General

All posts under category "General"

272 posts total
Sorted by date
Adaptive Accountability in Networked MAS: Tracing and Mitigating Emergent Norms at Scale

Adaptive Accountability in Networked MAS: Tracing and Mitigating Emergent Norms at Scale

์ด ๋…ผ๋ฌธ์€ ๊ธ‰๊ฒฉํžˆ ํ™•๋Œ€๋˜๋Š” ๋‹ค์ค‘ ์—์ด์ „ํŠธ ์‹œ์Šคํ…œ(MAS)์ด ์‚ฌํšŒยท๊ฒฝ์ œ์  ์ธํ”„๋ผ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ๊ณ ๋ คํ•  ๋•Œ, ๊ธฐ์กด์˜ ์ค‘์•™์ง‘์ค‘์‹ ๊ทœ์ œ๋‚˜ ์‚ฌํ›„ ๊ฐ์‚ฌ๋งŒ์œผ๋กœ๋Š” ์‹œ์Šคํ…œ ๋‚ด๋ถ€์—์„œ ๋ฐœ์ƒํ•˜๋Š” ๋น„์ •์ƒ์ ยท๋น„์œค๋ฆฌ์  ํ–‰๋™์„ ์–ต์ œํ•˜๊ธฐ ์–ด๋ ต๋‹ค๋Š” ๋ฌธ์ œ์˜์‹์„ ๋ฐ”ํƒ•์œผ๋กœ ์—ฐ๊ตฌ๊ฐ€ ์ง„ํ–‰๋˜์—ˆ๋‹ค. ์ €์ž๋“ค์€ ์ฑ…์ž„ ํ๋ฆ„์„ โ€˜๋ผ์ดํ”„์‚ฌ์ดํดโ€‘์ธ์‹ ๊ฐ์‚ฌ ์›์žฅ(lifecycleโ€‘aware audit ledger)โ€™์— ๊ธฐ๋กํ•จ์œผ๋กœ์จ, ๊ฐ ์—์ด์ „ํŠธ๊ฐ€ ์–ธ์ œ, ์–ด๋–ค ์˜์‚ฌ๊ฒฐ์ •์„ ๋‚ด๋ ธ๋Š”์ง€๋ฅผ ํˆฌ๋ช…ํ•˜๊ฒŒ ์ถ”์ ํ•œ๋‹ค. ์ด ์›์žฅ์€ ๋ธ”๋ก์ฒด์ธ๊ณผ ์œ ์‚ฌํ•œ ๋ถˆ๋ณ€์„ฑ์„ ๊ฐ–์ถ”๋ฉด์„œ๋„, ์—์ด์ „ํŠธ ๊ฐ„ ํ†ต์‹  ์ง€์—ฐ์ด๋‚˜ ๋ถ€๋ถ„ ๊ด€์ธก์„ฑ

Network
Commercial Vehicle Braking Optimization: A Robust SIFT-Trajectory Approach

Commercial Vehicle Braking Optimization: A Robust SIFT-Trajectory Approach

์ด ์—ฐ๊ตฌ๋Š” ๊ธฐ์กด ์ƒ์šฉ ์ฐจ๋Ÿ‰ AEB ์‹œ์Šคํ…œ์ด ์ €์† ์ฃผํ–‰ ๊ตฌ๊ฐ„์—์„œ CAN ๋ฒ„์Šค ์‹ ํ˜ธ์˜ ๋…ธ์ด์ฆˆ์™€ ์ง€์—ฐ์œผ๋กœ ์ธํ•ด ์ฐจ๋Ÿ‰์ด ์ •์ง€ํ–ˆ์Œ์—๋„ โ€œ์ œ๋กœ์Šคํ”ผ๋“œโ€ ์ƒํƒœ๋ฅผ ์˜ค์ธํ•˜๊ณ  ๋น„์ •์ƒ์ ์ธ ์ œ๋™์„ ๊ฐ€ํ•˜๋Š” ๋ฌธ์ œ๋ฅผ ๊ทผ๋ณธ์ ์œผ๋กœ ํ•ด๊ฒฐํ•˜๊ณ ์ž ํ•œ๋‹ค. ํ•ต์‹ฌ ์•„์ด๋””์–ด๋Š” ์ฐจ๋Ÿ‰ ์ฃผ๋ณ€์„ ์‹ค์‹œ๊ฐ„์œผ๋กœ ๋ชจ๋‹ˆํ„ฐ๋งํ•˜๋Š” ๋ธ”๋ผ์ธ๋“œ ์ŠคํŒŸ ์นด๋ฉ”๋ผ ์˜์ƒ์„ ํ™œ์šฉํ•ด, ์ฐจ๋Ÿ‰ ์ž์ฒด์˜ ์›€์ง์ž„์„ ์ง์ ‘ ์ถ”์ •ํ•˜๋Š” ๊ฒƒ์ด๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ์ €์ „๋ ฅ ๊ณ ์„ฑ๋Šฅ ์—ฃ์ง€ ์ปดํ“จํŒ… ๋ณด๋“œ์ธ NVIDIA Jetson AGX Xavier๋ฅผ ์„ ํƒํ–ˆ์œผ๋ฉฐ, ์ด๋Š” 8์ฝ”์–ด CPU์™€ 512โ€‘์ฝ”์–ด GPU๋ฅผ ๊ฐ–์ถ”์–ด ๋ณต์žกํ•œ ์ด๋ฏธ์ง€ ์ฒ˜๋ฆฌ ํŒŒ์ดํ”„๋ผ์ธ์„

LLaViDA: A Large Language Vision Driving Assistant for Explicit Reasoning and Enhanced Trajectory Planning

LLaViDA: A Large Language Vision Driving Assistant for Explicit Reasoning and Enhanced Trajectory Planning

LLaViDA๋Š” ์ž์œจ์ฃผํ–‰ ๋ถ„์•ผ์—์„œ โ€œ์‹œ๊ฐโ€‘์–ธ์–ด ํ†ตํ•ฉโ€์ด๋ผ๋Š” ์ƒˆ๋กœ์šด ํŒจ๋Ÿฌ๋‹ค์ž„์„ ์ œ์‹œํ•œ๋‹ค๋Š” ์ ์—์„œ ํ•™์ˆ ์ ยท์‚ฐ์—…์  ์˜๋ฏธ๊ฐ€ ํฌ๋‹ค. ๊ธฐ์กด์˜ ์—”๋“œโ€‘ํˆฌโ€‘์—”๋“œ(Endโ€‘toโ€‘End) ์ ‘๊ทผ ๋ฐฉ์‹์€ ์นด๋ฉ”๋ผ ์ด๋ฏธ์ง€ ํ˜น์€ ๋ผ์ด๋‹ค ํฌ์ธํŠธ ํด๋ผ์šฐ๋“œ์™€ ๊ฐ™์€ ์›์‹œ ์„ผ์„œ ๋ฐ์ดํ„ฐ๋ฅผ ์ง์ ‘ ๋„คํŠธ์›Œํฌ์— ์ž…๋ ฅํ•ด ๊ถค์ ์„ ์ถœ๋ ฅํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฐฉ์‹์€ ๋Œ€๊ทœ๋ชจ ๋ผ๋ฒจ๋ง๋œ ์ฃผํ–‰ ๋ฐ์ดํ„ฐ๊ฐ€ ์ถฉ๋ถ„ํžˆ ํ™•๋ณด๋œ ๊ฒฝ์šฐ์—๋Š” ๊ฐ•๋ ฅํ•˜์ง€๋งŒ, ๋ฐ์ดํ„ฐ ๋ถ„ํฌ๊ฐ€ ๊ธ‰๊ฒฉํžˆ ๋ณ€ํ•˜๋Š” ์•…์ฒœํ›„, ์•ผ๊ฐ„, ๋ˆˆ๋ณด๋ผ ๋“ฑ์—์„œ๋Š” ์ผ๋ฐ˜ํ™”๊ฐ€ ์–ด๋ ค์›Œ์ง„๋‹ค. ํŠนํžˆ ์ธ๊ฐ„ ์šด์ „์ž์˜ ๋ฏธ๋ฌ˜ํ•œ ํ–‰๋™(์˜ˆ: ๊ธ‰์ •๊ฑฐ, ์ฐจ์„  ๋ณ€๊ฒฝ ์˜๋„)์ด๋‚˜ ๋ณตํ•ฉ ๊ต์ฐจ๋กœ์™€ ๊ฐ™

Revisiting the Learning Objectives of Vision-Language Reward Models

Revisiting the Learning Objectives of Vision-Language Reward Models

์ด ๋…ผ๋ฌธ์€ ์ตœ๊ทผ ๊ธ‰๋ถ€์ƒํ•˜๊ณ  ์žˆ๋Š” ๋Œ€์กฐ์  ๋น„์ „โ€‘์–ธ์–ด ๋ชจ๋ธ(VLM)์„ ๋ณด์ƒ ํ•จ์ˆ˜ ํ•™์Šต์— ์ ์šฉํ•˜๋Š” ์—ฐ๊ตฌ ํ๋ฆ„์„ ๋น„ํŒ์ ์œผ๋กœ ์žฌ์กฐ๋ช…ํ•œ๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค์€ VLM์„ ํ™œ์šฉํ•ด ์ธ๊ฐ„ ๋ผ๋ฒจ๋ง ์—†์ด๋„ ๋กœ๋ด‡ ์ œ์–ด๋‚˜ ๊ฐ•ํ™”ํ•™์Šต ํ™˜๊ฒฝ์—์„œ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ๋Š” ํ’๋ถ€ํ•œ ๋ณด์ƒ ์‹ ํ˜ธ๋ฅผ ์ƒ์„ฑํ•œ๋‹ค๋Š” ์ ์—์„œ ํฐ ๊ธฐ๋Œ€๋ฅผ ๋ชจ์•˜๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ด๋Ÿฌํ•œ ์—ฐ๊ตฌ๋“ค์€ ์„œ๋กœ ๋‹ค๋ฅธ ์‚ฌ์ „ํ•™์Šต ๋ฐ์ดํ„ฐ์…‹(์˜ˆ: CLIP, ALIGN), ์„œ๋กœ ๋‹ค๋ฅธ ๋„คํŠธ์›Œํฌ ์•„ํ‚คํ…์ฒ˜(ResNet, ViT), ๊ทธ๋ฆฌ๊ณ  ์„œ๋กœ ๋‹ค๋ฅธ ํŒŒ์ธํŠœ๋‹ ํ”„๋กœํ† ์ฝœ์„ ์‚ฌ์šฉํ–ˆ๊ธฐ ๋•Œ๋ฌธ์—, ์‹ค์ œ๋กœ ์–ด๋А ํ•™์Šต ๋ชฉํ‘œ๊ฐ€ ์„ฑ๋Šฅ ํ–ฅ์ƒ์— ๊ธฐ์—ฌํ–ˆ๋Š”์ง€๋ฅผ ๋ช…ํ™•ํžˆ ํŒŒ์•…ํ•˜

Learning Model
What is Stochastic Supervenience?

What is Stochastic Supervenience?

์ด ๋…ผ๋ฌธ์€ ์ƒ์œ„์˜์กด์„ฑ ๊ฐœ๋…์„ ํ™•๋ฅ ๋ก ์  ๊ด€์ ์œผ๋กœ ํ™•์žฅํ•˜๊ณ , ์ด๋ฅผ ํ†ตํ•ด ํ˜„๋Œ€ ๊ณผํ•™์—์„œ ๋ณต์žกํ•œ ์‹œ์Šคํ…œ์˜ ๋™์ž‘์„ ๋” ์ •ํ™•ํ•˜๊ฒŒ ์„ค๋ช…ํ•˜๋ ค๋Š” ์‹œ๋„๋ฅผ ๋ณด์—ฌ์ค๋‹ˆ๋‹ค. ๊ธฐ์กด์˜ ์ƒ์œ„์˜์กด์„ฑ ์ด๋ก ์€ ์ฃผ๋กœ ๊ฒฐ์ •๋ก ์ ์ธ ๊ด€์ ์„ ์ทจํ•ด์™”์ง€๋งŒ, ์‹ค์ œ ์ž์—ฐ ํ˜„์ƒ๊ณผ ์ธ๊ณต ์ง€๋Šฅ ๋ถ„์•ผ์—์„œ๋Š” ํ™•๋ฅ ์  ์š”์†Œ๊ฐ€ ๋งค์šฐ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•ฉ๋‹ˆ๋‹ค. ์ด๋ฅผ ๋ฐ˜์˜ํ•˜์—ฌ ์ €์ž๋Š” ๋งˆ๋ฅด์ฝ”ํ”„ ์ปค๋„์ด๋ผ๋Š” ์ˆ˜ํ•™์  ๋„๊ตฌ๋ฅผ ์‚ฌ์šฉํ•ด ๊ธฐ์ € ์ƒํƒœ์™€ ๊ณ ์ˆ˜์ค€ ๋ถ„ํฌ ์‚ฌ์ด์˜ ๊ด€๊ณ„๋ฅผ ํ‘œํ˜„ํ•ฉ๋‹ˆ๋‹ค. ๋…ผ๋ฌธ์€ ์ด๋Ÿฌํ•œ ํ™•์žฅ๋œ ํ”„๋ ˆ์ž„์›Œํฌ์—์„œ ๋ฒ•์น™์  ๊ณ ์ •, ๋น„ํ‡ดํ™”์„ฑ ๋ฐ ๋ฐฉํ–ฅ ๋น„๋Œ€์นญ์„ฑ์„ ๋ณด์žฅํ•˜๊ธฐ ์œ„ํ•œ ๊ณต๋ฆฌ๋“ค์„ ์ œ์‹œํ•˜๊ณ , ์ด๋“ค ๊ณต๋ฆฌ๋Š” ํด๋ž˜์‹

