General

All posts under category "General"

272 posts total
Sorted by date
No Image

Federated Learning with Feedback Alignment

์ด ๋…ผ๋ฌธ์€ ์—ฐ๋ฐฉํ•™์Šต(Federated Learning, FL)์—์„œ ๋ฐœ์ƒํ•˜๋Š” ๋ฐ์ดํ„ฐ ์ด์งˆ์„ฑ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•œ ์ƒˆ๋กœ์šด ์ ‘๊ทผ๋ฒ•์ธ FLFA(Federated Learning with Feedback Alignment)์— ๋Œ€ํ•ด ์„ค๋ช…ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์—ฐ๋ฐฉํ•™์Šต์€ ํด๋ผ์ด์–ธํŠธ ๊ฐ„์˜ ๋ฐ์ดํ„ฐ ํ”„๋ผ์ด๋ฒ„์‹œ๋ฅผ ๋ณด์žฅํ•˜๋ฉด์„œ๋„ ํ˜‘์—… ํ•™์Šต์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•˜๋Š” ๊ธฐ์ˆ ์ž…๋‹ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๊ฐ ํด๋ผ์ด์–ธํŠธ์˜ ๋ฐ์ดํ„ฐ๊ฐ€ ๋…๋ฆฝ์ ์ด๊ณ  ๋™์ผํ•œ ๋ถ„ํฌ(IID)๊ฐ€ ์•„๋‹Œ ๊ฒฝ์šฐ, ์ฆ‰ ๋น„IID์ธ ๊ฒฝ์šฐ์—๋Š” ๋กœ์ปฌ ๋ชจ๋ธ๊ณผ ์ „์—ญ ๋ชจ๋ธ ๊ฐ„์— ์ˆ˜๋ ด์ด ์–ด๋ ค์›Œ์ง€๋ฉฐ ์ด๋ฅผ ๋กœ์ปฌ ๋“œ๋ฆฌํ”„ํŠธ ํ˜„์ƒ์ด๋ผ๊ณ  ํ•ฉ๋‹ˆ๋‹ค. FLFA๋Š”

Learning
No Image

Forgetful but Faithful: A Cognitive Memory Architecture and Benchmark for Privacy-Aware Generative Agents

์ด ๋…ผ๋ฌธ์€ ์ƒ์„ฑ์  ์—์ด์ „ํŠธ๊ฐ€ ์žฅ๊ธฐ ๊ธฐ์–ต์„ ๊ด€๋ฆฌํ•˜๋ฉด์„œ ํšจ์œจ์„ฑ, ํ”„๋ผ์ด๋ฒ„์‹œ ๋ฐ ๋น„์šฉ ์ œ์•ฝ ์กฐ๊ฑด์„ ์ถฉ์กฑํ•˜๋Š” ๋ฐฉ๋ฒ•์— ๋Œ€ํ•ด ๊นŠ๊ฒŒ ํƒ๊ตฌํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. Memory Aware Retention Schema (MaRS)๋Š” ์ด๋ฒคํŠธ, ์˜๋ฏธ๋ก ์ , ์‚ฌํšŒ์ , ์ž‘์—… ๊ธฐ์–ต๋“ค์„ ํƒ€์ž…ํ™”ํ•˜๊ณ  ์ถœ์ฒ˜๋ฅผ ์ถ”์ ํ•˜๋ฉฐ ํšจ์œจ์ ์ธ ๊ฒ€์ƒ‰์„ ์œ„ํ•œ ์—ฌ๋Ÿฌ ์ธ๋ฑ์Šค๋ฅผ ์ œ๊ณตํ•˜๋Š” ๊ตฌ์กฐ์ž…๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ๊ธฐ๋ฐ˜ ์œ„์— ์ œ์•ˆ๋œ 6๊ฐ€์ง€ ์žŠ์Œ ์ •์ฑ…์€ ๊ฐ๊ฐ์˜ ๋ณต์žก๋„ ๋ถ„์„๊ณผ ๊ฐ๋„์— ๋”ฐ๋ฅธ ๋ณด์กด์„ฑ์„ ์ œ๊ณตํ•˜๋ฉฐ, ์„ ํƒ์ ์œผ๋กœ ์ฐจ๋ณ„์  ํ”„๋ผ์ด๋ฒ„์‹œ๋ฅผ ๋ณด์žฅํ•ฉ๋‹ˆ๋‹ค. ๋…ผ๋ฌธ์—์„œ ์†Œ๊ฐœํ•œ FiFA ๋ฒค์น˜๋งˆํฌ๋Š” ์„œ์‚ฌ ์ผ๊ด€์„ฑ, ๋ชฉํ‘œ ์™„๋ฃŒ,

Human-Inspired Learning for Large Language Models via Obvious Record and Maximum-Entropy Method Discovery

Human-Inspired Learning for Large Language Models via Obvious Record and Maximum-Entropy Method Discovery

์ด ๋…ผ๋ฌธ์€ ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(LLMs)์˜ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด ์ธ๊ฐ„ ํ•™์Šต ๊ณผ์ •์—์„œ ์˜๊ฐ์„ ์–ป๋Š” ์ƒˆ๋กœ์šด ์ ‘๊ทผ๋ฒ•์„ ์ œ์•ˆํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. LLMs์€ ํฐ ๊ทœ๋ชจ์˜ ๋ฐ์ดํ„ฐ๋กœ๋ถ€ํ„ฐ ์ผ๋ฐ˜์ ์ธ ํŒจํ„ด์„ ์ถ”์ถœํ•˜๋Š” ๋ฐ ํƒ์›”ํ•˜์ง€๋งŒ, ํฌ๊ท€ํ•˜๊ฑฐ๋‚˜ ์ €์ž์› ์ƒํ™ฉ์—์„œ๋Š” ์ด๋Ÿฌํ•œ ํŒจํ„ด์ด ๋ฐ์ดํ„ฐ ๋‚ด์— ์ถฉ๋ถ„ํžˆ ๋‚˜ํƒ€๋‚˜์ง€ ์•Š์•„ ์˜ˆ์ธก ๋Šฅ๋ ฅ์ด ์ œํ•œ๋ฉ๋‹ˆ๋‹ค. ์ด ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ๋…ผ๋ฌธ์€ ๋‘ ๊ฐ€์ง€ ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ํ†ตํ•ฉํ•˜๋Š” ์ธ๊ฐ„ ์˜๊ฐ ํ•™์Šต ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค: ์ฒซ ๋ฒˆ์งธ๋กœ, '๋ช…์‹œ์  ๊ธฐ๋ก'์€ ์›์ธ ๊ฒฐ๊ณผ ๋˜๋Š” ์งˆ๋ฌธ ํ•ด๊ฒฐ์ฑ… ๊ด€๊ณ„๋ฅผ ์ƒ์ง•์  ๋ฉ”๋ชจ๋ฆฌ์— ์ €์žฅํ•˜์—ฌ ๋‹จ์ผ ๋˜๋Š” ๋ถˆ๊ทœ์น™ํ•œ ๊ฒฝํ—˜์—์„œ๋„ ์ง€์†์ ์ธ

Learning Model
Lemon: A Unified and Scalable 3D Multimodal Model for Universal Spatial Understanding

Lemon: A Unified and Scalable 3D Multimodal Model for Universal Spatial Understanding

์ด ๋…ผ๋ฌธ์€ ๋Œ€๊ทœ๋ชจ ๋‹ค์ค‘ ๋ชจ๋‹ฌ ๋ชจ๋ธ(LMMs)์˜ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ณ , ํŠนํžˆ 3D ๋ฐ์ดํ„ฐ ์ดํ•ด์— ํ•„์š”ํ•œ ์ƒˆ๋กœ์šด ์ ‘๊ทผ๋ฒ•์„ ์ œ์‹œํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. Lemon์ด๋ผ๋Š” ์ด๋ฆ„์˜ ๋ชจ๋ธ์€ ๊ธฐ์กด์˜ ๋ถ„๋ฆฌ๋œ ์•„ํ‚คํ…์ฒ˜์™€ ๋‹ฌ๋ฆฌ ํ†ตํ•ฉ ๋ณ€ํ˜• ์•„ํ‚คํ…์ฒ˜๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์  ํด๋ผ์šฐ๋“œ ๋ฐ์ดํ„ฐ์™€ ์–ธ์–ด ํ† ํฐ์„ ๋™์‹œ์— ์ฒ˜๋ฆฌํ•˜๋Š” ๋Šฅ๋ ฅ์„ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค. ์ด ์ ‘๊ทผ๋ฒ•์€ ์ค‘๋ณต๋˜๋Š” ์ธ์ฝ”๋”๋ฅผ ์ œ๊ฑฐํ•˜๊ณ , ํŒŒ๋ผ๋ฏธํ„ฐ ํšจ์œจ์„ฑ์„ ๋†’์ด๋ฉฐ, ๋ชจ๋ธ์˜ ํ™•์žฅ์„ ๋” ํšจ๊ณผ์ ์œผ๋กœ ์ง€์›ํ•จ์œผ๋กœ์จ ๊ธฐ์กด์˜ ๋ฌธ์ œ์ ์„ ํ•ด๊ฒฐํ•ฉ๋‹ˆ๋‹ค. ๋˜ํ•œ, Lemon์€ 3D ๋ฐ์ดํ„ฐ์˜ ํŠน์„ฑ์— ๋งž๊ฒŒ ๊ตฌ์กฐํ™”๋œ ํŒจ์น˜ํ™” ๋ฐ ํ† ํฐํ™” ๋ฐฉ์‹์„ ๊ฐœ๋ฐœํ•˜์—ฌ ๊ณต๊ฐ„์  ๋งฅ๋ฝ์„ ์œ 

Model
No Image

PerNodeDrop: A Method Balancing Specialized Subnets and Regularization in Deep Neural Networks

๋”ฅ ๋‰ด๋Ÿด ๋„คํŠธ์›Œํฌ๋Š” ๋ณต์žกํ•œ ํŒจํ„ด์„ ํ•™์Šตํ•˜๋Š” ๋ฐ ๋งค์šฐ ํšจ๊ณผ์ ์ด์ง€๋งŒ, ์ด ๊ณผ์ •์—์„œ ์œ ํ•ดํ•œ ๊ณต์ ์‘์ด ๋ฐœ์ƒํ•˜์—ฌ ์ผ๋ฐ˜ํ™” ์„ฑ๋Šฅ์ด ์ €ํ•˜๋˜๋Š” ๋ฌธ์ œ๋ฅผ ์•ˆ๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ๋“œ๋กญ์•„์›ƒ๊ณผ ๋“œ๋กญ์ปค๋„ฅํŠธ์™€ ๊ฐ™์€ ๊ธฐ์กด์˜ ๋…ธ์ด์ฆˆ ๊ธฐ๋ฐ˜ ์ •๊ทœํ™” ๋ฐฉ๋ฒ•์€ ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ๋ฌด์ž‘์œ„ ๋ณ€๋™์„ ์ฃผ์ž…ํ•˜์ง€๋งŒ, ์ด๋“ค ๋ฐฉ๋ฒ•์€ ์ธต์ด๋‚˜ ๋ฐฐ์น˜ ๋‹จ์œ„๋กœ ๊ท ์ผํ•œ ๋…ธ์ด์ฆˆ๋ฅผ ์ ์šฉํ•˜๋ฏ€๋กœ ์œ ์šฉํ•œ ๊ณต์ ์‘๊นŒ์ง€ ์–ต์ œํ•˜๋Š” ๋ถ€์ž‘์šฉ์ด ์žˆ์Šต๋‹ˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” PerNodeDrop์ด๋ผ๋Š” ์ƒˆ๋กœ์šด ์ •๊ทœํ™” ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. PerNodeDrop์€ ์ƒ˜ํ”Œ๋ณ„, ๋…ธ๋“œ๋ณ„๋กœ ๋ณ€๋™์„ฑ์„ ์ฃผ์ž…ํ•จ์œผ๋กœ์จ ๊ธฐ์กด์˜ ๊ท ์ผํ•œ ๋…ธ์ด์ฆˆ ์ ์šฉ

Network
PRIVEE: Privacy-Preserving Vertical Federated Learning Against Feature Inference Attacks

PRIVEE: Privacy-Preserving Vertical Federated Learning Against Feature Inference Attacks

์ด ๋…ผ๋ฌธ์€ ์ˆ˜์ง์—ฐ๋ฐฉํ•™์Šต(VFL)์—์„œ ๋ฐœ์ƒํ•˜๋Š” ํŠน์ง• ์ถ”๋ก  ๊ณต๊ฒฉ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•œ ์ƒˆ๋กœ์šด ๋ฐฉ์–ด ๋ฉ”์ปค๋‹ˆ์ฆ˜์ธ PRIVEE๋ฅผ ์ œ์•ˆํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. VFL์€ ์„œ๋กœ ๋‹ค๋ฅธ ๋ฐ์ดํ„ฐ์…‹์„ ๊ฐ€์ง„ ์—ฌ๋Ÿฌ ์กฐ์ง๋“ค์ด ๊ณต๋™์˜ ์‚ฌ์šฉ์ž ์ƒ˜ํ”Œ์— ๋Œ€ํ•ด ํ•™์Šตํ•  ์ˆ˜ ์žˆ๋Š” ๋ฐฉ๋ฒ•์œผ๋กœ, ํŠนํžˆ ๊ฐœ์ธ ์ •๋ณด ๋ณดํ˜ธ๊ฐ€ ์ค‘์š”ํ•œ ๋ถ„์•ผ์—์„œ ์œ ์šฉํ•˜๊ฒŒ ํ™œ์šฉ๋  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ด๋Ÿฌํ•œ ํ˜‘์—… ๊ณผ์ •์—์„œ๋Š” ๊ณต๊ฒฉ์ž๊ฐ€ ๋ชจ๋ธ์˜ ์˜ˆ์ธก ํ™•๋ฅ ์„ ์ด์šฉํ•ด ๋‹ค๋ฅธ ์ฐธ์—ฌ์ž์˜ ๋ฐ์ดํ„ฐ๋ฅผ ์žฌ๊ตฌ์„ฑํ•˜๋Š” ํŠน์ง• ์ถ”๋ก  ๊ณต๊ฒฉ์— ๋…ธ์ถœ๋  ์œ„ํ—˜์ด ์žˆ์Šต๋‹ˆ๋‹ค. PRIVEE๋Š” ์ด ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ์‹ ๋ขฐ๋„ ์ ์ˆ˜๋ฅผ ์•”ํ˜ธํ™”ํ•˜์—ฌ ๊ณต์œ ํ•จ์œผ๋กœ์จ, ๊ณต

Learning
Quantum Implicit Neural Representations for 3D Scene Reconstruction and Novel View Synthesis

Quantum Implicit Neural Representations for 3D Scene Reconstruction and Novel View Synthesis

๋ณธ ๋…ผ๋ฌธ์€ 3D ์žฅ๋ฉด ๋ณต์›์—์„œ ๊ณ ์ „์ ์ธ ์•”์‹œ์  ์‹ ๊ฒฝ ํ‘œํ˜„(INRs)์˜ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด ์–‘์ž ์ปดํ“จํŒ… ๊ธฐ์ˆ ์„ ๋„์ž…ํ•œ ํ˜์‹ ์ ์ธ ์ ‘๊ทผ๋ฒ•์„ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. ํŠนํžˆ, Q NeRF๋Š” Nerfacto๋ผ๋Š” ํ˜„์กดํ•˜๋Š” 3D ๋ Œ๋”๋ง ํ”„๋ ˆ์ž„์›Œํฌ์— QIREN ๋ชจ๋“ˆ์„ ํ†ตํ•ฉํ•˜์—ฌ ๊ณ ์ฃผํŒŒ์ˆ˜ ์„ธ๋ถ€ ์‚ฌํ•ญ์˜ ํ‘œํ˜„๋ ฅ์„ ํ–ฅ์ƒ์‹œํ‚ค๊ณ ์ž ํ•ฉ๋‹ˆ๋‹ค. ์ด ์ ‘๊ทผ๋ฒ•์€ ์–‘์ž ํšŒ๋กœ๊ฐ€ ๋‚ด์žฌ์ ์œผ๋กœ ๊ฐ€์ง„ ํ‘ธ๋ฆฌ์— ๊ตฌ์กฐ๋ฅผ ํ™œ์šฉํ•จ์œผ๋กœ์จ, ๊ณ ์ „์ ์ธ ์‹ ๊ฒฝ๋ง์ด ๊ฒช๋Š” ์ŠคํŽ™ํŠธ๋Ÿผ ํŽธํ–ฅ์„ฑ์„ ์™„ํ™”ํ•˜๋Š” ๋ฐ ํšจ๊ณผ์ ์ž…๋‹ˆ๋‹ค. ๋…ผ๋ฌธ์—์„œ ์ œ์‹œ๋œ ํ•˜์ด๋ธŒ๋ฆฌ๋“œ ์–‘์ž ํด๋ž˜์‹ ๋ชจ๋ธ์€ ๊ธฐ์กด์˜ ํด๋ž˜์‹ ๋ชจ๋ธ๊ณผ ๋น„๊ตํ•˜์—ฌ PSNR, SSIM

