General

All posts under category "General"

272 posts total
Sorted by date
When GenAI Meets Fake News: Understanding Image Cascade Dynamics on Reddit

When GenAI Meets Fake News: Understanding Image Cascade Dynamics on Reddit

๋ณธ ๋…ผ๋ฌธ์€ AIโ€‘์ƒ์„ฑ ์ด๋ฏธ์ง€์™€ ํ—ˆ์œ„ ์ •๋ณด๊ฐ€ ์†Œ์…œ ๋ฏธ๋””์–ด, ํŠนํžˆ Reddit์ด๋ผ๋Š” ํฌ๋Ÿผ ๊ธฐ๋ฐ˜ ํ”Œ๋žซํผ์—์„œ ์–ด๋–ป๊ฒŒ ํ™•์‚ฐ๋˜๋Š”์ง€๋ฅผ ์ •๋Ÿ‰์ ์œผ๋กœ ๊ทœ๋ช…ํ•œ ์ตœ์ดˆ์˜ ๋Œ€๊ทœ๋ชจ ์—ฐ๊ตฌ๋กœ ํ‰๊ฐ€ํ•  ์ˆ˜ ์žˆ๋‹ค. ์—ฐ๊ตฌ์ž๋Š” ์ด๋…์  ์ŠคํŽ™ํŠธ๋Ÿผ์ด ๋„“์€ ๋‹ค์„ฏ ๊ฐœ ์„œ๋ธŒ๋ ˆ๋”ง์„ ์„ ์ •ํ•จ์œผ๋กœ์จ, ์ขŒํŒŒยท์šฐํŒŒยท์ค‘๋„ยท๋Œ€์•ˆยท๊ธฐ์ˆ  ์ค‘์‹ฌ ์ปค๋ฎค๋‹ˆํ‹ฐ ๋“ฑ ๋‹ค์–‘ํ•œ ์ •์น˜ยท์‚ฌํšŒ์  ๋ฐฐ๊ฒฝ์„ ํฌ๊ด„ํ•˜์˜€๋‹ค. ๋ฐ์ดํ„ฐ ์ˆ˜์ง‘ ๋‹จ๊ณ„์—์„œ๋Š” 2022โ€‘2024๋…„ ์‚ฌ์ด์— ๊ฒŒ์‹œ๋œ 1๋ฐฑ๋งŒ ๊ฑด ์ด์ƒ์˜ ํฌ์ŠคํŠธ์™€ ๊ทธ์— ์—ฐ๊ฒฐ๋œ ์žฌ๊ฒŒ์‹œ(cascade) ๋ฐ์ดํ„ฐ๋ฅผ ํฌ๋กค๋งํ–ˆ์œผ๋ฉฐ, ๊ฐ ํฌ์ŠคํŠธ์— ํฌํ•จ๋œ ์ด๋ฏธ์ง€๊ฐ€ AIโ€‘์ƒ์„ฑ ์—ฌ๋ถ€๋ฅผ ํŒ๋ณ„ํ•˜๊ธฐ ์œ„ํ•ด ์ตœ์‹ 

Balancing Safety and Helpfulness in Healthcare AI Assistants through Iterative Preference Alignment

Balancing Safety and Helpfulness in Healthcare AI Assistants through Iterative Preference Alignment

๋ณธ ๋…ผ๋ฌธ์€ ์˜๋ฃŒ ํ˜„์žฅ์—์„œ LLM ๊ธฐ๋ฐ˜ ๋Œ€ํ™”ํ˜• ๋ณด์กฐ ์‹œ์Šคํ…œ์ด ์ง๋ฉดํ•œ ๋‘ ๊ฐ€์ง€ ํ•ต์‹ฌ ๊ณผ์ œโ€”โ€˜์œ„ํ—˜ํ•œ ์š”์ฒญ์— ๋Œ€ํ•œ ๊ณผ์ž‰ ์ˆœ์‘โ€™๊ณผ โ€˜๋ฌดํ•ดํ•œ ์š”์ฒญ์— ๋Œ€ํ•œ ๊ณผ์ž‰ ๊ฑฐ๋ถ€โ€™๋ฅผ ๋™์‹œ์— ํ•ด๊ฒฐํ•˜๊ณ ์ž ํ•˜๋Š” ์‹œ๋„๋ฅผ ๋‹ด๊ณ  ์žˆ๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ์ €์ž๋“ค์€ ๊ธฐ์กด ์‚ฌํ›„ ์ •๋ ฌ(Postโ€‘Deployment Alignment) ์ ‘๊ทผ๋ฒ•์— Kahnemanโ€‘Tversky Optimization(KTO)๊ณผ Direct Preference Optimization(DPO)์„ ๊ฒฐํ•ฉํ•œ ์ƒˆ๋กœ์šด ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์„ค๊ณ„ํ•˜์˜€๋‹ค. KTO๋Š” ์ธ๊ฐ„์˜ ์ธ์ง€ ํŽธํ–ฅ์„ ๋ชจ๋ธ๋งํ•ด ์œ„ํ—˜ ์‹ ํ˜ธ์— ๋Œ€ํ•œ ๋ฏผ๊ฐ๋„๋ฅผ ์กฐ์ ˆํ•˜๊ณ ,

SPARK: Stepwise Process-Aware Rewards for Reference-Free Reinforcement Learning

SPARK: Stepwise Process-Aware Rewards for Reference-Free Reinforcement Learning

๋ณธ ๋…ผ๋ฌธ์€ ๊ฐ•ํ™”ํ•™์Šต(RL)์—์„œ ํ•ต์‹ฌ์ ์ธ ๋ณด์ƒ ์„ค๊ณ„ ๋ฌธ์ œ๋ฅผ ์ƒˆ๋กœ์šด ๊ด€์ ์—์„œ ํ•ด๊ฒฐํ•œ๋‹ค. ์ „ํ†ต์ ์ธ PRM์€ ๋‹จ๊ณ„๋ณ„ ์ •๋‹ต ๋ ˆํผ๋Ÿฐ์Šค๋‚˜ ์ธ๊ฐ„ ์ฃผ์„์— ์˜์กดํ•ด ํ•™์Šต ๋ฐ์ดํ„ฐ๋ฅผ ๊ตฌ์ถ•ํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ด๋Ÿฌํ•œ ๋ฐ์ดํ„ฐ๋Š” ๋น„์šฉ์ด ๋งŽ์ด ๋“ค๊ณ , ํŠนํžˆ ์ˆ˜ํ•™ยท๊ณผํ•™ยท์ฝ”๋“œ์™€ ๊ฐ™์ด ์ •๋‹ต์ด ๋ณต์žกํ•˜๊ฑฐ๋‚˜ ์กด์žฌํ•˜์ง€ ์•Š์„ ๋•Œ๋Š” ์‹ค์šฉ์„ฑ์ด ๋–จ์–ด์ง„๋‹ค. SPARK๋Š” ์ด ํ•œ๊ณ„๋ฅผ โ€œ์ƒ์„ฑโ€‘๊ฒ€์ฆโ€ ๋ฃจํ”„๋ฅผ ํ†ตํ•ด ๊ทน๋ณตํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ ๋‹จ๊ณ„์—์„œ ์ƒ์„ฑ๊ธฐ ๋ชจ๋ธ์€ ํ”„๋กฌํ”„ํŠธ์— ๋”ฐ๋ผ ๋‹ค์ฑ„๋กœ์šด ํ’€์ด ๊ฒฝ๋กœ๋ฅผ ์ƒ์„ฑํ•œ๋‹ค. ์—ฌ๊ธฐ์„œ ์ค‘์š”ํ•œ ์ ์€ ๋‹ค์–‘์„ฑ์„ ํ™•๋ณดํ•˜๊ธฐ ์œ„ํ•ด ์˜จ๋„ ์กฐ์ ˆ, ์ƒ˜ํ”Œ๋ง ๊ธฐ๋ฒ• ๋“ฑ์„ ํ™œ์šฉํ•ด ๋‹ค์ˆ˜์˜ ํ›„๋ณด ํ’€์ด