When Does Learning Renormalize? Sufficient Conditions for Power Law Spectral Dynamics

When Does Learning Renormalize? Sufficient Conditions for Power Law Spectral Dynamics

์ด ๋…ผ๋ฌธ์€ ์ตœ๊ทผ ๋”ฅ๋Ÿฌ๋‹ ์ปค๋ฎค๋‹ˆํ‹ฐ์—์„œ ํ™”๋‘๊ฐ€ ๋˜๊ณ  ์žˆ๋Š” โ€œํŒŒ์›Œโ€‘๋ฒ•์น™ ์Šค์ผ€์ผ๋งโ€ ํ˜„์ƒ์„ ๊ทผ๋ณธ์ ์œผ๋กœ ์„ค๋ช…ํ•˜๋ ค๋Š” ์‹œ๋„๋ฅผ ๋‹ด๊ณ  ์žˆ๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค์€ ์‹คํ—˜์ ์œผ๋กœ ํŒŒ์›Œโ€‘๋ฒ•์น™์ด ๋‚˜ํƒ€๋‚˜๋Š” ๊ฒƒ์„ ๊ด€์ฐฐํ–ˆ์ง€๋งŒ, ์™œ ๊ทธ๋Ÿฐ ํ˜„์ƒ์ด ๋ฐœ์ƒํ•˜๋Š”์ง€์— ๋Œ€ํ•œ ์ด๋ก ์  ํ‹€์€ ๋ถ€์กฑํ–ˆ๋‹ค. ์—ฌ๊ธฐ์„œ ์ œ์‹œ๋œ Generalized Resolutionโ€‘Shell Dynamics(GRSD) ํ”„๋ ˆ์ž„์›Œํฌ๋Š” ํ•™์Šต์„ ๊ณ ์ฐจ์› ํŒŒ๋ผ๋ฏธํ„ฐ ๊ณต๊ฐ„์˜ ์ŠคํŽ™ํŠธ๋Ÿผ ์—๋„ˆ์ง€ ํ๋ฆ„์œผ๋กœ ๋ฐ”๋ผ๋ณด๋Š” ์ƒˆ๋กœ์šด ๊ด€์ ์„ ์ œ๊ณตํ•œ๋‹ค. ํŠนํžˆ ๋กœ๊ทธ ์Šค์ผ€์ผ์˜ ํ•ด์ƒ๋„ ์‰˜์ด๋ผ๋Š” ๊ฐœ๋…์„ ๋„์ž…ํ•ด, ์„œ๋กœ ๋‹ค๋ฅธ ์ฃผํŒŒ์ˆ˜ ๋Œ€์—ญ ์‚ฌ์ด์˜ ์—๋„ˆ์ง€ ์ „๋‹ฌ์„

Learning
AlignDP: Hybrid Differential Privacy with Rarity-Aware Protection for LLMs

AlignDP: Hybrid Differential Privacy with Rarity-Aware Protection for LLMs

AlignDP๋Š” ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(Large Language Models, LLMs)์˜ ๋ฐ์ดํ„ฐ ์ธํ„ฐํŽ˜์ด์Šค์—์„œ ์ง€์‹ ์ „์†ก์„ ์ฐจ๋‹จํ•˜๋Š” ํ˜์‹ ์ ์ธ ์ ‘๊ทผ๋ฒ•์ž…๋‹ˆ๋‹ค. ์ด ์—ฐ๊ตฌ๋Š” LLMs์ด ์ถ”์ถœ, ์ •์ œ ๋ฐ ๋ฌด๋‹จ ๋ฏธ์„ธ ์กฐ์ •์— ๋Œ€ํ•œ ์œ„ํ—˜์— ๋…ธ์ถœ๋˜์–ด ์žˆ์Œ์„ ์ธ์ •ํ•˜๊ณ , ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ์›Œํ„ฐ๋งˆํ‚น์ด๋‚˜ ๋ชจ๋‹ˆํ„ฐ๋ง๊ณผ ๊ฐ™์€ ๊ธฐ์กด ๋ฐฉ์–ด ๊ธฐ๋ฒ•์˜ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๋ ค๊ณ  ํ•ฉ๋‹ˆ๋‹ค. AlignDP๋Š” ๋“œ๋ฌธ ํ•„๋“œ์™€ ์ผ๋ฐ˜์ ์ธ ํ•„๋“œ๋ฅผ ๋ถ„๋ฆฌํ•˜์—ฌ ๊ฐ๊ฐ ๋‹ค๋ฅธ ํ”„๋ผ์ด๋ฒ„์‹œ ๋ณดํ˜ธ ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ์ ์šฉํ•ฉ๋‹ˆ๋‹ค. ๋“œ๋ฌธ ํ•„๋“œ๋Š” PAC(Piecewise Aggregate Approximation) ๊ตฌ

Interpretable Plant Leaf Disease Detection Using Attention-Enhanced CNN

Interpretable Plant Leaf Disease Detection Using Attention-Enhanced CNN

๋ณธ ๋…ผ๋ฌธ์€ ์‹๋ฌผ ์žŽ ๋ณ‘์›๊ท  ์ž๋™ ์ง„๋‹จ ๋ถ„์•ผ์—์„œ ์ •ํ™•๋„์™€ ํ•ด์„ ๊ฐ€๋Šฅ์„ฑ์„ ๋™์‹œ์— ๋งŒ์กฑ์‹œํ‚ค๋Š” ๋ชจ๋ธ ์„ค๊ณ„์— ์ดˆ์ ์„ ๋งž์ถ”์—ˆ๋‹ค. ๊ธฐ์กด์˜ CNN ๊ธฐ๋ฐ˜ ๋ณ‘ ์ง„๋‹จ ๋ชจ๋ธ์€ ๋†’์€ ๋ถ„๋ฅ˜ ์„ฑ๋Šฅ์„ ๋ณด์—ฌ์™”์ง€๋งŒ, โ€œ์™œ ์ด๋Ÿฐ ๊ฒฐ๊ณผ๊ฐ€ ๋‚˜์™”๋Š”๊ฐ€โ€์— ๋Œ€ํ•œ ์„ค๋ช…์ด ๋ถ€์กฑํ•ด ํ˜„์žฅ ์ ์šฉ์— ํ•œ๊ณ„๊ฐ€ ์žˆ์—ˆ๋‹ค. ์ด๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด ์ €์ž๋“ค์€ VGG16 ๊ตฌ์กฐ์— Convolution Block Attention Module(CBAM)์„ ๊ฐ ํ•ฉ์„ฑ๊ณฑ ๋ธ”๋ก ๋’ค์— ์‚ฝ์ž…ํ•˜์˜€๋‹ค. CBAM์€ ์ฑ„๋„โ€‘์ฃผ์˜์™€ ๊ณต๊ฐ„โ€‘์ฃผ์˜ ๋‘ ๋‹จ๊ณ„๋กœ ๊ตฌ์„ฑ๋˜์–ด, ์ค‘์š”ํ•œ ํŠน์ง• ์ฑ„๋„์„ ๊ฐ•์กฐํ•˜๊ณ  ๋™์‹œ์— ๋ณ‘๋ณ€์ด ์ง‘์ค‘๋œ ์˜์—ญ์„ ๊ฐ•์กฐํ•œ

Detection
More Consistent Accuracy PINN via Alternating Easy-Hard Training

More Consistent Accuracy PINN via Alternating Easy-Hard Training

๋ณธ ๋…ผ๋ฌธ์€ ๋ฌผ๋ฆฌ์ •๋ณด์‹ ๊ฒฝ๋ง(PINN)์˜ ํ•™์Šต ํšจ์œจ์„ฑ์„ ๋†’์ด๊ธฐ ์œ„ํ•œ ์ƒˆ๋กœ์šด ์šฐ์„ ์ˆœ์œ„ ์Šค์ผ€์ค„๋ง ์ „๋žต์„ ์ œ์‹œํ•œ๋‹ค. ๊ธฐ์กด์— ๋„๋ฆฌ ์‚ฌ์šฉ๋˜๋Š” โ€˜ํ•˜๋“œ ์šฐ์„ ์ˆœ์œ„โ€™๋Š” ์†์‹ค ํ•จ์ˆ˜์— ๋ฌผ๋ฆฌ์  ์ œ์•ฝ์„ ๊ฐ•์ œ๋กœ ๋ถ€์—ฌํ•ด ํŠน์ • ์˜์—ญ(์˜ˆ: ๊ฒฝ๊ณ„์กฐ๊ฑด์ด๋‚˜ ๊ธ‰๊ฒฉํ•œ ๋ณ€ํ™”๊ฐ€ ์žˆ๋Š” ์˜์—ญ)์˜ ํ•™์Šต์„ ๊ฐ•์กฐํ•œ๋‹ค. ์ด๋Š” ์œ ํ•œ์š”์†Œ๋ฒ•(FEM)์—์„œ์˜ ์ ์‘ํ˜• ๋ฉ”์‰ฌ ์ •์ œ์™€ ์œ ์‚ฌํ•œ ๊ฐœ๋…์œผ๋กœ, ์–ด๋ ค์šด ์˜์—ญ์„ ๋จผ์ € ํ•ด๊ฒฐํ•จ์œผ๋กœ์จ ์ „์ฒด ํ•ด์˜ ํ’ˆ์งˆ์„ ํ–ฅ์ƒ์‹œํ‚ค๋ ค๋Š” ๋ชฉํ‘œ๋ฅผ ๊ฐ€์ง„๋‹ค. ๋ฐ˜๋ฉด โ€˜์ด์ฆˆ ์šฐ์„ ์ˆœ์œ„โ€™๋Š” ํ˜„์žฌ ์†์‹ค์ด ์ž‘์€, ์ฆ‰ ํ•™์Šต์ด ๋น„๊ต์  ์‰ฌ์šด ์ƒ˜ํ”Œ์— ๋” ๋งŽ์€ ๊ฐ€์ค‘์น˜๋ฅผ ๋ถ€์—ฌํ•œ๋‹ค. ์ด ์ ‘๊ทผ๋ฒ•์€ ํ•™์Šต ์ดˆ๊ธฐ

PermuteV: A Performant Side-channel-Resistant RISC-V Core Securing Edge AI Inference

PermuteV: A Performant Side-channel-Resistant RISC-V Core Securing Edge AI Inference

์—ฃ์ง€ AI๋Š” ์„ผ์„œ์™€ ๋””๋ฐ”์ด์Šค๊ฐ€ ํ˜„์žฅ์—์„œ ์‹ค์‹œ๊ฐ„์œผ๋กœ ๋ฐ์ดํ„ฐ๋ฅผ ์ฒ˜๋ฆฌํ•˜๋„๋ก ํ•จ์œผ๋กœ์จ ํด๋ผ์šฐ๋“œ ์˜์กด๋„๋ฅผ ๋‚ฎ์ถ”๊ณ , ์ „์†ก ์ง€์—ฐ๊ณผ ์—๋„ˆ์ง€ ์†Œ๋น„๋ฅผ ํฌ๊ฒŒ ์ค„์ธ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ด๋Ÿฌํ•œ ์žฅ์ ์€ ๋ฌผ๋ฆฌ์  ์ ‘๊ทผ์ด ๊ฐ€๋Šฅํ•œ ํ™˜๊ฒฝ์— ๋ฐฐ์น˜๋  ๋•Œ ์ƒˆ๋กœ์šด ๋ณด์•ˆ ์œ„ํ˜‘์„ ์ดˆ๋ž˜ํ•œ๋‹ค. ํŠนํžˆ ์ „์ž๊ธฐ ๋ฐฉ์ถœ(EM) ์‹ ํ˜ธ๋Š” ํ”„๋กœ์„ธ์„œ ๋‚ด๋ถ€์˜ ์—ฐ์‚ฐ ํ๋ฆ„์„ ์™ธ๋ถ€์—์„œ ๋น„์นจํˆฌ์ ์œผ๋กœ ๊ด€์ฐฐํ•  ์ˆ˜ ์žˆ๋Š” ๊ฐ•๋ ฅํ•œ ์‚ฌ์ด๋“œ์ฑ„๋„์ด๋ฉฐ, ์‹ ๊ฒฝ๋ง ๋ชจ๋ธ์˜ ๊ตฌ์กฐยท๊ฐ€์ค‘์น˜์™€ ๊ฐ™์€ ๋ฏผ๊ฐ ์ •๋ณด๋ฅผ ์ถ”์ถœํ•˜๋Š” ๋ฐ ์•…์šฉ๋  ์ˆ˜ ์žˆ๋‹ค. ๊ธฐ์กด์˜ ์†Œํ”„ํŠธ์›จ์–ด ๊ธฐ๋ฐ˜ ๋‚œ์ˆ˜ํ™” ๊ธฐ๋ฒ•์€ ์‹คํ–‰ ์‹œ๊ฐ„๊ณผ ์ „๋ ฅ ์†Œ๋น„๋ฅผ ํฌ๊ฒŒ ๋Š˜๋ฆฌ๋Š” ๋ฐ˜๋ฉด, ํ•˜๋“œ์›จ์–ด ์ˆ˜์ค€์—์„œ

