฐฉ์‹์ด ์•ˆ๊ณ  ์žˆ๋˜ ๋น„ํšจ์œจ์„ฑ์„ ๊ทผ๋ณธ์ ์œผ๋กœ ๊ฐœ์„ ํ•˜๊ณ ์ž ํ•˜๋Š” ์‹œ๋„์ด๋‹ค. ์ฒซ ๋ฒˆ์งธ ํ•ต์‹ฌ ๋ฌธ์ œ๋Š” GPU ์ž์›์˜ ๋น„์ •์ƒ์  ์‚ฌ์šฉ์ด๋‹ค. LLM์€ ๋ชจ๋ธ ํฌ๊ธฐ์— ๋”ฐ๋ผ ์ˆ˜์‹ญ์—์„œ ์ˆ˜๋ฐฑ ๊ฐœ์˜ GPU๊ฐ€ ํ•„์š”ํ•˜์ง€๋งŒ, ์‹ค์ œ ์š”์ฒญ๋Ÿ‰์€ ์‹œ๊ฐ„๋Œ€๋ณ„, ์„œ๋น„์Šค๋ณ„๋กœ ํฌ๊ฒŒ ๋ณ€๋™ํ•œ๋‹ค. ์ •์  ํ• ๋‹น์€ ํ”ผํฌ ์‹œ์ ์—๋Š” ์„ฑ๋Šฅ ์ €ํ•˜, ๋น„ํ”ผํฌ ์‹œ์ ์—๋Š” ์ž์› ๋‚ญ๋น„๋ฅผ ์ดˆ๋ž˜ํ•œ๋‹ค. ๋‘ ๋ฒˆ์งธ๋Š” ๋‹ค์–‘ํ•œ ๋ชจ๋ธ๊ณผ ์›Œํฌ๋กœ๋“œ๋ฅผ ๋™์‹œ์— ์šด์˜ํ•  ๋•Œ ๋ฐœ์ƒํ•˜๋Š” ๋ผ์šฐํŒ… ๋ณต์žก์„ฑ์ด๋‹ค. ๋ชจ๋ธ๋งˆ๋‹ค ์ •ํ™•๋„ยท์‘๋‹ต์‹œ๊ฐ„ยท๋น„์šฉ ํŠน์„ฑ

Model
Expert System for Bitcoin Forecasting: Integrating Global Liquidity via TimeXer Transformers

Expert System for Bitcoin Forecasting: Integrating Global Liquidity via TimeXer Transformers

๋ณธ ๋…ผ๋ฌธ์€ ๋น„ํŠธ์ฝ”์ธ ๊ฐ€๊ฒฉ ์˜ˆ์ธก ๋ชจ๋ธ์— ๋Œ€ํ•œ ์ค‘์š”ํ•œ ํ†ต์ฐฐ๋ ฅ์„ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค. ํŠนํžˆ, ๋‹จ์ผ ๋ณ€์ˆ˜ ์‹œ๊ณ„์—ด ์˜ˆ์ธก ๋ชจ๋ธ์ด ๋น„ํŠธ์ฝ”์ธ์˜ ๊ทน๋„๋กœ ๋ณ€๋™์„ฑ ๋†’๊ณ  ๋น„์ •์ƒ์ ์ธ ํŠน์„ฑ์„ ์ฒ˜๋ฆฌํ•˜๋Š” ๋ฐ ์–ด๋ ค์›€์„ ๊ฒช๋Š”๋‹ค๋Š” ์ ์„ ๊ฐ•์กฐํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ๊ธ€๋กœ๋ฒŒ M2 ์œ ๋™์„ฑ์„ ์™ธ์ƒ ๋ณ€์ˆ˜๋กœ ํ†ตํ•ฉํ•œ TimeXer Exog ๋ชจ๋ธ์„ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. ์ด ๋ชจ๋ธ์€ LSTM, N BEATS, PatchTST ๋“ฑ ๊ธฐ์กด์˜ ์ตœ์‹  ๋‹จ์ผ ๋ณ€์ˆ˜ ์˜ˆ์ธก ๋ชจ๋ธ๋“ค๊ณผ ๋น„๊ตํ•˜์—ฌ ์šฐ์ˆ˜ํ•œ ์„ฑ๋Šฅ์„ ๋ณด์˜€์Šต๋‹ˆ๋‹ค. ์‹คํ—˜ ๊ฒฐ๊ณผ๋Š” 70์ผ ์˜ˆ์ธก ๊ธฐ๊ฐ„์—์„œ TimeXer Exog ๋ชจ๋ธ์ด ํ‰๊ท ์ œ๊ณฑ์˜ค์ฐจ(MSE) ์ธก๋ฉด

System
No Image

Flow morphology and patterns in porous media convection: A persistent homology analysis

๋ณธ ์—ฐ๊ตฌ๋Š” ๋Œ€๋ฅ˜ ํ˜ผํ•ฉ์ด ์ง€๊ตฌ๋ฌผ๋ฆฌํ•™๊ณผ ์‚ฐ์—… ๋ถ„์•ผ์—์„œ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•˜๋Š” ๋‹ค๊ณต์„ฑ ๋งค์ฒด์˜ ์—ด ์ „๋‹ฌ ๋ฐ ํ™”ํ•™ ๋ฌผ์งˆ ํ™•์‚ฐ ๊ณผ์ •์— ์ดˆ์ ์„ ๋งž์ถ”๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ํŠนํžˆ, ๋ณต์žกํ•˜๊ณ  ์˜ˆ์ธกํ•˜๊ธฐ ์–ด๋ ค์šด ์œ ๋™ ํŒจํ„ด์„ ์ดํ•ดํ•˜๋Š” ๋ฐ ์ง€์†์  ํ˜ธ๋ชจ๋กœ์ง€(PH)๋ฅผ ํ™œ์šฉํ•ฉ๋‹ˆ๋‹ค. PH๋Š” ๋‹ค์–‘ํ•œ ์˜จ๋„๋‚˜ ๋†๋„ ๊ฐ’์—์„œ ๊ตฌ์กฐ๋ฅผ ์ •๋Ÿ‰ํ™”ํ•  ์ˆ˜ ์žˆ๋Š” ๊ฐ๊ด€์ ์ธ ์ธก์ • ๋ฐฉ๋ฒ•์œผ๋กœ, ๊ณ ์ „์ ์ธ ๋‹ค๊ณต์„ฑ ๋งค์ฒด ์„ค์ •์— ์ ์šฉ๋  ๋•Œ ์œ ๋™ ํŒจํ„ด๊ณผ ๊ฑฐ์‹œ์  ํ˜ผํ•ฉ ํŠน์„ฑ์„ ๋ถ„์„ํ•˜๋Š” ์ƒˆ๋กœ์šด ํ†ต์ฐฐ๋ ฅ์„ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋Œ€๊ทœ๋ชจ ๋ฐ์ดํ„ฐ ์„ธํŠธ๋ฅผ ํ™œ์šฉํ•˜์—ฌ ์—ด ์ „๋‹ฌ ์†๋„์™€ ์œ ๋™ ๊ตฌ์กฐ์˜ ์ง„ํ™” ์‚ฌ์ด์˜ ์ƒ๊ด€ ๊ด€๊ณ„๋ฅผ ๋ถ„์„ํ•˜

Analysis
HeartBench: Probing Core Dimensions of Anthropomorphic Intelligence in LLMs

HeartBench: Probing Core Dimensions of Anthropomorphic Intelligence in LLMs

์ด ๋…ผ๋ฌธ์€ ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(LLMs)์˜ ํ•œ๊ณ„์™€ ๊ทธ ํ•ด๊ฒฐ์ฑ…์— ์ดˆ์ ์„ ๋งž์ถ”๊ณ  ์žˆ๋‹ค. ํŠนํžˆ, LLMs๊ฐ€ ์‚ฌํšŒ์ , ์ •์„œ์ , ์œค๋ฆฌ์  ๋ฏธ๋ฌ˜ํ•จ์„ ์ดํ•ดํ•˜๋Š” ๋ฐ ์–ด๋ ค์›€์„ ๊ฒช๋Š”๋‹ค๋Š” ์ ์„ ๊ฐ•์กฐํ•œ๋‹ค. ์ด ๋ฌธ์ œ๋Š” ์ค‘๊ตญ์–ด ๋ฌธํ™”์™€ ์–ธ์–ด ๋งฅ๋ฝ์—์„œ ๋”์šฑ ๋‘๋“œ๋Ÿฌ์ง€๋ฉฐ, ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด HeartBench๋ผ๋Š” ์ƒˆ๋กœ์šด ํ‰๊ฐ€ ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์‹œํ•˜๊ณ  ์žˆ๋‹ค. HeartBench๋Š” ์‹ฌ๋ฆฌ ์ƒ๋‹ด ์‹œ๋‚˜๋ฆฌ์˜ค์™€ ์ž„์ƒ ์ „๋ฌธ๊ฐ€๋“ค์˜ ํ˜‘์—…์„ ํ†ตํ•ด ๊ฐœ๋ฐœ๋˜์—ˆ์œผ๋ฉฐ, 5๊ฐœ ์ฃผ์š” ์ฐจ์›๊ณผ ๊ทธ ํ•˜์œ„ ๋Šฅ๋ ฅ์œผ๋กœ ๊ตฌ์„ฑ๋œ ์ด๋ก  ์ค‘์‹ฌ ๋ถ„๋ฅ˜ ์ฒด๊ณ„๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ์ถ”์ƒ์ ์ธ ์ธ๊ฐ„ ์œ ์‚ฌ ํŠน์„ฑ์„ ์„ธ๋ถ„ํ™”๋œ ์ธก

Human-like visual computing advances explainability and few-shot learning in deep neural networks for complex physiological data

Human-like visual computing advances explainability and few-shot learning in deep neural networks for complex physiological data

์ด ๋…ผ๋ฌธ์€ ํ˜„๋Œ€ ์˜๋ฃŒ ์ธ๊ณต์ง€๋Šฅ์ด ์ง๋ฉดํ•œ ๋‘ ๊ฐ€์ง€ ํ•ต์‹ฌ ๋ฌธ์ œโ€”๋ฐ์ดํ„ฐ ๋ถ€์กฑ๊ณผ ๋ธ”๋ž™๋ฐ•์Šค ํ˜„์ƒโ€”์— ๋Œ€ํ•œ ํ˜์‹ ์ ์ธ ํ•ด๊ฒฐ์ฑ…์„ ์ œ์‹œํ•œ๋‹ค. ๋จผ์ €, โ€˜๊ฐ€์งœ ์ƒ‰์ฑ„(pseudoโ€‘colouring)โ€™๋ผ๋Š” ๊ฐœ๋…์€ ์›๋ž˜ ์ธ๊ฐ„ ์ „๋ฌธ๊ฐ€๊ฐ€ ECG๋ฅผ ์‹œ๊ฐ์ ์œผ๋กœ ํ•ด์„ํ•  ๋•Œ ์ค‘์š”ํ•œ ์‹œ๊ฐ„์  ํŠน์ง•, ์˜ˆ์ปจ๋Œ€ QT ๊ฐ„๊ฒฉ์„ ์ƒ‰์ƒ์œผ๋กœ ๊ฐ•์กฐํ•จ์œผ๋กœ์จ ์ธ์ง€ ๋ถ€ํ•˜๋ฅผ ๋‚ฎ์ถ”๋Š” ๋ฐฉ๋ฒ•์œผ๋กœ ์•Œ๋ ค์ ธ ์žˆ๋‹ค. ์ด๋ฅผ ๋””์ง€ํ„ธ ์ด๋ฏธ์ง€์— ๊ทธ๋Œ€๋กœ ์ ์šฉํ•˜๋ฉด, ์‹ ๊ฒฝ๋ง์ด ์›์‹œ ์ „์•• ํŒŒํ˜• ๋Œ€์‹  ์ƒ‰์ƒ ์ฑ„๋„์„ ํ†ตํ•ด ์˜๋ฏธ ์žˆ๋Š” ์ •๋ณด๋ฅผ ์ง์ ‘ ๋ฐ›์•„๋“ค์ผ ์ˆ˜ ์žˆ๋‹ค. ์ƒ‰์ƒ์€ 3์ฐจ์›(RGB) ๊ณต๊ฐ„์—์„œ ์„œ๋กœ ๋‹ค๋ฅธ ์‹œ๊ฐ„ ๊ตฌ๊ฐ„์„ ๊ตฌ๋ถ„ํ•˜