No Image

SAGA: Open-World Mobile Manipulation via Structured Affordance Grounding

๋ณธ ๋…ผ๋ฌธ์€ SAGA๋ผ๋Š” ์ƒˆ๋กœ์šด ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์†Œ๊ฐœํ•˜๋ฉฐ, ์ด๋Š” ๋‹ค์–‘ํ•œ ํ™˜๊ฒฝ๊ณผ ์ž‘์—… ๋ชฉํ‘œ์— ๊ฑธ์ณ ์ผ๋ฐ˜ํ™”ํ•  ์ˆ˜ ์žˆ๋Š” ์œ ์—ฐํ•˜๊ณ  ์ ์‘๋ ฅ ์žˆ๋Š” ์‹œ๊ฐ ๋ชจํ„ฐ ์ œ์–ด๋ฅผ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค. ํ•ต์‹ฌ ์•„์ด๋””์–ด๋Š” ๊ณ ์ˆ˜์ค€์˜ ์˜๋ฏธ์  ์˜๋„์™€ ์ €์ˆ˜์ค€์˜ ์‹œ๊ฐ ๋ชจํ„ฐ ์ œ์–ด๋ฅผ ๋ถ„๋ฆฌํ•˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ๋Šฅ๋™์„ฑ ๊ธฐ๋ฐ˜ ์ž‘์—… ํ‘œํ˜„์„ ์‚ฌ์šฉํ•˜์—ฌ ๋ณต์žกํ•œ ํ–‰๋™์„ ํ†ต์ผ๋˜๊ณ  ๊ตฌ์กฐํ™”๋œ ํ˜•ํƒœ๋กœ ๋‚˜ํƒ€๋ƒ…๋‹ˆ๋‹ค. ๋‹ค์ค‘ ๋ชจ๋‹ฌ ๊ธฐ์ดˆ ๋ชจ๋ธ์„ ํ™œ์šฉํ•˜์—ฌ SAGA๋Š” ๋กœ๋ด‡์˜ ์‹œ๊ฐ์  ๊ด€์ฐฐ์— 3D ๋Šฅ๋™์„ฑ ํžˆํŠธ๋งต์œผ๋กœ ๊ทผ๊ฑฐ๋ฅผ ๋‘์–ด, ์ž‘์—… ๊ด€๋ จ ์—”ํ‹ฐํ‹ฐ๋ฅผ ๊ฐ•์กฐํ•˜๊ณ  ์ผ๋ฐ˜ํ™”๋ฅผ ๋ฐฉํ•ดํ•  ์ˆ˜ ์žˆ๋Š” ๋ถ€์ˆ˜์ ์ธ ์™ธ๊ด€ ๋ณ€์ด๋ฅผ ์ถ”์ƒํ™”ํ•ฉ๋‹ˆ๋‹ค. ์ด

Scone: Bridging Composition and Distinction in Subject-Driven Image Generation via Unified Understanding-Generation Modeling

Scone: Bridging Composition and Distinction in Subject-Driven Image Generation via Unified Understanding-Generation Modeling

์ด ๋…ผ๋ฌธ์€ ์ฃผ์ œ ์ค‘์‹ฌ ์ด๋ฏธ์ง€ ์ƒ์„ฑ ๋ถ„์•ผ์—์„œ ์ค‘์š”ํ•œ ์ด์Šˆ๋ฅผ ๋‹ค๋ฃจ๊ณ  ์žˆ๋‹ค. ํŠนํžˆ, ๋‹จ์ผ ์ฃผ์ œ์—์„œ ๋‹ค์ค‘ ์ฃผ์ œ๋กœ์˜ ์ „ํ™˜ ๊ณผ์ •์—์„œ ๋ฐœ์ƒํ•˜๋Š” ๊ตฌ๋ถ„๋ ฅ ๋ถ€์กฑ ๋ฌธ์ œ์— ์ง‘์ค‘ํ•œ๋‹ค. Scone์ด๋ผ๋Š” ์ƒˆ๋กœ์šด ์ ‘๊ทผ๋ฒ•์„ ์ œ์‹œํ•จ์œผ๋กœ์จ, ์ด ๋…ผ๋ฌธ์€ ์ด๋ฏธ์ง€ ์ƒ์„ฑ ๋ชจ๋ธ์ด ๋ณต์žกํ•œ ์‹œ๋‚˜๋ฆฌ์˜ค์—์„œ๋„ ํšจ๊ณผ์ ์œผ๋กœ ์ž‘๋™ํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•˜๋Š” ๋ฐ ์ค‘์ ์„ ๋‘๊ณ  ์žˆ๋‹ค. Scone์˜ ํ•ต์‹ฌ ์•„์ด๋””์–ด๋Š” ์ดํ•ด ์ „๋ฌธ๊ฐ€์™€ ์ƒ์„ฑ ์ „๋ฌธ๊ฐ€ ์‚ฌ์ด์— ์˜๋ฏธ์ ์ธ ๋‹ค๋ฆฌ๋ฅผ ๋งŒ๋“œ๋Š” ๊ฒƒ์ด๋‹ค. ์ด ๋‹ค๋ฆฌ๋Š” ์ž…๋ ฅ๋œ ์—ฌ๋Ÿฌ ์ฃผ์ œ๋“ค ์ค‘์—์„œ ์˜ฌ๋ฐ”๋ฅธ ์ฃผ์ œ๋ฅผ ์‹๋ณ„ํ•˜๊ณ  ๊ทธ ์ •์ฒด์„ฑ์„ ์œ ์ง€ํ•˜๋Š” ๋ฐ ํ•„์ˆ˜์ ์ด๋‹ค. ๋‘ ๋‹จ๊ณ„ ํ›ˆ๋ จ ๋ฐฉ์‹์„ ํ†ตํ•ด

Model
No Image

The Complete Anatomy of the Madden-Julian Oscillation Revealed by Artificial Intelligence

์ด ๋…ผ๋ฌธ์€ ๋งค๋“  ์ค„๋ฆฌ์•ˆ ์ง„๋™(MJO)์˜ ์ƒ๋ช…์ฃผ๊ธฐ๋ฅผ ์ •ํ™•ํ•˜๊ฒŒ ์ •์˜ํ•˜๊ธฐ ์œ„ํ•œ ์ƒˆ๋กœ์šด ์ ‘๊ทผ๋ฒ•์„ ์ œ์‹œํ•ฉ๋‹ˆ๋‹ค. MJO๋Š” ๊ธฐํ›„ ๋ณ€๋™์„ฑ์—์„œ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•˜๋Š”๋ฐ, ๊ทธ ์ „ํŒŒ ํŠน์„ฑ ๋•Œ๋ฌธ์— ์ด ์ƒ๋ช…์ฃผ๊ธฐ์˜ ์ •์˜๊ฐ€ ์–ด๋ ต์Šต๋‹ˆ๋‹ค. ํ˜„์žฌ ์‚ฌ์šฉ๋˜๋Š” RMM ์ง€์ˆ˜๋Š” ์ˆ˜ํ•™์  ์˜ค๋ฅ˜๋ฅผ ๋ฌผ๋ฆฌ ์ƒํƒœ์™€ ํ˜ผ๋™ํ•˜๋Š” ๋ฌธ์ œ๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ์œผ๋ฉฐ, ์›์‹œ ๋ฐ์ดํ„ฐ ๊ณต๊ฐ„์—์„œ ์ง์ ‘ ํด๋Ÿฌ์Šคํ„ฐ๋ง์„ ์‹œ๋„ํ•˜๋ฉด '์ „ํŒŒ ํŒจ๋„ํ‹ฐ' ๋ฌธ์ œ๊ฐ€ ๋ฐœ์ƒํ•ฉ๋‹ˆ๋‹ค. ์ด ๋…ผ๋ฌธ์€ ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด AI ๊ธฐ๋ฐ˜ ์ด๋ก  ๋ฐœ๊ฒฌ ๋ฐฉ๋ฒ•๋ก ์„ ๋„์ž…ํ•˜์˜€์Šต๋‹ˆ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด MJO์˜ ๋‚ด์žฌ ๊ตฌ์กฐ๋ฅผ ๊ฐ์ฒด์ ์œผ๋กœ ํƒ์ƒ‰ํ•  ์ˆ˜ ์žˆ๋Š” ์ƒˆ๋กœ์šด ์ ‘๊ทผ๋ฒ•์„

AI Transparency Atlas: Framework, Scoring, and Real-Time Model Card Evaluation Pipeline

AI Transparency Atlas: Framework, Scoring, and Real-Time Model Card Evaluation Pipeline

์ด ๋…ผ๋ฌธ์€ AI ๋ชจ๋ธ ๋ฌธ์„œ์˜ ํˆฌ๋ช…์„ฑ ๋ฌธ์ œ๋ฅผ ์ฒด๊ณ„์ ์œผ๋กœ ๋ถ„์„ํ•˜๊ณ  ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•œ ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์‹œํ•ฉ๋‹ˆ๋‹ค. ํŠนํžˆ, ๋‹ค์–‘ํ•œ ํ”Œ๋žซํผ์—์„œ ์ œ๊ณต๋˜๋Š” AI ๋ชจ๋ธ ๋ฌธ์„œ๋Š” ๊ตฌ์กฐ์™€ ๋‚ด์šฉ์— ์ผ๊ด€์„ฑ์ด ๋ถ€์กฑํ•˜์—ฌ ์‚ฌ์šฉ์ž๋“ค์ด ํ•„์š”ํ•œ ์ •๋ณด๋ฅผ ์‰ฝ๊ฒŒ ์ฐพ๊ธฐ ์–ด๋ ต๋‹ค๋Š” ์ ์„ ์ง€์ ํ•ฉ๋‹ˆ๋‹ค. ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด EU AI Act Annex IV์™€ ์Šคํƒ ํผ๋“œ ํˆฌ๋ช…์„ฑ ์ง€์ˆ˜๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ ๊ฐ€์ค‘ ํˆฌ๋ช…๋„ ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ๊ฐœ๋ฐœํ•˜์˜€์Šต๋‹ˆ๋‹ค. ์ด ํ”„๋ ˆ์ž„์›Œํฌ๋Š” ์•ˆ์ „์„ฑ์ด ์ค‘์š”ํ•œ ๊ณต๊ฐœ ์‚ฌํ•ญ์„ ์šฐ์„ ์‹œํ•˜๋ฉฐ, ์ด๋ฅผ ํ†ตํ•ด ๋ชจ๋ธ์˜ ์•ˆ์ „์„ฑ์„ ํ‰๊ฐ€ํ•˜๋Š” ๋ฐ ํ•„์š”ํ•œ ์ •๋ณด๋ฅผ ์ฒด๊ณ„์ ์œผ๋กœ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค. ๋˜ํ•œ, ๋…ผ๋ฌธ์€ AI ๋ชจ

Model Framework
Bidirectional human-AI collaboration in brain tumour assessments improves both expert human and AI agent performance

Bidirectional human-AI collaboration in brain tumour assessments improves both expert human and AI agent performance

๋ณธ ๋…ผ๋ฌธ์€ ์ธ๊ณต์ง€๋Šฅ(AI)๊ณผ ์ธ๊ฐ„ ์ „๋ฌธ๊ฐ€์˜ ํŒŒํŠธ๋„ˆ์‹ญ์ด ์˜๋ฃŒ ๋ถ„์•ผ์—์„œ ์–ด๋–ป๊ฒŒ ์ž‘๋™ํ•˜๋Š”์ง€๋ฅผ ํƒ๊ตฌํ•œ ์—ฐ๊ตฌ์ž…๋‹ˆ๋‹ค. ํŠนํžˆ, ๋‡Œ์ข…์–‘ ํ™˜์ž์˜ MRI ๊ธฐ๋ฐ˜ ์ง„๋‹จ์„ ์ค‘์‹ฌ์œผ๋กœ AI์™€ ๋ฐฉ์‚ฌ์„  ์ „๋ฌธ๊ฐ€ ๊ฐ„์˜ ์ƒํ˜ธ์ž‘์šฉ์— ์ดˆ์ ์„ ๋งž์ถ”๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ด ์—ฐ๊ตฌ๋Š” ๋‘ ๊ฐ€์ง€ ์ฃผ์š” ๊ด€์ ์—์„œ ์ง„ํ–‰๋˜์—ˆ์Šต๋‹ˆ๋‹ค: ์ฒซ์งธ, AI๊ฐ€ ์ธ๊ฐ„ ์ „๋ฌธ๊ฐ€๋ฅผ ์ง€์›ํ•˜๋Š” ์—ญํ• ๊ณผ ๋‘˜์งธ, ์ธ๊ฐ„ ์ „๋ฌธ๊ฐ€๊ฐ€ AI๋ฅผ ์ง€์›ํ•˜๋Š” ์—ญํ• ์ž…๋‹ˆ๋‹ค. ์—ฐ๊ตฌ ๊ฒฐ๊ณผ, ์–‘์ชฝ ํŒŒํŠธ๋„ˆ์‹ญ ๋ชจ๋‘ ์ •ํ™•๋„์™€ ๋ฉ”ํƒ€์ธ์ง€ ๋Šฅ๋ ฅ์ด ํ–ฅ์ƒ๋˜์—ˆ์Œ์„ ๋ฐœ๊ฒฌํ–ˆ์Šต๋‹ˆ๋‹ค. ํŠนํžˆ, ๋ฐฉ์‚ฌ์„  ์ „๋ฌธ๊ฐ€์˜ ์ง€์›์„ ๋ฐ›๋Š” AI ์—์ด์ „ํŠธ์—์„œ ํ™˜์ž์—๊ฒŒ ๊ฐ€์žฅ ํฐ ํ˜œํƒ์ด ๋‚˜ํƒ€๋‚ฌ์Šต๋‹ˆ

Entropy Collapse: A Universal Failure Mode of Intelligent Systems

Entropy Collapse: A Universal Failure Mode of Intelligent Systems

๋ณธ ๋…ผ๋ฌธ์€ ์ง€๋Šฅ ์‹œ์Šคํ…œ์˜ ๋ณต์žกํ•œ ์—ญ๋™์„ฑ๊ณผ ๊ทธ์— ๋”ฐ๋ฅธ ๋ถ•๊ดด ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ํƒ๊ตฌํ•˜๊ณ  ์žˆ๋‹ค. ํ•™์Šต, ์กฐ์ •, ์ตœ์ ํ™”๋ฅผ ํ†ตํ•ด ์ง€๋Šฅ์ด ํ–ฅ์ƒ๋˜๋Š” ๊ฒƒ์ด ์ผ๋ฐ˜์ ์ธ ๊ด€์ ์ด๋‚˜, ์ด ๊ณผ์ •์—์„œ ๋ฐœ์ƒํ•˜๋Š” ์—ญ์„ค์ ์ธ ๋ฌธ์ œ์ , ์ฆ‰ ์‹œ์Šคํ…œ์˜ ๊ฒฝ์ง๊ณผ ์˜ˆ๊ธฐ์น˜ ์•Š์€ ์‹คํŒจ๊ฐ€ ์ œ์‹œ๋œ๋‹ค. ์ด๋Ÿฌํ•œ ํ˜„์ƒ์„ ์—”ํŠธ๋กœํ”ผ ๋ถ•๊ดด๋ผ๋Š” ๊ฐœ๋…์œผ๋กœ ์„ค๋ช…ํ•˜๋ฉฐ, ํ”ผ๋“œ๋ฐฑ ์ฆํญ์ด ์ƒˆ๋กœ์šด ์ฐฝ์ถœ์„ ๋Šฅ๊ฐ€ํ•  ๋•Œ ๋ฐœ์ƒํ•˜๋Š” ๋ณดํŽธ์ ์ธ ๋™์  ์‹คํŒจ ๋ชจ๋“œ๋ฅผ ์‹๋ณ„ํ•œ๋‹ค. ์—”ํŠธ๋กœํ”ผ ๋ถ•๊ดด๋Š” ์‹œ์Šคํ…œ์˜ ์ ์‘์„ฑ ์ฐจ์› ์ถ•์†Œ๋ฅผ ์˜๋ฏธํ•˜๋ฉฐ, ์ด๋Š” ํ™œ๋™์ด๋‚˜ ๊ทœ๋ชจ์˜ ์ƒ์‹ค๋ณด๋‹ค ๋” ๋ณต์žกํ•œ ๊ตฌ์กฐ์  ๋ณ€ํ™”๋ฅผ ๋‚˜ํƒ€๋‚ธ๋‹ค. ๋…ผ๋ฌธ์€ ์ด๋Ÿฌํ•œ ํ˜„์ƒ์ด ๋‹ค์–‘ํ•œ ๋ถ„์•ผ์—