Securing Agentic AI Systems -- A Multilayer Security Framework

Securing Agentic AI Systems -- A Multilayer Security Framework

๋ณธ ๋…ผ๋ฌธ์€ ๊ธ‰์†ํžˆ ํ™•์‚ฐ๋˜๋Š” ์—์ด์ „ํŠธํ˜• ์ธ๊ณต์ง€๋Šฅ(AI) ์‹œ์Šคํ…œ์ด ๊ธฐ์กด ๋ณด์•ˆ ํŒจ๋Ÿฌ๋‹ค์ž„์— ๋„์ „ํ•œ๋‹ค๋Š” ์ ์„ ๋ช…ํ™•ํžˆ ์งš์–ด๋‚ธ๋‹ค. ์—์ด์ „ํŠธํ˜• AI๋Š” ๋‹จ์ˆœํžˆ ์ž…๋ ฅโ€‘์ถœ๋ ฅ ๊ด€๊ณ„๋ฅผ ๋„˜์–ด์„œ, ์ž์ฒด ๋ชฉํ‘œ๋ฅผ ์„ค์ •ํ•˜๊ณ  ํ™˜๊ฒฝ๊ณผ ์ƒํ˜ธ์ž‘์šฉํ•˜๋ฉฐ ํ•™์Šต์„ ์ง€์†ํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ํŠน์„ฑ์€ ๋ฌด๋‹จ ํ–‰๋™(์˜ˆ: ๊ถŒํ•œ ์—†๋Š” ๋ฐ์ดํ„ฐ ์ ‘๊ทผ), ์ ๋Œ€์  ์กฐ์ž‘(์˜ˆ: ์ ๋Œ€์  ์ƒ˜ํ”Œ์„ ํ†ตํ•œ ์ •์ฑ… ๋ณ€์กฐ), ๊ทธ๋ฆฌ๊ณ  ๋™์  ํ™˜๊ฒฝ ๋ณ€ํ™”์— ๋Œ€ํ•œ ์‹ค์‹œ๊ฐ„ ๋Œ€์‘ ๋“ฑ ์ƒˆ๋กœ์šด ์œ„ํ˜‘ ๋ฒกํ„ฐ๋ฅผ ๋งŒ๋“ ๋‹ค. ๊ธฐ์กด AI ๋ณด์•ˆ ํ”„๋ ˆ์ž„์›Œํฌ๋Š” ์ฃผ๋กœ ๋ชจ๋ธ ๋ฌด๊ฒฐ์„ฑ, ๋ฐ์ดํ„ฐ ๋ณดํ˜ธ, ์ถ”๋ก  ๋‹จ๊ณ„์˜ ๊ณต๊ฒฉ ๋ฐฉ์–ด์— ์ดˆ์ ์„ ๋งž์ถ”์—ˆ์œผ๋ฉฐ, ์—์ด์ „ํŠธ์˜ ์ž์œจ์ 

System Framework
Adaptation of Agentic AI

Adaptation of Agentic AI

์ด ๋…ผ๋ฌธ์€ ์ตœ์ฒจ๋‹จ ์ง€๋Šฅํ˜• AI ์‹œ์Šคํ…œ์˜ ์„ฑ๋Šฅ ํ–ฅ์ƒ๊ณผ ์‹ ๋ขฐ์„ฑ ๊ฐ•ํ™”๋ฅผ ์œ„ํ•ด ์ ์‘ ๋ฉ”์ปค๋‹ˆ์ฆ˜์— ์ค‘์ ์„ ๋‘ก๋‹ˆ๋‹ค. ์ด๋“ค ์‹œ์Šคํ…œ์€ ๊ธฐ์ดˆ ๋ชจ๋ธ ์œ„์— ๊ตฌ์ถ•๋˜์–ด ์žˆ์œผ๋ฉฐ, ์™ธ๋ถ€ ๋„๊ตฌ์™€ ์ƒํ˜ธ์ž‘์šฉํ•˜๋ฉฐ ์ ์  ๋” ๋ณต์žกํ•˜๊ณ  ์ „๋ฌธํ™”๋œ ์ž‘์—…์„ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ๋„๋ก ์„ค๊ณ„๋˜์—ˆ์Šต๋‹ˆ๋‹ค. ๋…ผ๋ฌธ์—์„œ๋Š” ์—์ด์ „ํŠธ ์ ์‘๊ณผ ๋„๊ตฌ ์ ์‘์ด๋ผ๋Š” ๋‘ ๊ฐ€์ง€ ์ฃผ์š” ๋ฒ”์ฃผ๋ฅผ ์ œ์‹œํ•˜๋ฉฐ, ์ด๋ฅผ ๋”์šฑ ์„ธ๋ถ„ํ™”ํ•˜์—ฌ ๋„๊ตฌ ์‹คํ–‰ ์‹ ํ˜ธ ๋ฐ ์—์ด์ „ํŠธ ์ถœ๋ ฅ ์‹ ํ˜ธ์— ์˜ํ•œ ์—์ด์ „ํŠธ ์ ์‘ ํ˜•ํƒœ์™€ ์—์ด์ „ํŠธ ๋ฌด๊ด€ ๋ฐ ์—์ด์ „ํŠธ ๊ฐ๋…ํ˜•์˜ ๋„๊ตฌ ์ ์‘ ํ˜•ํƒœ๋กœ ๋‚˜๋ˆ•๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ๋ถ„๋ฅ˜๋Š” ์ง€๋Šฅํ˜• AI ์‹œ์Šคํ…œ์—์„œ ๋‹ค์–‘ํ•œ ์ ์‘ ์ „๋žต์„ ์„ค๊ณ„ํ•˜

No Image

AI-Driven Prediction of Cancer Pain Episodes: A Hybrid Decision Support Approach

๋ณธ ๋…ผ๋ฌธ์€ ํ์•” ํ™˜์ž๋“ค์˜ ๋ŒํŒŒํ†ต ์˜ˆ์ธก์„ ์œ„ํ•œ ํ˜์‹ ์ ์ธ ์ ‘๊ทผ๋ฒ•์„ ์ œ์‹œํ•˜๋ฉฐ, ์ด๋ฅผ ํ†ตํ•ด ํ™˜์ž์˜ ํ†ต์ฆ ๊ด€๋ฆฌ์™€ ์น˜๋ฃŒ ํšจ๊ณผ๋ฅผ ํ–ฅ์ƒ์‹œํ‚ค๋Š” ๋ฐ ์ค‘์ ์„ ๋‘๊ณ  ์žˆ๋‹ค. ์—ฐ๊ตฌํŒ€์€ ๊ตฌ์กฐํ™”๋œ ์ „์ž ์˜๋ฃŒ ๊ธฐ๋ก๊ณผ ๋น„๊ตฌ์กฐํ™”๋œ ๋ฐ์ดํ„ฐ๋ฅผ ํ™œ์šฉํ•˜์—ฌ ๋จธ์‹ ๋Ÿฌ๋‹ ๋ฐ ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ์„ ๊ฒฐํ•ฉํ•œ ํ•˜์ด๋ธŒ๋ฆฌ๋“œ ์‹œ์Šคํ…œ์„ ๊ฐœ๋ฐœํ•˜์˜€๋‹ค. ์ด ์‹œ์Šคํ…œ์€ ํ™˜์ž์˜ ํ†ต์ฆ ๋ฐœ์ž‘์„ ์ž…์› ํ›„ 48์‹œ๊ฐ„ ๋‚ด์™ธ๋กœ ์˜ˆ์ธกํ•˜๋Š” ๋ฐ ์„ฑ๊ณตํ•˜์˜€์œผ๋ฉฐ, ํŠนํžˆ ๋ฏผ๊ฐ๋„์˜ ํ–ฅ์ƒ์œผ๋กœ ์ธํ•ด ์‹ค์ œ ์ž„์ƒ ์ ์šฉ์—์„œ ๋”์šฑ ํšจ๊ณผ์ ์ธ ๊ฒฐ๊ณผ๋ฅผ ๋ณด์—ฌ์ฃผ์—ˆ๋‹ค. ์—ฐ๊ตฌ๋Š” ๋‹ค์–‘ํ•œ ๋ฐ์ดํ„ฐ ์š”์†Œ๋ฅผ ํ™œ์šฉํ•˜์—ฌ ํ™˜์ž์˜ ํ†ต์ฆ ๋ฐœ์ž‘์„ ์ •ํ™•ํ•˜๊ฒŒ ์˜ˆ์ธกํ•  ์ˆ˜ ์žˆ๋Š” ๋ฐฉ๋ฒ•

No Image

Automatic Penalty Parameter Selection by Residual Whiteness Principle (RWP) and GCV for Full Waveform Inversion

์ „ํŒŒํ˜• ์—ญ์‚ฐ(FWI)์€ ๊ณ ํ•ด์ƒ๋„์˜ ์ง€ํ•˜ ๊ตฌ์กฐ๋ฌผ ๋ฌผ๋ฆฌ์  ์†์„ฑ์„ ์ถ”์ •ํ•˜๋Š” ๋ฐ ์‚ฌ์šฉ๋˜๋Š” ๊ฐ•๋ ฅํ•œ ๊ธฐ์ˆ ์ž…๋‹ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ FWI๋Š” ๋น„์„ ํ˜•์ ์ด๋ฉฐ ๋ณ‘๋ ฌ ์—ญ๋ฌธ์ œ๋กœ, ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ํ™•์žฅ ์†Œ์Šค ์ ‘๊ทผ๋ฒ•์ด ํ•„์š”ํ•ฉ๋‹ˆ๋‹ค. ์ด ์ค‘ ํ•˜๋‚˜์ธ ์ฆ๊ฐ• ๋ผ๊ทธ๋ž‘์ฃผ(AL) ๋ฐฉ๋ฒ•์€ ํŽ˜๋„ํ‹ฐ ํŒŒ๋ผ๋ฏธํ„ฐ(ยต)๋ฅผ ํ†ตํ•ด ์†”๋ฃจ์…˜์˜ ๋ณผ๋ก์„ฑ๊ณผ ๊ฒฌ๊ณ ์„ฑ์„ ๊ฐœ์„ ํ•˜๋Š” ์—ญํ• ์„ ํ•ฉ๋‹ˆ๋‹ค. ยต๋Š” ๊ด€์ฐฐ๋œ ๋ฐ์ดํ„ฐ์™€ ๋ชจ๋ธ๋ง๋œ ๋ฐ์ดํ„ฐ ๊ฐ„์˜ ๋ถˆ์ผ์น˜๋ฅผ ์ตœ์†Œํ™”ํ•˜๋ฉด์„œ, ๋™์‹œ์— ๋ฌผ๋ฆฌ์  ์ œ์•ฝ ์กฐ๊ฑด์ธ ํŒŒ๋™ ๋ฐฉ์ •์‹์„ ์ถฉ์กฑ์‹œํ‚ค๋Š” ๊ท ํ˜•์ ์„ ์ฐพ๋Š”๋ฐ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•ฉ๋‹ˆ๋‹ค. ํŠนํžˆ ๋…ธ์ด์ฆˆ๊ฐ€ ์žˆ๋Š” ์ƒํ™ฉ์—์„œ๋Š” ยต์˜ ์„ ํƒ์ด ์ˆ˜๋ ด์— ํฐ ์˜ํ–ฅ

No Image

Code-in-the-Loop Forensics: Agentic Tool Use for Image Forgery Detection

์ด ๋…ผ๋ฌธ์€ ์ด๋ฏธ์ง€ ์œ„๋ณ€์กฐ ๊ฒ€์ถœ(IFD) ๋ถ„์•ผ์—์„œ ์ €์ˆ˜์ค€ ์žก์Œ ๊ธฐ๋ฐ˜ ๋ฐฉ๋ฒ•๊ณผ ๊ณ ์ˆ˜์ค€ ์˜๋ฏธ ์ •๋ณด ๊ธฐ๋ฐ˜ MLLMs์˜ ํ†ตํ•ฉ์„ ๋ชฉํ‘œ๋กœ ํ•œ๋‹ค. ForenAgent๋Š” ์ด๋Ÿฌํ•œ ๋‘ ๊ฐ€์ง€ ์ ‘๊ทผ ๋ฐฉ์‹์„ ๊ฒฐํ•ฉํ•˜์—ฌ, Python ๊ธฐ๋ฐ˜ ๋„๊ตฌ๋ฅผ ํ™œ์šฉํ•ด ์ด๋ฏธ์ง€ ์œ„๋ณ€์กฐ ๊ฒ€์ถœ์„ ์ˆ˜ํ–‰ํ•˜๋Š” ์ƒˆ๋กœ์šด ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์•ˆํ•œ๋‹ค. ์ด ํ”„๋ ˆ์ž„์›Œํฌ๋Š” ๋‹ค์ค‘ ๋ผ์šด๋“œ ์ƒํ˜ธ์ž‘์šฉ์„ ํ†ตํ•ด MLLMs๊ฐ€ ์ €์ˆ˜์ค€ ๋„๊ตฌ๋ฅผ ์ƒ์„ฑํ•˜๊ณ  ์‹คํ–‰ํ•˜๋ฉฐ, ์ด๋ฅผ ๋ฐ˜๋ณต์ ์œผ๋กœ ๊ฐœ์„ ํ•จ์œผ๋กœ์จ ๋”์šฑ ์œ ์—ฐํ•˜๊ณ  ํ•ด์„ ๊ฐ€๋Šฅํ•œ ์œ„๋ณ€์กฐ ๋ถ„์„์ด ๊ฐ€๋Šฅํ•˜๋„๋ก ์„ค๊ณ„๋˜์—ˆ๋‹ค. ForenAgent์˜ ํ•ต์‹ฌ์€ ๋‘ ๋‹จ๊ณ„ ํ›ˆ๋ จ ํŒŒ์ดํ”„๋ผ์ธ๊ณผ ๋™์  ์ถ”๋ก  ๋ฃจ