Network Data Learning
Semiparametric Preference Optimization: Your Language Model is Secretly a Single-Index Model

Semiparametric Preference Optimization: Your Language Model is Secretly a Single-Index Model

์ด ๋…ผ๋ฌธ์€ ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(LLMs)์˜ ์„ ํ˜ธ๋„ ์ •ํ•ฉ์„ฑ ๋ฌธ์ œ๋ฅผ ๋‹ค๋ฃจ๋ฉฐ, ํŠนํžˆ ์•Œ๋ ค์ง€์ง€ ์•Š์€ ๋งํฌ ํ•จ์ˆ˜์— ๋Œ€ํ•œ ์ ‘๊ทผ๋ฒ•์„ ์ œ์‹œํ•œ๋‹ค. ๋ณดํ†ต LLMs๋Š” ํŠน์ • ์—ฐ๊ฒฐ ํ•จ์ˆ˜(์˜ˆ: ๋กœ์ง“ ๋ธŒ๋ผ๋“ค๋ฆฌ ํ…Œ๋ฆฌ ์—ฐ๊ฒฐ)๋ฅผ ๊ฐ€์ •ํ•˜์—ฌ ๊ด€์ฐฐ๋œ ์„ ํ˜ธ์™€ ์ž ์žฌ์  ๋ณด์ƒ ์‚ฌ์ด์˜ ๊ด€๊ณ„๋ฅผ ๋ชจ๋ธ๋งํ•˜๋Š”๋ฐ, ์ด๋Ÿฌํ•œ ์—ฐ๊ฒฐ ํ•จ์ˆ˜๊ฐ€ ์ž˜๋ชป ์ง€์ •๋˜๋ฉด ์ถ”๋ก ๋œ ๋ณด์ƒ๊ณผ ํ•™์Šต๋œ ์ •์ฑ…์ด ๋ถˆ์ผ์น˜ํ•˜๊ฒŒ ๋œ๋‹ค. ๋…ผ๋ฌธ์€ ์•Œ๋ ค์ง€์ง€ ์•Š์€ ๋งํฌ ํ•จ์ˆ˜์— ๋Œ€ํ•ด f ๋ถ„์‚ฐ ์ œ์•ฝ ์กฐ๊ฑด ํ•˜์—์„œ ๋ณด์ƒ ์ตœ๋Œ€ํ™”์˜ ์‹คํ˜„ ๊ฐ€๋Šฅ์„ฑ ๋ฌธ์ œ๋ฅผ ๋‹ค๋ฃจ๋ฉฐ, ์ด๋ฅผ ํ†ตํ•ด ๋ฐ˜ํŒŒ๋ผ๋ฉ”ํŠธ๋ฆญ ๋‹จ์ผ ์ธ๋ฑ์Šค ์ด์ง„ ์„ ํƒ ๋ชจ๋ธ์„ ์œ ๋„ํ•œ๋‹ค. ์ด ๋ชจ๋ธ์—์„œ๋Š” ์ •์ฑ… ์ข…์†

Model
Subgoaling Relaxation-based Heuristics for Numeric Planning with Infinite Actions

Subgoaling Relaxation-based Heuristics for Numeric Planning with Infinite Actions

๋ณธ ์—ฐ๊ตฌ๋Š” ์ˆ˜์น˜ ๊ณ„ํš(Numeric Planning) ๋ถ„์•ผ์—์„œ โ€˜์ œ์–ด ํŒŒ๋ผ๋ฏธํ„ฐ(Control Parameters)โ€™๋ผ๋Š” ์ƒˆ๋กœ์šด ์ฐจ์›์„ ๋„์ž…ํ•จ์œผ๋กœ์จ ๊ธฐ์กด ๋ชจ๋ธ์ด ๊ฐ–๋Š” ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๋ ค๋Š” ์‹œ๋„์ด๋‹ค. ์ „ํ†ต์ ์ธ ์ˆ˜์น˜ ๊ณ„ํš์—์„œ๋Š” ๊ฐ ํ–‰๋™์ด ๋ฏธ๋ฆฌ ์ •์˜๋œ ๋งค๊ฐœ๋ณ€์ˆ˜ ์ง‘ํ•ฉ์„ ๊ฐ€์ง€๊ณ  ์žˆ์–ด, ํŠน์ • ์ƒํƒœ์—์„œ ์ ์šฉ ๊ฐ€๋Šฅํ•œ ํ–‰๋™์˜ ์ˆ˜๊ฐ€ ์œ ํ•œํ•˜๊ณ , ์ด๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํœด๋ฆฌ์Šคํ‹ฑ ํ•จ์ˆ˜๊ฐ€ ํšจ๊ณผ์ ์œผ๋กœ ์„ค๊ณ„๋  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ œ์–ด ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ์ž์œ  ๋ณ€์ˆ˜๋กœ ๋‘๋ฉด, ๊ฐ™์€ ํ–‰๋™ ์œ ํ˜•์ด๋ผ๋„ ๋งค๊ฐœ๋ณ€์ˆ˜๊ฐ’์— ๋”ฐ๋ผ ๋ฌด์ˆ˜ํžˆ ๋งŽ์€ ๊ตฌ์ฒดํ™”๊ฐ€ ๊ฐ€๋Šฅํ•ด์ง„๋‹ค. ๊ฒฐ๊ณผ์ ์œผ๋กœ ํ•œ ์ƒํƒœ์—์„œ โ€œ์ ์šฉ ๊ฐ€๋Šฅํ•œ

No Image

VideoZoomer: Reinforcement-Learned Temporal Focusing for Long Video Reasoning

๋น„๋””์˜ค์คŒ๋จธ๋Š” MLLMs์˜ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•œ ํ˜์‹ ์ ์ธ ์ ‘๊ทผ๋ฒ•์ด๋‹ค. ๊ธฐ์กด ๋ชจ๋ธ๋“ค์ด ๊ณ ์ •๋œ ํ”„๋ ˆ์ž„ ์ƒ˜ํ”Œ๋ง์ด๋‚˜ ์ •์  ์‚ฌ์ „ ์„ ํƒ์— ์˜์กดํ•จ์œผ๋กœ์จ ์ค‘์š”ํ•œ ์ •๋ณด๋ฅผ ๋†“์น˜๊ฑฐ๋‚˜ ์ดˆ๊ธฐ ์˜ค๋ฅ˜๋ฅผ ์ˆ˜์ •ํ•  ์ˆ˜ ์—†๋Š” ๋ฌธ์ œ์ ์„ ํ•ด๊ฒฐํ•˜๊ณ ์ž, ๋น„๋””์˜ค์คŒ๋จธ๋Š” MLLMs๊ฐ€ ์ถ”๋ก  ๊ณผ์ •์—์„œ ์‹œ๊ฐ์  ์ฃผ์˜๋ ฅ์„ ๋™์ ์œผ๋กœ ์กฐ์ ˆํ•  ์ˆ˜ ์žˆ๋Š” ์—์ด์ „ํŠธ ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์•ˆํ•œ๋‹ค. ์ด ๋ชจ๋ธ์€ ์ €์† ํ”„๋ ˆ์ž„ ๋ ˆ์ดํŠธ๋กœ ์‹œ์ž‘ํ•˜์—ฌ ์‹œ๊ฐ„ ํ™•๋Œ€ ๋„๊ตฌ๋ฅผ ์‚ฌ์šฉํ•ด ๊ณ ์† ํ”„๋ ˆ์ž„ ๋ ˆ์ดํŠธ ํด๋ฆฝ์„ ์ž๋™์œผ๋กœ ์„ ํƒํ•˜๊ณ  ์ˆ˜์ง‘ํ•จ์œผ๋กœ์จ, ์ ์ง„์ ์œผ๋กœ ์„ธ๋ฐ€ํ•œ ์ฆ๊ฑฐ๋ฅผ ๋‹ค์ค‘ ํšŒ์ฐจ ์ƒํ˜ธ์ž‘์šฉ ๋ฐฉ์‹์œผ๋กœ ์ˆ˜์ง‘ํ•œ๋‹ค. ์ด๋Š” ๋น„๋””์˜ค์คŒ๋จธ๊ฐ€ ๋™์˜์ƒ

Accelerating Scientific Discovery with Autonomous Goal-evolving Agents

Accelerating Scientific Discovery with Autonomous Goal-evolving Agents

SAGA๋Š” ๊ธฐ์กด ๊ณผํ•™ ์ž๋™ํ™” ํ”„๋ ˆ์ž„์›Œํฌ๊ฐ€ ์ง๋ฉดํ•œ ๊ทผ๋ณธ์ ์ธ ํ•œ๊ณ„๋ฅผ ๋›ฐ์–ด๋„˜๋Š”๋‹ค. ์ „ํ†ต์ ์ธ ์ ‘๊ทผ๋ฒ•์€ ์‚ฌ์ „์— ์ •์˜๋œ ๋ชฉํ‘œ ํ•จ์ˆ˜๋ฅผ ๊ณ ์ •ํ•˜๊ณ , ๊ทธ ํ•จ์ˆ˜์— ๋งž์ถฐ ํ›„๋ณด ๋ฌผ์งˆ์ด๋‚˜ ์„ค๊ณ„์•ˆ์„ ํƒ์ƒ‰ํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๋ณต์žกํ•œ ๊ณผํ•™ ๋ฌธ์ œ์—์„œ๋Š” ๋ชฉํ‘œ ์ž์ฒด๊ฐ€ ๋ถˆ์™„์ „ํ•˜๊ฑฐ๋‚˜ ์ƒ์ถฉ๋˜๋Š” ๊ฒฝ์šฐ๊ฐ€ ๋งŽ์•„, ๊ณ ์ •๋œ ๋ชฉํ‘œ์— ์ตœ์ ํ™”๋œ ์†”๋ฃจ์…˜์ด ์‹ค์ œ๋กœ๋Š” ๋น„ํ˜„์‹ค์ ์ด๊ฑฐ๋‚˜ ํ™œ์šฉ๋„๊ฐ€ ๋‚ฎ์„ ์ˆ˜ ์žˆ๋‹ค. SAGA๋Š” ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ โ€˜๋ชฉํ‘œ ์ž์ฒด๋ฅผ ์ง„ํ™”์‹œํ‚ค๋Š”โ€™ ๋ฉ”์ปค๋‹ˆ์ฆ˜์œผ๋กœ ํ•ด๊ฒฐํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ ํ•ต์‹ฌ์€ ์ด์ค‘ ๋ฃจํ”„ ๊ตฌ์กฐ ์ด๋‹ค. ์™ธ๋ถ€ ๋ฃจํ”„๋Š” LLM ๊ธฐ๋ฐ˜ ์—์ด์ „ํŠธ๊ฐ€ ํ˜„์žฌ ์ตœ์ ํ™” ๊ฒฐ๊ณผ๋ฅผ ๋ฉ”ํƒ€โ€‘๋ถ„์„ํ•˜๊ณ , ๋ฐœ๊ฒฌ๋œ ๋ถ€