System
Epistemoverse: Toward an AI-Driven Knowledge Metaverse for Intellectual Heritage Preservation

Epistemoverse: Toward an AI-Driven Knowledge Metaverse for Intellectual Heritage Preservation

์ด ๋…ผ๋ฌธ์€ ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(LLMs)์˜ ์—ญํ• ์— ๋Œ€ํ•œ ํ†ต๋…์„ ์žฌ๊ณ ํ•˜๊ณ , ์ด๋Ÿฌํ•œ ์‹œ์Šคํ…œ๋“ค์ด ๋‹จ์ˆœํžˆ ํ›ˆ๋ จ ๋ฐ์ดํ„ฐ๋ฅผ ๋ณต์ œํ•˜๋Š” ๊ฒƒ์ด ์•„๋‹ˆ๋ผ, ์ ์ ˆํ•œ ์ƒํ˜ธ์ž‘์šฉ์  ๋งฅ๋ฝ์—์„œ ์ƒˆ๋กœ์šด ๊ฐœ๋… ๊ตฌ์กฐ์™€ ์ฐฝ์˜์ ์ธ ์‚ฌ๊ณ ๋ฅผ ๋ฐœ์ „์‹œํ‚ฌ ์ˆ˜ ์žˆ์Œ์„ ์ž…์ฆํ•ฉ๋‹ˆ๋‹ค. ์—ฐ๊ตฌ๋Š” ์ฒ ํ•™์ž๋“ค์˜ ๋””์ง€ํ„ธ ์žฌํ˜„์ฒด๊ฐ€ ์ฐธ์—ฌํ•˜๋Š” Syntropic Counterpoints ํ”„๋กœ์ ํŠธ๋ฅผ ํ†ตํ•ด ์‹ค์ œ ์ฒ ํ•™์  ๋…ผ์Ÿ์„ ๋ถ„์„ํ•˜๊ณ , ์ด๋Ÿฌํ•œ ๋Œ€ํ™”์—์„œ ์ถ”๋ก ์˜ ์ผ๊ด€์„ฑ๊ณผ ๋ฐ˜์„ฑ์ ์ธ ์งˆ๋ฌธ์ด ์–ด๋–ป๊ฒŒ ๋ฐœ์ƒํ•˜๋Š”์ง€๋ฅผ ํƒ๊ตฌํ•ฉ๋‹ˆ๋‹ค. ์—ฐ๊ตฌํŒ€์€ ์ด๋Ÿฌํ•œ ๋ฐœ๊ฒฌ์„ ๋ฐ”ํƒ•์œผ๋กœ 'Epistemoverse'๋ผ๋Š” ๊ฐœ๋…์„ ์ œ์•ˆํ•˜๋ฉฐ, ์ด๋Š” ์ธ๊ฐ„๊ณผ ๊ธฐ

Exploring the Design Space of Transition Matching

Exploring the Design Space of Transition Matching

๋ณธ ๋…ผ๋ฌธ์€ ์ „์ด ๋งค์นญ(TM)์ด๋ผ๋Š” ์ƒˆ๋กœ์šด ์ƒ์„ฑ ๋ชจ๋ธ๋ง ํŒจ๋Ÿฌ๋‹ค์ž„์— ๋Œ€ํ•œ ๋Œ€๊ทœ๋ชจ ์—ฐ๊ตฌ๋ฅผ ์ˆ˜ํ–‰ํ•˜์˜€์Šต๋‹ˆ๋‹ค. TM์€ ๊ธฐ์กด์˜ ํ™•์‚ฐ ๋ฐ ์œ ๋™ ์ผ์น˜ ๋ชจ๋ธ, ์—ฐ์† ์ƒํƒœ ์ž๊ธฐํšŒ๊ท€ ๋ชจ๋ธ์„ ์ผ๋ฐ˜ํ™”ํ•˜๋ฉฐ, ํŠนํžˆ ๋‘ ๋ฒˆ์งธ '๋‚ด๋ถ€' ์ƒ์„ฑ ๋ชจ๋ธ์„ ์‚ฌ์šฉํ•˜์—ฌ ์ „์ด ๋‹จ๊ณ„๋ฅผ ๊ตฌํ˜„ํ•จ์œผ๋กœ์จ ๋” ํ‘œํ˜„๋ ฅ ์žˆ๋Š” ๊ฒฐ๊ณผ๋ฅผ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค. ์—ฐ๊ตฌ์—์„œ๋Š” ์‹œ๊ฐ„ ์—ฐ์† ์–‘๋ฐฉํ–ฅ ๋ณ€ํ˜•์— ์ดˆ์ ์„ ๋งž์ถ”์–ด TM ํ”„๋ ˆ์ž„์›Œํฌ์—์„œ ํ—ค๋“œ์˜ ์„ค๊ณ„, ํ•™์Šต ๋ฐ ์ƒ˜ํ”Œ๋ง์— ๋Œ€ํ•œ ์ฒด๊ณ„์ ์ธ ์กฐ์‚ฌ๋ฅผ ์ˆ˜ํ–‰ํ•˜์˜€์Šต๋‹ˆ๋‹ค. ์—ฐ๊ตฌํŒ€์€ 56๊ฐœ์˜ ๋‹ค๋ฅธ 17์–ต ๊ฐœ ํ…์ŠคํŠธ ์ด๋ฏธ์ง€ ๋ชจ๋ธ์„ ํ•™์Šตํ•˜๋Š” ํฌ๊ด„์ ์ธ ์‹คํ—˜(์ด 549๊ฐœ ๊ณ ์œ ํ•œ ํ‰๊ฐ€)์„ ํ†ตํ•ด

GRC-Net: Gram Residual Co-attention Net for epilepsy prediction

GRC-Net: Gram Residual Co-attention Net for epilepsy prediction

์ด ๋…ผ๋ฌธ์€ ๋‡Œ์ „๋„(EEG) ์‹ ํ˜ธ๋ฅผ ํ™œ์šฉํ•œ ๋ฐœ์ž‘ ์˜ˆ์ธก ๋ชจ๋ธ์˜ ์ •ํ™•์„ฑ์„ ํ–ฅ์ƒ์‹œํ‚ค๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์‹œํ•˜๊ณ  ์žˆ๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ์—์„œ๋Š” EEG ์‹ ํ˜ธ ์ „์ฒด์— ๋Œ€ํ•ด 1์ฐจ์› ์ฒ˜๋ฆฌ๋ฅผ ์ ์šฉํ•ด ์™”์ง€๋งŒ, ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” Gram Matrix ๋ฐฉ๋ฒ•์„ ํ†ตํ•ด ์‹ ํ˜ธ๋ฅผ 3์ฐจ์› ํ‘œํ˜„์œผ๋กœ ๋ณ€ํ™˜ํ•จ์œผ๋กœ์จ, ์‹ ํ˜ธ ๊ฐ„์˜ ๊ด€๊ณ„์™€ ์‹œ๊ฐ„ ์˜์กด์„ฑ์„ ๋™์‹œ์— ๋ชจ๋ธ๋งํ•  ์ˆ˜ ์žˆ๋‹ค. ์ด๋Š” EEG ๋ฐ์ดํ„ฐ ๋‚ด์—์„œ ๋ฐœ๊ฒฌ๋œ ๋กœ์ปฌ๊ณผ ๊ธ€๋กœ๋ฒŒ ์‹ ํ˜ธ ์‚ฌ์ด์˜ ๋ถˆ๊ท ํ˜• ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•œ ๋…ธ๋ ฅ ์ค‘ ํ•˜๋‚˜์ด๋‹ค. ๋˜ํ•œ ๋…ผ๋ฌธ์€ ๊ณต์œ  ์ฃผ์˜(coattention)๋ฅผ ํ™œ์šฉํ•ด ์ „์ฒด์ ์ธ ์‹ ํ˜ธ ํŠน์ง•์„ ํฌ์ฐฉํ•˜๊ณ , Inception ๊ตฌ์กฐ

No Image

HydroDiffusion: Diffusion-Based Probabilistic Streamflow Forecasting with a State Space Backbone

ํ•ด๋„๋””ํ“จ์ „(HydroDiffusion)์€ ํ™•์‚ฐ ๋ชจ๋ธ์„ ํ™œ์šฉํ•œ ์ƒˆ๋กœ์šด ์œ ์†์˜ˆ์ธก ํ”„๋ ˆ์ž„์›Œํฌ๋กœ, ๊ธฐ์กด LSTM ๊ธฐ๋ฐ˜ ๋ชจ๋ธ๋“ค์˜ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ณ ์ž ๊ฐœ๋ฐœ๋˜์—ˆ๋‹ค. ์ด ๋…ผ๋ฌธ์—์„œ๋Š” ํ•ด๋„๋””ํ“จ์ „์ด ์–ด๋–ป๊ฒŒ ์ „์ฒด ๋ฉ€ํ‹ฐ๋ฐ์ด ํŠธ๋ ˆ์ ํ† ๋ฆฌ๋ฅผ ๋™์‹œ์— ์ฒ˜๋ฆฌํ•˜์—ฌ ์‹œ๊ฐ„์  ์ผ๊ด€์„ฑ์„ ๋ณด์žฅํ•˜๊ณ , ์ž๋™ํšŒ๊ท€ ์˜ˆ์ธก์—์„œ ๋ฐœ์ƒํ•˜๋Š” ์˜ค์ฐจ ๋ˆ„์  ๋ฌธ์ œ๋ฅผ ์™„ํ™”ํ•˜๋Š”์ง€ ์„ค๋ช…ํ•œ๋‹ค. ํŠนํžˆ, ํ•ด๋„๋””ํ“จ์ „์€ CAMELS ๋ฐ์ดํ„ฐ์…‹์„ ํ†ตํ•ด 531๊ฐœ์˜ ์ˆ˜๊ณ„์— ๊ฑธ์ณ ํ‰๊ฐ€๋˜์—ˆ์œผ๋ฉฐ, DRUM๊ณผ ๋น„๊ตํ•˜์—ฌ ์šฐ์ˆ˜ํ•œ ์„ฑ๋Šฅ์„ ๋ณด์—ฌ์ฃผ์—ˆ๋‹ค. ์ด๋Ÿฌํ•œ ๊ฒฐ๊ณผ๋Š” ํ•ด๋„๋””ํ“จ์ „์ด ์ค‘๊ธฐ ์œ ์†์˜ˆ์ธก์—์„œ ๊ฐ•๋ ฅํ•œ ๋„๊ตฌ๋กœ ํ™œ์šฉ๋  ์ˆ˜ ์žˆ์Œ์„ ์‹œ์‚ฌํ•˜๋ฉฐ

No Image

Robust and Efficient Penetration-Free Elastodynamics without Barriers

์ด ๋…ผ๋ฌธ์€ ์ธ๊ณต์ง€๋Šฅ(AI) ๊ธฐ์ˆ ์ด ๋ฐ์ดํ„ฐ ๋ถ„์„์„ ํ†ตํ•ด ๋ฏธ๋ž˜ ์˜ˆ์ธก์— ์–ด๋–ป๊ฒŒ ํ™œ์šฉ๋˜๋Š”์ง€๋ฅผ ํƒ๊ตฌํ•œ๋‹ค. AI์™€ ๋จธ์‹ ๋Ÿฌ๋‹ ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ๋ฐœ์ „์€ ๋‹ค์–‘ํ•œ ์‚ฐ์—…์—์„œ ํ˜์‹ ์ ์ธ ๋ณ€ํ™”๋ฅผ ๊ฐ€์ ธ์™”์ง€๋งŒ, ๋™์‹œ์— ์ƒˆ๋กœ์šด ๋„์ „ ๊ณผ์ œ๋„ ์ œ๊ธฐํ•˜๊ณ  ์žˆ๋‹ค. ํŠนํžˆ, ์ด ์—ฐ๊ตฌ๋Š” AI๊ฐ€ ๋ฐ์ดํ„ฐ ๋ถ„์„์„ ํ†ตํ•ด ๋ฏธ๋ž˜ ํŠธ๋ Œ๋“œ๋ฅผ ์˜ˆ์ธกํ•˜๋Š” ๋ฐ ์–ผ๋งˆ๋‚˜ ํšจ๊ณผ์ ์ผ ์ˆ˜ ์žˆ๋Š”์ง€๋ฅผ ํ‰๊ฐ€ํ•œ๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ๋‹ค์–‘ํ•œ ๋จธ์‹ ๋Ÿฌ๋‹ ๋ชจ๋ธ๊ณผ ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ์„ฑ๋Šฅ์„ ๋น„๊ตํ•˜๋ฉฐ, ์‹ค์ œ ์‚ฌ๋ก€์™€ ํ•จ๊ป˜ ๊ทธ ๊ฒฐ๊ณผ๋ฅผ ๋ถ„์„ํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ์—ฐ๊ตฌ๋Š” AI ๊ธฐ์ˆ ์ด ๋”์šฑ ๋ฐœ์ „ํ•จ์— ๋”ฐ๋ผ ๋ฏธ๋ž˜ ์˜ˆ์ธก์˜ ์ •ํ™•๋„๋ฅผ ๋†’์ด๋Š” ๋ฐฉ๋ฒ•๋ก ์„ ์ œ์‹œํ•˜๋Š” ๋™์‹œ์—, ๋ฐ์ด

SoilGen: A Comprehensive Tool for Generating Synthetic Soil Profiles for Geotechnical and Seismic Analysis

SoilGen: A Comprehensive Tool for Generating Synthetic Soil Profiles for Geotechnical and Seismic Analysis

์ง€๋ฐ˜๊ณตํ•™๊ณผ ์ง€์ง„๊ณตํ•™ ๋ถ„์•ผ์—์„œ๋Š” ์ •ํ™•ํ•œ ๋ชจ๋ธ ๊ฐœ๋ฐœ์„ ์œ„ํ•ด ๋Œ€๊ทœ๋ชจ์˜ ์ž˜ ๋ผ๋ฒจ๋ง๋œ ๋ฐ์ดํ„ฐ์…‹์ด ํ•„์ˆ˜์ ์ด๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ด๋Ÿฌํ•œ ๋ฐ์ดํ„ฐ์…‹์€ ๊ณต๊ฐœ์ ์œผ๋กœ ์ด์šฉํ•˜๊ธฐ ์–ด๋ ต๊ณ , ๊ณ ํ’ˆ์งˆ ํ˜„์žฅ ๊ธฐ๋ก์€ ๋Œ€๋ถ€๋ถ„ ์ „๋ฌธ์ ์ธ ์„ฑ๊ฒฉ ๋•Œ๋ฌธ์— ์ ‘๊ทผ์„ฑ์ด ์ œํ•œ์ ์ด๋‹ค. ์ด๋กœ ์ธํ•ด ์—ฐ๊ตฌ์ž๋“ค์€ ๋ฐ์ดํ„ฐ ๋ถ€์กฑ์œผ๋กœ ์ธํ•ด ๋ชจ๋ธ ๊ฐœ๋ฐœ์— ์–ด๋ ค์›€์„ ๊ฒช๊ฒŒ ๋œ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ ์†Œ๊ฐœ๋œ SoilGen ํ”„๋ ˆ์ž„์›Œํฌ๋Š” ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ๋ฌผ๋ฆฌ์ ์œผ๋กœ ์ผ๊ด€๋˜๊ณ  ๋‹ค์ธต์ ์ธ ํ•ฉ์„ฑ ํ† ์ธต์„ ์ƒ์„ฑํ•˜๋Š” ๋ฐฉ๋ฒ•๋ก ์„ ์ œ์‹œํ•œ๋‹ค. SoilGen์€ ๋‹จ์ˆœํžˆ ๋ฌด์ž‘์œ„ํ™”๋œ ๋ฐ์ดํ„ฐ์…‹์„ ์ œ๊ณตํ•˜์ง€ ์•Š๊ณ , ์‹ค์ œ ์ง€๋ฐ˜๊ณตํ•™์  ์†์„ฑ์„ ๊ณ ๋ คํ•˜์—ฌ

Analysis
Stochastic Volatility Modelling with LSTM Networks: A Hybrid Approach for S&P 500 Index Volatility Forecasting

Stochastic Volatility Modelling with LSTM Networks: A Hybrid Approach for S&P 500 Index Volatility Forecasting