Learning
Towards a fully differentiable digital twin for solar cells

Towards a fully differentiable digital twin for solar cells

๋ณธ ๋…ผ๋ฌธ์€ ํƒœ์–‘์ „์ง€ ์—ฐ๊ตฌ์—์„œ ๊ฐ€์žฅ ์‹ค์šฉ์ ์ธ ๋ชฉํ‘œ ์ค‘ ํ•˜๋‚˜์ธ ์—ฐ๊ฐ„ ์—๋„ˆ์ง€ ์ˆ˜์œจ(EY) ์ตœ์ ํ™”๋ฅผ ์œ„ํ•œ ํ†ตํ•ฉ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์‹œํ•œ๋‹ค. ๊ธฐ์กด์˜ ๊ณ„์‚ฐ ์ ‘๊ทผ๋ฒ•์€ ๊ด‘ํ•™, ์ „๊ธฐ, ์—ด, ์žฌ๋ฃŒ ๊ณผํ•™ ๋“ฑ ๊ฐ๊ฐ์˜ ๋ถ„์•ผ๋ฅผ ๋ณ„๋„๋กœ ๋‹ค๋ฃจ๋Š” ๊ฒฝ์šฐ๊ฐ€ ๋งŽ์•„, ์‹ค์ œ ํ˜„์žฅ ์ ์šฉ ์‹œ ๋ฐœ์ƒํ•˜๋Š” ๋ณตํ•ฉ์ ์ธ ๋ณ€์ˆ˜๋“ค์„ ๋™์‹œ์— ๊ณ ๋ คํ•˜๊ธฐ ์–ด๋ ต๋‹ค. ์ด๋Ÿฌํ•œ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด ์ €์ž๋“ค์€ โ€˜์ฐจ๋ณ„ ๊ฐ€๋Šฅํ•œ ๋””์ง€ํ„ธ ํŠธ์œˆ(Differentiable Digital Twin)โ€™์ด๋ผ๋Š” ๊ฐœ๋…์„ ๋„์ž…ํ•˜์˜€๋‹ค. ๋””์ง€ํ„ธ ํŠธ์œˆ์€ ๋ฌผ๋ฆฌ์  ์‹œ์Šคํ…œ์„ ๊ฐ€์ƒ ๊ณต๊ฐ„์— ์ •๋ฐ€ํžˆ ๋ณต์ œํ•˜๋Š” ๊ธฐ์ˆ ์ด๋ฉฐ, ์—ฌ๊ธฐ์„œ ์ฐจ๋ณ„ ๊ฐ€๋Šฅ

Video4Spatial: Towards Visuospatial Intelligence with Context-Guided Video Generation

Video4Spatial: Towards Visuospatial Intelligence with Context-Guided Video Generation

VIDEO4SPATIAL์€ ์ตœ๊ทผ ๋น„๋””์˜ค ๊ธฐ๋ฐ˜ ์ธ๊ณต์ง€๋Šฅ ์—ฐ๊ตฌ์—์„œ ๋ˆˆ์— ๋„๋Š” ์ „ํ™˜์ ์„ ์ œ๊ณตํ•œ๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค์€ ์ฃผ๋กœ RGBโ€‘D, ํฌ์ฆˆ ์ถ”์ •, ํ˜น์€ 3D ๋ฉ”์‰ฌ์™€ ๊ฐ™์€ ๋‹ค์ค‘ ๋ชจ๋‹ฌ๋ฆฌํ‹ฐ๋ฅผ ๊ฒฐํ•ฉํ•ด ๊ณต๊ฐ„ ์ •๋ณด๋ฅผ ๋ณด๊ฐ•ํ–ˆ์ง€๋งŒ, ์ด ๋…ผ๋ฌธ์€ ์ˆœ์ˆ˜ ๋น„๋””์˜ค ํ”„๋ ˆ์ž„๋งŒ์œผ๋กœ ๋™์ผํ•˜๊ฑฐ๋‚˜ ๊ทธ ์ด์ƒ์˜ ์„ฑ๋Šฅ์„ ๋‹ฌ์„ฑํ•œ๋‹ค๋Š” ์ ์—์„œ ํ˜์‹ ์ ์ด๋‹ค. ํ•ต์‹ฌ์€ ๋‘ ๊ฐ€์ง€ ์„ค๊ณ„ ์„ ํƒ์— ์žˆ๋‹ค. ์ฒซ์งธ, ๋ฐ์ดํ„ฐ ํ๋ ˆ์ด์…˜ ๋‹จ๊ณ„์—์„œ โ€˜์‹œ๊ณต๊ฐ„ ์ผ๊ด€์„ฑโ€™๊ณผ โ€˜๋‹ค์–‘ํ•œ ์‹œ์  ์ „์ดโ€™๋ฅผ ๊ฐ•์กฐํ•œ ๊ณ ํ’ˆ์งˆ ์‹œํ€€์Šค๋ฅผ ์„ ๋ณ„ํ•จ์œผ๋กœ์จ ๋ชจ๋ธ์ด ์ž์—ฐ์Šค๋Ÿฌ์šด ์›€์ง์ž„๊ณผ ๋ฌผ์ฒด ๋ณ€ํ™”๋ฅผ ํ•™์Šตํ•˜๋„๋ก ์œ ๋„ํ–ˆ๋‹ค. ๋‘˜์งธ, ํ”„๋ ˆ์ž„์›Œํฌ ๋‚ด๋ถ€์—

AI-Enabled grading with near-domain data for scaling feedback with human-level accuracy

AI-Enabled grading with near-domain data for scaling feedback with human-level accuracy