Bidirectional Human-AI Alignment in Education for Trustworthy Learning Environments

Bidirectional Human-AI Alignment in Education for Trustworthy Learning Environments

๋ณธ ๋…ผ๋ฌธ์€ ์ธ๊ณต์ง€๋Šฅ์ด ๊ต์œก ํ˜„์žฅ์— ๋ฏธ์น˜๋Š” ๋ณ€ํ™”๋ฅผ ๋‹จ์ˆœํ•œ ๊ธฐ์ˆ  ๋„์ž… ์ˆ˜์ค€์„ ๋„˜์–ด โ€˜์–‘๋ฐฉํ–ฅ ์ •๋ ฌ(bidirectional alignment)โ€™์ด๋ผ๋Š” ์ƒˆ๋กœ์šด ํ”„๋ ˆ์ž„์›Œํฌ๋กœ ์žฌ๊ตฌ์„ฑํ•œ๋‹ค. ์ „ํ†ต์ ์ธ AI ์œค๋ฆฌ ๋…ผ์˜๋Š” ์ฃผ๋กœ ์ธ๊ฐ„ ๊ฐ€์น˜์™€ ๋ชฉํ‘œ๋ฅผ ์•Œ๊ณ ๋ฆฌ์ฆ˜์— ๋‚ด์žฌ์‹œํ‚ค๋Š” ์ผ๋ฐฉํ–ฅ์  ์ ‘๊ทผ์— ๋จธ๋ฌผ๋ €๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๊ต์œก์€ ํ•™์Šต์ž์™€ ๊ต์‚ฌ, ์ œ๋„ ์ „์ฒด๊ฐ€ ์ง€์†์ ์œผ๋กœ ์ƒํ˜ธ์ž‘์šฉํ•˜๊ณ  ํ”ผ๋“œ๋ฐฑ์„ ์ฃผ๊ณ ๋ฐ›๋Š” ๋ณตํ•ฉ ์‹œ์Šคํ…œ์ด๋‹ค. ๋”ฐ๋ผ์„œ AI๊ฐ€ ์ œ๊ณตํ•˜๋Š” ๋งž์ถคํ˜• ํ•™์Šต ๊ฒฝ๋กœ, ์ž๋™ ์ฑ„์ , ํ•™์Šต ๋ถ„์„ ๋„๊ตฌ๋Š” ๊ต์‚ฌ์˜ ์ „๋ฌธ์„ฑยทํŒ๋‹จ์„ ๋ณด์™„ํ•˜๋Š” ๋™์‹œ์— ๊ต์‚ฌ์™€ ํ•™์ƒ์ด AI์˜ ์ž‘๋™ ์›๋ฆฌ์™€ ํ•œ๊ณ„๋ฅผ ์ดํ•ดํ•˜

Learning
DiverseGRPO: Mitigating Mode Collapse in Image Generation via Diversity-Aware GRPO

DiverseGRPO: Mitigating Mode Collapse in Image Generation via Diversity-Aware GRPO

๋ณธ ๋…ผ๋ฌธ์€ ํ˜„๋Œ€ ์ƒ์„ฑ ๋ชจ๋ธ์ด ์ง๋ฉดํ•œ ๋‘ ๊ฐ€์ง€ ํ•ต์‹ฌ ๊ณผ์ œ, ์ฆ‰ โ€˜๋ชจ๋“œ ๋ถ•๊ดด(Mode Collapse)โ€™์™€ โ€˜๋ชจ๋“œ ์ปค๋ฒ„๋ฆฌ์ง€(Rich Mode Coverage)โ€™ ์‚ฌ์ด์˜ ํŠธ๋ ˆ์ด๋“œ์˜คํ”„๋ฅผ ์‹คํ—˜์ ยท์ด๋ก ์ ์œผ๋กœ ํƒ๊ตฌํ•œ๋‹ค. ๋ชจ๋“œ ๋ถ•๊ดด๋Š” ํ•™์Šต๋œ ๋ชจ๋ธ์ด ์ œํ•œ๋œ ์†Œ์ˆ˜์˜ ์ถœ๋ ฅ ๋ชจ๋“œ๋งŒ์„ ๋ฐ˜๋ณต ์ƒ์„ฑํ•จ์œผ๋กœ์จ ๋ฐ์ดํ„ฐ ๋ถ„ํฌ์˜ ๋‹ค์–‘์„ฑ์„ ์ƒ์‹คํ•˜๋Š” ํ˜„์ƒ์ด๋ฉฐ, ์ด๋Š” ํŠนํžˆ ๊ณ ํ•ด์ƒ๋„ ์ด๋ฏธ์ง€ ์ƒ์„ฑ์—์„œ ์‹ฌ๊ฐํ•œ ํ’ˆ์งˆ ์ €ํ•˜๋ฅผ ์ดˆ๋ž˜ํ•œ๋‹ค. ๋ฐ˜๋ฉด, ํ’๋ถ€ํ•œ ๋ชจ๋“œ ์ปค๋ฒ„๋ฆฌ์ง€๋Š” ๋ชจ๋ธ์ด ์›๋ณธ ๋ฐ์ดํ„ฐ์˜ ๋‹ค์–‘ํ•œ ์Šคํƒ€์ผ, ์ƒ‰๊ฐ, ๊ตฌ์„ฑ์„ ํฌ๊ด„์ ์œผ๋กœ ํ•™์Šตํ•จ์„ ์˜๋ฏธํ•œ๋‹ค. ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ์ €์ž๋Š” (c)

No Image

Efficient MoE Inference with Fine-Grained Scheduling of Disaggregated Expert Parallelism

๋ณธ ๋…ผ๋ฌธ์€ ํ˜„์žฌ ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(Large Language Model, LLM)์—์„œ ํ•ต์‹ฌ์ ์ธ ์—ญํ• ์„ ํ•˜๋Š” Mixtureโ€‘ofโ€‘Experts(MoE) ์•„ํ‚คํ…์ฒ˜์˜ ์ถ”๋ก  ํšจ์œจ์„ฑ์„ ํฌ๊ฒŒ ๊ฐœ์„ ํ•˜๊ณ ์ž ํ•˜๋Š” ์‹ค์šฉ์ ์ธ ์ ‘๊ทผ์„ ์ œ์‹œํ•œ๋‹ค. MoE๋Š” ์ „๋ฌธ๊ฐ€(Expert) ๋ผ๋Š” ์„œ๋ธŒ๋ชจ๋ธ์„ ๋‹ค์ˆ˜ ๋ณด์œ ํ•˜๊ณ , ์ž…๋ ฅ ํ† ํฐ๋‹น ํ™œ์„ฑํ™”๋˜๋Š” ์ „๋ฌธ๊ฐ€ ์ˆ˜๋ฅผ ์ œํ•œํ•จ์œผ๋กœ์จ ๋ชจ๋ธ ํŒŒ๋ผ๋ฏธํ„ฐ๋Š” ํฌ๊ฒŒ ๋Š˜๋ฆฌ๋ฉด์„œ๋„ ์‹ค์ œ ์—ฐ์‚ฐ๋Ÿ‰์€ ์ƒ๋Œ€์ ์œผ๋กœ ๋‚ฎ๊ฒŒ ์œ ์ง€ํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ถ”๋ก  ๋‹จ๊ณ„์—์„œ๋Š” ๋‘ ๊ฐ€์ง€ ์ฃผ์š” ๋ณ‘๋ชฉ์ด ์กด์žฌํ•œ๋‹ค. ์ฒซ์งธ, ํŠธ๋žœ์Šคํฌ๋จธ ์–ดํ…์…˜ ๋ ˆ์ด์–ด์—์„œ ๋งค ํ† ํฐ๋งˆ๋‹ค KV ์บ์‹œ๋ฅผ ์ฝ๊ณ  ์“ฐ๋Š” ๊ณผ์ •

AInsteinBench: Benchmarking Coding Agents on Scientific Repositories

AInsteinBench: Benchmarking Coding Agents on Scientific Repositories

AInsteinBench์€ ํ˜„์žฌ LLM ๊ธฐ๋ฐ˜ ์ฝ”๋”ฉ ์—์ด์ „ํŠธ ์—ฐ๊ตฌ์—์„œ ๋ˆˆ์— ๋„๋Š” ๊ณต๋ฐฑ์„ ๋ฉ”์šฐ๋Š” ์‹œ๋„์ด๋‹ค. ์ฒซ์งธ, ๋ฐ์ดํ„ฐ ์†Œ์Šค๊ฐ€ โ€œmaintainerโ€‘authored pull requestsโ€๋ผ๋Š” ์ ์—์„œ ์‹ค์ œ ๊ฐœ๋ฐœ์ž๋“ค์ด ์ง๋ฉดํ•˜๋Š” ๋ณตํ•ฉ์ ์ธ ์š”๊ตฌ์‚ฌํ•ญโ€”์ฝ”๋“œ ์Šคํƒ€์ผ, ์„ฑ๋Šฅ ์ตœ์ ํ™”, ๋ฌธ์„œํ™”, ํ…Œ์ŠคํŠธ ์ž‘์„ฑโ€”์„ ๊ทธ๋Œ€๋กœ ๋ฐ˜์˜ํ•œ๋‹ค๋Š” ๊ฐ•์ ์„ ๊ฐ€์ง„๋‹ค. ์ด๋Š” ๊ธฐ์กด ๋ฒค์น˜๋งˆํฌ๊ฐ€ ์ฃผ๋กœ ์ธ๊ณต์ ์œผ๋กœ ๋งŒ๋“  ์ฝ”๋”ฉ ๊ณผ์ œ๋‚˜ ๋‹จ์ˆœํ•œ ์•Œ๊ณ ๋ฆฌ์ฆ˜ ๊ตฌํ˜„์— ๋จธ๋ฌด๋Š” ํ•œ๊ณ„๋ฅผ ๋›ฐ์–ด๋„˜๋Š”๋‹ค. ๋‘˜์งธ, ์—ฌ์„ฏ ๊ฐœ์˜ ๋„๋ฉ”์ธ(์–‘์ž ํ™”ํ•™ยท์–‘์ž ์ปดํ“จํŒ…ยท๋ถ„์ž ๋™์—ญํ•™ยท์ˆ˜์น˜ ์ƒ๋Œ€์„ฑยท์œ ์ฒด ์—ญํ•™ยทํ™”ํ•™ ์ •๋ณดํ•™)์€