Detection
Decoding Fake Narratives in Spreading Hateful Stories: A Dual-Head RoBERTa Model with Multi-Task Learning

Decoding Fake Narratives in Spreading Hateful Stories: A Dual-Head RoBERTa Model with Multi-Task Learning

์ด ๋…ผ๋ฌธ์€ ์‚ฌํšŒ ๋ฏธ๋””์–ด ํ”Œ๋žซํผ์—์„œ ํ˜์˜ค ๋ฐœ์–ธ๊ณผ ๊ฑฐ์ง“ ์ •๋ณด์˜ ํ™•์‚ฐ ๋ฌธ์ œ๋ฅผ ๋‹ค๋ฃจ๋ฉฐ, ํŠนํžˆ ์ฝ”๋“œ๋ฏน์Šค ํžŒ๋”” ์˜์–ด ํ…์ŠคํŠธ์—์„œ ๊ฐ€์งœ ์ด์•ผ๊ธฐ์— ์˜ํ•ด ์œ ๋ฐœ๋œ ํ˜์˜ค ๋ฐœ์–ธ์„ ๊ฐ์ง€ํ•˜๋Š” Faux Hate ๊ณต๋™ ์ž‘์—…์„ ํƒ๊ตฌํ•ฉ๋‹ˆ๋‹ค. ์ด ์—ฐ๊ตฌ๋Š” ๋‘ ๊ฐ€์ง€ ์ฃผ์š” ํ•˜์œ„ ์ž‘์—…์„ ์ˆ˜ํ–‰ํ•˜๋Š”๋ฐ, ์ฒซ์งธ๋กœ ์ด์ง„ Faux Hate ๊ฐ์ง€๋Š” ๊ฑฐ์ง“๊ณผ ํ˜์˜ค ๋ฐœ์–ธ์„ ๋ถ„๋ฅ˜ํ•˜๊ณ , ๋‘˜์งธ๋กœ ๋Œ€์ƒ ๋ฐ ์‹ฌ๊ฐ์„ฑ ์˜ˆ์ธก์€ ํ˜์˜ค ๋ฐœ์–ธ์˜ ๋ชฉํ‘œ์™€ ๊ทธ ์ •๋„๋ฅผ ๋ฒ”์ฃผํ™”ํ•ฉ๋‹ˆ๋‹ค. ์—ฐ๊ตฌํŒ€์ด ๊ฐœ๋ฐœํ•œ ์‹œ์Šคํ…œ์€ ๊ณ ๊ธ‰ ์ž์—ฐ์–ด ์ฒ˜๋ฆฌ ๊ธฐ์ˆ ๊ณผ ๋„๋ฉ”์ธ ํŠนๅผ‚ๆ€ง้ข„่ฎญ็ปƒ็›ธ็ป“ๅˆ๏ผŒๆ—จๅœจๆ้ซ˜่ฟ™ไธค้กนไปปๅŠก็š„ๆ€ง่ƒฝใ€‚่ฏฅ็ณป็ปŸๅœจๆฏ”่ต›ไธญๅ–ๅพ—ไบ†ๆœ‰็ซžไบ‰ๅŠ›็š„็ป“ๆžœ๏ผŒ่ฏๆ˜Žไบ†

Model Learning
No Image

Guiding Perception-Reasoning Closer to Human in Blind Image Quality Assessment

๋ณธ ๋…ผ๋ฌธ์€ ์ด๋ฏธ์ง€์™€ ์บก์…˜์— ๋Œ€ํ•œ ์งˆ๋Ÿ‰ ํ‰๊ฐ€๋ฅผ ํ†ตํ•ด ๋ชจ๋ธ์˜ ์ถ”๋ก  ๊ณผ์ •๊ณผ ์ธ๊ฐ„์˜ ํŒ๋‹จ ์‚ฌ์ด์—์„œ ์ผ๊ด€์„ฑ์„ ๋ถ„์„ํ•ฉ๋‹ˆ๋‹ค. ํŠนํžˆ, Q Instruct(SFT) ๋ฐ Q Insight(RL) ๋ชจ๋ธ์„ ํ…Œ์ŠคํŠธํ•˜์—ฌ ๊ธฐ์กด ๋ชจ๋ธ๋“ค์ด ์ด๋ฏธ์ง€์™€ ์บก์…˜ ์ž…๋ ฅ์— ๋Œ€ํ•œ ์ ์ˆ˜์—์„œ ์ผ์น˜ํ•˜์ง€ ์•Š๋Š” ๊ฒฐ๊ณผ๋ฅผ ๋‚ด๋†“๋Š” ๋ฐ˜๋ฉด, ์ œ์•ˆ๋œ ๋ชจ๋ธ์€ ์ธ๊ฐ„์˜ ํŒ๋‹จ๊ณผ ์ผ๊ด€๋˜๊ฒŒ ์ผ์น˜ํ•˜๋Š” ์ ์ˆ˜๋ฅผ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค. ์ด ์—ฐ๊ตฌ์—์„œ๋Š” SFT ๋ชจ๋ธ์ด ์บก์…˜๊ณผ ๋“ฑ๊ธ‰์— ๋Œ€ํ•ด ๊ฐ๋…์„ ๋ฐ›์ง€๋งŒ ๋ช…์‹œ์ ์ธ ์ถ”๋ก  ๊ฐ€์ด๋“œ๊ฐ€ ๋ถ€์กฑํ•˜๊ณ , RL ๋ชจ๋ธ์€ ์ ์ˆ˜ ์ตœ์ ํ™”์— ์ดˆ์ ์„ ๋งž์ถ”๋Š” ๋ฐ˜๋ฉด ์ธ๊ฐ„์€ ํ•ด์„ ๊ฐ€๋Šฅํ•œ ํŒ๋‹จ ๊ธฐ์ค€์„ ํ†ตํ•ด ์ผ๊ด€๋œ ํ‰

KineST: A Kinematics-guided Spatiotemporal State Space Model for Human Motion Tracking from Sparse Signals

KineST: A Kinematics-guided Spatiotemporal State Space Model for Human Motion Tracking from Sparse Signals

KineST๋Š” AR/VR ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜์—์„œ ์ „์‹  ๋™์ž‘ ์ถ”์ ์ด ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•˜๋Š” ์ƒํ™ฉ์—์„œ, ํ—ค๋“œ ๋งˆ์šดํŠธ ๋””์Šคํ”Œ๋ ˆ์ด๋ฅผ ํ†ตํ•ด ์–ป์€ ์ œํ•œ์ ์ธ ์‹ ํ˜ธ๋กœ ์‹ค์ œ์ด๊ณ  ๋‹ค์–‘ํ•œ ๋™์ž‘์„ ์žฌ๊ตฌ์„ฑํ•˜๋Š” ๋ฌธ์ œ์— ์ดˆ์ ์„ ๋งž์ถฅ๋‹ˆ๋‹ค. ๊ธฐ์กด์˜ ๋ฐฉ๋ฒ•๋“ค์€ ๋†’์€ ๊ณ„์‚ฐ ๋น„์šฉ์ด๋‚˜ ๋ณ„๋„์˜ ๊ณต๊ฐ„์ ๊ณผ ์‹œ๊ฐ„์  ์˜์กด์„ฑ์„ ๋ชจ๋ธ๋งํ•จ์œผ๋กœ์จ ์ •ํ™•์„ฑ, ์‹œ๊ณ„์—ด ์ผ๊ด€์„ฑ ๋ฐ ํšจ์œจ์„ฑ ์‚ฌ์ด์—์„œ ๊ท ํ˜•์„ ๋งž์ถ”๋Š” ๊ฒƒ์ด ์–ด๋ ต๋‹ค๋Š” ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด KineST๊ฐ€ ์ œ์•ˆ๋˜์—ˆ์Šต๋‹ˆ๋‹ค. ์ด ๋ชจ๋ธ์€ ๋‘ ๊ฐ€์ง€ ํ•ต์‹ฌ ์•„์ด๋””์–ด๋กœ ๊ตฌ์„ฑ๋ฉ๋‹ˆ๋‹ค: ์ฒซ์งธ, ์ƒํƒœ๊ณต๊ฐ„ ์ด์ค‘์„ฑ ํ”„๋ ˆ์ž„์›Œํฌ ๋‚ด์˜ ์Šค์บ๋‹ ์ „๋žต์„ ๋™์—ญํ•™ ์ง€ํ–ฅ ์–‘๋ฐฉํ–ฅ ์Šค์บ”์œผ๋กœ

Model
Multi-scale Attention-Guided Intrinsic Decomposition and Rendering Pass Prediction for Facial Images

Multi-scale Attention-Guided Intrinsic Decomposition and Rendering Pass Prediction for Facial Images

MAGINet์€ ์–ผ๊ตด ์ด๋ฏธ์ง€ ๋‚ด์žฌ์„ฑ ๋ถ„ํ•ด๋ผ๋Š” ๋งค์šฐ ๊ตฌ์ฒด์ ์ธ ๋ฌธ์ œ์— ๋Œ€ํ•ด ์—ฌ๋Ÿฌ ํ˜์‹ ์ ์ธ ์„ค๊ณ„ ์š”์†Œ๋ฅผ ๊ฒฐํ•ฉํ•œ ์ ์ด ๋ˆˆ์— ๋ˆ๋‹ค. ์ฒซ ๋ฒˆ์งธ๋กœ, ๊ณ„์ธต์  ์ž”์ฐจ ์ธ์ฝ”๋”๋ฅผ ์ฑ„ํƒํ•จ์œผ๋กœ์จ ์ €ํ•ด์ƒ๋„์—์„œ ๊ณ ํ•ด์ƒ๋„๋กœ ๋„˜์–ด๊ฐ€๋Š” ๊ณผ์ •์—์„œ ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ๋Š” ์ •๋ณด ์†์‹ค์„ ์ตœ์†Œํ™”ํ•œ๋‹ค. ์ด๋Š” ํŠนํžˆ ์–ผ๊ตด๊ณผ ๊ฐ™์ด ๋ฏธ์„ธํ•œ ๋””ํ…Œ์ผ์ด ์ค‘์š”ํ•œ ์˜์—ญ์—์„œ ์•Œ๋ฒ ๋„ ๊ฒฝ๊ณ„๊ฐ€ ํ๋ ค์ง€๋Š” ํ˜„์ƒ์„ ๋ฐฉ์ง€ํ•œ๋‹ค. ๋‘ ๋ฒˆ์งธ๋กœ, ๋ณ‘๋ชฉ ๊ตฌ์กฐ์— ์‚ฝ์ž…๋œ ๊ณต๊ฐ„โ€‘์ฑ„๋„ ์ฃผ์˜ ๋ฉ”์ปค๋‹ˆ์ฆ˜์€ ํŠน์ง• ๋งต์˜ ์ค‘์š”ํ•œ ์˜์—ญ์„ ์ž๋™์œผ๋กœ ๊ฐ•์กฐํ•œ๋‹ค. ๊ณต๊ฐ„ ์ฃผ์˜๋Š” ์–ผ๊ตด์˜ ๋ˆˆ, ์ž…์ˆ , ํ„ฑ์„  ๋“ฑ ๊ณ ์ฃผํŒŒ ์˜์—ญ์— ์ง‘์ค‘ํ•˜๊ณ , ์ฑ„๋„ ์ฃผ์˜๋Š” ์•Œ๋ฒ ๋„

PrivateXR: Defending Privacy Attacks in Extended Reality Through Explainable AI-Guided Differential Privacy

PrivateXR: Defending Privacy Attacks in Extended Reality Through Explainable AI-Guided Differential Privacy

์ด ๋…ผ๋ฌธ์€ ๊ฐ€์ƒํ˜„์‹ค(XR) ํ™˜๊ฒฝ์—์„œ ๊ฐœ์ธ ์ •๋ณด ๋ณดํ˜ธ์™€ ์‚ฌ์šฉ์ž ๊ฒฝํ—˜ ์‚ฌ์ด์˜ ๊ท ํ˜•์„ ํƒ๊ตฌํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. PrivateXR์ด๋ผ๋Š” ์‹œ์Šคํ…œ์€ XAI(๊ฐ€๋Šฅ์„ฑ ํ•ด์„ ๊ฐ€๋Šฅ ์ธ๊ณต์ง€๋Šฅ)๋ฅผ ํ†ตํ•ด ๋™์ ์ธ ๊ฐœ์ธ์ •๋ณด ์ œ์–ด ๊ธฐ๋Šฅ์„ ์ œ๊ณตํ•˜๋ฉฐ, ์ด๋ฅผ ํ†ตํ•ด ์‚ฌ์šฉ์ž๋Š” ์ž์‹ ์˜ ๊ฐœ์ธ์ •๋ณด ๋…ธ์ถœ ์ˆ˜์ค€์„ ์กฐ์ ˆํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ๋…ผ๋ฌธ์—์„œ ์ œ์‹œ๋œ ๊ฐ€์ƒ ๋กค๋Ÿฌ์ฝ”์Šคํ„ฐ ํ™˜๊ฒฝ์—์„œ๋Š” ์ด ์‹œ์Šคํ…œ์ด ์‚ฌ์šฉ์ž ๊ฒฝํ—˜์„ ํฌ๊ฒŒ ํ–ฅ์ƒ์‹œํ‚ค๋Š” ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ์Šต๋‹ˆ๋‹ค. ํŠนํžˆ, PrivateXR์€ ์‹ค์‹œ๊ฐ„์œผ๋กœ ์‚ฌ์ด๋ฒ„์งˆํ™˜(CS)์˜ ์‹ฌ๊ฐ๋„๋ฅผ ์˜ˆ์ธกํ•˜๋Š” ๊ธฐ๋Šฅ์„ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค. CS๋Š” ๊ฐ€์ƒํ˜„์‹ค์—์„œ ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ๋Š” ๋ถˆํŽธ๊ฐ์ด๋‚˜ ์งˆ๋ณ‘