๋ณธ ์—ฐ๊ตฌ๋Š” ๊ธˆ์œต ์‹œ์žฅ์—์„œ ๋ณ€๋™์„ฑ ์˜ˆ์ธก์˜ ์ค‘์š”์„ฑ์„ ๊ฐ•์กฐํ•˜๋ฉฐ, ์ด๋ฅผ ์œ„ํ•ด ํ™•๋ฅ ์  ๋ณ€๋™์„ฑ(SV) ๋ชจ๋ธ๊ณผ ์žฅ๋‹จ๊ธฐ ๋ฉ”๋ชจ๋ฆฌ(LSTM) ์‹ ๊ฒฝ๋ง์„ ํ†ตํ•ฉํ•œ ํ•˜์ด๋ธŒ๋ฆฌ๋“œ ๋ชจ๋ธ๋ง ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์•ˆํ•œ๋‹ค. SV ๋ชจ๋ธ์€ ํ†ต๊ณ„์ ์ธ ์ •ํ™•์„ฑ๊ณผ ์ž ์žฌ์ ์ธ ๋ณ€๋™์„ฑ ๋™ํƒœ๋ฅผ ํฌ์ฐฉํ•˜๋Š” ๋Šฅ๋ ฅ์„ ์ œ๊ณตํ•˜๋ฉฐ, ํŠนํžˆ ์˜ˆ์ƒ์น˜ ๋ชปํ•œ ์‚ฌ๊ฑด์— ๋Œ€ํ•œ ๋ฐ˜์‘์—์„œ ์œ ์šฉํ•˜๋‹ค. ํ•œํŽธ, LSTM ๋„คํŠธ์›Œํฌ๋Š” ๊ธˆ์œต ์‹œ๊ณ„์—ด ๋ฐ์ดํ„ฐ์—์„œ ๋ณต์žกํ•˜๊ณ  ๋น„์„ ํ˜• ํŒจํ„ด์„ ๊ฐ์ง€ํ•  ์ˆ˜ ์žˆ๋Š” ๋Šฅ๋ ฅ์ด ์žˆ์–ด, SV ๋ชจ๋ธ์˜ ํ†ต๊ณ„์  ์ •ํ™•์„ฑ๊ณผ ๊ฒฐํ•ฉํ•˜์—ฌ ๋” ์šฐ์ˆ˜ํ•œ ์˜ˆ์ธก ์„ฑ๋Šฅ์„ ์ œ๊ณตํ•œ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” S&P 500 ์ง€์ˆ˜ ์ผ๋ณ„ ๋ฐ์ดํ„ฐ๋ฅผ ์‚ฌ

Network Model
AGAPI-Agents: An Open-Access Agentic AI Platform for Accelerated Materials Design on AtomGPT.org

AGAPI-Agents: An Open-Access Agentic AI Platform for Accelerated Materials Design on AtomGPT.org

AGAPI ํ”Œ๋žซํผ์€ ์ธ๊ณต์ง€๋Šฅ์ด ๊ณผํ•™์  ๋ฐœ๊ฒฌ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ๊ฐ•์กฐํ•˜๋ฉด์„œ, ํŠนํžˆ ์žฌ๋ฃŒ๊ณผํ•™ ๋ถ„์•ผ์—์„œ์˜ ์ œ์•ฝ๋“ค์„ ํ•ด๊ฒฐํ•˜๋ ค๋Š” ์‹œ๋„๋ฅผ ๋ณด์—ฌ์ค๋‹ˆ๋‹ค. ์ด ํ”Œ๋žซํผ์€ ์˜คํ”ˆ ์†Œ์Šค ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(LLMs)๊ณผ ๋‹ค์–‘ํ•œ ์žฌ๋ฃŒ๊ณผํ•™ API ์—”๋“œํฌ์ธํŠธ๋ฅผ ํ†ตํ•ฉํ•˜์—ฌ ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค, ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๋„๊ตฌ, ๋จธ์‹ ๋Ÿฌ๋‹ ๋ชจ๋ธ์„ ํ•˜๋‚˜์˜ ํ”„๋ ˆ์ž„์›Œํฌ๋กœ ์—ฐ๊ฒฐํ•ฉ๋‹ˆ๋‹ค. AGAPI๋Š” ์—์ด์ „ํŠธ ํ”Œ๋ž˜๋„ˆ ์‹คํ–‰์ž ์š”์•ฝ์ž ๊ตฌ์กฐ๋ฅผ ํ™œ์šฉํ•ด ์žฌ๋ฃŒ๊ณผํ•™ ์—ฐ๊ตฌ์—์„œ ๋ฐœ์ƒํ•˜๋Š” ๋ณต์žกํ•œ ์ž‘์—…๋“ค์„ ์ž๋™ํ™”ํ•˜๊ณ  ์ตœ์ ํ™”ํ•ฉ๋‹ˆ๋‹ค. ํŠนํžˆ, AGAPI๋Š” ์žฌ๋ฃŒ ๋ฐ์ดํ„ฐ์˜ ๊ฒ€์ƒ‰๋ถ€ํ„ฐ ๊ทธ๋ž˜ํ”„ ์‹ ๊ฒฝ๋ง์„ ํ†ตํ•œ ์†์„ฑ ์˜ˆ์ธก, ๋จธ์‹ ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜ ํฌ์Šคํ•„๋“œ

Back to the Baseline: Examining Baseline Effects on Explainability Metrics

Back to the Baseline: Examining Baseline Effects on Explainability Metrics

๋ณธ ๋…ผ๋ฌธ์€ XAI ํ‰๊ฐ€์—์„œ Attribution ๋ฐฉ๋ฒ•์˜ ์„ฑ๋Šฅ์„ ์ธก์ •ํ•˜๋Š” ๋ฐ ์‚ฌ์šฉ๋˜๋Š” Fidelity ์ง€ํ‘œ์— ๋Œ€ํ•œ ์ค‘์š”ํ•œ ํ•œ๊ณ„์ ์„ ์ œ๊ธฐํ•ฉ๋‹ˆ๋‹ค. ํŠนํžˆ, Insertion๊ณผ Deletion ๊ฐ™์€ ๊ธฐ์ค€ ํ•จ์ˆ˜๋Š”Attribution ๋ฐฉ๋ฒ•์ด ์ž…๋ ฅ ์ด๋ฏธ์ง€์˜ ํ”ฝ์…€์„ ๋ณ€๊ฒฝํ•˜๋Š” ๋ฐฉ์‹์— ๋”ฐ๋ผ ์„ฑ๋Šฅ ์ฐจ์ด๋ฅผ ๋ณด์ผ ์ˆ˜ ์žˆ๋‹ค๋Š” ์ ์ž…๋‹ˆ๋‹ค. ์ด๋Š”Attribution ๋ฐฉ๋ฒ• ์„ ํƒ ์‹œ ํŠน์ • ๋ชจ๋ธ๋งŒ ์šฐ์›”ํ•˜๊ฒŒ ๋งŒ๋“ค ์ˆ˜ ์žˆ์–ด ๊ณต์ •ํ•œ ํ‰๊ฐ€์— ์–ด๋ ค์›€์„ ์ดˆ๋ž˜ํ•ฉ๋‹ˆ๋‹ค. ๋…ผ๋ฌธ์€ ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ๊ธฐ์ค€ ํ•จ์ˆ˜์˜ ๋‘ ๊ฐ€์ง€ ์ด์ƒ์ ์ธ ํŠน์„ฑ์„ ์ œ์‹œํ•ฉ๋‹ˆ๋‹ค: ์ •๋ณด ์ œ๊ฑฐ์™€ ๋ถ„ํฌ ์™ธ(OOD)

No Image

Source mechanism and rupture directivity of small earthquakes in the Changning region, China, using a dense array data

์ด ๋…ผ๋ฌธ์€ ์ค‘๊ตญ ์‹œ์ดจ ๋ถ„์ง€ changning ์ง€์—ญ์—์„œ ์ˆ˜์ง‘๋œ ๊ณ ๋ฐ€๋„ ๋…ธ๋“œ ์ง€์ง„๊ณ„ ๋ฐฐ์—ด ๋ฐ์ดํ„ฐ๋ฅผ ํ™œ์šฉํ•˜์—ฌ, ์†Œ๊ทœ๋ชจ ์ง€์ง„์˜ ํŒŒ์—ด ๊ณผ์ •์„ ์ •๊ตํ•˜๊ฒŒ ๋ถ„์„ํ•˜๋Š” ๋ฐ ์ดˆ์ ์„ ๋งž์ถ”๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์—ฐ๊ตฌํŒ€์€ PhaseNet+์™€ SKHASH๋ผ๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์‚ฌ์šฉํ•ด 1<M<4 ๋ฒ”์œ„์˜ ์—ฌ์ง„๋“ค์˜ ํฌ์ปค์Šค ๋ฉ”์ปค๋‹ˆ์ฆ˜ ์นดํƒˆ๋กœ๊ทธ๋ฅผ ํ–ฅ์ƒ์‹œ์ผฐ์Šต๋‹ˆ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด, ๋‘ ๊ฐœ์˜ M3 ์—ฌ์ง„์—์„œ ๋ฐฉํ–ฅ์„ฑ์— ๋”ฐ๋ฅธ ์ฝ”๋„ˆ ์ฃผํŒŒ์ˆ˜๋ฅผ ๊ด€์ฐฐํ•˜๊ณ  Brune ๋ชจ๋ธ์„ ์‚ฌ์šฉํ•œ ์ŠคํŽ™ํŠธ๋Ÿผ ํ”ผํŒ…์œผ๋กœ ์ผ๋ฐฉ์  ํŒŒ์—ด์ด ํ™•์ธ๋˜์—ˆ์Šต๋‹ˆ๋‹ค. ํŠนํžˆ, ์ด ์—ฐ๊ตฌ๋Š” changning ์ง€์—ญ์˜ ๋ณต์žกํ•œ ๋‹จ๋ฉด ๊ตฌ์กฐ์™€ ์ง€ํ•˜ ์œ ์ฒด ์ฃผ์ž…๊ณผ

Data
Fairness-Regularized Online Optimization with Switching Costs

Fairness-Regularized Online Optimization with Switching Costs

๋ณธ ๋…ผ๋ฌธ์€ ์˜จ๋ผ์ธ ์ตœ์ ํ™” ๋ฌธ์ œ์—์„œ ๊ณต์ •์„ฑ๊ณผ ๋ถ€๋“œ๋Ÿฌ์›€์ด๋ผ๋Š” ๋‘ ๊ฐ€์ง€ ์ค‘์š”ํ•œ ์š”์†Œ๊ฐ€ ๋™์‹œ์— ๊ณ ๋ ค๋˜์ง€ ์•Š๋Š” ํ˜„์ƒ์„ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ์ƒˆ๋กœ์šด ์ ‘๊ทผ๋ฒ•์„ ์ œ์‹œํ•ฉ๋‹ˆ๋‹ค. ํŠนํžˆ, ๊ณต์ •์„ฑ ๊ทœ์ œ์™€ ์Šค์œ„์นญ ๋น„์šฉ์ด ํฌํ•จ๋œ ๋ณต์žกํ•œ ์„ค์ •์—์„œ์˜ ๋„์ „์ ์ธ ๋ฌธ์ œ๋ฅผ ๋‹ค๋ฃน๋‹ˆ๋‹ค. ๋…ผ๋ฌธ์€ ์ด๋Ÿฌํ•œ ๋ฌธ์ œ์— ๋Œ€ํ•œ ๊ทผ๋ณธ์ ์ธ ๋„์ „์„ ์ฆ๋ช…ํ•˜๊ณ , ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•œ FairOBD ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. FairOBD๋Š” ์žฅ๊ธฐ ๊ณต์ •์„ฑ ๋น„์šฉ์„ ์˜จ๋ผ์ธ ๋น„์šฉ ์‹œํ€€์Šค๋กœ ๋ถ„ํ•ดํ•˜๋Š” ๋ฐฉ๋ฒ•์œผ๋กœ, ๋ณด์กฐ ๋ณ€์ˆ˜๋ฅผ ํ™œ์šฉํ•˜์—ฌ ๊ณต์ •ํ•œ ๊ฒฐ๊ณผ๋ฅผ ๋‹ฌ์„ฑํ•˜๋„๋ก ํ–‰๋™์„ ๊ทœ์ œํ•ฉ๋‹ˆ๋‹ค. ์ด ์ ‘๊ทผ๋ฒ•์€ ์Šค์œ„์นญ ๋น„์šฉ์„ ๊ณ ๋ คํ•˜๋ฉด์„œ๋„ ์ตœ์ 

HLS4PC: A Parametrizable Framework For Accelerating Point-Based 3D Point Cloud Models on FPGA

HLS4PC: A Parametrizable Framework For Accelerating Point-Based 3D Point Cloud Models on FPGA

์ด ๋…ผ๋ฌธ์€ ๊ณ ์† ์ฒ˜๋ฆฌ๋ฅผ ์œ„ํ•ด FPGA ๊ธฐ๋ฐ˜์˜ HLS4PC ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์‹œํ•˜๊ณ , ์ด๋ฅผ ํ†ตํ•ด 3D ํฌ์ธํŠธ ํด๋ผ์šฐ๋“œ ๋ชจ๋ธ์˜ ํšจ์œจ์ ์ธ ์ฒ˜๋ฆฌ๋ฅผ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•ฉ๋‹ˆ๋‹ค. ํŠนํžˆ, PointMLP Elite ๋ชจ๋ธ์— ๋Œ€ํ•œ ๋‹ค์–‘ํ•œ ์••์ถ• ๊ธฐ๋ฒ•์„ ์ ์šฉํ•˜์—ฌ ๋ณต์žก์„ฑ์„ ์ค„์ด๋ฉด์„œ๋„ ์ •ํ™•๋„ ํ•˜๋ฝ์„ ์ตœ์†Œํ™”ํ•˜๋Š” PointMLP Lite ๋ณ€ํ˜•์„ ๊ฐœ๋ฐœํ•˜์˜€์Šต๋‹ˆ๋‹ค. ์ด๋Š” 3D ํฌ์ธํŠธ ํด๋ผ์šฐ๋“œ ๋ฐ์ดํ„ฐ์˜ ํŠน์„ฑ์ƒ GPU์—์„œ ๋ฐœ์ƒํ•˜๋Š” ๊ณ„์‚ฐ ๋ฐ ๋ฉ”๋ชจ๋ฆฌ ์š”๊ตฌ ์‚ฌํ•ญ์˜ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ณ , ์‹ค์‹œ๊ฐ„ ์„ฑ๋Šฅ์„ ํ–ฅ์ƒ์‹œํ‚ค๋Š”๋ฐ ๊ธฐ์—ฌํ•ฉ๋‹ˆ๋‹ค. ๋˜ํ•œ, FPGA ๊ฐ€์†ํ™”๋ฅผ ํ†ตํ•ด CPU์™€ GPU์— ๋น„ํ•ด ๋†’์€ ์ฒ˜๋ฆฌ๋Ÿ‰์„

Framework Model
In-Context Multi-Objective Optimization

In-Context Multi-Objective Optimization

์ด ๋…ผ๋ฌธ์€ ํŠธ๋žœ์Šคํฌ๋จธ ์•„ํ‚คํ…์ฒ˜๋ฅผ ํ™œ์šฉํ•œ TAMO๋ผ๋Š” ์ƒˆ๋กœ์šด ๋‹ค๋ชฉ์  ์ตœ์ ํ™” ๋ฐฉ๋ฒ•์„ ์ œ์‹œํ•ฉ๋‹ˆ๋‹ค. ์ „ํ†ต์ ์œผ๋กœ, ๋‹ค๋ชฉ์  ๋ฒ ์ด์ง€์•ˆ ์ตœ์ ํ™”๋Š” ๊ฐ ๋ฌธ์ œ์— ๋งž๊ฒŒ ๋Œ€๋ฆฌ ๋ชจ๋ธ๊ณผ ํš๋“ ํ•จ์ˆ˜๋ฅผ ํŠน๋ณ„ํžˆ ์„ ํƒํ•ด์•ผ ํ•˜๋ฉฐ, ์ด ๊ณผ์ •์€ ์‹œ๊ฐ„๊ณผ ์ž์›์„ ๋งŽ์ด ์†Œ๋ชจํ•˜๋Š” ๊ฒƒ์œผ๋กœ ์•Œ๋ ค์ ธ ์žˆ์Šต๋‹ˆ๋‹ค. ํŠนํžˆ ๋ณ‘๋ ฌ ๋˜๋Š” ์‹œ๊ฐ„ ๋ฏผ๊ฐํ•œ ํ™˜๊ฒฝ์—์„œ๋Š” ์ด๋Ÿฌํ•œ ์žฌ์ ํ•ฉ ์˜ค๋ฒ„ํ—ค๋“œ๊ฐ€ ํฐ ๋ฌธ์ œ์ž…๋‹ˆ๋‹ค. TAMO๋Š” ์ด๋Ÿฌํ•œ ์ œ์•ฝ์„ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด ํŠธ๋žœ์Šคํฌ๋จธ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๋‹ค์–‘ํ•œ ์ž…๋ ฅ ๋ฐ ๋ชฉํ‘œ ์ฐจ์›์—์„œ ์ž‘๋™ํ•  ์ˆ˜ ์žˆ๋„๋ก ์„ค๊ณ„๋˜์—ˆ์Šต๋‹ˆ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด TAMO๋Š” ์‚ฌ์ „ ํ•™์Šต๋œ ๋ชจ๋ธ์„ ์ƒˆ๋กœ์šด ๋ฌธ์ œ์— ์ ์šฉํ•˜๋Š” ๋ฐ ํ•„์š”