Feasible strategies in three-way conflict analysis with three-valued ratings

Feasible strategies in three-way conflict analysis with three-valued ratings

๋ณธ ๋…ผ๋ฌธ์€ ์„ธ ๊ฐˆ๋“ฑ(threeโ€‘way conflict) ์ƒํ™ฉ์—์„œ ์ „๋žต์  ์˜์‚ฌ๊ฒฐ์ •์„ ์ง€์›ํ•˜๊ธฐ ์œ„ํ•œ ์ƒˆ๋กœ์šด ์ •๋Ÿ‰์  ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์‹œํ•œ๋‹ค๋Š” ์ ์—์„œ ํ•™์ˆ ์ ยท์‹ค๋ฌด์  ์˜์˜๊ฐ€ ํฌ๋‹ค. ์ฒซ ๋ฒˆ์งธ๋กœ, ๊ธฐ์กด ๊ฐˆ๋“ฑ ๋ถ„์„ ์—ฐ๊ตฌ๊ฐ€ ์ฃผ๋กœ ์—์ด์ „ํŠธยท์ด์Šˆยท๊ด€๊ณ„์˜ ์‚ผ๋ถ„๋ฒ•์  ๋ถ„๋ฅ˜์— ๋จธ๋ฌผ๋ €๋˜ ๋ฐ˜๋ฉด, ์ €์ž๋Š” โ€˜์‹คํ–‰ ๊ฐ€๋Šฅํ•œ ์ „๋žต(feasible strategy)โ€™์ด๋ผ๋Š” ๊ฐœ๋…์„ ๋„์ž…ํ•ด ๊ฐˆ๋“ฑ ํ•ด๊ฒฐ ๋‹จ๊ณ„๊นŒ์ง€ ํ™•์žฅํ•˜์˜€๋‹ค. ์ด๋Š” ๊ฐˆ๋“ฑ ๋ถ„์„์„ ์ง„๋‹จ์—์„œ ์ฒ˜๋ฐฉ์œผ๋กœ ์ „ํ™˜ํ•˜๋Š” ์ค‘์š”ํ•œ ์ „ํ™˜์ ์ด๋‹ค. ๋‘ ๋ฒˆ์งธ๋กœ, ๊ธ์ •ยท๋ถ€์ • ์œ ์‚ฌ๋„ ๊ธฐ๋ฐ˜์˜ ํด๋ฆฌํฌ ํ‰์  ๊ณ„์‚ฐ์€ ๋‹ค์ค‘ ์ดํ•ด๊ด€๊ณ„์ž ๊ฐ„ ์ƒํ˜ธ์ž‘์šฉ์„ ์ •๋Ÿ‰ํ™”

Analysis
No Image

PhononBench:A Large-Scale Phonon-Based Benchmark for Dynamical Stability in Crystal Generation

๋ณธ ๋…ผ๋ฌธ์€ ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ฒฐ์ • ์„ค๊ณ„ ๋ถ„์•ผ์—์„œ ์žฅ๊ธฐ๊ฐ„ ๊ฐ„๊ณผ๋˜์–ด ์˜จ ํ•ต์‹ฌ ๋ฌธ์ œ์ธ ๋™์—ญํ•™์  ์•ˆ์ •์„ฑ์„ ์ฒด๊ณ„์ ์œผ๋กœ ๊ฒ€์ฆํ•œ ์ตœ์ดˆ์˜ ๋Œ€๊ทœ๋ชจ ๋ฒค์น˜๋งˆํฌ๋ฅผ ์ œ์‹œํ•œ๋‹ค๋Š” ์ ์—์„œ ํ•™๋ฌธ์ ยท์‚ฐ์—…์  ํŒŒ๊ธ‰๋ ฅ์ด ํฌ๋‹ค. ๊ธฐ์กด์˜ S.U.N. ํ‰๊ฐ€ ์ฒด๊ณ„๋Š” ์—ด์—ญํ•™์  ์•ˆ์ •์„ฑ์— ์ดˆ์ ์„ ๋งž์ถ”์–ด, ๊ณ„์‚ฐ ํšจ์œจ์„ฑ์€ ํ™•๋ณดํ–ˆ์ง€๋งŒ ์‹ค์ œ ํ•ฉ์„ฑ ๊ฐ€๋Šฅ์„ฑ์„ ํŒ๋‹จํ•˜๊ธฐ์—” ๋ถ€์กฑํ–ˆ๋‹ค. ๋™์—ญํ•™์  ์•ˆ์ •์„ฑ์€ ํฌ๋…ผ ์ŠคํŽ™ํŠธ๋Ÿผ, ํŠนํžˆ ์ „ ์˜์—ญ์—์„œ์˜ ์Œ์˜ ๋ชจ๋“œ ์กด์žฌ ์—ฌ๋ถ€์— ์˜ํ•ด ๊ฒฐ์ •๋˜๋ฉฐ, ์ด๋Š” ๋ฌผ์งˆ์ด ์‹คํ—˜์‹ค์—์„œ ์‹ค์ œ๋กœ ์กด์žฌํ•  ์ˆ˜ ์žˆ๋Š”์ง€๋ฅผ ๊ฐ€๋Š ํ•˜๋Š” ๊ฐ€์žฅ ํ™•์‹คํ•œ ์ง€ํ‘œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ DFT ๊ธฐ๋ฐ˜ ํฌ๋…ผ ๊ณ„์‚ฐ์€ ์ˆ˜์ฒœ ๊ฐœ ์›์ž

Policy-Conditioned Policies for Multi-Agent Task Solving

Policy-Conditioned Policies for Multi-Agent Task Solving

๋ณธ ๋…ผ๋ฌธ์€ ๋‹ค์ค‘ ์—์ด์ „ํŠธ ์‹œ์Šคํ…œ์—์„œ ์ „๋žต ์ ์‘์„ ์œ„ํ•œ ๊ทผ๋ณธ์ ์ธ ํ•œ๊ณ„๋ฅผ ์ง€์ ํ•˜๊ณ , ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•œ ํ˜์‹ ์ ์ธ ์ ‘๊ทผ๋ฒ•์„ ์ œ์‹œํ•œ๋‹ค. ๊ธฐ์กด ๋”ฅ ๊ฐ•ํ™”ํ•™์Šต์—์„œ๋Š” ์ •์ฑ…์„ ์‹ ๊ฒฝ๋ง ํŒŒ๋ผ๋ฏธํ„ฐ ์ง‘ํ•ฉ์œผ๋กœ ํ‘œํ˜„ํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ๊ณ ์ฐจ์› ๋ฒกํ„ฐ๋Š” ์ธ๊ฐ„์ด ์ง๊ด€์ ์œผ๋กœ ์ดํ•ดํ•˜๊ฑฐ๋‚˜ ๋‹ค๋ฅธ ์—์ด์ „ํŠธ๊ฐ€ ์ง์ ‘ ํ™œ์šฉํ•˜๊ธฐ์— ์ ํ•ฉํ•˜์ง€ ์•Š๋‹ค. ํŠนํžˆ ์ƒ๋Œ€ ์—์ด์ „ํŠธ์˜ ํ–‰๋™์„ ์˜ˆ์ธกํ•˜๊ฑฐ๋‚˜ ์ด์— ๋งž์ถฐ ์ „๋žต์„ ์ˆ˜์ •ํ•˜๋ ค๋ฉด โ€œ์ •์ฑ…์„ ์ฝ์„ ์ˆ˜ ์žˆ๋Š”โ€ ํ˜•ํƒœ๊ฐ€ ํ•„์š”ํ•˜์ง€๋งŒ, ํ˜„์žฌ ๊ธฐ์ˆ ๋กœ๋Š” ์ด๋ฅผ ๊ตฌํ˜„ํ•˜๊ธฐ ์–ด๋ ต๋‹ค. ๋…ผ๋ฌธ์€ ์ด ๋ฌธ์ œ๋ฅผ โ€˜์ •์ฑ…์„ ์†Œ์Šค ์ฝ”๋“œ ํ˜•ํƒœ๋กœ ํ‘œํ˜„ํ•œ๋‹คโ€™๋Š” ์•„์ด๋””์–ด๋กœ ํ•ด๊ฒฐํ•œ๋‹ค. ์†Œ์Šค ์ฝ”๋“œ๋Š” ์ธ

Reflection Pretraining Enables Token-Level Self-Correction in Biological Sequence Models

Reflection Pretraining Enables Token-Level Self-Correction in Biological Sequence Models

Chain of Thought(CoT) ํ”„๋กฌํ”„ํŠธ๋Š” ์ตœ๊ทผ ์ž์—ฐ์–ด ์ฒ˜๋ฆฌ ๋ถ„์•ผ์—์„œ ๊ฐ€์žฅ ์ฃผ๋ชฉ๋ฐ›๋Š” ๊ธฐ๋ฒ• ์ค‘ ํ•˜๋‚˜์ด๋‹ค. ๊ธฐ์กด์˜ โ€œ์งˆ๋ฌธโ€‘๋‹ต๋ณ€โ€ ํ˜•ํƒœ ํ”„๋กฌํ”„ํŠธ๋Š” ๋ชจ๋ธ์ด ๋ฐ”๋กœ ์ตœ์ข… ๋‹ต์„ ์ถœ๋ ฅํ•˜๋„๋ก ๊ฐ•์š”ํ•˜์ง€๋งŒ, CoT๋Š” ๋ชจ๋ธ์ด ์ค‘๊ฐ„์— ๋…ผ๋ฆฌ์ ยท์ˆ˜ํ•™์  ์ถ”๋ก  ๊ณผ์ •์„ ํ…์ŠคํŠธ ํ† ํฐ ํ˜•ํƒœ๋กœ ์„œ์ˆ ํ•˜๋„๋ก ๋งŒ๋“ ๋‹ค. ์ด๋Ÿฌํ•œ โ€œ๋น„๋‹ต๋ณ€ ํ† ํฐโ€์€ ๋ชจ๋ธ์ด ๋ณต์žกํ•œ ์—ฐ์‚ฐ์„ ๋‹จ๊ณ„๋ณ„๋กœ ํ’€์–ด๊ฐ€๊ฒŒ ํ•จ์œผ๋กœ์จ, ํŠนํžˆ ๋‹ค์ค‘ ๋‹จ๊ณ„ ๋…ผ๋ฆฌ, ์ˆ˜์‹ ์ „๊ฐœ, ํ˜น์€ ์ฝ”๋“œ ์ƒ์„ฑ๊ณผ ๊ฐ™์€ ์ž‘์—…์—์„œ ์˜ค๋ฅ˜์œจ์„ ํฌ๊ฒŒ ๋‚ฎ์ถ˜๋‹ค. CoT๊ฐ€ ์„ฑ๊ณต์„ ๊ฑฐ๋‘˜ ์ˆ˜ ์žˆ์—ˆ๋˜ ํ•ต์‹ฌ์€ ๋‘ ๊ฐ€์ง€์ด๋‹ค. ์ฒซ์งธ, ์ธ๊ฐ„ ์–ธ์–ด ์ž์ฒด๊ฐ€ ํ’๋ถ€ํ•œ

Model
No Image

ReVEAL: GNN-Guided Reverse Engineering for Formal Verification of Optimized Multipliers