No Image

SDFoam: Signed-Distance Foam for explicit surface reconstruction

SDFoam๋Š” 3D ์žฅ๋ฉด ์žฌ๊ตฌ์„ฑ์„ ์œ„ํ•œ ํ˜์‹ ์ ์ธ ์ ‘๊ทผ๋ฒ•์œผ๋กœ, ๊ธฐ์กด ๋ฐฉ๋ฒ•๋“ค์ด ๋ช…์‹œ์  ๋˜๋Š” ์•”์‹œ์  ๊ธฐํ•˜ํ•™์„ ์‚ฌ์šฉํ•˜์—ฌ ๊ฐ๊ฐ์˜ ์žฅ๋‹จ์ ์„ ๊ฐ€์ง€๊ณ  ์žˆ๋Š” ๋ฐ˜๋ฉด, SDFoam์€ ๋ถ€ํ˜ธํ™”๋œ ๊ฑฐ๋ฆฌ ํ•„๋“œ(SDF)์™€ 3D ๋ณด๋กœ๋…ธ์ด ๋‹ค์ด์–ด๊ทธ๋žจ์„ ๋™์‹œ์— ํ•™์Šตํ•˜๊ณ  ์ตœ์ ํ™”ํ•˜๋Š” ๋ฐฉ์‹์œผ๋กœ ์ด๋ฅผ ๊ทน๋ณตํ•ฉ๋‹ˆ๋‹ค. ์ด๋Š” ๋ ˆ์ด ์ถ”์  ๊ณผ์ •์—์„œ ์ด๋ฃจ์–ด์ง€๋ฉฐ, ์ด ๋ฐฉ๋ฒ•์˜ ๊ฐ€์žฅ ํฐ ์žฅ์ ์€ ๋ Œ๋”๋ง ์†๋„, ์‹œ๊ฐ์  ์ •๋ฐ€์„ฑ ๋ฐ ์žฌ๊ตฌ์„ฑ ์ •ํ™•์„ฑ ๊ฐ„์˜ ์ข‹์€ ๊ท ํ˜•์„ ์ œ๊ณตํ•œ๋‹ค๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค. SDFoam์€ ๊ธฐ์กด ์ ‘๊ทผ๋ฒ•๋“ค๋ณด๋‹ค ๋” ํšจ์œจ์ ์ธ ๊ฒฐ๊ณผ๋ฅผ ๋„์ถœํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ, ์ด๋ฅผ ํ†ตํ•ด 3D ์žฅ๋ฉด ์žฌ๊ตฌ์„ฑ ๋ถ„์•ผ์—์„œ ์ƒˆ๋กœ

No Image

TextEditBench: Evaluating Reasoning-aware Text Editing Beyond Rendering

ํ…์ŠคํŠธ ํŽธ์ง‘์€ ์ด๋ฏธ์ง€ ๋‚ด์—์„œ ๊ธ€์ž๋ฅผ ์กฐ์ž‘ํ•˜๋Š” ๋ณต์žกํ•œ ๊ณผ์ •์œผ๋กœ, ๋‹จ์ˆœํžˆ ํ”ฝ์…€์„ ๋ณ€๊ฒฝํ•˜๋Š” ๊ฒƒ์„ ๋„˜์–ด ์˜๋ฏธ์ , ๊ธฐํ•˜ํ•™์ , ๊ทธ๋ฆฌ๊ณ  ๋ฌธ๋งฅ์  ์ผ๊ด€์„ฑ์„ ์œ ์ง€ํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค. ์ด ์—ฐ๊ตฌ๋Š” ์ด๋Ÿฌํ•œ ์–ด๋ ค์›€์„ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด TextEditBench๋ผ๋Š” ์ƒˆ๋กœ์šด ํ‰๊ฐ€ ๋ฒค์น˜๋งˆํฌ๋ฅผ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. ํŠนํžˆ, ์ด ๋ฒค์น˜๋งˆํฌ๋Š” ๋ชจ๋ธ๋“ค์ด ํ…์ŠคํŠธ ํŽธ์ง‘ ์‹œ ๋ฌผ๋ฆฌ์  ๊ฐ€๋Šฅ์„ฑ๊ณผ ์–ธ์–ด์  ์˜๋ฏธ๋ฅผ ์ดํ•ดํ•˜๊ณ  ๋‹ค์ค‘ ๋ชจ๋‹ฌ ์˜์กด์„ฑ์„ ์ฒ˜๋ฆฌํ•  ์ˆ˜ ์žˆ๋Š” ๋Šฅ๋ ฅ์„ ํ‰๊ฐ€ํ•˜๋Š”๋ฐ ์ค‘์ ์„ ๋‘ก๋‹ˆ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ์—ฐ๊ตฌ์ง„์€ '์˜๋ฏธ ๊ธฐ๋Œ€(SE)'๋ผ๋Š” ์ƒˆ๋กœ์šด ํ‰๊ฐ€ ์ฐจ์›์„ ๋„์ž…ํ•˜์—ฌ, ํ…์ŠคํŠธ ํŽธ์ง‘ ๊ณผ์ •์—์„œ์˜ ์˜๋ฏธ์  ์ผ๊ด€์„ฑ๊ณผ ๋‹ค์ค‘

The Evolution of Reranking Models in Information Retrieval: From Heuristic Methods to Large Language Models

The Evolution of Reranking Models in Information Retrieval: From Heuristic Methods to Large Language Models

๋ณธ ๋…ผ๋ฌธ์€ ์ •๋ณด ๊ฒ€์ƒ‰(IR) ์‹œ์Šคํ…œ์—์„œ ์žฌ์ˆœ์œ„ํ™”๊ฐ€ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•˜๋Š” ์ด์œ ์™€ ๊ทธ ๋ฐœ์ „ ๊ณผ์ •์„ ์ฒด๊ณ„์ ์œผ๋กœ ๋ถ„์„ํ•ฉ๋‹ˆ๋‹ค. ํŠนํžˆ, ์ตœ๊ทผ์˜ Retrieval Augmented Generation (RAG) ํŒŒ์ดํ”„๋ผ์ธ์— ์ค‘์ ์„ ๋‘๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. RAG๋Š” ๊ฒ€์ƒ‰๋œ ๋ฌธ์„œ๋“ค์ด ์ถœ๋ ฅ ํ’ˆ์งˆ์— ํฐ ์˜ํ–ฅ์„ ๋ฏธ์น˜๋ฏ€๋กœ ์žฌ์ˆœ์œ„ํ™” ๊ธฐ๋ฒ•์˜ ์ค‘์š”์„ฑ์ด ๋”์šฑ ๋ถ€๊ฐ๋ฉ๋‹ˆ๋‹ค. ๋…ผ๋ฌธ์€ ์žฌ์ˆœ์œ„ํ™” ๊ธฐ๋ฒ•์˜ ์—ญ์‚ฌ์  ๋ฐœ์ „ ๊ฒฝ๋กœ๋ฅผ ํƒ๊ตฌํ•˜๋ฉฐ, ์ดˆ๊ธฐ ์ ‘๊ทผ ๋ฐฉ์‹์—์„œ ์‹œ์ž‘ํ•ด ๋‹ค์–‘ํ•œ ์‹ ๊ฒฝ๋ง ์•„ํ‚คํ…์ฒ˜๊นŒ์ง€ ๋‹ค๋ฃน๋‹ˆ๋‹ค. ์ด ์ค‘์—๋Š” ํฌ๋กœ์Šค ์ธ์ฝ”๋”, T5์™€ ๊ฐ™์€ ์‹œํ€€์Šค ์ƒ์„ฑ ๋ชจ๋ธ, ๊ตฌ์กฐ์  ์ •๋ณด๋ฅผ ํ™œ์šฉํ•˜๋Š” ๊ทธ๋ž˜

Model
No Image

Topic Modelling Black Box Optimization

๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” LDA ๋ชจ๋ธ์—์„œ ์ฃผ์ œ ์ˆ˜ T๋ฅผ ์„ ํƒํ•˜๋Š” ๋ฌธ์ œ๋ฅผ ์ด์‚ฐ ๋ธ”๋ž™๋ฐ•์Šค ์ตœ์ ํ™” ๋ฌธ์ œ๋กœ ์ •์‹ํ™”ํ•˜๊ณ , ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•œ ๋‹ค์–‘ํ•œ ์ตœ์ ํ™” ๋ฐฉ๋ฒ•๋“ค์„ ๋น„๊ตํ•œ๋‹ค. ํŠนํžˆ, ๋ณธ ๋…ผ๋ฌธ์€ GA์™€ ES๋ผ๋Š” ๋‘ ๊ฐ€์ง€ ์ง„ํ™” ์•Œ๊ณ ๋ฆฌ์ฆ˜๊ณผ PABBO ๋ฐ SABBO๋ผ๋Š” ํ•™์Šต ๊ธฐ๋ฐ˜ ์•ฐORTIZED ์ ‘๊ทผ๋ฒ•์„ ํ‰๊ฐ€ํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ์ ‘๊ทผ๋ฒ•๋“ค์€ ๊ฐ๊ฐ์˜ ์žฅ๋‹จ์ ์„ ๊ฐ€์ง€๊ณ  ์žˆ์œผ๋ฉฐ, ์‹คํ—˜ ๊ฒฐ๊ณผ๋ฅผ ํ†ตํ•ด ๊ทธ ํšจ์œจ์„ฑ์„ ๋น„๊ตํ•œ๋‹ค. GA์™€ ES๋Š” ์ „ํ†ต์ ์ธ ์ง„ํ™” ์•Œ๊ณ ๋ฆฌ์ฆ˜์œผ๋กœ์„œ, ๋‹ค์–‘ํ•œ ํ•ด์˜ ์กฐํ•ฉ์„ ์ƒ์„ฑํ•˜๊ณ  ์„ ํƒ ๊ณผ์ •์„ ๊ฑฐ์ณ ์ตœ์ ํ•ด์— ๋„๋‹ฌํ•˜๋ ค๊ณ  ๋…ธ๋ ฅํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฐฉ๋ฒ•์€ ๋ณต์žกํ•œ ๋ฌธ์ œ ๊ณต๊ฐ„์—์„œ

Model
No Image

Value Under Ignorance in Universal Artificial Intelligence

์ด ๋…ผ๋ฌธ์€ AIXI ๊ฐ•ํ™”ํ•™์Šต ์—์ด์ „ํŠธ์˜ ์ด๋ก ์„ ํ™•์žฅํ•˜์—ฌ ๋” ๋„“์€ ํด๋ž˜์Šค์˜ ์œ ํ‹ธ๋ฆฌํ‹ฐ ํ•จ์ˆ˜๋ฅผ ์ ์šฉํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•ฉ๋‹ˆ๋‹ค. ํŠนํžˆ, ๊ฐ€๋Šฅํ•œ ์ƒํ˜ธ์ž‘์šฉ ์—ญ์‚ฌ์— ๋Œ€ํ•œ ๊ฐ๊ฐ์˜ ์œ ํ‹ธ๋ฆฌํ‹ฐ๋ฅผ ํ• ๋‹นํ•จ์œผ๋กœ์จ, ์—์ด์ „ํŠธ๊ฐ€ ๋ฏธ๋ž˜์˜ ๋ถˆํ™•์‹ค์„ฑ์„ ์–ด๋–ป๊ฒŒ ๋‹ค๋ฃจ๋Š”์ง€์— ๋Œ€ํ•ด ์ƒˆ๋กœ์šด ๊ด€์ ์„ ์ œ์‹œํ•ฉ๋‹ˆ๋‹ค. ์ด ๋…ผ๋ฌธ์€ '์‚ฌ๋ง ๊ฐ€๋Šฅ์„ฑ'์ด๋ผ๋Š” ๊ฐœ๋…์„ ๋„์ž…ํ•˜์—ฌ, ํŠน์ • ๊ฐ€์„ค๋“ค์ด ์—ญ์‚ฌ์˜ ์œ ํ•œ ์ ‘๋‘์‚ฌ๋ฅผ ์˜ˆ์ธกํ•˜๋Š” ๊ฒƒ๋งŒ์„ ์˜๋ฏธํ•˜๊ฒŒ ๋˜์–ด ์ด๋ฅผ ํ•ด์„ํ•  ๋•Œ ๋ฐœ์ƒํ•˜๋Š” ๋ถˆํ™•์‹ค์„ฑ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๋ ค๊ณ  ํ•ฉ๋‹ˆ๋‹ค. ๋˜ํ•œ, Choquet ์ ๋ถ„์„ ์‚ฌ์šฉํ•˜์—ฌ ๊ธฐ๋Œ€ ์œ ํ‹ธ๋ฆฌํ‹ฐ๋ฅผ ๊ณ„์‚ฐํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. ์ด๋Š” ๋ถˆ๋ช…ํ™•ํ•œ

Bayesian Updating of constitutive parameters under hybrid uncertainties with a novel surrogate model applied to biofilms

Bayesian Updating of constitutive parameters under hybrid uncertainties with a novel surrogate model applied to biofilms