Robust Crop Planning under Uncertainty: Aligning Economic Optimality with Agronomic Sustainability

Robust Crop Planning under Uncertainty: Aligning Economic Optimality with Agronomic Sustainability

์ด ๋…ผ๋ฌธ์€ ๋‹ค์ธต ๊ฐ•์ธ์„ฑ ์ž‘๋ฌผ ๊ณ„ํš ํ”„๋ ˆ์ž„์›Œํฌ(MLRCPF)๋ฅผ ์ œ์•ˆํ•˜์—ฌ ๋†์—… ๊ณ„ํš์˜ ๋ณต์žกํ•œ ๋ฌธ์ œ๋“ค์„ ํ•ด๊ฒฐํ•˜๊ณ ์ž ํ•ฉ๋‹ˆ๋‹ค. ๊ธฐ์กด ๋ฐฉ๋ฒ•๋“ค์€ ์ •์ ์ธ ๊ฒฐ์ •๋ก ์  ๋ฐฉ์‹์œผ๋กœ ์ž‘๋ฌผ ๋ฐฐ์น˜๋ฅผ ์ตœ์ ํ™”ํ•˜๋ฏ€๋กœ, ์‹œ์žฅ๊ณผ ๊ธฐํ›„ ๋ณ€๋™์— ๋Œ€ํ•œ ํƒ„๋ ฅ์„ฑ์„ ๋ณด์žฅํ•˜์ง€ ๋ชปํ•ฉ๋‹ˆ๋‹ค. MLRCPF๋Š” ๊ณต๊ฐ„์  ์ด์งˆ์„ฑ, ์‹œ๊ฐ„์  ๋†์—… ์ข…์†์„ฑ ๋ฐ ํ™˜๊ฒฝ ๋ถˆํ™•์‹ค์„ฑ์„ ๊ณ ๋ คํ•˜์—ฌ ์ด๋Ÿฌํ•œ ๋ฌธ์ œ์ ์„ ํ•ด๊ฒฐํ•˜๊ณ ์ž ํ•ฉ๋‹ˆ๋‹ค. ๋…ผ๋ฌธ์€ ์ž‘๋ฌผ ๊ฐ„ ์ƒํ˜ธ์ž‘์šฉ์„ ๊ตฌ์กฐํ™”๋œ ์ƒํ˜ธ์ž‘์šฉ ํ–‰๋ ฌ๋กœ ํ‘œํ˜„ํ•˜๋ฉฐ, ์ด๋ฅผ ์ƒํƒœ ์ „์ด ๋…ผ๋ฆฌ ๋‚ด์— ํ†ตํ•ฉํ•ฉ๋‹ˆ๋‹ค. ๋˜ํ•œ ๋ถ„ํฌ ๊ฐ•๊ฑด ์ตœ์ ํ™” ๊ณ„์ธต์„ ์‚ฌ์šฉํ•ด ๋ฐ์ดํ„ฐ ๊ธฐ๋ฐ˜ ๋ชจํ˜ธ ์ง‘ํ•ฉ์œผ๋กœ ์ •์˜๋œ ์ตœ์•…์˜ ์œ„ํ—˜

SoccerMaster: A Vision Foundation Model for Soccer Understanding

SoccerMaster: A Vision Foundation Model for Soccer Understanding

์ถ•๊ตฌ ๋งˆ์Šคํ„ฐ๋Š” ์ถ•๊ตฌ ๊ด€๋ จ ์ด๋ฏธ์ง€์™€ ๋™์˜์ƒ ์ž๋ฃŒ๋ฅผ ํ™œ์šฉํ•˜์—ฌ ๋‹ค์–‘ํ•œ ์ถ•๊ตฌ ๊ด€๋ จ ์ž‘์—…์„ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ๋Š” ํ†ตํ•ฉ ๋น„์ „ ๋ชจ๋ธ์ž…๋‹ˆ๋‹ค. ์ด ๋ชจ๋ธ์€ ์ฃผ์„ ์ƒ์„ฑ, ๊ฐ์ง€, ์ถ”์ , ๋ถ„๋ฅ˜ ๋“ฑ๊ณผ ๊ฐ™์€ ์—ฌ๋Ÿฌ ๊ฐ€์ง€ ์ถ•๊ตฌ ์ดํ•ด ์ž‘์—…์— ์ ์šฉ๋  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. SoccerMaster๋Š” ์ถ•๊ตฌ ์ฝ˜ํ…์ธ ์˜ ๋‹ค์–‘์„ฑ์„ ํ™œ์šฉํ•จ์œผ๋กœ์จ, ์ถ•๊ตฌ ๊ด€๋ จ ๋ฐ์ดํ„ฐ๋กœ๋ถ€ํ„ฐ ์–ป์„ ์ˆ˜ ์žˆ๋Š” ์ •๋ณด๋ฅผ ์ตœ๋Œ€ํ•œ ํ™œ์šฉํ•˜์—ฌ ๋ณด๋‹ค ์ •ํ™•ํ•˜๊ณ  ํšจ๊ณผ์ ์ธ ๊ฒฐ๊ณผ๋ฅผ ๋„์ถœํ•ฉ๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ๋ชจ๋ธ์€ ์ถ•๊ตฌ ๋ถ„์„, ์„ ์ˆ˜ ํ‰๊ฐ€, ๊ฒฝ๊ธฐ ์ „๋žต ๋“ฑ ๋‹ค์–‘ํ•œ ์˜์—ญ์—์„œ ํ™œ์šฉ๋  ์ˆ˜ ์žˆ์œผ๋ฉฐ, ํŠนํžˆ ์‹ค์‹œ๊ฐ„ ์ฃผ์„ ์ƒ์„ฑ๊ณผ ๊ฐ™์€ ๋น ๋ฅธ ์˜์‚ฌ๊ฒฐ์ •์ด ํ•„์š”ํ•œ ์ƒ

Model
No Image

Trustworthy Orchestration Artificial Intelligence by the Ten Criteria with Control-Plane Governance

๋ณธ ๋…ผ๋ฌธ์€ AI ์‹œ์Šคํ…œ์˜ ์ฑ…์ž„์„ฑ๊ณผ ์‹ ๋ขฐ์„ฑ์„ ๋†’์ด๊ธฐ ์œ„ํ•œ ํ†ตํ•ฉ ๊ด€๋ฆฌ ์•„ํ‚คํ…์ฒ˜๋ฅผ ์ œ์‹œํ•œ๋‹ค. ๊ธฐ์กด์˜ AI๋Š” ์ฃผ๋กœ AI ๊ฐ„ ์กฐ์ •์— ์ดˆ์ ์„ ๋งž์ถ”์—ˆ์ง€๋งŒ, ์ด ์—ฐ๊ตฌ์—์„œ๋Š” ์ „์ฒด AI ๊ตฌ์„ฑ ์š”์†Œ์™€ ์ธ๊ฐ„ ์ฐธ์—ฌ์ž๋ฅผ ํฌ๊ด„ํ•˜๋Š” ๋ณด๋‹ค ํฌ๊ด„์ ์ธ ์ ‘๊ทผ ๋ฐฉ์‹์„ ์ œ์•ˆํ•˜๊ณ  ์žˆ๋‹ค. ํŠนํžˆ '์‹ ๋ขฐํ•  ์ˆ˜ ์žˆ๋Š” ์กฐ์ • AI๋ฅผ ์œ„ํ•œ 10๊ฐœ ๊ธฐ์ค€'์€ ์ด๋Ÿฌํ•œ ๋ชฉํ‘œ๋ฅผ ๋‹ฌ์„ฑํ•˜๊ธฐ ์œ„ํ•ด ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•œ๋‹ค. ์ด ๋…ผ๋ฌธ์˜ ํ•ต์‹ฌ ๊ฐœ๋… ์ค‘ ํ•˜๋‚˜๋Š” 'ํ†ตํ•ฉ ๊ด€๋ฆฌ ์•„ํ‚คํ…์ฒ˜'์ด๋‹ค. ์ด๋Š” ์ธ๊ฐ„ ์ž…๋ ฅ, ์˜๋ฏธ๋ก ์  ์ผ๊ด€์„ฑ, ๊ฐ์‚ฌ ๋ฐ ์ฆ๊ฑฐ์˜ ์ •ํ•ฉ์„ฑ์„ ํ†ตํ•ฉํ•œ ๋‹จ์ผ ๊ด€๋ฆฌ ํŒจ๋„๋กœ ๊ตฌ์„ฑ๋˜์–ด ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ์ ‘๊ทผ ๋ฐฉ์‹์€

Color encoding in Latent Space of Stable Diffusion Models

Color encoding in Latent Space of Stable Diffusion Models

๋ณธ ๋…ผ๋ฌธ์€ ์ตœ์‹  ํ™•์‚ฐ ๋ชจ๋ธ์ธ Stable Diffusion์˜ ๋‚ด๋ถ€ ํ‘œํ˜„ ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ์ƒ‰์ฑ„๋ผ๋Š” ๊ตฌ์ฒด์ ์ธ ์ง€๊ฐ ์†์„ฑ์— ์ดˆ์ ์„ ๋งž์ถ”์–ด ํŒŒํ—ค์นœ๋‹ค. ์—ฐ๊ตฌ์ž๋Š” ๋จผ์ € ์ƒ‰์ƒ๊ณผ ํ˜•ํƒœ๊ฐ€ ๋ช…ํ™•ํžˆ ๊ตฌ๋ถ„๋œ ํ•ฉ์„ฑ ์ด๋ฏธ์ง€ ๋ฐ์ดํ„ฐ์…‹์„ ์ œ์ž‘ํ•˜์˜€๋‹ค. ์ด ๋ฐ์ดํ„ฐ์…‹์€ ์ƒ‰์ƒ๋งŒ์„ ๋ณ€ํ˜•์‹œํ‚ค๋Š” ๋ฒ„์ „๊ณผ ํ˜•ํƒœ๋งŒ์„ ๋ณ€ํ˜•์‹œํ‚ค๋Š” ๋ฒ„์ „์œผ๋กœ ๊ตฌ์„ฑ๋ผ ์žˆ์–ด, ๊ฐ ์†์„ฑ์ด ์ž ์žฌ ๊ณต๊ฐ„์— ์–ด๋–ป๊ฒŒ ๋งคํ•‘๋˜๋Š”์ง€๋ฅผ ๋…๋ฆฝ์ ์œผ๋กœ ์ธก์ •ํ•  ์ˆ˜ ์žˆ๋‹ค. ์ž ์žฌ ํ‘œํ˜„์„ ๋ถ„์„ํ•˜๊ธฐ ์œ„ํ•ด ์ €์ž๋Š” Stable Diffusion์˜ UNet ์ธ์ฝ”๋” ๋‹จ๊ณ„์—์„œ ์ถ”์ถœํ•œ ์ค‘๊ฐ„ ํŠน์ง• ๋งต์„ ๋ฒกํ„ฐํ™”ํ•˜๊ณ , ์ „์ฒด ๋ฐ์ดํ„ฐ์…‹์— ๋Œ€ํ•ด ์ฃผ์„ฑ๋ถ„ ๋ถ„์„(PC

Model
Comparative Evaluation of Explainable Machine Learning Versus Linear Regression for Predicting County-Level Lung Cancer Mortality Rate in the United States

Comparative Evaluation of Explainable Machine Learning Versus Linear Regression for Predicting County-Level Lung Cancer Mortality Rate in the United States

์ด ์—ฐ๊ตฌ๋Š” ๋ฏธ๊ตญ์—์„œ ํ์•”(LC) ์‚ฌ๋ง๋ฅ  ์˜ˆ์ธก์— ๊ธฐ๊ณ„ํ•™์Šต ๋ชจ๋ธ์˜ ์ ์šฉ์„ ํ†ตํ•ด ์–ป์€ ๊ฒฐ๊ณผ๋ฅผ ๋ณด๊ณ ํ•˜๊ณ  ์žˆ๋‹ค. ํŠนํžˆ, ๋žœ๋ค ํฌ๋ ˆ์ŠคํŠธ(RF), ๊ทธ๋ž˜๋””์–ธํŠธ ๋ถ€์ŠคํŒ… ํšŒ๊ท€(GBR), ๊ทธ๋ฆฌ๊ณ  ์„ ํ˜• ํšŒ๊ท€(LR) ์„ธ ๊ฐ€์ง€ ๋ชจ๋ธ์„ ์‚ฌ์šฉํ•˜์—ฌ LC ์‚ฌ๋ง๋ฅ  ์˜ˆ์ธก ์„ฑ๋Šฅ์„ ํ‰๊ฐ€ํ•˜์˜€๋‹ค. ์—ฐ๊ตฌ์—์„œ RF ๋ชจ๋ธ์ด GBR๊ณผ LR๋ณด๋‹ค ์šฐ์ˆ˜ํ•œ ์„ฑ๋Šฅ์„ ๋ณด์—ฌ์ฃผ์—ˆ์œผ๋ฉฐ, R squared ๊ฐ’ 41.9%, RMSE 12.8์„ ๋‹ฌ์„ฑํ–ˆ๋‹ค๋Š” ์ ์€ ์ฃผ๋ชฉํ•  ๋งŒํ•˜๋‹ค. SHAP ๋ถ„์„์„ ํ†ตํ•ด ํก์—ฐ๋ฅ ์ด ๊ฐ€์žฅ ์ค‘์š”ํ•œ ์˜ˆ์ธก ๋ณ€์ˆ˜๋กœ ๋‚˜ํƒ€๋‚ฌ๊ณ , ์ด์–ด ์ง‘๊ฐ’ ์ค‘์•™๊ฐ’๊ณผ ํžˆ์ŠคํŒจ๋‹‰ ์ธ๊ตฌ ๋น„์œจ์ด ์ค‘์š”ํ•˜๊ฒŒ ์ž‘์šฉํ•œ๋‹ค๋Š”

Learning
Near-Linear and Parameterized Approximations for Maximum Cliques in Disk Graphs

Near-Linear and Parameterized Approximations for Maximum Cliques in Disk Graphs

์ด ๋…ผ๋ฌธ์€ ๋””์Šคํฌ ๊ทธ๋ž˜ํ”„์—์„œ ์ตœ๋Œ€ ํด๋ฆฌํฌ ๋ฌธ์ œ์— ๋Œ€ํ•œ ๊ทผ์‚ฌ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ œ์‹œํ•˜๋ฉฐ, ํŠนํžˆ ๋‹จ์œ„ ๋””์Šคํฌ ๊ทธ๋ž˜ํ”„์™€ ๋‹ค์ค‘ ๋ฐ˜๊ฒฝ ๋””์Šคํฌ ๊ทธ๋ž˜ํ”„์˜ ๊ฒฝ์šฐ๋ฅผ ๊ณ ๋ คํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ด ๋ฌธ์ œ๋Š” ๊ทธ๋ž˜ํ”„ ์ด๋ก ์—์„œ ์ค‘์š”ํ•œ ์œ„์น˜๋ฅผ ์ฐจ์ง€ํ•˜๋ฉฐ, ํŠนํžˆ ํ†ต์‹  ๋„คํŠธ์›Œํฌ๋‚˜ ์„ผ์„œ ๋„คํŠธ์›Œํฌ์™€ ๊ฐ™์€ ์‹ค์ œ ์‹œ์Šคํ…œ์—์„œ ํ™œ์šฉ๋  ์ˆ˜ ์žˆ๋Š” ์ค‘์š”ํ•œ ์‘์šฉ ๋ถ„์•ผ์ž…๋‹ˆ๋‹ค. ๋…ผ๋ฌธ์€ ๋‹จ์œ„ ๋””์Šคํฌ ๊ทธ๋ž˜ํ”„์— ๋Œ€ํ•œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ๊ฐœ์„ ํ•˜์—ฌ O(n/ฮต^2) ๊ธฐ๋Œ€ ์‹œ๊ฐ„ ๋‚ด์— (1 ฮต) ๊ทผ์‚ฌ ์ตœ๋Œ€ ํด๋ฆฌํฌ๋ฅผ ์ฐพ๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์‹œํ•ฉ๋‹ˆ๋‹ค. ์ด๋Š” ๊ธฐ์กด์˜ ์ •ํ™•ํ•œ ํ•ด๊ฒฐ์ฑ…๋ณด๋‹ค ํ›จ์”ฌ ๋น ๋ฅด๋ฉฐ, ํŠนํžˆ ํฐ ๊ทธ๋ž˜ํ”„์—์„œ ์ค‘์š”ํ•œ ์„ฑ๋Šฅ ๊ฐœ์„ ์ž…