๋ณธ ์—ฐ๊ตฌ๊ฐ€ ๋‹ค๋ฃจ๋Š” ํ•ต์‹ฌ ๋ฌธ์ œ๋Š” โ€˜๊ตฌ์„ฑํ˜• ์งง์€ ๋‹ต๋ณ€ ์ฑ„์ โ€™์ด๋ผ๋Š” ๊ต์œก ํ˜„์žฅ์˜ ๋‚œ์ œ์ด๋‹ค. ์ „ํ†ต์ ์ธ ์ž๋™ ์ฑ„์  ์‹œ์Šคํ…œ์€ ๊ฐ๊ด€์‹์ฒ˜๋Ÿผ ์ •๋‹ต์ด ๋ช…ํ™•ํžˆ ์ •์˜๋œ ๊ฒฝ์šฐ์—๋งŒ ๋†’์€ ์ •ํ™•๋„๋ฅผ ๋ณด์ด๋ฉฐ, ์ž์œ  ์„œ์ˆ ํ˜• ๋‹ต๋ณ€์€ ํ‘œํ˜„ ๋‹ค์–‘์„ฑ, ์–ดํœ˜ ์„ ํƒ, ๋ฌธ๋งฅ์  ์˜๋ฏธ ๋“ฑ ๋ณตํ•ฉ์ ์ธ ๋ณ€์ˆ˜๋ฅผ ํฌํ•จํ•œ๋‹ค. ๋”ฐ๋ผ์„œ ์‚ฌ์ „ ์ •์˜๋œ ๋ฃจ๋ธŒ๋ฆญ ์—†์ด๋„ ์ •ํ™•ํžˆ ์ฑ„์ ํ•˜๋ ค๋ฉด ๋ฐฉ๋Œ€ํ•œ ํ•™์Šต ๋ฐ์ดํ„ฐ์™€ ์ •๊ตํ•œ ์˜๋ฏธ ์ดํ•ด๊ฐ€ ํ•„์š”ํ•˜๋‹ค. ์ €์ž๋“ค์€ ์ด๋Ÿฌํ•œ ๋‚œ์ ์„ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด โ€˜๊ทผ์ ‘ ๋ฐ์ดํ„ฐ(nearโ€‘domain data)โ€™๋ผ๋Š” ๊ฐœ๋…์„ ๋„์ž…ํ•œ๋‹ค. ์ด๋Š” ๋™์ผํ•˜๊ฑฐ๋‚˜ ์œ ์‚ฌํ•œ ์ฃผ์ œยท๋‚œ์ด๋„์˜ ๊ณผ๊ฑฐ ์‹œํ—˜ ๋ฌธํ•ญ๊ณผ ํ•™

Data
An Empirical Study of Agent Developer Practices in AI Agent Frameworks

An Empirical Study of Agent Developer Practices in AI Agent Frameworks

๋ณธ ๋…ผ๋ฌธ์€ LLM(๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ) ๊ธฐ๋ฐ˜ ์—์ด์ „ํŠธ ํ”„๋ ˆ์ž„์›Œํฌ๋ผ๋Š” ๋น„๊ต์  ์ƒˆ๋กœ์šด ์—ฐ๊ตฌ ์˜์—ญ์— ๋Œ€ํ•œ ํฌ๊ด„์ ์ธ ์‹ค์ฆ ์กฐ์‚ฌ๋ฅผ ์ˆ˜ํ–‰ํ–ˆ๋‹ค๋Š” ์ ์—์„œ ํ•™์ˆ ์ ยท์‹ค๋ฌด์  ์˜๋ฏธ๊ฐ€ ํฌ๋‹ค. ์ฒซ ๋ฒˆ์งธ ๊ฐ•์ ์€ ๋ฐ์ดํ„ฐ ์ˆ˜์ง‘ ๊ทœ๋ชจ์ด๋‹ค. 1,575๊ฐœ์˜ ์‹ค์ œ ์˜คํ”ˆ์†Œ์Šค ํ”„๋กœ์ ํŠธ์™€ 8,710๊ฐœ์˜ ๊ฐœ๋ฐœ์ž ํ† ๋ก ์„ ๋ฉ”ํƒ€๋ฐ์ดํ„ฐ๋กœ ํ™œ์šฉํ•จ์œผ๋กœ์จ, ๋‹จ์ˆœํžˆ ๋ฌธํ—Œ ์กฐ์‚ฌ์— ๋จธ๋ฌด๋ฅด์ง€ ์•Š๊ณ  ํ˜„์žฅ ์‹ค๋ฌด์—์„œ ๋ฐœ์ƒํ•˜๋Š” ๊ตฌ์ฒด์ ์ธ ๋ฌธ์ œ์™€ ์‚ฌ์šฉ ํŒจํ„ด์„ ํฌ์ฐฉํ–ˆ๋‹ค. ํŠนํžˆ 10๊ฐœ์˜ ๋Œ€ํ‘œ ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์„ ์ •ํ•˜๋Š” ๊ณผ์ •์—์„œ โ€˜๋ณ„(star)โ€™ยทโ€˜ํฌํฌ(fork)โ€™ยทโ€˜ํ™œ๋™์„ฑโ€™ ๋“ฑ ๊ฐ๊ด€์ ์ธ ์ง€ํ‘œ์™€ ํ•จ๊ป˜ ํ† ๋ก  ๋‚ด์šฉ์˜ ์งˆ์ 

Framework
Community Quality and Influence Maximization: An Empirical Study

Community Quality and Influence Maximization: An Empirical Study

์ด ๋…ผ๋ฌธ์€ ์ธํ”Œ๋ฃจ์–ธ์Šค ์ตœ๋Œ€ํ™” ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•œ ๋‘ ๊ฐ€์ง€ ์ ‘๊ทผ๋ฒ•์„ ์ฒด๊ณ„์ ์œผ๋กœ ๋น„๊ตํ•จ์œผ๋กœ์จ, ์ปค๋ฎค๋‹ˆํ‹ฐ ํƒ์ง€ ํ’ˆ์งˆ์ด ์‹ค์ œ ํ™•์‚ฐ ์„ฑ๋Šฅ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ์‹ค์ฆ์ ์œผ๋กœ ๊ทœ๋ช…ํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ ์ ‘๊ทผ๋ฒ•์€ ๊ธฐ์กด์˜ ๊ณ„์ธต ๊ตฐ์ง‘(Hierarchical Clustering) ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์‚ฌ์šฉํ•ด ์–ป์€ ๋น„๊ต์  ์ €ํ’ˆ์งˆ์˜ ์ปค๋ฎค๋‹ˆํ‹ฐ ๊ตฌ์กฐ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ์‹œ๋“œ ๋…ธ๋“œ๋ฅผ ์„ ์ •ํ•œ๋‹ค. ๋‘ ๋ฒˆ์งธ ์ ‘๊ทผ๋ฒ•์€ ์ €์ž๋“ค์ด ์ด์ „ ์—ฐ๊ตฌ์—์„œ ์ œ์•ˆํ•œ ฮฑโ€‘๊ณ„์ธต ๊ตฐ์ง‘(ฮฑโ€‘Hierarchical Clustering) ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ ์šฉํ•ด, ๋ณด๋‹ค ๋ช…ํ™•ํ•œ ๋ชจ๋“ˆ์„ฑ(modularity)๊ณผ ๋‚ด๋ถ€ ๊ฒฐ์†๋ ฅ์„ ๊ฐ€์ง„ ๊ณ ํ’ˆ์งˆ