์ด ๋…ผ๋ฌธ์€ ๋ฐ”์ด์˜คํ•„๋ฆ„ ์„ฑ์žฅ ๋ชจ๋ธ๋ง ๋ถ„์•ผ์—์„œ โ€˜ํ•˜์ด๋ธŒ๋ฆฌ๋“œ ๋ถˆํ™•์‹ค์„ฑโ€™์ด๋ผ๋Š” ๋ณตํ•ฉ์ ์ธ ๋‚œ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๋ ค๋Š” ์‹œ๋„๋กœ ๋ˆˆ๊ธธ์„ ๋ˆ๋‹ค. ๊ธฐ์กด์˜ ๋ฒ ์ด์ง€์•ˆ ๋ชจ๋ธ ์—…๋ฐ์ดํŠธ๋Š” ์ฃผ๋กœ ์ธ์‹ ๋ถˆํ™•์‹ค์„ฑ๋งŒ์„ ๊ณ ๋ คํ•˜๊ฑฐ๋‚˜, ์šฐ์—ฐ ๋ถˆํ™•์‹ค์„ฑ์„ ๋ณ„๋„์˜ ๋ชฌํ…Œ์นด๋ฅผ๋กœ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์œผ๋กœ ์ฒ˜๋ฆฌํ•ด ์ด์ค‘ ๋ฃจํ”„ ๊ตฌ์กฐ๋ฅผ ์ทจํ•œ๋‹ค. ์ด์ค‘ ๋ฃจํ”„๋Š” ๋งค ๋ฐ˜๋ณต๋งˆ๋‹ค ๊ณ ๋น„์šฉ์˜ ์ „๋ฐฉ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ์ˆ˜ํ–‰ํ•ด์•ผ ํ•˜๋ฏ€๋กœ ๊ณ„์‚ฐ๋Ÿ‰์ด ๊ธ‰๊ฒฉํžˆ ์ฆ๊ฐ€ํ•˜๊ณ , ์‹ค์‹œ๊ฐ„ ํ˜น์€ ๋Œ€๊ทœ๋ชจ ํŒŒ๋ผ๋ฏธํ„ฐ ํƒ์ƒ‰์— ๋ถ€์ ํ•ฉํ•˜๋‹ค. ์ €์ž๋“ค์€ ์ด๋Ÿฌํ•œ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด ์‹œ๊ฐ„๋ถ„๋ฆฌ ํ™•๋ฅ ์—ญํ•™(TSM) ๊ธฐ๋ฐ˜ ์ฐจ์›์ถ•์†Œ ๋ชจ๋ธ(ROM)์„ ๋„์ž…ํ•œ๋‹ค. TSM์€ ์‹œ์Šคํ…œ์˜

Model
Navigating Taxonomic Expansions of Entity Sets Driven by Knowledge Bases

Navigating Taxonomic Expansions of Entity Sets Driven by Knowledge Bases

๋ณธ ์—ฐ๊ตฌ๋Š” ์ง€์‹ ๊ธฐ๋ฐ˜(Knowledge Base)์ด ์–ด๋–ป๊ฒŒ ๋‹ค์–‘ํ•œ ์—”ํ‹ฐํ‹ฐ ์ง‘ํ•ฉ์„ ๊ตฌ๋™ํ•˜๋Š”์ง€์— ๋Œ€ํ•œ ์‹ฌ์ธต์ ์ธ ๋ถ„์„์„ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค. ์ด ๋…ผ๋ฌธ์€ ์•„๋งˆ๋„ ๋ฐ์ดํ„ฐ ๊ด€๋ฆฌ, ์ •๋ณด ๊ฒ€์ƒ‰, ๋˜๋Š” ์ธ๊ณต์ง€๋Šฅ ์‹œ์Šคํ…œ์˜ ๊ฐœ์„ ๊ณผ ๊ด€๋ จ๋œ ์ฃผ์ œ๋ฅผ ๋‹ค๋ฃจ๊ณ  ์žˆ์„ ๊ฒƒ์ž…๋‹ˆ๋‹ค. ์ง€์‹ ๊ธฐ๋ฐ˜์€ ํŠน์ • ๋„๋ฉ”์ธ์—์„œ ์ˆ˜์ง‘๋œ ์ •๋ณด์™€ ๊ทธ ์ •๋ณด ๊ฐ„์˜ ๊ด€๊ณ„๋ฅผ ์ €์žฅํ•˜๋Š” ๊ตฌ์กฐ๋กœ, ์ด๋Š” ์—”ํ‹ฐํ‹ฐ ์ง‘ํ•ฉ์„ ํšจ๊ณผ์ ์œผ๋กœ ๊ด€๋ฆฌํ•˜๊ณ  ํ™œ์šฉํ•˜๋Š” ๋ฐ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•ฉ๋‹ˆ๋‹ค. ์—ฐ๊ตฌ์ž๋“ค์€ ์•„๋งˆ๋„ ์ด๋Ÿฌํ•œ ์‹œ์Šคํ…œ์ด ์–ด๋–ป๊ฒŒ ํšจ์œจ์„ฑ์„ ํ–ฅ์ƒ์‹œํ‚ค๊ณ  ์ƒˆ๋กœ์šด ์ธ์‚ฌ์ดํŠธ๋ฅผ ์ œ๊ณตํ•˜๋Š”์ง€์— ๋Œ€ํ•ด ํƒ๊ตฌํ–ˆ์„ ๊ฒƒ์ž…๋‹ˆ๋‹ค.

No Image

Optimizing Agentic Language Model Inference via Speculative Tool Calls

๋ณธ ๋…ผ๋ฌธ์€ ์–ธ์–ด ๋ชจ๋ธ(LMs)์˜ ์„ฑ๋Šฅ ํ–ฅ์ƒ์„ ์œ„ํ•ด ๋„๊ตฌ ํ˜ธ์ถœ์— ๋Œ€ํ•œ ์ตœ์ ํ™” ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. LMs๋Š” ์™ธ๋ถ€ ๋„๊ตฌ์™€ ์ƒํ˜ธ์ž‘์šฉํ•˜์—ฌ ํŒŒ์ผ ๊ฒ€์ƒ‰, ์ฝ”๋“œ ์‹คํ–‰, API ํ˜ธ์ถœ ๋“ฑ์„ ์ˆ˜ํ–‰ํ•˜๋ฉฐ, ์ด๋Ÿฌํ•œ ์ž‘์—…๋“ค์€ ์ถ”๋ก  ๊ณผ์ •์—์„œ ๋ณ‘๋ชฉ ํ˜„์ƒ์ด ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ๋Š” ์ฃผ์š” ์›์ธ์ž…๋‹ˆ๋‹ค. ๋…ผ๋ฌธ์—์„œ๋Š” ์ด ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ๋„๊ตฌ ํ˜ธ์ถœ์„ ์˜ˆ์ธกํ•˜๊ณ  ์ธํผ๋Ÿฐ์Šค ์—”์ง„์— ์‹œํ€€์Šค๋ฅผ ์ตœ์†Œํ•œ์˜ ์˜ค๋ฒ„ํ—ค๋“œ๋กœ ์œ ์ง€ํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. ์ œ์•ˆ๋œ ์ตœ์ ํ™” ๊ธฐ๋ฒ•์€ LM ์—์ด์ „ํŠธ์˜ ์ฒ˜๋ฆฌ๋Ÿ‰์„ ํฌ๊ฒŒ ํ–ฅ์ƒ์‹œํ‚ต๋‹ˆ๋‹ค. ํŠนํžˆ, ์ดˆ๋‹น ์ˆ˜๋ฐฑ ํ† ํฐ์˜ ์ฒ˜๋ฆฌ๋Ÿ‰ ํ–ฅ์ƒ์„ ๋ณด์—ฌ์ฃผ๋ฉฐ, ์ด๋Š” LMs๊ฐ€ ๋ณต์žกํ•œ ์ถ”

Model
Seeing Beyond Words: Self-Supervised Visual Learning for Multimodal Large Language Models

Seeing Beyond Words: Self-Supervised Visual Learning for Multimodal Large Language Models

์ด ๋…ผ๋ฌธ์€ MLLMs์˜ ์‹œ๊ฐ์  ์ดํ•ด๋ ฅ ํ–ฅ์ƒ์„ ์œ„ํ•ด JARVIS๋ผ๋Š” ์ƒˆ๋กœ์šด ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์•ˆํ•œ๋‹ค. ๊ธฐ์กด MLLMs๋Š” ์ฃผ๋กœ ์–ธ์–ด์ ์ธ ์„ค๋ช…์„ ํ†ตํ•ด ํ•™์Šตํ•˜๋ฏ€๋กœ, ์ด์— ๋”ฐ๋ฅธ ํ•œ๊ณ„์ ์ด ์กด์žฌํ•œ๋‹ค. ํŠนํžˆ, ์–ธ์–ด ๊ธฐ๋ฐ˜ ๊ฐ๋… ์‹ ํ˜ธ์˜ ์ฃผ๊ด€์„ฑ๊ณผ ๋ถˆ์™„์ „ํ•จ์œผ๋กœ ์ธํ•ด ์‹œ๊ฐ์  ์ถ”๋ก  ๋Šฅ๋ ฅ์ด ์ œํ•œ์ ์ด๋ฉฐ, ๋‹ค์ค‘๋ชจ๋‹ฌ ์ง€์‹œ์–ด ํŠœ๋‹์˜ ๊ทœ๋ชจ๊ฐ€ ์ž‘์•„ ์‹œ๊ฐ์  ์„ธ๋ถ€ ์‚ฌํ•ญ์„ ๋ฌด์‹œํ•˜๋Š” ๊ฒฝํ–ฅ์ด ์žˆ๋‹ค. JARVIS๋Š” ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด JEPA ํ•™์Šต ํŒจ๋Ÿฌ๋‹ค์ž„์„ MLLMs ํ›ˆ๋ จ ํŒŒ์ดํ”„๋ผ์ธ์— ํ†ตํ•ฉํ•œ๋‹ค. ์ด ํ”„๋ ˆ์ž„์›Œํฌ๋Š” ๋™๊ฒฐ๋œ ์‹œ๊ฐ ๊ธฐ๋ฐ˜ ๋ชจ๋ธ์„ ํ™œ์šฉํ•˜์—ฌ ์˜ˆ์ธก๊ธฐ๋ฅผ ํ›ˆ๋ จ์‹œํ‚ค๊ณ , ์–ธ์–ด

Model Learning
Subjective functions

Subjective functions

์ด ๋…ผ๋ฌธ์€ ์ธ๊ฐ„ ์ง€๋Šฅ๊ณผ ์ธ๊ณต ์‹œ์Šคํ…œ ๊ฐ„์˜ ์ฐจ์ด๋ฅผ ํƒ์ƒ‰ํ•˜๋ฉด์„œ, ํŠนํžˆ ๋ชฉํ‘œ ์„ค์ • ๊ณผ์ •์— ์ดˆ์ ์„ ๋งž์ถฅ๋‹ˆ๋‹ค. ์ฃผ๊ด€์  ๊ธฐ๋Šฅ์ด๋ผ๋Š” ๊ฐœ๋…์„ ๋„์ž…ํ•จ์œผ๋กœ์จ, ์—์ด์ „ํŠธ ์ž์ฒด์˜ ๋‚ด์žฌ์ ์ธ ํŠน์ง•์— ๊ทผ๊ฑฐํ•œ ๋ชฉํ‘œ ์„ค์ • ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. ์ด๋Š” ์ธ๊ฐ„ ์ง€๋Šฅ์—์„œ ๋ณด์ด๋Š” ์ฆ‰ํฅ์ ์ธ ๋ชฉํ‘œ ํ•ฉ์„ฑ ๋Šฅ๋ ฅ์„ ์ธ๊ณต ์‹œ์Šคํ…œ์—๋„ ๋ถ€์—ฌํ•˜๋ ค๋Š” ๋…ธ๋ ฅ์ž…๋‹ˆ๋‹ค. ๋…ผ๋ฌธ์€ ์˜ˆ์ธก ์˜ค๋ฅ˜๋ฅผ ์ตœ์†Œํ™”ํ•˜๋Š” ๊ฒƒ์„ ์ฃผ๊ด€์  ๊ธฐ๋Šฅ์˜ ํ•œ ํ˜•ํƒœ๋กœ ์„ค๋ช…ํ•˜๋ฉฐ, ์ด๋ฅผ ํ†ตํ•ด ์—์ด์ „ํŠธ๊ฐ€ ์ž์‹ ์˜ ๊ฒฝํ—˜๊ณผ ํ•™์Šต์— ๋”ฐ๋ผ ์ƒˆ๋กœ์šด ๋ชฉํ‘œ๋ฅผ ์„ค์ •ํ•˜๊ณ  ์ถ”๊ตฌํ•  ์ˆ˜ ์žˆ์Œ์„ ์ œ์‹œํ•ฉ๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ์ ‘๊ทผ ๋ฐฉ์‹์€ ์‹ฌ๋ฆฌํ•™์—์„œ์˜ ์ž๊ธฐํšจ๋Šฅ๊ฐ ์ด๋ก ์ด๋‚˜ ์‹ ๊ฒฝ๊ณผํ•™

Towards Fine-Tuning-Based Site Calibration for Knowledge-Guided Machine Learning: A Summary of Results

Towards Fine-Tuning-Based Site Calibration for Knowledge-Guided Machine Learning: A Summary of Results