Representation Invariance and Allocation: When Subgroup Balance Matters

Representation Invariance and Allocation: When Subgroup Balance Matters

๋ณธ ์—ฐ๊ตฌ๋Š” ์ธ๊ตฌํ†ต๊ณ„ํ•™์  ๋‹ค์–‘์„ฑ์„ ๋ฐ˜์˜ํ•œ ๋ฐ์ดํ„ฐ์…‹ ๊ตฌ์ถ•์ด ๋จธ์‹ ๋Ÿฌ๋‹ ๋ชจ๋ธ์˜ ๊ณต์ •์„ฑ๊ณผ ์ผ๋ฐ˜ํ™”์— ํ•ต์‹ฌ์ ์ธ ์—ญํ• ์„ ํ•œ๋‹ค๋Š” ์ „์ œ์—์„œ ์ถœ๋ฐœํ•œ๋‹ค. ์ „ํ†ต์ ์œผ๋กœ๋Š” ๊ฐ ์„œ๋ธŒ๊ทธ๋ฃน์ด ํ›ˆ๋ จ ๋ฐ์ดํ„ฐ์— ๊ท ๋“ฑํ•˜๊ฒŒ ํฌํ•จ๋  ๋•Œ ๋ชจ๋ธ์ด ๋ชจ๋“  ์ง‘๋‹จ์— ๋Œ€ํ•ด ์ตœ์ ์˜ ์„ฑ๋Šฅ์„ ๋ณด์ธ๋‹ค๊ณ  ๋ฏฟ์–ด ์™”์œผ๋ฉฐ, ์ด๋ฅผ ์œ„ํ•ด ๋ฐ์ดํ„ฐ ์ˆ˜์ง‘ ๋‹จ๊ณ„์—์„œ โ€˜๋ฐธ๋Ÿฐ์‹ฑ(balancing)โ€™ ์ž‘์—…์ด ํ•„์ˆ˜์ ์ด๋ผ๊ณ  ์—ฌ๊ฒจ์กŒ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ตœ๊ทผ ๋ช‡๋ช‡ ์‹คํ—˜์—์„œ๋Š” ์˜คํžˆ๋ ค ๋ถˆ๊ท ํ˜•ํ•œ ๋ฐ์ดํ„ฐ๊ฐ€ ํŠน์ • ์„œ๋ธŒ๊ทธ๋ฃน์˜ ์„ฑ๋Šฅ์„ ๋Œ์–ด์˜ฌ๋ฆฌ๊ฑฐ๋‚˜, ์ „์ฒด ์„œ๋ธŒ๊ทธ๋ฃน์ด ํ›ˆ๋ จ์— ์ „ํ˜€ ํฌํ•จ๋˜์ง€ ์•Š์•„๋„ ํ•ด๋‹น ์„œ๋ธŒ๊ทธ๋ฃน์— ๋Œ€ํ•œ ์˜ˆ์ธก ์ •ํ™•๋„๊ฐ€ ํฌ๊ฒŒ ์ €ํ•˜๋˜์ง€ ์•Š

The Complex-Step Integral Transform

The Complex-Step Integral Transform

๋ณธ ๋…ผ๋ฌธ์€ ๊ธฐ์กด์˜ Hilbert ๋ณ€ํ™˜์ด ์‹ ํ˜ธ์˜ ์œ„์ƒ ์ •๋ณด๋ฅผ ์ถ”์ถœํ•˜๊ณ  ๋ฏธ๋ถ„ ์—ฐ์‚ฐ๊ณผ ์—ฐ๊ฒฐ๋œ๋‹ค๋Š” ์‚ฌ์‹ค์„ ์ถœ๋ฐœ์ ์œผ๋กœ ์‚ผ์•„, ๋ณต์†Œ์ˆ˜ ์Šคํ… ์ฐจ๋ถ„๋ฒ•(complexโ€‘step differentiation)์˜ ํ•ต์‹ฌ ์•„์ด๋””์–ด๋ฅผ ์ ๋ถ„ ๋ณ€ํ™˜ ํ˜•ํƒœ๋กœ ํ™•์žฅํ•œ๋‹ค๋Š” ์ ์—์„œ ํ˜์‹ ์ ์ด๋‹ค. ๋ณต์†Œ์ˆ˜ ์Šคํ…์„ ์‹ค์ˆ˜์™€ ํ—ˆ์ˆ˜ ๋‘ ์ถ•์œผ๋กœ ๋…๋ฆฝ์ ์œผ๋กœ ์กฐ์ •ํ•จ์œผ๋กœ์จ, ๋ณ€ํ™˜ ๊ณผ์ •์—์„œ ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ๋Š” ์ˆ˜์น˜ ์˜ค์ฐจ๋ฅผ ์ตœ์†Œํ™”ํ•˜๊ณ  ๋™์‹œ์— ๊ณ ์ฃผํŒŒ ์žก์Œ์„ ํšจ๊ณผ์ ์œผ๋กœ ์–ต์ œํ•œ๋‹ค๋Š” ๋ฉ”์ปค๋‹ˆ์ฆ˜์€ ํŠนํžˆ ์ŠคํŽ™ํŠธ๋Ÿผ ๊ธฐ๋ฐ˜ ์ˆ˜์น˜ ๋ฏธ๋ถ„์—์„œ ํฐ ์žฅ์ ์„ ์ œ๊ณตํ•œ๋‹ค. ์ŠคํŽ™ํŠธ๋Ÿผ ๋ถ„์„์—์„œ๋Š” CSIT๊ฐ€ ์ž…๋ ฅ ์‹ ํ˜ธ์˜ ํ‘ธ๋ฆฌ์— ์ŠคํŽ™ํŠธ

No Image

What Kind of Reasoning (if any) is an LLM actually doing? On the Stochastic Nature and Abductive Appearance of Large Language Models

์ด ๋…ผ๋ฌธ์€ ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(LLMs)์—์„œ ํ† ํฐ ์™„์„ฑ ๊ธฐ๋ฐ˜์˜ ์ถ”๋ก  ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ํƒ๊ตฌํ•˜๋ฉฐ, ํŠนํžˆ ์ด๋Ÿฌํ•œ LLMs์ด ํ•™์Šต๋œ ์—ฐ๊ด€์„ฑ์„ ํ†ตํ•ด ์ƒ์„ฑ๋˜๋Š” ํ…์ŠคํŠธ์™€ ์ธ๊ฐ„์˜ ์ถ”์ธก์  ์ถ”๋ก (abductive reasoning) ์‚ฌ์ด์˜ ์œ ์‚ฌ์„ฑ์„ ๋ถ„์„ํ•œ๋‹ค. ๋…ผ๋ฌธ์€ LLMs๊ฐ€ ์ง์ ‘์ ์ธ ์ง„๋ฆฌ๋‚˜ ์˜๋ฏธ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•˜์ง€ ์•Š๊ณ ๋„ ๊ฐ€๋Šฅ์„ฑ์ด ์žˆ๋Š” ๊ฐ€์„ค์„ ์ œ์‹œํ•˜๊ณ , ์ƒ์‹์  ์ถ”๋ก ์„ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ํ•˜๋ฉฐ, ์„ค๋ช…์ ์ธ ๋‹ต๋ณ€์„ ์ œ๊ณตํ•˜๋Š” ๋ฐฉ์‹์„ ํ†ตํ•ด ๊ทธ๋“ค์˜ ์ถœ๋ ฅ์ด ์‹ค์ œ ์ถ”์ธก์  ์ถ”๋ก ๊ณผ ์œ ์‚ฌํ•˜๊ฒŒ ๋ณด์ผ ์ˆ˜ ์žˆ๋‹ค๋Š” ์ ์— ์ฃผ๋ชฉํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ๋ชจ๋ธ์˜ ํ™•๋ฅ ์  ํ•ต์‹ฌ๊ณผ ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜์—์„œ ๋‚˜ํƒ€๋‚˜๋Š” ์ถ”์ธก์  ์ถ”๋ก ์˜

Model
Understanding Mental States in Active and Autonomous Driving with EEG

Understanding Mental States in Active and Autonomous Driving with EEG

๋ณธ ๋…ผ๋ฌธ์€ ์šด์ „ ์ƒํ™ฉ์— ๋”ฐ๋ผ ๋‡ŒํŒŒ ์‹ ํ˜ธ๊ฐ€ ์–ด๋–ป๊ฒŒ ๋‹ฌ๋ผ์ง€๋Š”์ง€๋ฅผ ์ •๋Ÿ‰์ ์œผ๋กœ ๊ทœ๋ช…ํ•จ์œผ๋กœ์จ, ์ธ๊ฐ„โ€‘์ฐจ๋Ÿ‰ ์ธํ„ฐํŽ˜์ด์Šค ์„ค๊ณ„์— ์ค‘์š”ํ•œ ํ†ต์ฐฐ์„ ์ œ๊ณตํ•œ๋‹ค. ์‹คํ—˜ ์„ค๊ณ„๋Š” 31๋ช…์˜ ํ”ผํ—˜์ž๋ฅผ ๋Œ€์ƒ์œผ๋กœ ๋™์ผํ•œ ์šด์ „ ๊ณผ์ œ๋ฅผ ๋Šฅ๋™ ์ฃผํ–‰๊ณผ ์ž์œจ ์ฃผํ–‰ ๋‘ ์กฐ๊ฑด์—์„œ ์ˆ˜ํ–‰ํ•˜๊ฒŒ ํ•˜์—ฌ, ๊ณผ์ œ ๋ณต์žก๋„(์ €ยท์ค‘ยท๊ณ )๋ณ„๋กœ EEG ๋ฐ์ดํ„ฐ๋ฅผ ์ˆ˜์ง‘ํ•˜์˜€๋‹ค. ๋ฐ์ดํ„ฐ ์ „์ฒ˜๋ฆฌ ๋‹จ๊ณ„์—์„œ๋Š” ๋ˆˆ๊นœ๋นก์ž„ยท๊ทผ์œก ์žก์Œ ๋“ฑ์„ ICA ๊ธฐ๋ฐ˜์œผ๋กœ ์ œ๊ฑฐํ•˜๊ณ , 64์ฑ„๋„ ์‹œ์Šคํ…œ์„ ์ด์šฉํ•ด ์ „๋‘์—ฝยท๋‘์ •์—ฝยทํ›„๋‘์—ฝ ๋“ฑ ์ฃผ์š” ์˜์—ญ์˜ ์ „๋ ฅ ์ŠคํŽ™ํŠธ๋Ÿผ์„ ๋ถ„์„ํ•˜์˜€๋‹ค. ์ธ์ง€ ๋ถ€ํ•˜์™€ ํ”ผ๋กœ๋Š” ์ฃผํŒŒ์ˆ˜ ๋ฐด๋“œ ํŒŒ์›Œ(ฮธ, ฮฑ, ฮฒ)์™€ ๋ณตํ•ฉ

VFM-VLM: Vision Foundation Model and Vision Language Model based Visual Comparison for 3D Pose Estimation

VFM-VLM: Vision Foundation Model and Vision Language Model based Visual Comparison for 3D Pose Estimation

๋ณธ ์—ฐ๊ตฌ๋Š” ์ตœ๊ทผ ๊ธ‰๋ถ€์ƒํ•œ ๋น„์ „ ํŒŒ์šด๋ฐ์ด์…˜ ๋ชจ๋ธ(VFM)๊ณผ ๋น„์ „โ€‘์–ธ์–ด ๋ชจ๋ธ(VLM)์ด ๋กœ๋ด‡ ์กฐ์ž‘, ํŠนํžˆ ์†โ€‘๋ฌผ์ฒด ๊ทธ๋ฆฝ ์ƒํ™ฉ์—์„œ 6D ๊ฐ์ฒด ํฌ์ฆˆ ์ถ”์ •์— ์–ด๋–ป๊ฒŒ ๋‹ค๋ฅธ ๊ฐ•์ ์„ ๋ฐœํœ˜ํ•˜๋Š”์ง€๋ฅผ ์ฒด๊ณ„์ ์œผ๋กœ ๋น„๊ตํ•œ๋‹ค. CLIP์€ ๋Œ€๊ทœ๋ชจ ์ด๋ฏธ์ง€โ€‘ํ…์ŠคํŠธ ์Œ์œผ๋กœ ์‚ฌ์ „ ํ•™์Šต๋œ ๋ฉ€ํ‹ฐ๋ชจ๋‹ฌ ๋ชจ๋ธ๋กœ, ์–ธ์–ด์™€ ์‹œ๊ฐ ์ •๋ณด๋ฅผ ์ •๋ ฌํ•จ์œผ๋กœ์จ โ€œ์ปตโ€, โ€œํ•ธ๋“คโ€ ๋“ฑ ๊ฐ์ฒด์˜ ์˜๋ฏธ์  ์นดํ…Œ๊ณ ๋ฆฌ๋ฅผ ๊ฐ•๋ ฅํžˆ ์ธ์‹ํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ์˜๋ฏธ์  ์ดํ•ด๋Š” ๋ณต์žกํ•œ ์žฅ๋ฉด์—์„œ ๊ฐ์ฒด๋ฅผ ์ •ํ™•ํžˆ ๊ตฌ๋ถ„ํ•˜๊ณ , ์ธ๊ฐ„์ด ์ œ๊ณตํ•˜๋Š” ์ž์—ฐ์–ด ๋ช…๋ น๊ณผ์˜ ๋งคํ•‘์„ ์šฉ์ดํ•˜๊ฒŒ ๋งŒ๋“ ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ CLIP์˜ ํŠน์ง•์€ ์ฃผ๋กœ ์ „์—ญ์ ์ธ ํ† ํฐ ์ž„๋ฒ 

Model
Resource-Bounded Type Theory: Compositional Cost Analysis via Graded Modalities

Resource-Bounded Type Theory: Compositional Cost Analysis via Graded Modalities

์ด ๋…ผ๋ฌธ์€ ํ”„๋กœ๊ทธ๋žจ์˜ ์ž์› ์‚ฌ์šฉ์„ ์ •ํ˜•์ ์œผ๋กœ ๊ฒ€์ฆํ•˜๋ ค๋Š” ์—ฐ๊ตฌ ํ๋ฆ„์— ์ค‘์š”ํ•œ ๊ธฐ์—ฌ๋ฅผ ํ•œ๋‹ค. ๊ฐ€์žฅ ๋ˆˆ์— ๋„๋Š” ์ ์€ ์ž์› ๊ฒฝ๊ณ„๋ฅผ ์ถ”์ƒ ๊ฒฉ์ž (L, โชฏ, โŠ•, โŠ”, โŠฅ) ๋กœ ์ผ๋ฐ˜ํ™”ํ•จ์œผ๋กœ์จ, ์ „ํ†ต์ ์ธ ์‹œ๊ฐ„ ๋ณต์žก๋„ ๋ถ„์„์„ ๋„˜์–ด ๋ฉ”๋ชจ๋ฆฌ, ๊ฐ€์Šค, ํ˜น์€ ๋„๋ฉ”์ธโ€‘ํŠนํ™” ๋น„์šฉ๊นŒ์ง€ ํ•˜๋‚˜์˜ ํ˜•์‹ ์ฒด๊ณ„ ์•ˆ์—์„œ ๋‹ค๋ฃฐ ์ˆ˜ ์žˆ๊ฒŒ ๋งŒ๋“  ๊ฒƒ์ด๋‹ค. ์ด๋Ÿฌํ•œ ์ถ”์ƒํ™”๋Š” ๊ธฐ์กด์˜ ๋น„์šฉ ๋ชจ๋ธ์ด ์„œ๋กœ ๋…๋ฆฝ์ ์œผ๋กœ ์„ค๊ณ„๋˜๋Š” ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ณ , ๋™์ผํ•œ ํƒ€์ž… ์‹œ์Šคํ…œ์„ ์žฌ์‚ฌ์šฉํ•ด ๋‹ค์–‘ํ•œ ๋น„์šฉ์„ ๋™์‹œ์— ์ถ”๋ก ํ•  ์ˆ˜ ์žˆ๊ฒŒ ํ•œ๋‹ค๋Š” ์‹ค์šฉ์  ์žฅ์ ์„ ์ œ๊ณตํ•œ๋‹ค. ๋…ผ๋ฌธ์ด ๋„์ž…ํ•œ ๋“ฑ๊ธ‰ ๊ฐ€๋Šฅ์„ฑ ๋ชจ๋‹ฌ๋ฆฌํ‹ฐ โ–ก r ์€

Analysis
3DID: Direct 3D Inverse Design for Aerodynamics with Physics-Aware Optimization