Data assimilation and discrepancy modeling with shallow recurrent decoders

Data assimilation and discrepancy modeling with shallow recurrent decoders

๋ณธ ๋…ผ๋ฌธ์€ ํ˜„๋Œ€ ์„ผ์„œ ๋„คํŠธ์›Œํฌ๊ฐ€ ์ง๋ฉดํ•œ ๋‘ ๊ฐ€์ง€ ๊ทผ๋ณธ์ ์ธ ํ•œ๊ณ„, ์ฆ‰ ์ธก์ • ํฌ์ธํŠธ์˜ ํฌ์†Œ์„ฑ ๋ฐ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๋ชจ๋ธ์˜ ๋ถˆ์™„์ „์„ฑ์„ ๋™์‹œ์— ํ•ด๊ฒฐํ•˜๋ ค๋Š” ์‹œ๋„๋กœ์„œ, ๋จธ์‹ ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜ ๋ฐ์ดํ„ฐ ๋™ํ™” ํ”„๋ ˆ์ž„์›Œํฌ DAโ€‘SHRED ๋ฅผ ์ œ์‹œํ•œ๋‹ค. ๊ธฐ์กด ๋ฐ์ดํ„ฐ ๋™ํ™” ๊ธฐ๋ฒ•์€ ์ฃผ๋กœ ์นผ๋งŒ ํ•„ํ„ฐ, ๋ณ€๋ถ„ ๋™ํ™”, ํ˜น์€ ์ตœ๊ทผ์˜ ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜ ์ ‘๊ทผ๋ฒ•์— ์˜์กดํ•ด ์™”์œผ๋ฉฐ, ์ด๋“ค์€ ๊ณ ์ฐจ์› ์ƒํƒœ ๊ณต๊ฐ„์„ ์ง์ ‘ ๋‹ค๋ฃจ๋Š” ๊ฒฝ์šฐ ๊ณ„์‚ฐ ๋น„์šฉ์ด ๊ธ‰๊ฒฉํžˆ ์ฆ๊ฐ€ํ•˜๊ฑฐ๋‚˜, ๋ฌผ๋ฆฌ์  ์ œ์•ฝ์„ ์ถฉ๋ถ„ํžˆ ๋ฐ˜์˜ํ•˜์ง€ ๋ชปํ•œ๋‹ค๋Š” ๋ฌธ์ œ์ ์„ ์•ˆ๊ณ  ์žˆ๋‹ค. DAโ€‘SHRED ๋Š” ์ด๋Ÿฌํ•œ ๋ฌธ์ œ์ ์„ ํšŒํ”ผํ•˜๊ธฐ ์œ„ํ•ด ๋จผ์ € SHRED ๋ผ๋Š” ์–•์€

Data Model
fMRI2GES: Co-speech Gesture Reconstruction from fMRI Signal with Dual Brain Decoding Alignment

fMRI2GES: Co-speech Gesture Reconstruction from fMRI Signal with Dual Brain Decoding Alignment

๋ณธ ๋…ผ๋ฌธ์€ ๋‡Œ ์˜์ƒ(fMRI)๊ณผ ์–ธ์–ด, ๊ทธ๋ฆฌ๊ณ  ๋ชธ์ง“(gesture)์ด๋ผ๋Š” ์„ธ ๊ฐ€์ง€ ์„œ๋กœ ๋‹ค๋ฅธ ๋ชจ๋‹ฌ๋ฆฌํ‹ฐ ์‚ฌ์ด์˜ ๋งคํ•‘์„ ์ง์ ‘ ํ•™์Šตํ•˜๊ธฐ ์–ด๋ ค์šด ํ˜„์‹ค์ ์ธ ๋ฌธ์ œ๋ฅผ ์ฐฝ์˜์ ์œผ๋กœ ํ•ด๊ฒฐํ•œ๋‹ค๋Š” ์ ์—์„œ ํ•™์ˆ ์  ์˜์˜๊ฐ€ ํฌ๋‹ค. ์ฒซ ๋ฒˆ์งธ ํ•ต์‹ฌ์€ โ€˜๋น„์—ฐ๊ณ„ ๋ฐ์ดํ„ฐโ€™๋ฅผ ํ™œ์šฉํ•œ๋‹ค๋Š” ์ ์ด๋‹ค. ๊ธฐ์กด์˜ ๋‡Œโ€‘์ด๋ฏธ์ง€ ํ˜น์€ ๋‡Œโ€‘์–ธ์–ด ์žฌ๊ตฌ์„ฑ ์—ฐ๊ตฌ๋Š” fMRI์™€ ๋ชฉํ‘œ ์ถœ๋ ฅ(์ด๋ฏธ์ง€, ํ…์ŠคํŠธ) ์‚ฌ์ด์— 1:1 ๋งค์นญ์ด ๋ณด์žฅ๋œ ๋ฐ์ดํ„ฐ์…‹์„ ์ „์ œ๋กœ ํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๋‡Œ์™€ ๋™์‹œ์— ๊ธฐ๋ก๋œ ์ œ์Šค์ฒ˜ ๋ฐ์ดํ„ฐ๋Š” ์‹คํ—˜ ์„ค๊ณ„์ƒ์˜ ์ œ์•ฝ๊ณผ ๋น„์šฉ ๋•Œ๋ฌธ์— ๊ฑฐ์˜ ์กด์žฌํ•˜์ง€ ์•Š๋Š”๋‹ค. ์ €์ž๋“ค์€ ์ด๋Ÿฌํ•œ ์ œ์•ฝ์„ ์šฐํšŒํ•˜๊ธฐ ์œ„ํ•ด

From monoliths to modules: Decomposing transducers for efficient world modelling

From monoliths to modules: Decomposing transducers for efficient world modelling

์ด ๋…ผ๋ฌธ์ด ์ œ์‹œํ•˜๋Š” ํ•ต์‹ฌ ์•„์ด๋””์–ด๋Š” โ€˜ํŠธ๋žœ์Šค๋“€์„œโ€™๋ฅผ ์ด์šฉํ•ด ์„ธ๊ณ„ ๋ชจ๋ธ์„ ๋ชจ๋“ˆํ™”ํ•˜๊ณ , ๊ทธ ๋ชจ๋“ˆ๋“ค์„ ์—ญ์œผ๋กœ ๋ถ„ํ•ดํ•จ์œผ๋กœ์จ ๋ณ‘๋ ฌ ์ฒ˜๋ฆฌ์™€ ํ•ด์„ ๊ฐ€๋Šฅ์„ฑ์„ ๋™์‹œ์— ํ™•๋ณดํ•œ๋‹ค๋Š” ์ ์ด๋‹ค. ํŠธ๋žœ์Šค๋“€์„œ๋Š” ๊ด€์ธกยทํ–‰๋™ยท๋ณด์ƒ ๋“ฑ ๋ณตํ•ฉ์ ์ธ ์ƒํ˜ธ์ž‘์šฉ์„ ํ•˜๋‚˜์˜ ์ž…๋ ฅโ€‘์ถœ๋ ฅ ๊ด€๊ณ„๋กœ ์ถ”์ƒํ™”ํ•œ ๊ตฌ์กฐ๋กœ, POMDP(๋ถ€๋ถ„ ๊ด€์ธก ๋งˆ์ฝ”ํ”„ ๊ฒฐ์ • ๊ณผ์ •)๋ฅผ ์ผ๋ฐ˜ํ™”ํ•œ๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ์—์„œ๋Š” ์—ฌ๋Ÿฌ ํŠธ๋žœ์Šค๋“€์„œ๋ฅผ ์ˆœ์ฐจ์ ์œผ๋กœ ์—ฐ๊ฒฐํ•ด ๋ณต์žกํ•œ ์‹œ์Šคํ…œ์„ ๊ตฌ์„ฑํ•˜๋Š” โ€˜ํ•ฉ์„ฑโ€™ ๋ฐฉ๋ฒ•์ด ์ฃผ๋กœ ๋‹ค๋ฃจ์–ด์กŒ์œผ๋ฉฐ, ์ด๋Š” ์„ค๊ณ„ ๋‹จ๊ณ„์—์„œ๋Š” ์ง๊ด€์ ์ด์ง€๋งŒ ์‹ค์ œ ์šด์šฉ ๋‹จ๊ณ„์—์„œ๋Š” ์ „์ฒด ๋ชจ๋ธ์ด ๊ฑฐ๋Œ€ํ•ด์ ธ ์—ฐ์‚ฐ ๋น„์šฉ์ด ๊ธ‰์ฆํ•˜๊ณ , ๋‚ด๋ถ€