ReVEAL์€ ๊ทธ๋ž˜ํ”„ ํ•™์Šต์„ ํ™œ์šฉํ•˜์—ฌ ๋ฉ€ํ‹ฐํ”Œ๋ผ์ด์–ด ์•„ํ‚คํ…์ฒ˜์˜ ์—ญ๊ณตํ•™์„ ์ˆ˜ํ–‰ํ•˜๋Š” ํ˜์‹ ์ ์ธ ๋ฐฉ๋ฒ•๋ก ์ด๋‹ค. ์ด ์ ‘๊ทผ๋ฒ•์€ ๊ธฐ์กด์˜ ๊ทœ์น™ ๊ธฐ๋ฐ˜ ๋ฐฉ๋ฒ•๋ณด๋‹ค ํ™•์žฅ์„ฑ๊ณผ ์ •ํ™•๋„๋ฅผ ํฌ๊ฒŒ ํ–ฅ์ƒ์‹œํ‚ค๋Š” ๋ฐ ์ค‘์ ์„ ๋‘๊ณ  ์žˆ๋‹ค. ReVEAL์€ ๋Œ€๊ทœ๋ชจ ์ตœ์ ํ™”๋œ ๋ฉ€ํ‹ฐํ”Œ๋ผ์ด์–ด์—์„œ ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ๋Š” ๋ณต์žกํ•œ ํŒจํ„ด์„ ์‹๋ณ„ํ•˜๊ณ , ์ด๋ฅผ ํ†ตํ•ด ๋Œ€์ˆ˜์  ํšŒ๋กœ ๊ฒ€์ฆ ๊ธฐ์ˆ ์˜ ์„ฑ๋Šฅ์„ ๊ฐœ์„ ํ•œ๋‹ค. ํŠนํžˆ, ์ด ๋ฐฉ๋ฒ•๋ก ์€ ๋‹ค์–‘ํ•œ ๋ฉ€ํ‹ฐํ”Œ๋ผ์ด์–ด ๋ฒค์น˜๋งˆํฌ์— ์ ์šฉ ๊ฐ€๋Šฅํ•˜๋ฉฐ, ์ด๋ฅผ ํ†ตํ•ด ๊ทธ ์œ ์—ฐ์„ฑ๊ณผ ํšจ๊ณผ์„ฑ์„ ์ž…์ฆํ•œ๋‹ค. ReVEAL์€ ํ•™์Šต ์ฃผ๋„ ์ถ”๋ก ๊ณผ ๊ตฌ์กฐ์ ์ธ ๊ทธ๋ž˜ํ”„ ํŠน์ง•์„ ํ™œ์šฉํ•˜์—ฌ ์•„ํ‚คํ…์ฒ˜ ํŒจํ„ด์„ ์‹๋ณ„ํ•˜๊ณ ,

A Comprehensive Guide to Mesh Simplification using Edge Collapse

A Comprehensive Guide to Mesh Simplification using Edge Collapse

์—์ง€ ์ฝœ๋žฉ์Šค(edge collapse)๋Š” ๋ฉ”์‰ฌ ๋‹จ์ˆœํ™” ๋ถ„์•ผ์—์„œ ๊ฐ€์žฅ ๋„๋ฆฌ ์ฑ„ํƒ๋˜๋Š” ๋กœ์ปฌ ๋ฆฌ๋‹ค์ฟ ์…˜ ๊ธฐ๋ฒ•์œผ๋กœ, ๋ณต์žกํ•œ ๋‹ค๊ฐํ˜• ๋ฉ”์‰ฌ๋ฅผ ์ €ํ•ด์ƒ๋„ ํ˜•ํƒœ๋กœ ๋ณ€ํ™˜ํ•˜๋ฉด์„œ๋„ ์‹œ๊ฐ์  ํ’ˆ์งˆ์„ ์œ ์ง€ํ•˜๋ ค๋Š” ๋ชฉ์ ์— ๋ถ€ํ•ฉํ•œ๋‹ค. ํ•ต์‹ฌ ์•„์ด๋””์–ด๋Š” ๋‘ ์ธ์ ‘ ์ •์ ์„ ํ•˜๋‚˜๋กœ ํ•ฉ์น˜๊ณ , ๊ทธ์— ๋”ฐ๋ผ ์—ฐ๊ฒฐ๋œ ๋ฉด๋“ค์„ ์žฌ๊ตฌ์„ฑํ•˜๋Š” ๊ณผ์ •์—์„œ ๋ฐœ์ƒํ•˜๋Š” ๊ธฐํ•˜ํ•™์  ์˜ค์ฐจ๋ฅผ ์ตœ์†Œํ™”ํ•˜๋Š” ๊ฒƒ์ด๋‹ค. ์ด๋ฅผ ์œ„ํ•ด์„œ๋Š” โ€œ์–ด๋–ค ์—ฃ์ง€๋ฅผ ์–ธ์ œ ์ฝœ๋žฉ์Šคํ•  ๊ฒƒ์ธ๊ฐ€?โ€๋ผ๋Š” ์„ ํƒ ๋ฌธ์ œ๊ฐ€ ๋น„์šฉ ํ•จ์ˆ˜(cost function)์— ์˜ํ•ด ์ •์˜๋œ๋‹ค. ๊ฐ€์žฅ ์œ ๋ช…ํ•œ ๋น„์šฉ ํ•จ์ˆ˜๋Š” Garland์™€ Heckbert๊ฐ€ ์ œ์•ˆํ•œ Quad

Assessing Coronary Microvascular Dysfunction using Angiography-based Data-driven Methods

Assessing Coronary Microvascular Dysfunction using Angiography-based Data-driven Methods

๊ด€์ƒ๋™๋งฅ ๋ฏธ์„ธํ˜ˆ๊ด€ ๊ธฐ๋Šฅ์žฅ์• (CMD)๋Š” ์ „ํ†ต์ ์ธ ๊ด€์ƒ๋™๋งฅ ์งˆํ™˜ ์ง„๋‹จ์—์„œ ๊ฐ„๊ณผ๋˜๊ธฐ ์‰ฌ์šด ์ค‘์š”ํ•œ ๋ณ‘๋ฆฌํ•™์  ํ˜„์ƒ์ด๋‹ค. ๊ธฐ์กด์— CMD๋ฅผ ํ‰๊ฐ€ํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ์••๋ ฅ ์™€์ด์–ด๋ฅผ ์ด์šฉํ•ด ๋ฏธ์„ธ๊ด€ ์ €ํ•ญ ์ง€์ˆ˜(IMR)์™€ ๊ด€์ƒ๋™๋งฅ ํ˜ˆ๋ฅ˜ ์˜ˆ๋น„์œจ(CFR)์„ ์ง์ ‘ ์ธก์ •ํ•ด์•ผ ํ•˜๋Š”๋ฐ, ์ด๋Ÿฌํ•œ ์นจ์Šต์  ๋ฐฉ๋ฒ•์€ ๋น„์šฉ์ด ๋†’๊ณ  ์‹œ์ˆ  ์‹œ๊ฐ„์ด ๊ธธ๋ฉฐ, ํ™˜์ž์—๊ฒŒ ์ถœํ˜ˆยทํ˜ˆ๊ด€ ์†์ƒ ๋“ฑ ๋ถ€์ž‘์šฉ ์œ„ํ—˜์„ ๋™๋ฐ˜ํ•œ๋‹ค. ๋”ฐ๋ผ์„œ ์ž„์ƒ ํ˜„์žฅ์—์„œ CMD๋ฅผ ์ฒด๊ณ„์ ์œผ๋กœ ํŒŒ์•…ํ•˜๊ธฐ๋Š” ํ˜„์‹ค์ ์œผ๋กœ ์–ด๋ ค์šด ์ ์ด ์žˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ์ด๋Ÿฌํ•œ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ณ ์ž, ์ด๋ฏธ ์ž„์ƒ์—์„œ ๋„๋ฆฌ ์‚ฌ์šฉ๋˜๋Š” ๊ด€์ƒ๋™๋งฅ ์กฐ์˜์ˆ  ์˜์ƒ์„ ํ™œ์šฉํ•ด

Data
Automated stereotactic radiosurgery planning using a human-in-the-loop reasoning large language model agent

Automated stereotactic radiosurgery planning using a human-in-the-loop reasoning large language model agent

๋ณธ ์—ฐ๊ตฌ๋Š” ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ์น˜๋ฃŒ ๊ณ„ํš ์‹œ์Šคํ…œ์ด ์ž„์ƒ ํ˜„์žฅ์—์„œ ์‹ ๋ขฐ๋ฅผ ์–ป๊ธฐ ์œ„ํ•ด์„œ๋Š” โ€˜์„ค๋ช… ๊ฐ€๋Šฅ์„ฑโ€™์ด ํ•„์ˆ˜์ ์ด๋ผ๋Š” ๊ฐ€์ •์„ ๊ฒ€์ฆํ•œ๋‹ค. ๊ธฐ์กด์˜ ๋Œ€ํ˜•์–ธ์–ด๋ชจ๋ธ(LLM) ๊ธฐ๋ฐ˜ ์ž๋™ํ™”๋Š” ๋†’์€ ์„ฑ๋Šฅ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ  ๋‚ด๋ถ€ ์˜์‚ฌ๊ฒฐ์ • ๊ณผ์ •์„ ๊ฒ€์ฆํ•  ์ˆ˜ ์—†๋‹ค๋Š” ํ•œ๊ณ„๊ฐ€ ์žˆ์—ˆ๋‹ค. ์ด๋ฅผ ๊ทน๋ณตํ•˜๊ณ ์ž ์—ฐ๊ตฌํŒ€์€ โ€˜์ฒด์ธ์˜ค๋ธŒ์ƒ๊ฐ(Chainโ€‘ofโ€‘Thought, CoT)โ€™์ด๋ผ๋Š” ์‚ฌ๊ณ  ํ๋ฆ„์„ ๋ช…์‹œ์ ์œผ๋กœ ์ƒ์„ฑํ•˜๋„๋ก ํ”„๋กฌํ”„ํŠธ๋ฅผ ์„ค๊ณ„ํ•˜์˜€๋‹ค. CoT๋Š” ๋ชจ๋ธ์ด ๋ฌธ์ œ๋ฅผ ๋‹จ๊ณ„๋ณ„๋กœ ๋ถ„ํ•ดํ•˜๊ณ , ๊ฐ ๋‹จ๊ณ„์—์„œ ์ œ์•ฝ์กฐ๊ฑด์„ ํ™•์ธํ•˜๋ฉฐ, ๊ฐ€๋Šฅํ•œ ๋Œ€์•ˆ์„ ๋…ผ์˜ํ•˜๋„๋ก ์œ ๋„ํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ๊ณผ์ •์€ ์ตœ์ข… ์„ ๋Ÿ‰ ์ตœ์ 

Model
No Image

Bridging Efficiency and Safety: Formal Verification of Neural Networks with Early Exits

๋ณธ ๋…ผ๋ฌธ์€ ์ตœ๊ทผ ์ธ๊ณต์ง€๋Šฅ ์‹œ์Šคํ…œ์—์„œ ๋‘๋“œ๋Ÿฌ์ง€๋Š” ๋‘ ๊ฐ€์ง€ ์š”๊ตฌ, ์ฆ‰ ์•ˆ์ „์„ฑ(robustness) ๊ณผ ํšจ์œจ์„ฑ(efficiency) ์„ ๋™์‹œ์— ๋งŒ์กฑ์‹œํ‚ค๊ธฐ ์œ„ํ•œ ์ƒˆ๋กœ์šด ์—ฐ๊ตฌ ๋ฐฉํ–ฅ์„ ์ œ์‹œํ•œ๋‹ค. ์ „ํ†ต์ ์ธ ์‹ ๊ฒฝ๋ง ๊ฒ€์ฆ ์—ฐ๊ตฌ๋Š” ์ฃผ๋กœ ์ „์ฒด ๋„คํŠธ์›Œํฌ๊ฐ€ ๋‹จ์ผ ๊ฒฝ๋กœ๋กœ ์‹คํ–‰๋œ๋‹ค๋Š” ์ „์ œ ํ•˜์—, ์ž…๋ ฅ ๋ณ€๋™์— ๋Œ€ํ•œ ์ถœ๋ ฅ ๋ณ€๋™์„ ์ˆ˜ํ•™์ ์œผ๋กœ ์ œํ•œํ•˜๋Š” ๋ฐฉ์‹์œผ๋กœ ์ง„ํ–‰๋˜์–ด ์™”๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์‹ค์ œ ์„œ๋น„์Šค ํ™˜๊ฒฝ์—์„œ๋Š” ์ง€์—ฐ ์‹œ๊ฐ„๊ณผ ์—ฐ์‚ฐ ๋น„์šฉ์„ ์ ˆ๊ฐํ•˜๊ธฐ ์œ„ํ•ด ์กฐ๊ธฐ ์ข…๋ฃŒ(early exit) ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ๋„์ž…ํ•˜๋Š” ๊ฒฝ์šฐ๊ฐ€ ๋Š˜์–ด๋‚˜๊ณ  ์žˆ๋‹ค. ์กฐ๊ธฐ ์ข…๋ฃŒ๋Š” ์ค‘๊ฐ„ ๋ ˆ์ด์–ด์—์„œ ์ถฉ๋ถ„ํžˆ ๋†’์€ ์‹ ๋ขฐ๋„