3DID: Direct 3D Inverse Design for Aerodynamics with Physics-Aware Optimization

๋ณธ ์—ฐ๊ตฌ๋Š” 3์ฐจ์› ์—ญ์„ค๊ณ„ ๋ถ„์•ผ์—์„œ ๊ฐ€์žฅ ๊ทผ๋ณธ์ ์ธ ๋ณ‘๋ชฉ ํ˜„์ƒ์ธ โ€œ์„ค๊ณ„ ๊ณต๊ฐ„์˜ ํญ๋ฐœ์  ์ฆ๊ฐ€โ€ ๋ฌธ์ œ๋ฅผ ๊ทผ๋ณธ์ ์œผ๋กœ ํ•ด๊ฒฐํ•˜๋ ค๋Š” ์‹œ๋„๋กœ ํ‰๊ฐ€ํ•  ์ˆ˜ ์žˆ๋‹ค. ์ „ํ†ต์ ์ธ ๊ทธ๋ฆฌ๋“œ ํƒ์ƒ‰์ด๋‚˜ ๋ฒ ์ด์ฆˆ ์ตœ์ ํ™”์™€ ๊ฐ™์€ ์ „ํ†ต์  ๋ฐฉ๋ฒ•์€ ์ฐจ์› ์ˆ˜๊ฐ€ ๋Š˜์–ด๋‚ ์ˆ˜๋ก ๊ณ„์‚ฐ ๋ณต์žก๋„๊ฐ€ ์ง€์ˆ˜์ ์œผ๋กœ ์ฆ๊ฐ€ํ•ด ์‹ค์šฉ์ ์ธ ์ ์šฉ์ด ์–ด๋ ค์›Œ์ง„๋‹ค. ์ตœ๊ทผ ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜ ์ ‘๊ทผ๋ฒ•์€ ์ž ์žฌ ๊ณต๊ฐ„์„ ์ด์šฉํ•ด ํƒ์ƒ‰ ์ฐจ์›์„ ํฌ๊ฒŒ ์ถ•์†Œํ–ˆ์ง€๋งŒ, ๋Œ€๋ถ€๋ถ„ 2D ํˆฌ์˜์„ ์‚ฌ์šฉํ•˜๊ฑฐ๋‚˜ ๊ธฐ์กด 3D ๋ชจ๋ธ์„ ๋ฏธ์„ธ ์กฐ์ •ํ•˜๋Š” ๋ฐฉ์‹์— ๋จธ๋ฌผ๋Ÿฌ ์‹ค์ œ 3D ํ˜•ํƒœ์˜ ์ž์œ ๋กœ์šด ์ƒ์„ฑ ๋Šฅ๋ ฅ์„ ์ œํ•œํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ํ•œ๊ณ„๋Š” ํŠนํžˆ ๋ณตํ•ฉ ๋ฌผ๋ฆฌ ํ˜„์ƒ์ด ์–ฝํžŒ ์„ค๊ณ„

Protecting Bystander Privacy via Selective Hearing in Audio LLMs

Protecting Bystander Privacy via Selective Hearing in Audio LLMs

๋ณธ ๋…ผ๋ฌธ์€ ์˜ค๋””์˜ค ๊ธฐ๋ฐ˜ ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ์ด ์‹ค์ œ ์„œ๋น„์Šค ํ™˜๊ฒฝ์—์„œ ๋งˆ์ฃผํ•˜๊ฒŒ ๋˜๋Š” โ€˜๋ถ€์ˆ˜ ์ฒญ์ทจโ€™ ๋ฌธ์ œ๋ฅผ ์ •๋Ÿ‰ํ™”ํ•˜๊ณ  ํ•ด๊ฒฐ์ฑ…์„ ์ œ์‹œํ•œ๋‹ค๋Š” ์ ์—์„œ ๋งค์šฐ ์‹œ์˜์ ์ ˆํ•˜๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค์€ ์ฃผ๋กœ ๋ชจ๋ธ์˜ ์ „๋ฐ˜์ ์ธ ์Œ์„ฑ ์ธ์‹ยท์ดํ•ด ๋Šฅ๋ ฅ์— ์ดˆ์ ์„ ๋งž์ถ”์—ˆ์œผ๋ฉฐ, ์ฃผ๋ณ€ ์‚ฌ๋žŒ๋“ค์˜ ์Œ์„ฑ์„ ๋ฌด์‹ฌ์ฝ” ์ˆ˜์ง‘ยท์ฒ˜๋ฆฌํ•˜๋Š” ํ”„๋ผ์ด๋ฒ„์‹œ ์œ„ํ—˜์„ ๊ฐ„๊ณผํ•ด ์™”๋‹ค. ์ด๋Ÿฌํ•œ ๊ณต๋ฐฑ์„ ๋ฉ”์šฐ๊ธฐ ์œ„ํ•ด ์ €์ž๋“ค์€ ๋‘ ๊ฐ€์ง€ ํ•ต์‹ฌ ๊ธฐ์—ฌ๋ฅผ ํ•œ๋‹ค. ์ฒซ์งธ, SHโ€‘Bench๋ผ๋Š” ์ƒˆ๋กœ์šด ๋ฒค์น˜๋งˆํฌ๋ฅผ ๊ตฌ์ถ•ํ–ˆ๋‹ค. ์ด ๋ฒค์น˜๋งˆํฌ๋Š” 3,968๊ฐœ์˜ ๋‹ค์ค‘ ํ™”์ž ์˜ค๋””์˜ค ๋ฏน์Šค๋ฅผ ํฌํ•จํ•˜๊ณ , ์‹ค์ œ ํ˜„์žฅ ๋…น์Œ๊ณผ ํ•ฉ์„ฑ ๋ฐ์ดํ„ฐ๋ฅผ ๊ท ํ˜• ์žˆ๊ฒŒ

A fast algorithm for the Hecke representation of the braid group, and applications to the computation of the HOMFLY-PT polynomial and the search for interesting braids

A fast algorithm for the Hecke representation of the braid group, and applications to the computation of the HOMFLY-PT polynomial and the search for interesting braids

์ด ๋…ผ๋ฌธ์€ ํ˜„๋Œ€ ๊ฒฐ์ ˆ ์ด๋ก ๊ณผ ๊ณ„์‚ฐ ๋ณต์žก๋„ ์ด๋ก ์„ ์—ฐ๊ฒฐํ•˜๋Š” ๊ต๋Ÿ‰ ์—ญํ• ์„ ํ•œ๋‹ค. ํ•ต์‹ฌ ์•„์ด๋””์–ด๋Š” Hecke ๋Œ€์ˆ˜์˜ ํ‘œํ˜„๋ก ์  ๊ตฌ์กฐ๊ฐ€ ๋ธŒ๋ ˆ์ด๋“œ ๊ตฐ์˜ ์›์†Œ๋ฅผ ํ–‰๋ ฌ๋กœ ๋ณ€ํ™˜ํ•  ๋•Œ ๋ฐœ์ƒํ•˜๋Š” ์—ฐ์‚ฐ์  ๊ฐ•์ง์„ฑ์„ ์ด์šฉํ•ด, ๊ธฐ์กด ๊ตฌํ˜„๋ณด๋‹ค ํ›จ์”ฌ ๋น ๋ฅธ ๊ณ„์‚ฐ ๋ฃจํ‹ด์„ ๋งŒ๋“ ๋‹ค๋Š” ์ ์ด๋‹ค. ์ €์ž๋“ค์€ ๋จผ์ € ๋ธŒ๋ ˆ์ด๋“œ ๊ตฐ Bโ‚™์˜ ์ƒ์„ฑ์ž ฯƒแตข์— ๋Œ€ํ•ด Hecke ๋Œ€์ˆ˜ Hโ‚™(q) ์˜ ํ‘œ์ค€ ํ‘œํ˜„์„ ๋ช…์‹œํ•˜๊ณ , ์ด๋•Œ ๋ฐœ์ƒํ•˜๋Š” ๊ตํ™˜ ๊ด€๊ณ„์™€ ์ œ๊ณฑ ๊ด€๊ณ„๋ฅผ ์ด์šฉํ•ด ํ–‰๋ ฌ ๊ณฑ์…ˆ์˜ ์ฐจ์›์„ ์ตœ์†Œํ™”ํ•œ๋‹ค. ํŠนํžˆ, Garside ์ •๊ทœํ˜•์„ ํ™œ์šฉํ•ด ๋ธŒ๋ ˆ์ด๋“œ ๋‹จ์–ด๋ฅผ ์ตœ์†Œ ๊ธธ์ด์˜ ์ •๊ทœ ํ˜•ํƒœ๋กœ ๋ณ€ํ™˜ํ•จ์œผ๋กœ์จ ์ค‘๋ณต

A Systematic Framework for Enterprise Knowledge Retrieval: Leveraging LLM-Generated Metadata to Enhance RAG Systems

A Systematic Framework for Enterprise Knowledge Retrieval: Leveraging LLM-Generated Metadata to Enhance RAG Systems

๋ณธ ๋…ผ๋ฌธ์€ ๊ธฐ์—…์šฉ ์ง€์‹ ๊ด€๋ฆฌ ์‹œ์Šคํ…œ์—์„œ ํ”ํžˆ ๊ฒช๋Š” โ€œ์ •๋ณด ๊ฒ€์ƒ‰ ๋ณ‘๋ชฉโ€ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ๋ฉ”ํƒ€๋ฐ์ดํ„ฐ๋ฅผ ์ž๋™์œผ๋กœ ์ƒ์„ฑยทํ™œ์šฉํ•˜๋Š” ์ƒˆ๋กœ์šด ํŒŒ์ดํ”„๋ผ์ธ์„ ์ œ์•ˆํ•œ๋‹ค. ๋จผ์ €, ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ์„ ์ด์šฉํ•ด ๊ฐ ๋ฌธ์„œ ์กฐ๊ฐ์— ๋Œ€ํ•ด ์ฃผ์ œ, ํ‚ค์›Œ๋“œ, ์š”์•ฝ, ๊ด€๊ณ„ ๋“ฑ ๋‹ค์ฐจ์› ๋ฉ”ํƒ€๋ฐ์ดํ„ฐ๋ฅผ ์ถ”์ถœํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฉ”ํƒ€๋ฐ์ดํ„ฐ๋Š” ๊ธฐ์กด ํ…์ŠคํŠธ ์ž„๋ฒ ๋”ฉ์— ์ถ”๊ฐ€์ ์ธ ์‹œ๊ทธ๋„์„ ์ œ๊ณตํ•จ์œผ๋กœ์จ, ๋™์ผํ•œ ์˜๋ฏธ๋ฅผ ๊ณต์œ ํ•˜๋Š” ๋ฌธ์„œ ๊ฐ„์˜ ๊ฑฐ๋ฆฌ ๊ณ„์‚ฐ์„ ๋ณด๋‹ค ์ •๊ตํ•˜๊ฒŒ ๋งŒ๋“ ๋‹ค. ์ฒญํ‚น ์ „๋žต์€ ์„ธ ๊ฐ€์ง€๋กœ ๊ตฌ๋ถ„๋œ๋‹ค. โ‘  ์˜๋ฏธ ๊ธฐ๋ฐ˜ ์ฒญํ‚น์€ ๋ฌธ๋งฅ์  ์œ ์‚ฌ์„ฑ์„ ๊ธฐ์ค€์œผ๋กœ ๋ฌธ์„œ๋ฅผ ๋™์ ์œผ๋กœ ๋ถ„ํ• ํ•ด ์˜๋ฏธ ๋‹จ์œ„๊ฐ€ ๋ณด์กด

Framework Data System
A Unified Theory of Sparse Dictionary Learning in Mechanistic Interpretability: Piecewise Biconvexity and Spurious Minima

A Unified Theory of Sparse Dictionary Learning in Mechanistic Interpretability: Piecewise Biconvexity and Spurious Minima

์ด ๋…ผ๋ฌธ์€ ์ตœ๊ทผ ์ธ๊ณต์ง€๋Šฅ ๋ชจ๋ธ์ด ๋ณต์žกํ•œ ๊ฐœ๋…์„ ์–ด๋–ป๊ฒŒ ๋‚ด๋ถ€ ํ‘œํ˜„์— ๋‹ด๋Š”์ง€๋ฅผ ํƒ๊ตฌํ•˜๋Š” ๊ธฐ๊ณ„์  ํ•ด์„(mechanistic interpretability) ๋ถ„์•ผ์˜ ํ•ต์‹ฌ ๋ฌธ์ œ์— ์ ‘๊ทผํ•œ๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค์€ ์‹ ๊ฒฝ๋ง์ด ์˜๋ฏธ ์žˆ๋Š” ๊ฐœ๋…์„ ๊ณ ์ฐจ์› ํ‘œํ˜„ ๊ณต๊ฐ„์˜ ์„ ํ˜• ๋ฐฉํ–ฅ์œผ๋กœ ์ €์žฅํ•˜๊ณ , ์—ฌ๋Ÿฌ ๊ฐœ๋…์ด ๋™์ผํ•œ ๋‰ด๋Ÿฐ ์ง‘ํ•ฉ์— ๊ฒน์ณ์„œ(superposition) ๋‚˜ํƒ€๋‚œ๋‹ค๊ณ  ์ฃผ์žฅํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ํ˜„์ƒ์„ ํ•ด์†Œํ•˜๊ธฐ ์œ„ํ•ด ์—ฐ๊ตฌ์ž๋“ค์€ ํฌ์†Œ ์‚ฌ์ „ํ•™์Šต(Sparse Dictionary Learning, SDL)์ด๋ผ๋Š” ๋ฐฉ๋ฒ•๋ก ์„ ๋„์ž…ํ–ˆ์œผ๋ฉฐ, ์—ฌ๊ธฐ์—๋Š” ํฌ์†Œ ์ž๋™์ธ์ฝ”๋”(sparse aut

Learning
China Regional 3km Downscaling Based on Residual Corrective Diffusion Model

China Regional 3km Downscaling Based on Residual Corrective Diffusion Model

๋ณธ ์—ฐ๊ตฌ๋Š” ์ˆ˜์น˜์˜ˆ๋ณด ๋ถ„์•ผ์—์„œ ๊ณ ํ•ด์ƒ๋„ ์˜ˆ๋ณด๋ฅผ ์‹ค์‹œ๊ฐ„์œผ๋กœ ์ œ๊ณตํ•˜๊ธฐ ์œ„ํ•œ ํ•ต์‹ฌ ๊ธฐ์ˆ ์ธ ํ†ต๊ณ„์  ๋‹ค์šด์Šค์ผ€์ผ๋ง์„ ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜ ํ™•์‚ฐ ๋ชจ๋ธ์— ์ ์šฉํ•œ ์ ์—์„œ ํฐ ์˜์˜๋ฅผ ๊ฐ€์ง„๋‹ค. ๊ธฐ์กด์˜ CorrDiff ํ”„๋ ˆ์ž„์›Œํฌ๋Š” ์ฃผ๋กœ ํ‘œ๋ฉด ๋ณ€์ˆ˜์™€ ์ œํ•œ๋œ ์ง€์—ญ์— ์ดˆ์ ์„ ๋งž์ถ”์—ˆ์œผ๋‚˜, ๋ณธ ๋…ผ๋ฌธ์€ ์ ์šฉ ์˜์—ญ์„ ์•ฝ 40๋ฐฐ ํ™•๋Œ€ํ•˜์—ฌ ์ค‘๊ตญ ์ „์—ญ์„ ํฌ๊ด„ํ•˜๊ณ , 6๊ฐœ์˜ ๊ธฐ์•• ๋ ˆ๋ฒจ์— ํ•ด๋‹นํ•˜๋Š” ๊ณ ์ธต ๋ณ€์ˆ˜๊นŒ์ง€ ํฌํ•จํ•จ์œผ๋กœ์จ ๋ชจ๋ธ์˜ ์ผ๋ฐ˜ํ™” ๋Šฅ๋ ฅ์„ ํฌ๊ฒŒ ๊ฐ•ํ™”ํ•˜์˜€๋‹ค. ์ด๋Š” ๋Œ€๊ธฐ ํ˜„์ƒ์ด ์ˆ˜์ง์ ์œผ๋กœ๋„ ๋ณต์žกํ•˜๊ฒŒ ์–ฝํ˜€ ์žˆ์Œ์„ ๊ณ ๋ คํ•œ ์„ค๊ณ„๋กœ, ํŠนํžˆ ๊ฐ•์ˆ˜ยท๋Œ€๋ฅ˜ยท์ œํŠธ ์ŠคํŠธ๋ฆผ ๋“ฑ ๊ณ ์ธต ๋™์—ญํ•™์„ ์ •ํ™•ํžˆ ์žฌํ˜„