Model
InnoGym: Benchmarking the Innovation Potential of AI Agents

InnoGym: Benchmarking the Innovation Potential of AI Agents

InnoGym์ด ์ œ์‹œํ•˜๋Š” ๊ฐ€์žฅ ํฐ ํ˜์‹ ์€ โ€œํ˜์‹ ์„ฑโ€์ด๋ผ๋Š” ์ถ”์ƒ์  ๊ฐœ๋…์„ ์ •๋Ÿ‰ํ™”ํ•˜๋ ค๋Š” ์‹œ๋„์— ์žˆ๋‹ค. ๊ธฐ์กด์˜ LLMยท์—์ด์ „ํŠธ ํ‰๊ฐ€๋Š” ์ฃผ๋กœ ์ •๋‹ต๋ฅ , ์‹คํ–‰ ์‹œ๊ฐ„, ํ† ํฐ ๋น„์šฉ ๋“ฑ ํšจ์œจ์„ฑ ์ง€ํ‘œ์— ์ง‘์ค‘ํ–ˆ์œผ๋ฉฐ, ์ด๋Š” ๋ชจ๋ธ์ด ๊ธฐ์กด ์ง€์‹์„ ์žฌํ˜„ํ•˜๋Š” ๋Šฅ๋ ฅ์€ ์ž˜ ์ธก์ •ํ•˜์ง€๋งŒ, ์ƒˆ๋กœ์šด ์•„์ด๋””์–ด๋ฅผ ์ฐฝ์ถœํ•˜๋Š” ๋Šฅ๋ ฅ์€ ๊ฑฐ์˜ ๋“œ๋Ÿฌ๋‚ด์ง€ ๋ชปํ•œ๋‹ค. InnoGym์€ ์ด๋ฅผ ๋ณด์™„ํ•˜๊ธฐ ์œ„ํ•ด ๋‘ ์ถ•, ์ฆ‰ performance gain๊ณผ novelty๋ฅผ ๋™์‹œ์— ์ธก์ •ํ•œ๋‹ค. performance gain์€ ํ˜„์žฌ๊นŒ์ง€ ๋ณด๊ณ ๋œ ์ตœ์  ์†”๋ฃจ์…˜ ๋Œ€๋น„ ์–ผ๋งˆ๋‚˜ ๊ฐœ์„ ํ–ˆ๋Š”์ง€๋ฅผ ๋ฐฑ๋ถ„์œจ ํ˜น์€ ์ ˆ๋Œ€๊ฐ’์œผ๋กœ ๋‚˜

Spatiotemporal Pyramid Flow Matching for Climate Emulation

Spatiotemporal Pyramid Flow Matching for Climate Emulation

๋ณธ ๋…ผ๋ฌธ์€ ๊ธฐํ›„ ๊ณผํ•™๊ณผ ๋จธ์‹ ๋Ÿฌ๋‹์ด ๊ต์ฐจํ•˜๋Š” ์ตœ์ „์„ ์—์„œ, ๊ธฐ์กด ์ƒ์„ฑ ๋ชจ๋ธ์ด ๊ฐ–๋Š” ๊ทผ๋ณธ์ ์ธ ํ•œ๊ณ„๋ฅผ ๋›ฐ์–ด๋„˜๋Š” ํ˜์‹ ์ ์ธ ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์‹œํ•œ๋‹ค. ํ˜„์žฌ ๋Œ€๋ถ€๋ถ„์˜ ๊ธฐํ›„ ์—๋ฎฌ๋ ˆ์ด์…˜์€ ๊ณ ํ•ด์ƒ๋„ ๋ฌผ๋ฆฌ ๊ธฐ๋ฐ˜ ๋ชจ๋ธ์„ ์ง์ ‘ ์‹คํ–‰ํ•˜๊ฑฐ๋‚˜, ์ €ํ•ด์ƒ๋„ ํ†ต๊ณ„ ๋ชจ๋ธ์— ์˜์กดํ•œ๋‹ค. ์ „์ž๋Š” ๊ณ„์‚ฐ ๋น„์šฉ์ด ์ฒœ๋ฌธํ•™์ ์œผ๋กœ ๋†’๊ณ , ํ›„์ž๋Š” ๋ณต์žกํ•œ ๋น„์„ ํ˜• ์ƒํ˜ธ์ž‘์šฉ์„ ์ถฉ๋ถ„ํžˆ ํฌ์ฐฉํ•˜์ง€ ๋ชปํ•œ๋‹ค. ํŠนํžˆ, ๋‚ ์”จ ์ˆ˜์ค€์˜ ์ž๊ธฐํšŒ๊ท€ ๋ฐฉ์‹์€ ์‹œ๊ฐ„ ๋‹จ๊ณ„๋งˆ๋‹ค ์ˆœ์ฐจ์ ์œผ๋กœ ์ƒ˜ํ”Œ๋งํ•ด์•ผ ํ•˜๋ฏ€๋กœ ์žฅ๊ธฐ ์‹œ๋ฎฌ๋ ˆ์ด์…˜(์ˆ˜์‹ญ ๋…„~์ˆ˜๋ฐฑ ๋…„)์—์„œ๋Š” ์‹œ๊ฐ„ ๋ณต์žก๋„๊ฐ€ ์„ ํ˜•์ ์œผ๋กœ ์ฆ๊ฐ€ํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ๊ตฌ์กฐ์  ์ œ์•ฝ์€ ๋น„์ •์ƒ์ ์ธ ์™ธ๋ถ€ ๊ฐ•

Zero-Overhead Introspection for Adaptive Test-Time Compute

Zero-Overhead Introspection for Adaptive Test-Time Compute

๋ณธ ๋…ผ๋ฌธ์€ ํ˜„์žฌ ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(LLM)์ด ์ง๋ฉดํ•œ ๋ฉ”ํƒ€์ธ์ง€ ๋ถ€์žฌ ๋ฌธ์ œ๋ฅผ ์งš๊ณ , ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•œ ์ƒˆ๋กœ์šด ์ธํ”„๋ผ์ŠคํŠธ๋Ÿญ์ฒ˜์ธ ZIPโ€‘RC(Zeroโ€‘overhead Introspective Prediction of Reward and Cost)๋ฅผ ์ œ์‹œํ•œ๋‹ค. ๊ธฐ์กด์˜ Bestโ€‘ofโ€‘N ๋ฐฉ์‹์€ ๊ณ ์ •๋œ ์ƒ˜ํ”Œ ์ˆ˜๋ฅผ ๋ฏธ๋ฆฌ ์ •ํ•ด๋‘๊ณ  ๋ชจ๋“  ํ›„๋ณด์— ๋Œ€ํ•ด ๋™์ผํ•œ ๋น„์šฉ์„ ์†Œ๋ชจํ•œ๋‹ค. ์ด๋Š” ์ƒ์„ฑ ๊ณผ์ • ์ค‘์— โ€œ์ด ์ •๋„๋ฉด ์ถฉ๋ถ„ํ•œ๊ฐ€?โ€๋ผ๋Š” ํŒ๋‹จ์„ ๋‚ด๋ฆด ๊ทผ๊ฑฐ๊ฐ€ ๋ถ€์กฑํ•ด, ์‹ค์ œ๋กœ๋Š” marginal benefit๊ฐ€ ๊ฑฐ์˜ ์—†๋Š” ์ถ”๊ฐ€ ์ƒ˜ํ”Œ๊นŒ์ง€๋„ ์ˆ˜ํ–‰ํ•˜๊ฒŒ ๋งŒ๋“ ๋‹ค. ๋˜ํ•œ, ๋ชจ๋ธ