FTBSC KGML์€ ๋†์ƒํƒœ๊ณ„ ํƒ„์†Œ ์ˆœํ™˜๋Ÿ‰์„ ์ •ํ™•ํ•˜๊ณ  ๋น„์šฉ ํšจ์œจ์ ์œผ๋กœ ์ธก์ •ํ•˜๊ธฐ ์œ„ํ•œ ํ˜์‹ ์ ์ธ ๋จธ์‹ ๋Ÿฌ๋‹ ํ”„๋ ˆ์ž„์›Œํฌ์ž…๋‹ˆ๋‹ค. ๊ธฐ์กด ์ ‘๊ทผ๋ฒ•์˜ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด, ์ด ์—ฐ๊ตฌ๋Š” ์ „์ด ํ•™์Šต๊ณผ ๊ณต๊ฐ„์  ๋ณ€์ด์„ฑ์„ ํ™œ์šฉํ•˜๋Š” ๋ฐฉ๋ฒ•๋ก ์„ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. ํŠนํžˆ, FTBSC KGML์€ ์‚ฌ์ „ ํ›ˆ๋ จ ๋ฐ ๋ฏธ์„ธ ์กฐ์ • ๊ณผ์ •์„ ํ†ตํ•ด ๊ฐ ์ง€์—ญ์˜ ํŠน์„ฑ์— ๋งž์ถฐ ๋ชจ๋ธ์„ ๊ฐœ์„ ํ•˜๊ณ , ์ด๋ฅผ ํ†ตํ•ด ๋ฐ์ดํ„ฐ๊ฐ€ ๋ถ€์กฑํ•œ ์ง€์—ญ์—์„œ๋„ ๋†’์€ ์ •ํ™•๋„๋ฅผ ์œ ์ง€ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์ด ํ”„๋ ˆ์ž„์›Œํฌ๋Š” ์›๊ฒฉ ์ธก์ • GPP, ๊ธฐํ›„ ๋ฐ ํ† ์–‘ ๊ณต๋ณ€๋Ÿ‰๊ณผ ๊ฐ™์€ ๋‹ค์–‘ํ•œ ๋ฐ์ดํ„ฐ ์†Œ์Šค๋ฅผ ํ™œ์šฉํ•˜์—ฌ ๋†์ƒํƒœ๊ณ„์˜ ํƒ„์†Œ ์ˆœํ™˜์„ ํšจ๊ณผ์ ์œผ๋กœ

Learning
Workload Characterization for Branch Predictability

Workload Characterization for Branch Predictability

์ด ๋…ผ๋ฌธ์€ ๋ถ„๊ธฐ ์˜ˆ์ธก์˜ ํ•ต์‹ฌ ๋ฌธ์ œ์ธ ์ •ํ™•๋„ ํ–ฅ์ƒ์„ ์œ„ํ•ด ์›Œํฌ๋กœ๋“œ ํŠน์„ฑํ™” ๋ฐฉ๋ฒ•๋ก ์„ ์ œ์‹œํ•˜๊ณ , ์ด๋ฅผ ํ†ตํ•ด ์ƒˆ๋กœ์šด ๋ถ„์„ ์ง€ํ‘œ๋“ค์„ ๋„์ž…ํ•ฉ๋‹ˆ๋‹ค. '๋ถ„๊ธฐ ์ž‘์—… ์ง‘ํ•ฉ ํฌ๊ธฐ'์™€ '๋ถ„๊ธฐ ์˜ˆ์ธก ๊ฐ€๋Šฅ์„ฑ'์ด๋ผ๋Š” ๋‘ ๊ฐ€์ง€ ๋งค๊ฐœ๋ณ€์ˆ˜๋Š” ํ˜„๋Œ€์ ์ธ ๋ถ„๊ธฐ ์˜ˆ์ธก ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ์„ฑ๋Šฅ์— ์ง์ ‘์ ์œผ๋กœ ์˜ํ–ฅ์„ ๋ฏธ์น˜๋ฉฐ, ์ด๋“ค ๋งค๊ฐœ๋ณ€์ˆ˜๋ฅผ ํ†ตํ•ด ํŠน์ • ์›Œํฌ๋กœ๋“œ๊ฐ€ ์–ด๋–ค ๋ถ„๊ธฐ ์˜ˆ์ธก ๊ธฐ๋ฒ•์— ๋” ์ ํ•ฉํ•œ์ง€ ํŒ๋‹จํ•  ์ˆ˜ ์žˆ๊ฒŒ ๋ฉ๋‹ˆ๋‹ค. ๋…ผ๋ฌธ์€ 2,451๊ฐœ์˜ ์›Œํฌ๋กœ๋“œ ํŠธ๋ ˆ์ด์Šค๋ฅผ ๋ถ„์„ํ•˜์—ฌ ์ด๋Ÿฌํ•œ ์ง€ํ‘œ๋“ค์„ ํ†ตํ•ด ๊ฐ ์›Œํฌ๋กœ๋“œ์˜ ํŠน์„ฑ์„ ํŒŒ์•…ํ•˜๊ณ  ์ด๋ฅผ ํ†ตํ•ด ํ˜„๋Œ€์ ์ธ ๋ถ„๊ธฐ ์˜ˆ์ธก๊ธฐ์˜ ์ •ํ™•๋„์— ๋Œ€ํ•œ ๊นŠ์ด ์žˆ๋Š” ์ดํ•ด

No Image

Incentivizing Tool-augmented Thinking with Images for Medical Image Analysis

์ด ๋…ผ๋ฌธ์€ ์˜๋ฃŒ AI ๋ถ„์•ผ์—์„œ ์ค‘์š”ํ•œ ๋ฐœ์ „์„ ์ œ์‹œํ•˜๊ณ  ์žˆ๋‹ค. Ophiuchus ํ”„๋ ˆ์ž„์›Œํฌ๋Š” MLLMs๊ฐ€ ๋ณต์žกํ•œ ์‹œ๊ฐ์  ์ •๋ณด๋ฅผ ์ฒ˜๋ฆฌํ•˜๋Š” ๋ฐ ํ•„์š”ํ•œ ์„ธ ๊ฐ€์ง€ ํ•ต์‹ฌ ๊ธฐ๋Šฅ์„ ์ œ๊ณตํ•œ๋‹ค: ์ถ”๊ฐ€์ ์ธ ์‹œ๊ฐ์  ์ฆ๊ฑฐ์˜ ํ•„์š”์„ฑ์„ ํŒ๋‹จํ•  ์ˆ˜ ์žˆ๋Š” ๋Šฅ๋ ฅ, ์˜๋ฃŒ ์ด๋ฏธ์ง€ ๋‚ด์—์„œ ์ •ํ™•ํ•˜๊ฒŒ ํƒ์‚ฌํ•ด์•ผ ํ•  ์œ„์น˜๋ฅผ ๊ฒฐ์ •ํ•  ์ˆ˜ ์žˆ๋Š” ๋Šฅ๋ ฅ, ๊ทธ๋ฆฌ๊ณ  ์ด๋“ค ์ •๋ณด๋ฅผ ๋‹ค์ค‘ ๋ชจ๋‹ฌ ์ถ”๋ก  ์ฒด์ธ์— ํ†ตํ•ฉํ•˜๋Š” ๋Šฅ๋ ฅ. ์ด๋Ÿฌํ•œ ๊ธฐ๋Šฅ์€ MLLMs๊ฐ€ ๋ณต์žกํ•œ ์‹œ๊ฐ์  ๋ฐ์ดํ„ฐ๋ฅผ ์ฒ˜๋ฆฌํ•˜๊ณ  ๋ถ„์„ํ•˜๋Š” ๋ฐ ์žˆ์–ด ์ค‘์š”ํ•œ ๋„์•ฝ์„ ์ด๋ฃจ๊ฒŒ ํ•œ๋‹ค. Ophiuchus์˜ ํ•ต์‹ฌ์€ ์„ธ ๋‹จ๊ณ„๋กœ ๊ตฌ์„ฑ๋œ ํ›ˆ๋ จ ์ „๋žต์ด๋‹ค: ์ฒซ์งธ,

Analysis
Model-First Reasoning LLM Agents: Reducing Hallucinations through Explicit Problem Modeling

Model-First Reasoning LLM Agents: Reducing Hallucinations through Explicit Problem Modeling

์ด ๋…ผ๋ฌธ์€ ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(LLMs)์ด ๋ณต์žกํ•œ ๊ณ„ํš ์ž‘์—…์—์„œ ์ œ์•ฝ ์œ„๋ฐ˜, ์ผ๊ด€์„ฑ ์—†๋Š” ์ƒํƒœ ์ถ”์  ๋ฐ ์ทจ์•ฝํ•œ ์†”๋ฃจ์…˜์„ ์ƒ์„ฑํ•˜๋Š” ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด Model First Reasoning(MFR)์ด๋ผ๋Š” ์ƒˆ๋กœ์šด ์ ‘๊ทผ๋ฒ•์„ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. MFR์€ ๋‘ ๋‹จ๊ณ„๋กœ ๊ตฌ์„ฑ๋˜๋Š”๋ฐ, ์ฒซ ๋ฒˆ์งธ ๋‹จ๊ณ„์—์„œ๋Š” LLM์ด ๋ฌธ์ œ์˜ ๊ตฌ์กฐํ™”๋œ ๋ชจ๋ธ์„ ๋ช…์‹œ์ ์œผ๋กœ ๊ตฌ์„ฑํ•˜๊ณ , ๋‘ ๋ฒˆ์งธ ๋‹จ๊ณ„์—์„œ๋Š” ์ด ๋ชจ๋ธ์— ๋Œ€ํ•œ ์ถ”๋ก  ๋ฐ ๊ณ„ํš์„ ์ˆ˜ํ–‰ํ•ฉ๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฐฉ๋ฒ•์€ ์ธ๊ฐ„์˜ ๊ณผํ•™์  ์ถ”๋ก , ๊ณ ์ „ AI ๊ณ„ํš, ๊ทธ๋ฆฌ๊ณ  ์˜์‚ฌ๊ฒฐ์ • ์ธ์ง€ ๋ชจ๋ธ์—์„œ ์˜๊ฐ์„ ๋ฐ›์•„ ์ œ์•ˆ๋˜์—ˆ์Šต๋‹ˆ๋‹ค. ์‹คํ—˜ ๊ฒฐ๊ณผ MFR์€ ๋‹ค์–‘ํ•œ

Model
ReadyPower: A Reliable, Interpretable, and Handy Architectural Power Model Based on Analytical Framework

ReadyPower: A Reliable, Interpretable, and Handy Architectural Power Model Based on Analytical Framework

๋ณธ ๋…ผ๋ฌธ์˜ ํ•ต์‹ฌ์€ ํ˜„๋Œ€ ํ”„๋กœ์„ธ์„œ ์„ค๊ณ„์—์„œ ์ „๋ ฅ ๋ชจ๋ธ๋ง์˜ ์ค‘์š”์„ฑ์„ ๊ฐ•์กฐํ•˜๊ณ , ์ด๋ฅผ ์œ„ํ•ด ๊ณ ์ „์ ์ธ ๋ถ„์„ํ˜• ์•„ํ‚คํ…์ฒ˜ ์ˆ˜์ค€์˜ ์ „๋ ฅ ๋ชจ๋ธ๊ณผ ML ๊ธฐ๋ฐ˜ ์ „๋ ฅ ๋ชจ๋ธ์˜ ํ•œ๊ณ„๋ฅผ ์ง€์ ํ•˜๋ฉฐ ์ƒˆ๋กœ์šด ์ ‘๊ทผ ๋ฐฉ์‹์„ ์ œ์•ˆํ•˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค. ReadyPower ํ”„๋ ˆ์ž„์›Œํฌ๋Š” ๊ธฐ์กด์˜ ๋ฌธ์ œ์ ์„ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ๋‹ค์–‘ํ•œ ์ˆ˜์ค€์˜ ๋งค๊ฐœ๋ณ€์ˆ˜๋ฅผ ๋„์ž…ํ•˜์—ฌ McPAT ๋ถ„์„ ๋ชจ๋ธ์— ํ†ตํ•ฉํ•จ์œผ๋กœ์จ, ๊ณ ์ •๋ฐ€๋„์™€ ์‹ ๋ขฐ์„ฑ์„ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค. ReadyPower์˜ ์ฃผ์š” ์žฅ์ ์€ ์„ธ ๊ฐ€์ง€์ž…๋‹ˆ๋‹ค: ์ฒซ์งธ, ์‹ ๋ขฐ์„ฑ. ReadyPower๋Š” ์‹ค์ œ ํ”„๋กœ์„ธ์„œ ๊ตฌํ˜„๊ณผ ์•„ํ‚คํ…์ฒ˜ ์ˆ˜์ค€์˜ ๋ถ„์„ ๋ชจ๋ธ ๊ฐ„์˜ ๋ถˆ์ผ์น˜๋ฅผ ํ•ด๊ฒฐํ•จ์œผ๋กœ์จ

Framework Model
Semantic Mismatch and Perceptual Degradation: A New Perspective on Image Editing Immunity

Semantic Mismatch and Perceptual Degradation: A New Perspective on Image Editing Immunity