Model
On Dynamic Programming Theory for Leader-Follower Stochastic Games

On Dynamic Programming Theory for Leader-Follower Stochastic Games

๋ณธ ์—ฐ๊ตฌ๋Š” ๊ธฐ์กด์˜ ๋ฆฌ๋”โ€‘ํŒ”๋กœ์›Œ ์Šคํ† ์ผ€์Šคํ‹ฑ ๊ฒŒ์ž„ ์ด๋ก ์— ์ค‘์š”ํ•œ ๊ตฌ์กฐ์  ์ง„์ „์„ ์ œ๊ณตํ•œ๋‹ค. ์ผ๋ฐ˜ํ•ฉ ๊ฒŒ์ž„์€ ๋‘ ์—์ด์ „ํŠธ๊ฐ€ ์„œ๋กœ ๋‹ค๋ฅธ ๋ณด์ƒ ํ•จ์ˆ˜๋ฅผ ๊ฐ–๋Š” ์ƒํ™ฉ์„ ์˜๋ฏธํ•˜๋Š”๋ฐ, ์—ฌ๊ธฐ์„œ ๋ฆฌ๋”๋Š” ์ž์‹ ์˜ ์ •์ฑ…์„ ์‚ฌ์ „์— ๊ณ ์ •ํ•˜๊ณ  ํŒ”๋กœ์›Œ๋Š” ๊ทธ์— ๋Œ€ํ•œ ์ตœ์  ๋ฐ˜์‘์„ ์„ ํƒํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ๋น„๋Œ€์นญ ์•ฝ์† ๊ตฌ์กฐ๋Š” ์‹ค์„ธ๊ณ„์˜ ๋ณด์•ˆ ๋ฐฐ์น˜, ๋„คํŠธ์›Œํฌ ๋ฐฉ์–ด, ์ž์› ํ• ๋‹น ๋“ฑ์—์„œ ํ”ํžˆ ๋‚˜ํƒ€๋‚œ๋‹ค. ๊ธฐ์กด ์ ‘๊ทผ๋ฒ•์€ ์ฃผ๋กœ ์™„์ „ ์ •๋ณด ํ˜น์€ ์ œํ•œ๋œ ์ •์ฑ… ๊ณต๊ฐ„์„ ๊ฐ€์ •ํ•˜๊ณ , ํŒ”๋กœ์›Œ์˜ ๋ฐ˜์‘์„ ๊ทผ์‚ฌํ•˜๊ฑฐ๋‚˜ ์ œํ•œ๋œ ํ˜•ํƒœ์˜ ๊ท ํ˜•๋งŒ์„ ๊ณ„์‚ฐํ–ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ด๋Ÿฌํ•œ ๋ฐฉ๋ฒ•์€ ์‹ ๋ขฐ ๊ฐ€๋Šฅํ•œ ์ง‘ํ•ฉ(credible set

On Sparse Representations of 3-Manifolds

On Sparse Representations of 3-Manifolds

์ด ๋…ผ๋ฌธ์€ 3โ€‘๋‹ค์–‘์ฒด ์œ„์ƒํ•™์—์„œ ๊ฐ€์žฅ ์‹ค์šฉ์ ์ธ ๋ฐ์ดํ„ฐ ๊ตฌ์กฐ์ธ ์‚ผ๊ฐ๋ถ„ํ• ์„ ๋‹ค๋ฃจ๋ฉด์„œ, ๊ทธ๋ž˜ํ”„ ์ด๋ก ์˜ ํ•ต์‹ฌ ๊ฐœ๋…์ธ ํŠธ๋ฆฌํญ์„ ์ค‘์‹ฌ์œผ๋กœ ์•Œ๊ณ ๋ฆฌ์ฆ˜์  ํšจ์œจ์„ฑ์„ ๊ทน๋Œ€ํ™”ํ•œ๋‹ค๋Š” ์ ์—์„œ ํฐ ์˜๋ฏธ๋ฅผ ๊ฐ€์ง„๋‹ค. ํŠธ๋ฆฌํญ์€ ๊ทธ๋ž˜ํ”„๊ฐ€ ํŠธ๋ฆฌ์™€ ์–ผ๋งˆ๋‚˜ ์œ ์‚ฌํ•œ์ง€๋ฅผ ์ •๋Ÿ‰ํ™”ํ•˜๋Š” ํŒŒ๋ผ๋ฏธํ„ฐ์ด๋ฉฐ, ํŠธ๋ฆฌํญ์ด ์ž‘์„์ˆ˜๋ก ๋™์  ๊ณ„ํš๋ฒ•์ด๋‚˜ ์ƒ‰์น  ์•Œ๊ณ ๋ฆฌ์ฆ˜ ๊ฐ™์€ ์ „ํ†ต์ ์ธ FPT ๊ธฐ๋ฒ•์„ ์ ์šฉํ•˜๊ธฐ ์šฉ์ดํ•˜๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ์—์„œ๋Š” ์‚ผ๊ฐ๋ถ„ํ•  ์ž์ฒด์˜ ํŠธ๋ฆฌํญ์„ ์ด์šฉํ•ด ๋‹ค์–‘ํ•œ ์œ„์ƒํ•™์  ๋ฌธ์ œ(์˜ˆ: ๋งค๋‹ˆํด๋“œ ๋™ํ˜•ํŒ๋ณ„, ์ฝ”ํ๋ผ ๋ณตํ•ฉ์ฒด ๊ณ„์‚ฐ ๋“ฑ)๋ฅผ FPT๋กœ ํ•ด๊ฒฐํ–ˆ์ง€๋งŒ, ํžˆ์–ด๋กœ๋“œ ๋ถ„ํ• ์ด๋ผ๋Š” ์ „ํ˜€ ๋‹ค๋ฅธ ํ‘œํ˜„์œผ๋กœ ๋ณ€ํ™˜

Back to Basics: Motion Representation Matters for Human Motion Generation Using Diffusion Model

Back to Basics: Motion Representation Matters for Human Motion Generation Using Diffusion Model

๋ณธ ๋…ผ๋ฌธ์€ ์ตœ๊ทผ ๊ธ‰๋ถ€์ƒํ•˜๊ณ  ์žˆ๋Š” ์ธ๊ฐ„ ๋™์ž‘ ํ•ฉ์„ฑ์šฉ ํ™•์‚ฐ ๋ชจ๋ธ์˜ ํ•ต์‹ฌ ์„ค๊ณ„ ์š”์†Œ์ธ โ€˜๋™์ž‘ ํ‘œํ˜„ ๋ฐฉ์‹โ€™๊ณผ โ€˜์†์‹ค ํ•จ์ˆ˜โ€™๋ฅผ ์ฒด๊ณ„์ ์œผ๋กœ ๊ฒ€์ฆํ•œ ์ ์—์„œ ํ•™์ˆ ์ ยท์‹ค์šฉ์  ์˜์˜๊ฐ€ ํฌ๋‹ค. ๋จผ์ €, ์ €์ž๋Š” ๊ธฐ์กด ์—ฐ๊ตฌ์—์„œ ์ œ์•ˆ๋œ 6๊ฐ€์ง€ ๋Œ€ํ‘œ์ ์ธ ๋™์ž‘ ํ‘œํ˜„(์˜ˆ: ๊ด€์ ˆ ๊ฐ๋„, ๊ด€์ ˆ ์œ„์น˜, ํšŒ์ „ ํ–‰๋ ฌ, ์ฟผํ„ฐ๋‹ˆ์–ธ, ์†๋„ยท๊ฐ€์†๋„ ๊ธฐ๋ฐ˜ ํ‘œํ˜„, ๊ทธ๋ฆฌ๊ณ  ํ˜ผํ•ฉํ˜• ํ‘œํ˜„)์„ ๋™์ผํ•œ MDM ๊ธฐ๋ฐ˜ ํ”„๋ ˆ์ž„์›Œํฌ์— ์ ์šฉํ•ด ๋น„๊ตํ•˜์˜€๋‹ค. ์ด๋•Œ ์‚ฌ์šฉ๋œ ํ‰๊ฐ€์ง€ํ‘œ๋Š” ํ”ํžˆ ์“ฐ์ด๋Š” Frechet Inception Distance(FID)์™€ Diversity Score ๋“ฑ์œผ๋กœ, ํ’ˆ์งˆ๊ณผ ๋‹ค์–‘์„ฑ์„

Model
Measuring the Unspoken: A Disentanglement Model and Benchmark for Psychological Analysis in the Wild

Measuring the Unspoken: A Disentanglement Model and Benchmark for Psychological Analysis in the Wild

๋ณธ ๋…ผ๋ฌธ์€ ์ธ๊ฐ„ ๋Œ€ํ™”์˜ ๋น„์–ธ์–ด์  ๋‹จ์„œ๋ฅผ ์‹œ๊ฐโ€‘์–ธ์–ด ๋ชจ๋ธ์— ํ†ตํ•ฉํ•˜๋ ค๋Š” ์‹œ๋„ ์ค‘ ๊ฐ€์žฅ ํฌ๊ด„์ ์ธ ์ ‘๊ทผ๋ฒ•์ด๋ผ ํ•  ์ˆ˜ ์žˆ๋‹ค. ์ฒซ ๋ฒˆ์งธ ๋ฌธ์ œ์ธ โ€˜๋ฐœํ™”โ€‘๊ฐ์ • ๋ชจํ˜ธ์„ฑโ€™์€ ์ž…์ˆ  ์›€์ง์ž„์ด ๊ฐ์ • ํ‘œํ˜„๊ณผ ๊ฒน์ณ ๋ณด์ด๋Š” ํ˜„์ƒ์œผ๋กœ, ๊ธฐ์กด VLM์ด ํ…์ŠคํŠธ์™€ ์ด๋ฏธ์ง€ ๊ฐ„์˜ ์—ฐ๊ด€์„ฑ์„ ํ•™์Šตํ•  ๋•Œ ์ด์ค‘ ์˜๋ฏธ๋ฅผ ๊ตฌ๋ถ„ํ•˜์ง€ ๋ชปํ•ด ์‹ฌ๋ฆฌ์  ์ถ”๋ก ์— ์˜ค๋ฅ˜๋ฅผ ์ผ์œผํ‚จ๋‹ค. MIND๋Š” ์ด๋Ÿฌํ•œ ๋ชจํ˜ธ์„ฑ์„ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ๊ณ„์ธต์  ๊ตฌ์กฐ๋ฅผ ์ฑ„ํƒํ•˜๊ณ , ๊ฐ ๋ ˆ์ด์–ด์—์„œ ์‹œ๊ฐ„์  ํŠน์ง• ๋ถ„์‚ฐ์„ ๊ณ„์‚ฐํ•ด ๋ณ€๋™์„ฑ์ด ๋‚ฎ์€(์ฆ‰, ๊ฐ์ •๊ณผ ๋ฌด๊ด€ํ•œ) ์ž…์ˆ  ํŒจํ„ด์„ ์–ต์ œํ•œ๋‹ค. ์ด โ€˜์ƒํƒœ ํŒ๋‹จโ€™ ๋ชจ๋“ˆ์€ ๊ธฐ์กด์˜ ๋‹จ์ˆœ attenti

Analysis Model
TimesNet-Gen: Deep Learning-based Site Specific Strong Motion Generation

TimesNet-Gen: Deep Learning-based Site Specific Strong Motion Generation

๋ณธ ๋…ผ๋ฌธ์€ ์ง€์ง„๊ณตํ•™ ๋ถ„์•ผ์—์„œ ํ˜„์žฅ๋ณ„ ๊ฐ•์ง„ ๊ธฐ๋ก์„ ์ธ๊ณต์ ์œผ๋กœ ์ƒ์„ฑํ•  ์ˆ˜ ์žˆ๋Š” ์ƒˆ๋กœ์šด ๋ฐ์ดํ„ฐโ€‘๋“œ๋ฆฌ๋ธ ๋ชจ๋ธ์„ ์ œ์‹œํ•œ๋‹ค๋Š” ์ ์—์„œ ํฐ ์˜๋ฏธ๋ฅผ ๊ฐ€์ง„๋‹ค. ๊ธฐ์กด์˜ ๊ฐ•์ง„ ํ•ฉ์„ฑ ๋ฐฉ๋ฒ•์€ ์ฃผ๋กœ ์ŠคํŽ™ํŠธ๋Ÿผ ๊ธฐ๋ฐ˜ ํ˜น์€ ๋ฌผ๋ฆฌโ€‘๊ธฐ๋ฐ˜ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์— ์˜์กดํ–ˆ์œผ๋ฉฐ, ํ˜„์žฅ ํŠน์„ฑ์„ ์ถฉ๋ถ„ํžˆ ๋ฐ˜์˜ํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ๋ณต์žกํ•œ ํŒŒ๋ผ๋ฏธํ„ฐ ํŠœ๋‹์ด ํ•„์š”ํ–ˆ๋‹ค. ๋ฐ˜๋ฉด ๋ณธ ์—ฐ๊ตฌ๋Š” ์‹œ๊ฐ„ ์˜์—ญ์—์„œ ์ง์ ‘ ๊ฐ€์†๋„ ์‹ ํ˜ธ๋ฅผ ๋‹ค๋ฃจ๋Š” TimesNetโ€‘Gen์„ ๋„์ž…ํ•จ์œผ๋กœ์จ, ํ˜„์žฅ๋ณ„ ๊ณ ์œ ์˜ โ€œ์ž ์žฌ์  ๋ณ‘๋ชฉโ€(latent bottleneck)์ด๋ผ๋Š” ์ž‘์€ ์ฐจ์›์˜ ์ž„๋ฒ ๋”ฉ์„ ํ†ตํ•ด ํ˜„์žฅ ํŠน์„ฑ์„ ์••์ถ•ํ•˜๊ณ  ์žฌํ˜„ํ•œ๋‹ค. ์ด๋Š” ํ˜„์žฅ๋งˆ๋‹ค

Learning
Tokenizing Buildings: A Transformer for Layout Synthesis

Tokenizing Buildings: A Transformer for Layout Synthesis

๋ณธ ๋…ผ๋ฌธ์€ ๊ฑด์ถ• ์„ค๊ณ„ ์ž๋™ํ™”๋ผ๋Š” ์‹ค์šฉ์  ๊ณผ์ œ์— ํŠธ๋žœ์Šคํฌ๋จธ ๊ธฐ๋ฐ˜์˜ ์‹œํ€€์Šคโ€‘ํˆฌโ€‘์‹œํ€€์Šค ๋ชจ๋ธ์„ ์ ์šฉํ•œ ์ ์—์„œ ์˜๋ฏธ๊ฐ€ ํฌ๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค์€ ์ฃผ๋กœ 2D ํ‰๋ฉด๋„๋‚˜ 3D ๋ชจ๋ธ์„ ์ง์ ‘ ์ž…๋ ฅ์œผ๋กœ ์‚ฌ์šฉํ•˜๊ฑฐ๋‚˜, ๊ทœ์น™ ๊ธฐ๋ฐ˜ ์‹œ์Šคํ…œ์— ์˜์กดํ•ด ๋ ˆ์ด์•„์›ƒ์„ ์ƒ์„ฑํ•˜์˜€๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ด๋Ÿฌํ•œ ๋ฐฉ์‹์€ ๋ณต์žกํ•œ ๊ณต๊ฐ„ ์ œ์•ฝ์„ ์ถฉ๋ถ„ํžˆ ๋ฐ˜์˜ํ•˜๊ธฐ ์–ด๋ ต๊ณ , ๋ฐ์ดํ„ฐ ์š”๊ตฌ๋Ÿ‰์ด ๋†’์œผ๋ฉฐ, ์ผ๋ฐ˜ํ™” ๋Šฅ๋ ฅ์ด ์ œํ•œ์ ์ด๋‹ค. SBM์€ โ€˜๋ฃธ ์—”๋ฒจ๋กœํ”„โ€™๋ผ๋Š” ์ตœ์†Œํ•œ์˜ ์ž…๋ ฅ๋งŒ์œผ๋กœ๋„ ๋ฐฉ ๋‚ด๋ถ€์˜ ๊ฐ€๊ตฌ ๋ฐฐ์น˜, ๋™์„ , ๊ธฐ๋Šฅ ๊ตฌ์—ญ์„ ๋™์‹œ์— ๊ณ ๋ คํ•œ ๋ ˆ์ด์•„์›ƒ์„ ์ƒ์„ฑํ•œ๋‹ค๋Š” ์ ์—์„œ ์ž…๋ ฅ ํšจ์œจ์„ฑ์ด ๋›ฐ์–ด๋‚˜๋‹ค. ๋ชจ๋ธ ์•„ํ‚คํ…์ฒ˜๋Š”

< Category Statistics (Total: 769) >

Electrical Engineering and Systems Science
7
General
272
General Relativity
9
HEP-EX
7
HEP-PH
12
HEP-TH
7
MATH-PH
4
NUCL-TH
1
Quantum Physics
10

Start searching

Enter keywords to search articles

โ†‘โ†“
โ†ต
ESC
โŒ˜K Shortcut