ChromouVQA: Benchmarking Vision-Language Models under Chromatic Camouflaged Images

ChromouVQA: Benchmarking Vision-Language Models under Chromatic Camouflaged Images

๋ณธ ๋…ผ๋ฌธ์€ ํ˜„์žฌ Visionโ€‘Language Model(VLM)์ด ์ง๋ฉดํ•œ ํ•ต์‹ฌ ํ•œ๊ณ„์ธ โ€˜ํ”ผ๊ฒจโ€‘๊ทธ๋ผ์šด๋“œ ๊ตฌ๋ถ„โ€™ ๋ฌธ์ œ๋ฅผ ์ •๋Ÿ‰์ ์œผ๋กœ ํ‰๊ฐ€ํ•˜๊ธฐ ์œ„ํ•ด ๋งค์šฐ ์ฒด๊ณ„์ ์ธ ๋ฒค์น˜๋งˆํฌ๋ฅผ ์„ค๊ณ„ํ–ˆ๋‹ค๋Š” ์ ์—์„œ ์˜๋ฏธ๊ฐ€ ํฌ๋‹ค. ๊ธฐ์กด VLM ํ‰๊ฐ€ ๋ฐ์ดํ„ฐ์…‹์€ ์ฃผ๋กœ ๋ช…ํ™•ํ•œ ๊ฐ์ฒด์™€ ๋ฐฐ๊ฒฝ์„ ๊ตฌ๋ถ„ํ•  ์ˆ˜ ์žˆ๋Š” ์ด๋ฏธ์ง€์— ์ดˆ์ ์„ ๋งž์ถ”์—ˆ์œผ๋ฉฐ, ์ƒ‰์ฑ„ ์œ„์žฅ(camouflage)๊ณผ ๊ฐ™์ด ์ธ๊ฐ„์˜ ์‹œ๊ฐ ์‹œ์Šคํ…œ์กฐ์ฐจ๋„ ์ธ์ง€ํ•˜๊ธฐ ์–ด๋ ค์šด ์ƒํ™ฉ์„ ์ถฉ๋ถ„ํžˆ ๋ฐ˜์˜ํ•˜์ง€ ๋ชปํ–ˆ๋‹ค. ChromouVQA๋Š” ์ด๋Ÿฌํ•œ ๊ณต๋ฐฑ์„ ๋ฉ”์šฐ๊ธฐ ์œ„ํ•ด ์ด์‹œํ•˜๋ผ ์  ํ”Œ๋ ˆ์ดํŠธ(Ishihara plates)๋ฅผ ๋ณ€ํ˜•ํ•œ ์ƒ‰์ฑ„ ์œ„์žฅ ์ด๋ฏธ์ง€

Model
IndiMathBench: Autoformalizing Mathematical Reasoning Problems with a Human Touch

IndiMathBench: Autoformalizing Mathematical Reasoning Problems with a Human Touch

์ž๋™ ํ˜•์‹ํ™”(autoโ€‘formalization) ๋ฌธ์ œ๋Š” ์ž์—ฐ์–ด๋กœ ์„œ์ˆ ๋œ ์ˆ˜ํ•™ ๋ฌธ์ œ๋ฅผ ๊ธฐ๊ณ„๊ฐ€ ์ดํ•ดํ•  ์ˆ˜ ์žˆ๋Š” ํ˜•์‹ ์–ธ์–ด, ์—ฌ๊ธฐ์„œ๋Š” Lean 4์™€ ๊ฐ™์€ ์ •๋ฆฌ ์ฆ๋ช… ์‹œ์Šคํ…œ์œผ๋กœ ๋ณ€ํ™˜ํ•˜๋Š” ๊ณผ์ •์„ ์˜๋ฏธํ•œ๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ์—์„œ๋Š” ์ฃผ๋กœ ์„œ์–‘ ์ˆ˜ํ•™ ๊ต๊ณผ์„œ๋‚˜ ๊ณต๊ฐœ๋œ ์ •๋ฆฌ ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค๋ฅผ ํ™œ์šฉํ–ˆ์ง€๋งŒ, ์ด๋Ÿฌํ•œ ์ž๋ฃŒ๋Š” ์ด๋ฏธ ๋งŽ์€ ์ž๋™ ํ˜•์‹ํ™” ๋„๊ตฌ์— ์˜ํ•ด ํ•™์Šต๋˜์–ด ๊ณผ์ ํ•ฉ(overโ€‘fitting) ์œ„ํ—˜์ด ์žˆ๋‹ค. ๋ฐ˜๋ฉด INDIMATHBENCH๋Š” ์ธ๋„ ์ˆ˜ํ•™ ์˜ฌ๋ฆผํ”ผ์•„๋“œ๋ผ๋Š” ๋น„๊ต์  ๋…๋ฆฝ์ ์ธ ์ถœ์ฒ˜์—์„œ 312๊ฐœ์˜ ๋ฌธ์ œ๋ฅผ ์ˆ˜์ง‘ํ•จ์œผ๋กœ์จ ๋ฐ์ดํ„ฐ ๋‹ค์–‘์„ฑ์„ ํฌ๊ฒŒ ํ™•๋Œ€ํ•œ๋‹ค. ์ด๋Š” LL

Integrating Causal Foundation Model in Prescriptive Maintenance Framework for Optimizing Production Line OEE

Integrating Causal Foundation Model in Prescriptive Maintenance Framework for Optimizing Production Line OEE