Network
DETACH : Decomposed Spatio-Temporal Alignment for Exocentric Video and Ambient Sensors with Staged Learning

DETACH : Decomposed Spatio-Temporal Alignment for Exocentric Video and Ambient Sensors with Staged Learning

์ด ๋…ผ๋ฌธ์€ ์ธ๊ฐ„ ํ–‰๋™ ์ธ์‹์„ ์œ„ํ•œ ๋ฉ€ํ‹ฐ๋ชจ๋‹ฌ ์ •๋ ฌ ์—ฐ๊ตฌ์—์„œ ์ƒˆ๋กœ์šด ํŒจ๋Ÿฌ๋‹ค์ž„์„ ์ œ์‹œํ•œ๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค์€ ์ฃผ๋กœ ์ฐฉ์šฉํ˜• ์„ผ์„œ์™€ ์ž๊ธฐ์‹œ์ (egocentric) ์˜์ƒ ์‚ฌ์ด์˜ ์ „์—ญ ์ •๋ ฌ(Global Alignment)์— ์˜์กดํ•ด ์™”์œผ๋ฉฐ, ์ด๋Š” ์ „์ฒด ์‹œํ€€์Šค๋ฅผ ํ•˜๋‚˜์˜ ๊ณ ์ฐจ์› ๋ฒกํ„ฐ๋กœ ์••์ถ•ํ•ด ๋‘ ๋ชจ๋‹ฌ๋ฆฌํ‹ฐ๋ฅผ ๋งค์นญํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ด๋Ÿฌํ•œ ์ ‘๊ทผ์€ ๋‘ ๊ฐ€์ง€ ๊ทผ๋ณธ์ ์ธ ํ•œ๊ณ„์— ๋ด‰์ฐฉํ•œ๋‹ค. ์ฒซ์งธ, ํ–‰๋™์˜ ๋ฏธ์„ธํ•œ ์›€์ง์ž„์ด๋‚˜ ๋ถ€๋ถ„์ ์ธ ๋ณ€ํ™”๋ฅผ ํฌ์ฐฉํ•˜๊ธฐ ์œ„ํ•œ ์ง€์—ญ์  ๋””ํ…Œ์ผ์ด ์†์‹ค๋œ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด, ์†๋ชฉ์˜ ๋ฏธ์„ธํ•œ ํšŒ์ „์ด๋‚˜ ๋ฌผ์ฒด์™€์˜ ์ ‘์ด‰ ์ˆœ๊ฐ„์€ ์ „์ฒด ์‹œํ€€์Šค ํ‰๊ท ํ™” ๊ณผ์ •์—์„œ ํฌ์„๋œ๋‹ค

Learning
From artificial to organic: Rethinking the roots of intelligence for digital health

From artificial to organic: Rethinking the roots of intelligence for digital health

์ด ๋…ผ๋ฌธ์€ ์ธ๊ณต์ง€๋Šฅ(AI)์ด๋ผ๋Š” ๊ฐœ๋…์„ ์žฌ์ •์˜ํ•˜๊ณ , AI์™€ ์œ ๊ธฐ์  ์ง€๋Šฅ ๊ฐ„์˜ ๊ด€๊ณ„๋ฅผ ํƒ๊ตฌํ•œ๋‹ค. '์ธ๊ณต'์ด๋ผ๋Š” ์šฉ์–ด๋Š” ์ž์—ฐ๊ณผ ๋Œ€๋น„๋˜๋Š” ๊ฒƒ์œผ๋กœ ์ดํ•ด๋˜์ง€๋งŒ, ์ด ๋…ผ๋ฌธ์€ AI๊ฐ€ ์ธ๊ฐ„์˜ ์ฐฝ์˜์„ฑ๊ณผ ์ง„ํ™” ๊ณผ์ •์—์„œ ์˜๊ฐ์„ ๋ฐ›์•˜์Œ์„ ๊ฐ•์กฐํ•˜๋ฉฐ, ์ด๋Ÿฌํ•œ ๊ด€์ ์—์„œ๋Š” ์ธ๊ณต์ง€๋Šฅ์ด '์œ ๊ธฐ์ '์œผ๋กœ๋ถ€ํ„ฐ ํฌ๊ฒŒ ๋ฒ—์–ด๋‚˜์ง€ ์•Š๋Š”๋‹ค๋Š” ์ ์„ ์ œ์‹œํ•œ๋‹ค. ํŠนํžˆ ๋””์ง€ํ„ธ ๊ฑด๊ฐ• ๋ถ„์•ผ๋ฅผ ์ค‘์‹ฌ์œผ๋กœ AI์˜ ๋ฐœ์ „ ๊ฒฝ๋กœ๋ฅผ ์„ค๋ช…ํ•˜๋ฉด์„œ, AI๊ฐ€ ๋‹จ์ˆœํžˆ ๋ณต์žกํ•œ ๋งค๊ฐœ๋ณ€์ˆ˜์™€ ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ์ง‘ํ•ฉ์ด ์•„๋‹ˆ๋ผ ์กฐ์ง๊ณผ ์ ์‘์— ๊ธฐ๋ฐ˜ํ•œ๋‹ค๋Š” ๊ฒƒ์„ ๊ฐ•์กฐํ•œ๋‹ค. ๋…ผ๋ฌธ์€ AI์˜ ์›์น™๋“ค์ด ์ธ๊ฐ„ ๋‡Œ์‹ ๊ฒฝ์ƒ๋ฌผํ•™ ๋ฐ ์ง„ํ™” ๊ณผ์ •์—์„œ

MemR$^3$: Memory Retrieval via Reflective Reasoning for LLM Agents

MemR$^3$: Memory Retrieval via Reflective Reasoning for LLM Agents

๋ณธ ๋…ผ๋ฌธ์€ ๋Œ€๊ทœ๋ชจ ์–ธ์–ด ๋ชจ๋ธ(LLM) ๊ธฐ๋ฐ˜ ์—์ด์ „ํŠธ๊ฐ€ ๊ณผ๊ฑฐ ๊ฒฝํ—˜์„ ํ™œ์šฉํ•˜๋Š” ๋ฉ”๋ชจ๋ฆฌ ์‹œ์Šคํ…œ์„ ์žฌ๊ฒ€ํ† ํ•œ๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค์€ ์ฃผ๋กœ ๋ฉ”๋ชจ๋ฆฌ์˜ ์••์ถ• ํšจ์œจ๊ณผ ์ €์žฅ ์šฉ๋Ÿ‰์„ ์ตœ์ ํ™”ํ•˜๋Š” ๋ฐ ์ดˆ์ ์„ ๋งž์ถ”์—ˆ์œผ๋ฉฐ, ์‹ค์ œ ๋‹ต๋ณ€์„ ๋„์ถœํ•˜๋Š” ๊ณผ์ •์—์„œ ๊ธฐ์–ต์„ ์–ธ์ œ, ์–ด๋–ป๊ฒŒ ๊ฒ€์ƒ‰ํ• ์ง€์— ๋Œ€ํ•œ ์˜์‚ฌ๊ฒฐ์ • ๋ฉ”์ปค๋‹ˆ์ฆ˜์€ ๊ฑฐ์˜ ๋‹ค๋ฃจ์ง€ ์•Š์•˜๋‹ค. ์ด๋Ÿฌํ•œ ํ•œ๊ณ„๋Š” ํŠนํžˆ ๋ณตํ•ฉ์ ์ธ ์งˆ๋ฌธ์— ๋Œ€ํ•ด ์ถฉ๋ถ„ํ•œ ์ฆ๊ฑฐ๋ฅผ ์ˆ˜์ง‘ํ•˜์ง€ ๋ชปํ•˜๊ฑฐ๋‚˜, ์ด๋ฏธ ํ™•๋ณดํ•œ ์ •๋ณด์— ๊ณผ๋„ํ•˜๊ฒŒ ์˜์กดํ•˜๋Š” ๋ฌธ์ œ๋ฅผ ์•ผ๊ธฐํ•œ๋‹ค. MemRยณ๋Š” ์ด๋Ÿฌํ•œ ๋ฌธ์ œ์ ์„ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ๋‘ ๊ฐ€์ง€ ํ˜์‹ ์ ์ธ ๊ตฌ์„ฑ์š”์†Œ๋ฅผ ๋„์ž…ํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ๋Š” โ€˜๋ผ์šฐํ„ฐโ€™์ด๋‹ค

Retrieval-augmented Prompt Learning for Pre-trained Foundation Models

Retrieval-augmented Prompt Learning for Pre-trained Foundation Models

๋ณธ ๋…ผ๋ฌธ์€ ์‚ฌ์ „ ํ•™์Šต๋œ ๋Œ€ํ˜• ๋ชจ๋ธ(Preโ€‘trained Foundation Models, ์ดํ•˜ PFM)์ด ๋ฉ€ํ‹ฐ๋ชจ๋‹ฌ ํ•™์Šต์—์„œ ์ฐจ์ง€ํ•˜๋Š” ์ „๋žต์  ์œ„์น˜๋ฅผ ์žฌ์กฐ๋ช…ํ•œ๋‹ค. ๊ธฐ์กด์˜ โ€œpreโ€‘train, prompt, predictโ€ ํ๋ฆ„์€ ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ์ง์ ‘ ์—…๋ฐ์ดํŠธํ•˜๋Š” ์ „ํ†ต์ ์ธ ๋ฏธ์„ธ์กฐ์ • ๋ฐฉ์‹๊ณผ ๋‹ฌ๋ฆฌ, ํ”„๋กฌํ”„ํŠธ ํ† ํฐ์„ ์‚ฝ์ž…ํ•˜๊ฑฐ๋‚˜ ํ…œํ”Œ๋ฆฟ์„ ์„ค๊ณ„ํ•จ์œผ๋กœ์จ ๋ชจ๋ธ ์ž์ฒด๋Š” ๊ณ ์ •๋œ ์ฑ„ ์™ธ๋ถ€ ์ž…๋ ฅ๋งŒ์œผ๋กœ ์ž‘์—…์„ ์ˆ˜ํ–‰ํ•˜๋„๋ก ๋งŒ๋“ ๋‹ค. ์ด๋Ÿฌํ•œ ์ ‘๊ทผ์€ ํŒŒ๋ผ๋ฏธํ„ฐ ํšจ์œจ์„ฑ์„ ํฌ๊ฒŒ ๋†’์˜€์ง€๋งŒ, ์—ฌ์ „ํžˆ โ€œ๊ธฐ์–ต ์ค‘์‹ฌโ€์˜ ์ผ๋ฐ˜ํ™” ํ•œ๊ณ„์— ์ง๋ฉดํ•œ๋‹ค. ๊ตฌ์ฒด์ ์œผ๋กœ, ์ œํ•œ๋œ ๋ผ๋ฒจ ๋ฐ์ดํ„ฐ๋งŒ์œผ๋กœ ํ”„