๋ณธ ๋…ผ๋ฌธ์€ ์ œ์กฐ ํ˜„์žฅ์—์„œ ์˜ˆ์ธก ์ค‘์‹ฌ์˜ ์œ ์ง€๋ณด์ˆ˜์—์„œ ํ•œ ๋‹จ๊ณ„ ๋‚˜์•„๊ฐ€ ์ธ๊ณผ๊ด€๊ณ„๋ฅผ ๋ช…์‹œ์ ์œผ๋กœ ๋ชจ๋ธ๋งํ•จ์œผ๋กœ์จ โ€˜์ฒ˜๋ฐฉํ˜• ์œ ์ง€๋ณด์ˆ˜(prescriptive maintenance)โ€™๋ฅผ ๊ตฌํ˜„ํ•˜๋ ค๋Š” ์‹œ๋„๋ฅผ ์ƒ์„ธํžˆ ์ œ์‹œํ•œ๋‹ค. ๋จผ์ € ๊ธฐ์กด ์˜ˆ์ธก ๋ชจ๋ธ์ด โ€œ์Šคํ‘ธ๋ฆฌ์–ด์Šค(correlational) ํŒจํ„ดโ€์— ์˜์กดํ•œ๋‹ค๋Š” ๋น„ํŒ์€ ์‹ค์ œ ํ˜„์žฅ ์‚ฌ๋ก€์™€ ์ผ์น˜ํ•œ๋‹ค. ์„ผ์„œ ๋ฐ์ดํ„ฐ๊ฐ€ ํ’๋ถ€ํ•˜์ง€๋งŒ, ๊ณ ์žฅ ์›์ธ์— ๋Œ€ํ•œ ๋„๋ฉ”์ธ ์ง€์‹์ด ๋ถ€์กฑํ•œ ๊ฒฝ์šฐ ๋ชจ๋ธ์ด ์žก์•„๋‚ด๋Š” ์‹ ํ˜ธ๋Š” ์ข…์ข… ์šฐ์—ฐํžˆ ๋ฐœ์ƒํ•œ ์ƒ๊ด€๊ด€๊ณ„์— ๋ถˆ๊ณผํ•˜๋‹ค. ์ด๋Ÿฌํ•œ ์ƒํ™ฉ์—์„œ ๋‹จ์ˆœํžˆ ๊ณ ์žฅ ํ™•๋ฅ ๋งŒ์„ ์ œ๊ณต๋ฐ›์•„๋„, ํ˜„์žฅ ์—”์ง€๋‹ˆ์–ด๋Š” โ€œ์–ด๋””๋ฅผ ๊ณ 

Framework Model
No Image

Optimizing Text Search: A Novel Pattern Matching Algorithm Based on Ukkonen's Approach

์ด ๋…ผ๋ฌธ์€ ํ…์ŠคํŠธ ๊ฒ€์ƒ‰ ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ํšจ์œจ์„ฑ์„ ํฌ๊ฒŒ ๋†’์ด๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์‹œํ•œ๋‹ค. ํŠนํžˆ ์ ‘๋ฏธ์‚ฌ ํŠธ๋ฆฌ๋ฅผ ์ตœ์ ํ™”ํ•จ์œผ๋กœ์จ, ํ˜„๋Œ€ ๋ฐ์ดํ„ฐ์…‹์—์„œ ๋ฐœ์ƒํ•˜๋Š” ๋ณต์žก์„ฑ๊ณผ ๊ทœ๋ชจ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ณ ์ž ํ•œ๋‹ค. ์ „ํ†ต์ ์ธ Naive Search, KMP, Boyer Moore ์•Œ๊ณ ๋ฆฌ์ฆ˜๋“ค์€ ๊ธฐ๋ณธ์ ์ด์ง€๋งŒ, ๊ทธ ํšจ์œจ์„ฑ์ด ํ˜„๋Œ€์˜ ๋ฐฉ๋Œ€ํ•œ ๋ฐ์ดํ„ฐ ์ฒ˜๋ฆฌ ์š”๊ตฌ์‚ฌํ•ญ์— ๋ถ€ํ•ฉํ•˜์ง€ ๋ชปํ•œ๋‹ค. ์ด ์—ฐ๊ตฌ์—์„œ๋Š” ์ ‘๋ฏธ์‚ฌ ํŠธ๋ฆฌ๋ฅผ Splitting ๋ฐ Ukkonen ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ํ†ตํ•ด ์ตœ์ ํ™”ํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์‹œํ•˜๋ฉฐ, ์ด๋ฅผ ํ†ตํ•ด ์„ ํ˜• ์‹œ๊ฐ„๊ณผ ๊ณต๊ฐ„ ํšจ์œจ์„ฑ์„ ๋‹ฌ์„ฑํ•  ์ˆ˜ ์žˆ์Œ์„ ๋ณด์—ฌ์ค€๋‹ค. ํŠนํžˆ, Ukkonen ์•Œ๊ณ ๋ฆฌ

Hierarchical clustering of complex energy systems using pretopology

Hierarchical clustering of complex energy systems using pretopology

์ด ์—ฐ๊ตฌ๋Š” ์—๋„ˆ์ง€ ๊ด€๋ฆฌ ๋ถ„์•ผ์—์„œ ๊ธฐ์กด์— ํ”ํžˆ ์‚ฌ์šฉ๋˜๋˜ ๊ฐœ๋ณ„ ๊ฑด๋ฌผ ๋‹จ์œ„์˜ ํ˜„์žฅ ์กฐ์‚ฌ ๋ฐฉ์‹์ด ๊ฐ–๋Š” ๋น„ํšจ์œจ์„ฑ์„ ๊ทผ๋ณธ์ ์œผ๋กœ ํ•ด๊ฒฐํ•˜๋ ค๋Š” ์‹œ๋„๋กœ ํ‰๊ฐ€ํ•  ์ˆ˜ ์žˆ๋‹ค. ์ €์ž๋Š” ํ”„๋ฆฌํ† ํด๋กœ์ง€(pretopology)๋ผ๋Š” ์ˆ˜ํ•™์  ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์„ ํƒํ–ˆ๋Š”๋ฐ, ์ด๋Š” ์ „ํ†ต์ ์ธ ์œ„์ƒ์ˆ˜ํ•™์ด ์ œ๊ณตํ•˜๋Š” ๊ฐœ๋…๋ณด๋‹ค ๋” ์œ ์—ฐํ•˜๊ฒŒ โ€˜๊ทผ์ ‘์„ฑโ€™๊ณผ โ€˜ํฌํ•จ ๊ด€๊ณ„โ€™๋ฅผ ์ •์˜ํ•  ์ˆ˜ ์žˆ๋‹ค. ํ”„๋ฆฌํ† ํด๋กœ์ง€ ๊ณต๊ฐ„์—์„œ๋Š” ์ ๋“ค์˜ ๊ทผ์ ‘์„ฑ์„ ๋‚˜ํƒ€๋‚ด๋Š” โ€˜ํ”„๋ฆฌํด๋กœ์ €โ€™ ์—ฐ์‚ฐ๊ณผ, ์ง‘ํ•ฉ์„ ํ™•์žฅ์‹œํ‚ค๋Š” โ€˜ํ”„๋ฆฌ๋‚ด๋ถ€โ€™ ์—ฐ์‚ฐ์„ ํ†ตํ•ด ๋ฐ์ดํ„ฐ ๊ฐ„์˜ ๊ตฌ์กฐ์  ๊ด€๊ณ„๋ฅผ ์ •๋Ÿ‰ํ™”ํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ์—ฐ์‚ฐ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ๋‹ค์ค‘ ๊ธฐ์ค€(์˜ˆ: ์œ„์น˜, ํฌ๊ธฐ

System
Enhancing Geo-localization for Crowdsourced Flood Imagery via LLM-Guided Attention

Enhancing Geo-localization for Crowdsourced Flood Imagery via LLM-Guided Attention

๋ณธ ๋…ผ๋ฌธ์€ ์‚ฌํšŒ ๋ฏธ๋””์–ด์—์„œ ์ˆ˜์ง‘๋œ ์ŠคํŠธ๋ฆฌํŠธ ๋ทฐ ์ด๋ฏธ์ง€๋ฅผ ํ™œ์šฉํ•˜์—ฌ ๋„์‹œ ํ™์ˆ˜์™€ ๊ฐ™์€ ์œ„๊ธฐ ์ƒํ™ฉ์„ ์‹ค์‹œ๊ฐ„์œผ๋กœ ๋ชจ๋‹ˆํ„ฐ๋งํ•˜๋Š” ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด VPR AttLLM ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์•ˆํ•œ๋‹ค. ๊ธฐ์กด์˜ VPR ๋ชจ๋ธ๋“ค์€ ๊ต์ฐจ ์†Œ์Šค ์‹œ๋‚˜๋ฆฌ์˜ค์—์„œ ๋ฐœ์ƒํ•˜๋Š” ์‹œ๊ฐ์  ์™œ๊ณก๊ณผ ๋„๋ฉ”์ธ ์ด๋™์œผ๋กœ ์ธํ•ด ์„ฑ๋Šฅ์ด ์ €ํ•˜๋˜๋Š” ํ•œ๊ณ„๊ฐ€ ์žˆ๋‹ค. ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด, ๋ณธ ๋…ผ๋ฌธ์€ LLMs์˜ ์˜๋ฏธ๋ก ์  ์ถ”๋ก  ๋ฐ ์ง€๋ฆฌ ๊ณต๊ฐ„ ์ง€์‹์„ ์ฃผ์˜ ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ํ†ตํ•ด ๊ธฐ์กด VPR ํŒŒ์ดํ”„๋ผ์ธ์— ํ†ตํ•ฉํ•˜๋Š” ๋ชจ๋ธ์— ๋ฌด๊ด€ํ•œ ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์‹œํ•œ๋‹ค. VPR AttLLM์€ LLMs์„ ํ™œ์šฉํ•˜์—ฌ ์ด๋ฏธ์ง€ ๋‚ด์—์„œ ์œ„์น˜

Space Alignment Matters: The Missing Piece for Inducing Neural Collapse in Long-Tailed Learning

Space Alignment Matters: The Missing Piece for Inducing Neural Collapse in Long-Tailed Learning

์ด ๋…ผ๋ฌธ์€ ์ตœ๊ทผ ๊ฐ๊ด‘๋ฐ›๊ณ  ์žˆ๋Š” โ€˜์‹ ๊ฒฝ ๋ถ•๊ดด(Neural Collapse, NC)โ€™ ํ˜„์ƒ์„ ๊ธด ๊ผฌ๋ฆฌ ๋ฐ์ดํ„ฐ ๋ถ„๋ฅ˜ ๋ฌธ์ œ์— ์ ์šฉํ•จ์œผ๋กœ์จ, ๊ธฐ์กด ๋ฐฉ๋ฒ•๋ก ์ด ๋†“์น˜๊ณ  ์žˆ๋˜ ํ•ต์‹ฌ์ ์ธ ์ •๋ ฌ ๋ฌธ์ œ๋ฅผ ์ƒˆ๋กญ๊ฒŒ ์กฐ๋ช…ํ•œ๋‹ค. NC๋Š” ํ•™์Šต์ด ์ง„ํ–‰๋ ์ˆ˜๋ก ํด๋ž˜์Šค๋ณ„ ํŠน์ง• ํ‰๊ท (feature means)๊ณผ ์ตœ์ข… ์„ ํ˜• ๋ถ„๋ฅ˜๊ธฐ์˜ ๊ฐ€์ค‘์น˜๊ฐ€ ์„œ๋กœ ์ •๋ ฌ๋˜๊ณ , ์ „์ฒด ํด๋ž˜์Šค๊ฐ€ ๋‹จ์ˆœ์ฒด ๋“ฑ๊ฐ ๊ธด๋ฐ€ ํ”„๋ ˆ์ž„(simplex ETF) ๊ตฌ์กฐ๋ฅผ ์ด๋ฃจ๋Š” ํ˜„์ƒ์ด๋‹ค. ์ด ๊ตฌ์กฐ๋Š” ํด๋ž˜์Šค ๊ฐ„ ๊ฐ๋„๊ฐ€ ๋™์ผํ•˜๊ณ , ๊ฐ ํด๋ž˜์Šค์˜ ํŠน์ง•์ด ์„œ๋กœ ์ •๊ทœ ์ง๊ตํ•˜๋Š” ์ตœ์ ์˜ ๊ธฐํ•˜ํ•™์  ๋ฐฐ์น˜๋ฅผ ์ œ๊ณตํ•œ๋‹ค๋Š” ์ ์—์„œ ์ด๋ก ์ ยท์‹ค์šฉ์ 

Learning
Learning Solution Operators for Partial Differential Equations via Monte Carlo-Type Approximation

Learning Solution Operators for Partial Differential Equations via Monte Carlo-Type Approximation

Monte Carloํ˜• ์‹ ๊ฒฝ ์—ฐ์‚ฐ์ž(MCNO)๋Š” ๊ธฐ์กด ์‹ ๊ฒฝ ์—ฐ์‚ฐ์ž ์—ฐ๊ตฌ์—์„œ ๋‘๋“œ๋Ÿฌ์ง„ ๋‘ ๊ฐ€์ง€ ํ•œ๊ณ„๋ฅผ ๋™์‹œ์— ํ•ด๊ฒฐํ•˜๋ ค๋Š” ์‹œ๋„๋กœ ๋ณผ ์ˆ˜ ์žˆ๋‹ค. ์ฒซ ๋ฒˆ์งธ๋Š” Fourier Neural Operator(FNO)์™€ ๊ฐ™์€ ์ŠคํŽ™ํŠธ๋Ÿผ ๊ธฐ๋ฐ˜ ๋ฐฉ๋ฒ•์ด ์ „์ œํ•˜๋Š” ์ฃผ๊ธฐ์„ฑยทํ‰ํ–‰์ด๋™ ๋ถˆ๋ณ€์„ฑ ๊ฐ€์ •์ด๋‹ค. ์ด๋Ÿฌํ•œ ๊ฐ€์ •์€ ์ •๊ทœ ๊ฒฉ์ž๋‚˜ ์ฃผ๊ธฐ์  ๊ฒฝ๊ณ„์กฐ๊ฑด์„ ๊ฐ–๋Š” ๋ฌธ์ œ์—์„  ํšจ์œจ์ ์ด์ง€๋งŒ, ๋ณต์žกํ•œ ์ง€์˜ค๋ฉ”ํŠธ๋ฆฌยท๋น„์ฃผ๊ธฐ์  ๊ฒฝ๊ณ„ยท๋น„๊ท ์ผ ๊ฒฉ์ž์—์„œ๋Š” ์ ์šฉ์ด ์–ด๋ ค์›Œ์ง„๋‹ค. MCNO๋Š” ์ปค๋„์„ ์ž„์˜์˜ ์  ์ง‘ํ•ฉ ์œ„์— ์ •์˜ํ•˜๊ณ , ์ด ์ ๋“ค์„ Monte Carlo ์ƒ˜ํ”Œ๋ง์œผ๋กœ ์„ ํƒํ•จ์œผ๋กœ์จ ์ŠคํŽ™ํŠธ๋Ÿผ ๊ฐ€์ •์„

Learning

< Category Statistics (Total: 743) >

Electrical Engineering and Systems Science
7
General
272
General Relativity
7
HEP-EX
5
HEP-PH
12
HEP-TH
5
MATH-PH
3
NUCL-TH
1
Quantum Physics
10

Start searching

Enter keywords to search articles

โ†‘โ†“
โ†ต
ESC
โŒ˜K Shortcut