Model Learning
No Image

SA-DiffuSeq: Addressing Computational and Scalability Challenges in Long-Document Generation with Sparse Attention

SAโ€‘DiffuSeq๋Š” ๊ธฐ์กด ํ™•์‚ฐ ๋ชจ๋ธ์ด ์ง๋ฉดํ•œ โ€œ์‹œ๊ฐ„ยท๊ณต๊ฐ„ ๋ณต์žก๋„ ํญ๋ฐœโ€ ๋ฌธ์ œ๋ฅผ ๊ทผ๋ณธ์ ์œผ๋กœ ์žฌ๊ตฌ์„ฑํ•œ๋‹ค๋Š” ์ ์—์„œ ํ•™์ˆ ์  ์˜์˜๊ฐ€ ํฌ๋‹ค. ์ „ํ†ต์ ์ธ ํ™•์‚ฐ ํ…์ŠคํŠธ ์ƒ์„ฑ์€ ์ „์ฒด ํ† ํฐ ๊ฐ„์˜ ์ „์—ญ ์–ดํ…์…˜์„ ๋งค ๋‹จ๊ณ„๋งˆ๋‹ค ์ˆ˜ํ–‰ํ•œ๋‹ค. ์ด ๋ฐฉ์‹์€ ์‹œํ€€์Šค ๊ธธ์ด L์— ๋Œ€ํ•ด O(Lยฒ)ยทT(์Šคํ… ์ˆ˜)์˜ ์—ฐ์‚ฐ๋Ÿ‰์„ ์š”๊ตฌํ•ด, ์ˆ˜์ฒœ ํ† ํฐ์„ ๋„˜์–ด์„œ๋Š” ๋ฌธ์„œ์—์„œ๋Š” GPU ๋ฉ”๋ชจ๋ฆฌ ์ดˆ๊ณผ์™€ ํ•™์Šต ์‹œ๊ฐ„ ๊ธ‰์ฆ์„ ์ดˆ๋ž˜ํ•œ๋‹ค. SAโ€‘DiffuSeq๋Š” ์ด๋Ÿฌํ•œ ์ „์—ญ ์—ฐ์‚ฐ์„ โ€œํฌ์†Œ ์–ดํ…์…˜โ€์ด๋ผ๋Š” ๊ตฌ์กฐ์  ์ œ์•ฝ์œผ๋กœ ๋Œ€์ฒดํ•œ๋‹ค. ๊ตฌ์ฒด์ ์œผ๋กœ, ๊ฐ ๋””ํ“จ์ „ ์Šคํ…์—์„œ ํ† ํฐ ๊ฐ„์˜ ์–ดํ…์…˜ ์—ฐ๊ฒฐ์„ ๋™์ ์œผ๋กœ ์„ 

Binary Neural Network Implementation for Handwritten Digit Recognition on FPGA

Binary Neural Network Implementation for Handwritten Digit Recognition on FPGA

์ด ๋…ผ๋ฌธ์€ ์ด์ง„์‹ ๊ฒฝ๋ง(BNN)์„ ํ™œ์šฉํ•œ ์†๊ธ€์”จ ์ˆซ์ž ์ธ์‹ ๊ฐ€์†๊ธฐ์˜ ์„ค๊ณ„์™€ ๊ตฌํ˜„์„ ๋‹ค๋ฃน๋‹ˆ๋‹ค. BNN๋Š” ๋ถ€๋™์†Œ์ˆ˜์  ์—ฐ์‚ฐ ๋Œ€์‹  ๋น„ํŠธ ๋…ผ๋ฆฌ ์—ฐ์‚ฐ์„ ์‚ฌ์šฉํ•จ์œผ๋กœ์จ, ์ €์ „๋ ฅ๊ณผ ๊ณ ์† ์ถ”๋ก ์ด ๊ฐ€๋Šฅํ•œ ํŠน์„ฑ์„ ๊ฐ€์ง€๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ํŠนํžˆ ์ด ์—ฐ๊ตฌ์—์„œ๋Š” Xilinx Artix 7 FPGA๋ฅผ ํƒ€๊ฒŸ์œผ๋กœ ํ•˜์—ฌ Verilog ์–ธ์–ด๋กœ ์ˆ˜์ž‘์—… ์„ค๊ณ„๋ฅผ ์ˆ˜ํ–‰ํ•˜์˜€์Šต๋‹ˆ๋‹ค. ์ด๋Š” ๊ณ ์ˆ˜์ค€ ํ•ฉ์„ฑ ๋„๊ตฌ ์—†์ด๋„ ์‹ค์‹œ๊ฐ„ ๋ถ„๋ฅ˜ ์„ฑ๋Šฅ์„ ๋‹ฌ์„ฑํ•  ์ˆ˜ ์žˆ์Œ์„ ๋ณด์—ฌ์ฃผ๋ฉฐ, 80 MHz์—์„œ ์ž‘๋™ํ•˜๋ฉด์„œ ๋‚ฎ์€ ์ „๋ ฅ ์†Œ๋น„์™€ ์˜ˆ์ธก ๊ฐ€๋Šฅํ•œ ํƒ€์ด๋ฐ์„ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค. MNIST ๋ฐ์ดํ„ฐ์…‹์— ๋Œ€ํ•œ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๊ฒฐ๊ณผ์—์„œ๋Š”

Network
HARMON-E: Hierarchical Agentic Reasoning for Multimodal Oncology Notes to Extract Structured Data

HARMON-E: Hierarchical Agentic Reasoning for Multimodal Oncology Notes to Extract Structured Data

๋ณธ ๋…ผ๋ฌธ์€ ์ „์ž ๊ฑด๊ฐ• ๊ธฐ๋ก(EHR) ๋‚ด์— ์‚ฐ์žฌํ•ด ์žˆ๋Š” ๋น„๊ตฌ์กฐํ™” ํ…์ŠคํŠธ๋ฅผ ํ™œ์šฉํ•ด ์•” ํ™˜์ž์— ๋Œ€ํ•œ ์ •๋ฐ€ํ•œ ์ž„์ƒ ์ •๋ณด๋ฅผ ์ž๋™์œผ๋กœ ๊ตฌ์กฐํ™”ํ•˜๋Š” ๋ฌธ์ œ์— ์ ‘๊ทผํ•œ๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค์€ ํฌ๊ฒŒ ๋‘ ๊ฐ€์ง€ ํ•œ๊ณ„์— ๋ด‰์ฐฉํ•œ๋‹ค. ์ฒซ์งธ, ํ•ฉ์„ฑ ๋ฐ์ดํ„ฐ์…‹์„ ์ด์šฉํ•˜๊ฑฐ๋‚˜ ์ œํ•œ๋œ ์‹ค์ œ ๋ฐ์ดํ„ฐ์—๋งŒ ์˜์กดํ•จ์œผ๋กœ์จ ์‹ค์ œ ์ž„์ƒ ํ˜„์žฅ์˜ ๋ณต์žก์„ฑ์„ ์ถฉ๋ถ„ํžˆ ๋ฐ˜์˜ํ•˜์ง€ ๋ชปํ•œ๋‹ค๋Š” ์ ์ด๋‹ค. ํ•ฉ์„ฑ ๋ฐ์ดํ„ฐ๋Š” ์šฉ์–ด ๋‹ค์–‘์„ฑ, ๋ฌธ์„œ ํ˜•์‹ ๋ณ€์ด, ๊ทธ๋ฆฌ๊ณ  ํ™˜์ž ๊ฐ„ ์ •๋ณด ์ถฉ๋Œ์„ ์žฌํ˜„ํ•˜๊ธฐ ์–ด๋ ต๋‹ค. ๋‘˜์งธ, ๋Œ€๋ถ€๋ถ„์˜ ์ž๋™ํ™” ๋ฐฉ๋ฒ•์ด ๋ฌธ์„œ ์ˆ˜์ค€์—์„œ ํŠน์ • ๋ณ€์ˆ˜๋งŒ์„ ์ถ”์ถœํ•˜๋„๋ก ์„ค๊ณ„๋ผ, ํ™˜์ž ์ „์ฒด ๊ธฐ๋ก์„ ํ†ตํ•ฉํ•ด ์ผ๊ด€๋œ ํ”„๋กœ

Data
No Image

Is Visual Realism Enough? Evaluating Gait Biometric Fidelity in Generative AI Human Animation

์ƒ์„ฑ AI์˜ ๋ฐœ์ „์€ ์• ๋‹ˆ๋ฉ”์ด์…˜ ๋ถ„์•ผ์—์„œ ์ƒˆ๋กœ์šด ๊ฐ€๋Šฅ์„ฑ์„ ์—ด์—ˆ์ง€๋งŒ, ์ธ๊ฐ„ ์›€์ง์ž„์˜ ์ž์—ฐ์Šค๋Ÿฌ์šด ์žฌํ˜„์—๋Š” ์—ฌ์ „ํžˆ ํ•œ๊ณ„๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค. ํŠนํžˆ ์ƒ์ฒด์ธ์‹๊ณผ ๊ฐ™์€ ๊ณ ๋„๋กœ ์„ธ๋ฐ€ํ•œ ์ž‘์—…์—์„œ๋Š” ์ด๋Ÿฌํ•œ ํ•œ๊ณ„๊ฐ€ ๋”์šฑ ๋‘๋“œ๋Ÿฌ์ง‘๋‹ˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ์ตœ์‹  ์ƒ์„ฑ AI ๋ชจ๋ธ๋“ค์ด ๊ฑธ์Œ๊ฑธ์ด ํŒจํ„ด์„ ์ •ํ™•ํ•˜๊ฒŒ ๋ณต์›ํ•˜๊ณ  ์ด๋ฅผ ๋‹ค๋ฅธ ์‹œ๊ฐ์  ์ •์ฒด์„ฑ์— ์ „๋‹ฌํ•  ์ˆ˜ ์žˆ๋Š”์ง€ ํ‰๊ฐ€ํ–ˆ์Šต๋‹ˆ๋‹ค. ๊ฒฐ๊ณผ์ ์œผ๋กœ, ํ˜„์žฌ์˜ ์ƒ์„ฑ AI ๋ชจ๋ธ๋“ค์€ ์›€์ง์ž„๊ณผ ์ •์ฒด์„ฑ์„ ๋ถ„๋ฆฌํ•˜๋Š” ๋ฐ ์–ด๋ ค์›€์„ ๊ฒช๊ณ  ์žˆ์œผ๋ฉฐ, ์ด๋Š” ์™ธ๊ด€ ๊ธฐ๋ฐ˜ ๊ฑธ์Œ๊ฑธ์ด ์ธ์‹์—์„œ ์‹๋ณ„๋ฅ ์ด ํฌ๊ฒŒ ์ €ํ•˜๋˜๋Š” ์›์ธ ์ค‘ ํ•˜๋‚˜์ž…๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฐœ๊ฒฌ์€ ๋ฏธ๋ž˜์˜ ์—ฐ๊ตฌ๊ฐ€ ๋™

No Image

On the Existence and Behaviour of Secondary Attention Sinks

์ด ๋…ผ๋ฌธ์€ ๊ธฐ์กด ์—ฐ๊ตฌ์—์„œ ๋‹ค๋ฃจ์–ด์ง„ '์ฃผ์š” ์นจ์ˆ˜'์™€ ๊ตฌ๋ณ„๋˜๋Š” ์ƒˆ๋กœ์šด ํ˜•ํƒœ์˜ '๋ถ€์ฐจ์  ์นจ์ˆ˜'๋ฅผ ์‹๋ณ„ํ•˜๊ณ  ๊ทธ ํŠน์„ฑ๊ณผ ํ˜•์„ฑ ๊ณผ์ •์„ ๋ถ„์„ํ•œ๋‹ค. ๋ถ€์ฐจ์  ์นจ์ˆ˜๋Š” ์ค‘๊ฐ„ ๋ ˆ์ด์–ด์—์„œ ์ฃผ๋กœ ๋ฐœ์ƒํ•˜๋ฉฐ, ๋‹ค์–‘ํ•œ ์ˆ˜์˜ ๋ ˆ์ด์–ด์— ๊ฑธ์ณ ์กด์žฌํ•˜๊ณ  ์ƒ๋Œ€์ ์œผ๋กœ ์ž‘์€ ์–‘์˜ ์ฃผ์˜๋ ฅ์„ ๋ฐ›๋Š”๋‹ค. ์ด ์—ฐ๊ตฌ์—์„œ๋Š” 11๊ฐœ ๋ชจ๋ธ ๊ฐ€์กฑ์„ ๋Œ€์ƒ์œผ๋กœ ์‹คํ—˜์„ ํ†ตํ•ด ์ด๋Ÿฌํ•œ ๋ถ€์ฐจ์  ์นจ์ˆ˜์˜ ํ˜•์„ฑ ๊ณผ์ •๊ณผ ํŠน์„ฑ์„ ๋ถ„์„ํ•œ๋‹ค. ํŠนํžˆ, ์ค‘๊ฐ„ ๋ ˆ์ด์–ด์˜ MLP ๋ชจ๋“ˆ์—์„œ ํ† ํฐ ํ‘œํ˜„์„ ์ฃผ์š” ์นจ์ˆ˜ ๋ฐฉํ–ฅ์— ๋งž๊ฒŒ ๋งคํ•‘ํ•˜๋Š” ๊ฒƒ์„ ๋ฐœ๊ฒฌํ•˜๊ณ , ์ด ๋ฒกํ„ฐ๋“ค์˜ 2 ๋…ธ๋ฆ„์ด ๋ถ€์ฐจ์  ์นจ์ˆ˜์˜ ์ ์ˆ˜์™€ ์ง€์† ๊ธฐ๊ฐ„์„ ๊ฒฐ์ •ํ•œ๋‹ค๋Š” ์‚ฌ์‹ค์„

PhysMaster: Building an Autonomous AI Physicist for Theoretical and Computational Physics Research

PhysMaster: Building an Autonomous AI Physicist for Theoretical and Computational Physics Research

์ด ๋…ผ๋ฌธ์€ ํ˜„์žฌ ์ธ๊ณต์ง€๋Šฅ์ด ๊ณผํ•™ ์—ฐ๊ตฌ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ํ•œ ๋‹จ๊ณ„ ๋Œ์–ด์˜ฌ๋ฆฌ๋Š” ์ค‘์š”ํ•œ ์‹œ๋„๋ฅผ ์ œ์‹œํ•œ๋‹ค. ๊ธฐ์กด์˜ AI ์—ฐ๊ตฌ๋Š” ์ฃผ๋กœ ์ •ํ˜•ํ™”๋œ ๋ฌธ์ œ ํ’€์ด ํ˜น์€ ์ •๋ณด ๊ฒ€์ƒ‰์— ๋จธ๋ฌผ๋ €์œผ๋ฉฐ, ์‹ค์ œ ๋ฌผ๋ฆฌํ•™ ์—ฐ๊ตฌ์™€ ๊ฐ™์ด ๋ณตํ•ฉ์ ์ธ ์ด๋ก ์  ์‚ฌ๊ณ ์™€ ์ˆ˜์น˜ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ๋™์‹œ์— ์š”๊ตฌํ•˜๋Š” ์ž‘์—…์„ ์ˆ˜ํ–‰ํ•˜๊ธฐ์—” ํ•œ๊ณ„๊ฐ€ ์žˆ์—ˆ๋‹ค. PHYSMASTER๋Š” ์ด๋Ÿฌํ•œ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด ๋‘ ๊ฐ€์ง€ ํ•ต์‹ฌ ์š”์†Œ๋ฅผ ๊ฒฐํ•ฉํ•œ๋‹ค. ์ฒซ์งธ, ๋Œ€๊ทœ๋ชจ ์–ธ์–ด ๋ชจ๋ธ์— ์ด๋ก ์  ์ถ”๋ก ๊ณผ ์ฝ”๋”ฉ ๋Šฅ๋ ฅ์„ ๋™์‹œ์— ๋ถ€์—ฌํ•จ์œผ๋กœ์จ, ์‚ฌ์šฉ์ž๊ฐ€ ์ œ์‹œํ•œ ๋ฌผ๋ฆฌ์  ์งˆ๋ฌธ์— ๋Œ€ํ•ด ๋…ผ๋ฆฌ์  ์ „๊ฐœ์™€ ์ˆ˜์น˜ ๊ฒ€์ฆ์„ ์—ฐ์†์ ์œผ๋กœ ์ˆ˜ํ–‰ํ•œ๋‹ค. ๋‘˜์งธ,

Reflection-Driven Control for Trustworthy Code Agents

Reflection-Driven Control for Trustworthy Code Agents

๋ณธ ๋…ผ๋ฌธ์€ ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(LLM) ๊ธฐ๋ฐ˜ ์ฝ”๋”ฉ ์—์ด์ „ํŠธ๊ฐ€ ์ง๋ฉดํ•œ ์•ˆ์ „์„ฑ ๋ฌธ์ œ๋ฅผ ๊ทผ๋ณธ์ ์œผ๋กœ ํ•ด๊ฒฐํ•˜๋ ค๋Š” ์‹œ๋„๋กœ์„œ, โ€˜๋ฐ˜์‚ฌ ๊ธฐ๋ฐ˜ ์ œ์–ด(Reflectionโ€‘Driven Control, RDC)โ€™๋ผ๋Š” ์ƒˆ๋กœ์šด ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ์ œ์•ˆํ•œ๋‹ค. ๊ธฐ์กด์˜ ์•ˆ์ „ ์ œ์–ด ๋ฐฉ์‹์€ ์ฃผ๋กœ ์‚ฌํ›„ ํ•„ํ„ฐ๋ง, ํ”„๋กฌํ”„ํŠธ ์—”์ง€๋‹ˆ์–ด๋ง, ํ˜น์€ ์™ธ๋ถ€ ๊ฒ€์ฆ ๋ชจ๋“ˆ์— ์˜์กดํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ์ ‘๊ทผ๋ฒ•์€ ๋ชจ๋ธ์ด ์ด๋ฏธ ์œ„ํ—˜ํ•œ ์ถœ๋ ฅ์„ ์ƒ์„ฑํ•œ ๋’ค์— ์ด๋ฅผ ์ฐจ๋‹จํ•˜๊ฑฐ๋‚˜ ์ˆ˜์ •ํ•˜๊ธฐ ๋•Œ๋ฌธ์—, ์œ„ํ—˜์ด ๋ฐœ์ƒํ•  ๊ฐ€๋Šฅ์„ฑ์„ ์™„์ „ํžˆ ๋ฐฐ์ œํ•˜์ง€ ๋ชปํ•œ๋‹ค. ๋ฐ˜๋ฉด RDC๋Š” ์œ„ํ—˜ ๊ฐ์ง€๋ฅผ ์ƒ์„ฑ ๊ณผ์ • ์ค‘์— ์ˆ˜ํ–‰ํ•œ๋‹ค๋Š” ์ ์—์„œ ์ฐจ๋ณ„ํ™”๋œ๋‹ค. RDC

Scalable Stewardship of an LLM-Assisted Clinical Benchmark with Physician Oversight

Scalable Stewardship of an LLM-Assisted Clinical Benchmark with Physician Oversight

๋ณธ ์—ฐ๊ตฌ๋Š” ์ž„์ƒ ๋ฐ์ดํ„ฐ ์ž๋™ํ™”์— LLM์„ ์ ์šฉํ•จ์— ์žˆ์–ด ๊ฐ€์žฅ ํ•ต์‹ฌ์ ์ธ ๋ฌธ์ œ์ธ ๋ผ๋ฒจ ์‹ ๋ขฐ์„ฑ์„ ์ฒด๊ณ„์ ์œผ๋กœ ๊ฒ€์ฆํ•œ๋‹ค๋Š” ์ ์—์„œ ํ•™์ˆ ์ ยท์‹ค๋ฌด์  ์˜์˜๋ฅผ ๊ฐ€์ง„๋‹ค. ๊ธฐ์กด ์˜๋ฃŒ ์ ์ˆ˜๋Š” ์ž„์ƒ์˜์˜ ๊ฒฝํ—˜๊ณผ ํŒ๋‹จ์— ๊ธฐ๋ฐ˜ํ•ด ์ˆ˜์ž‘์—…์œผ๋กœ ์‚ฐ์ถœ๋˜์—ˆ์œผ๋ฉฐ, ์ด๋Š” ์ •ํ™•๋„๋Š” ๋†’์ง€๋งŒ ์‹œ๊ฐ„๊ณผ ์ธ๋ ฅ ๋น„์šฉ์ด ํฌ๊ฒŒ ์†Œ์š”๋˜๋Š” ๋‹จ์ ์ด ์žˆ๋‹ค. MedCalcโ€‘Bench๋Š” ์ด๋Ÿฌํ•œ ์ž‘์—…์„ LLM์œผ๋กœ ๋Œ€์ฒดํ•˜๋ ค๋Š” ์‹œ๋„๋กœ, ๋Œ€๊ทœ๋ชจ ๋ฒค์น˜๋งˆํฌ๋ฅผ ์ œ๊ณตํ•จ์œผ๋กœ์จ ์—ฐ๊ตฌ์ž๋“ค์ด ๋ชจ๋ธ ์„ฑ๋Šฅ์„ ๋น„๊ตํ•  ์ˆ˜ ์žˆ๋Š” ๊ธฐ๋ฐ˜์„ ๋งˆ๋ จํ–ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๋ผ๋ฒจ ์ž์ฒด๋ฅผ LLM์ด ์ƒ์„ฑํ–ˆ๋‹ค๋Š” ์‚ฌ์‹ค์€ โ€˜๋ผ๋ฒจ๋ง ํŽธํ–ฅโ€™์ด๋ผ๋Š” ์‹ฌ๊ฐํ•œ ์œ„ํ—˜์„ ๋‚ด

< Category Statistics (Total: 743) >

Electrical Engineering and Systems Science
7
General
272
General Relativity
7
HEP-EX
5
HEP-PH
12
HEP-TH
5
MATH-PH
3
NUCL-TH
1
Quantum Physics
10

Start searching

Enter keywords to search articles

โ†‘โ†“
โ†ต
ESC
โŒ˜K Shortcut