์ด ๋…ผ๋ฌธ์€ ํ…์ŠคํŠธ ์ง€์‹œ ์ด๋ฏธ์ง€ ํŽธ์ง‘์— ๋Œ€ํ•œ ์•…์šฉ ๊ฐ€๋Šฅ์„ฑ๊ณผ ๊ทธ๋กœ ์ธํ•œ ์šฐ๋ ค๋ฅผ ๋‹ค๋ฃจ๋ฉฐ, ์ด๋ฅผ ๋ฐฉ์–ดํ•˜๊ธฐ ์œ„ํ•œ ์ƒˆ๋กœ์šด ์ ‘๊ทผ๋ฒ•์„ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. ๊ธฐ์กด์˜ ๋ฉด์—ญํ™” ์„ฑ๊ณต ํ‰๊ฐ€ ๋ฐฉ๋ฒ•์€ ์ฃผ๋กœ ์‹œ๊ฐ์  ์œ ์‚ฌ์„ฑ์— ์ดˆ์ ์„ ๋งž์ถ”๊ณ  ์žˆ์ง€๋งŒ, ์ด๋Š” ๊ณต๊ฒฉ์ž์˜ ์˜๋„์™€์˜ ์‹œ๋งจํ‹ฑ ๋ถˆ์ผ์น˜๋ผ๋Š” ๋ณธ์งˆ์ ์ธ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜์ง€ ๋ชปํ•œ๋‹ค๋Š” ์ ์—์„œ ํ•œ๊ณ„๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค. ๋…ผ๋ฌธ์—์„œ๋Š” ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด Synergistic Intermediate Feature Manipulation (SIFM) ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. SIFM์€ ์ค‘๊ฐ„ ํ™•์‚ฐ ํŠน์ง•์„ ์ „๋žต์ ์œผ๋กœ ๋ณ€ํ˜•ํ•˜์—ฌ ์›๋ž˜ ํŽธ์ง‘ ๊ฒฝ๋กœ์™€์˜ ์‹œ๋งจํ‹ฑ

TACK Tunnel Data (TTD): A Benchmark Dataset for Deep Learning-Based Defect Detection in Tunnels

TACK Tunnel Data (TTD): A Benchmark Dataset for Deep Learning-Based Defect Detection in Tunnels

๋ณธ ๋…ผ๋ฌธ์€ ํ„ฐ๋„ ๊ฒฐํ•จ ๊ฒ€์‚ฌ๋ฅผ ์œ„ํ•œ ์ƒˆ๋กœ์šด ๋ฐ์ดํ„ฐ์…‹์„ ์†Œ๊ฐœํ•˜๋ฉฐ, ์ด๋Š” ๋”ฅ๋Ÿฌ๋‹ ๋ชจ๋ธ์˜ ํ•™์Šต๊ณผ ์„ฑ๋Šฅ ๊ฐœ์„ ์— ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•ฉ๋‹ˆ๋‹ค. ํ„ฐ๋„์€ ๊ตํ†ต ์ธํ”„๋ผ์˜ ์ฃผ์š” ๊ตฌ์„ฑ ์š”์†Œ๋กœ, ์•ˆ์ „์„ฑ์„ ์œ ์ง€ํ•˜๊ธฐ ์œ„ํ•ด ์ •๊ธฐ์ ์ธ ์ ๊ฒ€์ด ํ•„์ˆ˜์ ์ž…๋‹ˆ๋‹ค. ํ•˜์ง€๋งŒ ์ „ํ†ต์ ์ธ ์ˆ˜๋™ ๊ฒ€์‚ฌ ๋ฐฉ๋ฒ•์€ ์‹œ๊ฐ„ ์†Œ๋ชจ๊ฐ€ ๋งŽ๊ณ  ๋น„์šฉ์ด ๋†’์œผ๋ฉฐ ์ฃผ๊ด€์ ์ด์–ด์„œ ์ œํ•œ์ ์ด ์žˆ์Šต๋‹ˆ๋‹ค. ๋ชจ๋ฐ”์ผ ๋งคํ•‘ ์‹œ์Šคํ…œ๊ณผ ๋”ฅ๋Ÿฌ๋‹์˜ ๋ฐœ์ „์œผ๋กœ ์ž๋™ํ™”๋œ ์‹œ๊ฐ ๊ฒ€์‚ฌ๊ฐ€ ๊ฐ€๋Šฅํ•ด์กŒ์ง€๋งŒ, ์ด๋ฅผ ์œ„ํ•œ ์ถฉ๋ถ„ํ•œ ๋ฐ์ดํ„ฐ์…‹์ด ๋ถ€์กฑํ•˜์—ฌ ๊ทธ ํšจ๊ณผ๊ฐ€ ์ œํ•œ๋˜์–ด ์™”์Šต๋‹ˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ ์†Œ๊ฐœํ•˜๋Š” ์ƒˆ๋กœ์šด ๋ฐ์ดํ„ฐ์…‹์€ ์„ธ ๊ฐ€์ง€ ๋‹ค๋ฅธ ์ข…๋ฅ˜์˜ ํ„ฐ๋„ ๋ผ์ด๋‹์—

Detection Data Learning
Thermodynamic Focusing for Inference-Time Search: Practical Methods for Target-Conditioned Sampling and Prompted Inference

Thermodynamic Focusing for Inference-Time Search: Practical Methods for Target-Conditioned Sampling and Prompted Inference

์ด ๋…ผ๋ฌธ์€ โ€œํฌ๊ท€ํ•˜์ง€๋งŒ ๊ฐ€์น˜ ์žˆ๋Š” ์†”๋ฃจ์…˜์„ ์ฐพ๋Š” ๋ฌธ์ œโ€๋ฅผ ๊ธฐ์กด์˜ ํƒ์ƒ‰โ€‘์ตœ์ ํ™” ์ ‘๊ทผ๋ฒ•๊ณผ๋Š” ๋‹ค๋ฅธ ๊ด€์ ์—์„œ ์ ‘๊ทผํ•œ๋‹ค๋Š” ์ ์—์„œ ์˜๋ฏธ๊ฐ€ ํฌ๋‹ค. ์ „ํ†ต์ ์ธ ๋ฐฉ๋ฒ•์€ ๋ณดํ†ต ๋ชฉํ‘œ ํ•จ์ˆ˜๋ฅผ ์ง์ ‘ ์ตœ์ ํ™”ํ•˜๊ฑฐ๋‚˜, ๊ฐ•ํ™” ํ•™์Šต์—์„œ๋Š” ๋ณด์ƒ์„ ์ตœ๋Œ€ํ™”ํ•˜๋„๋ก ์ •์ฑ…์„ ํ•™์Šตํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ํ›„๋ณด ๊ณต๊ฐ„์ด ์ฒœ๋ฌธํ•™์ ์œผ๋กœ ํด ๊ฒฝ์šฐ, ํŠนํžˆ ๋ชฉํ‘œ๊ฐ€ ํฌ๋ฐ•ํ•˜๊ฒŒ ๋ถ„ํฌํ•˜๊ฑฐ๋‚˜ ์ œ์•ฝ ์กฐ๊ฑด์ด ๋ณต์žกํ•˜๊ฒŒ ์–ฝํ˜€ ์žˆ์„ ๋•Œ, ์ด๋Ÿฌํ•œ ๋ฐฉ์‹์€ ์ƒ˜ํ”Œ ํšจ์œจ์„ฑ์ด ๊ธ‰๊ฒฉํžˆ ๋–จ์–ด์ง„๋‹ค. ICFA๋Š” ์ด๋Ÿฌํ•œ ์ƒํ™ฉ์„ โ€œ๋ชฉํ‘œโ€‘์กฐ๊ฑด๋ถ€ ์žฌ๊ฐ€์ค‘โ€์ด๋ผ๋Š” ๊ฐœ๋…์œผ๋กœ ์žฌ๊ตฌ์„ฑํ•œ๋‹ค. ๊ตฌ์ฒด์ ์œผ๋กœ, ๋จผ์ € ๊ธฐ์กด์˜ ์ œ์•ˆ ์ƒ˜ํ”Œ๋Ÿฌ(์˜ˆ: ์–ธ์–ด ๋ชจ๋ธ, ๋ฌด์ž‘์œ„

TimeLens: Rethinking Video Temporal Grounding with Multimodal LLMs

TimeLens: Rethinking Video Temporal Grounding with Multimodal LLMs

Timeโ€‘Lens ๋…ผ๋ฌธ์€ ๋น„๋””์˜ค ์‹œ๊ฐ„ ์ •๋ ฌ(VTG)์ด๋ผ๋Š” ๋น„๊ต์  ์ข์€ ์˜์—ญ์— ์ดˆ์ ์„ ๋งž์ถ”๋ฉด์„œ๋„, ํ˜„์žฌ ๋ฉ€ํ‹ฐ๋ชจ๋‹ฌ ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(MLLM) ์—ฐ๊ตฌ์—์„œ ๊ฐ„๊ณผ๋˜๊ณ  ์žˆ๋Š” ๋‘ ๊ฐ€์ง€ ํ•ต์‹ฌ ์š”์†Œโ€”๋ฐ์ดํ„ฐ ํ’ˆ์งˆ๊ณผ ์•Œ๊ณ ๋ฆฌ์ฆ˜ ์„ค๊ณ„โ€”๋ฅผ ์ฒด๊ณ„์ ์œผ๋กœ ์กฐ๋ช…ํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ ๊ธฐ์—ฌ๋Š” ๊ธฐ์กด VTG ๋ฒค์น˜๋งˆํฌ๊ฐ€ ๊ฐ–๋Š” โ€˜๋ผ๋ฒจ ๋…ธ์ด์ฆˆโ€™์™€ โ€˜์ฃผ์„ ๋ถˆ์ผ์น˜โ€™ ๋ฌธ์ œ๋ฅผ ์ •๋Ÿ‰์ ์œผ๋กœ ๋ถ„์„ํ•˜๊ณ , ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ์žฌ์ฃผ์„ ์ž‘์—…์„ ์ˆ˜ํ–‰ํ•œ TimeLensโ€‘Bench์ด๋‹ค. ์žฌ์ฃผ์„ ๊ณผ์ •์—์„œ๋Š” ์‹œ๊ฐ„ ๊ตฌ๊ฐ„์˜ ๊ฒฝ๊ณ„ ์ •ํ™•๋„, ์–ธ์–ด ํ‘œํ˜„์˜ ์ผ๊ด€์„ฑ, ๊ทธ๋ฆฌ๊ณ  ์‹œ๊ฐโ€‘์–ธ์–ด ์—ฐ๊ด€์„ฑ ๋“ฑ์„ ์—„๊ฒฉํžˆ ๊ฒ€์ฆํ–ˆ์œผ๋ฉฐ, ๊ทธ ๊ฒฐ

No Image

Towards Explainable Quantum AI: Informing the Encoder Selection of Quantum Neural Networks via Visualization

์ด ๋…ผ๋ฌธ์€ ์–‘์ž ์‹ ๊ฒฝ๋ง(QNNs) ๊ฐœ๋ฐœ์—์„œ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•˜๋Š” ์ธ์ฝ”๋” ์„ ํƒ์— ์ดˆ์ ์„ ๋งž์ถ”๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. QNNs๋Š” ์–‘์ž ์ปดํ“จํŒ…๊ณผ ๋‰ด๋Ÿด ๋„คํŠธ์›Œํฌ ์•„ํ‚คํ…์ฒ˜๋ฅผ ๊ฒฐํ•ฉํ•œ ๊ฒƒ์œผ๋กœ, ๊ณ ์ฐจ์› ๋ฐ์ดํ„ฐ์™€ ์–ฝํž˜๋œ ๋ฐ์ดํ„ฐ์˜ ์ฒ˜๋ฆฌ ์†๋„ ํ–ฅ์ƒ ๋ฐ ํšจ์œจ์„ฑ์„ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ ์ ˆํ•œ ์ธ์ฝ”๋” ์„ ํƒ์€ ์‹œ์Šคํ…œ์ ์ธ ์ง€์นจ ๋ถ€์กฑ๊ณผ ์‹คํ—˜์  ์ ‘๊ทผ ๋ฐฉ์‹ ๋•Œ๋ฌธ์— ์–ด๋ ค์›€์„ ๊ฒช๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ด ๋…ผ๋ฌธ์—์„œ๋Š” ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด XQAI Eyes๋ผ๋Š” ์ƒˆ๋กœ์šด ์‹œ๊ฐํ™” ๋„๊ตฌ๋ฅผ ์ œ์•ˆํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. XQAI Eyes๋Š” QNN ๊ฐœ๋ฐœ์ž๊ฐ€ ํด๋ž˜์‹ ๋ฐ์ดํ„ฐ ํŠน์ง•๊ณผ ํ•ด๋‹น ์–‘์ž ์ƒํƒœ ์‚ฌ์ด์˜ ๋น„๊ต๋ฅผ

Network
Beyond Procedural Compliance: Human Oversight as a Dimension of Well-being Efficacy in AI Governance

Beyond Procedural Compliance: Human Oversight as a Dimension of Well-being Efficacy in AI Governance

์ด ๋…ผ๋ฌธ์€ AI ์œค๋ฆฌ์™€ ์ธ๊ฐ„๊ฐ๋… ์‚ฌ์ด์˜ ์—ฐ๊ฒฐ๊ณ ๋ฆฌ๋ฅผ ํƒ์ƒ‰ํ•˜๋ฉฐ, ๊ทธ ์ค‘์š”์„ฑ์„ ๊ฐ•์กฐํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. EU AI Act๋ฅผ ํฌํ•จํ•œ ์—ฌ๋Ÿฌ ์ง€์นจ๊ณผ ๋ฒ•๋ฅ ๋“ค์ด ์ธ๊ฐ„๊ฐ๋…์— ๋Œ€ํ•œ ๋ช…ํ™•ํ•œ ์ •์˜๋‚˜ ๊ตฌ์ฒด์ ์ธ ๋ฐœ์ „ ๋ฐฉํ–ฅ์„ ์ œ์‹œํ•˜์ง€ ๋ชปํ•˜๋Š” ์ƒํ™ฉ์—์„œ, ์ €์ž๋“ค์€ ์ด ๊ฐœ๋…์„ '๋ฒˆ์˜ ํšจ๋Šฅ์„ฑ' ํ”„๋ ˆ์ž„์›Œํฌ ๋‚ด์—์„œ ์žฌ์ •์˜ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ๋ฒˆ์˜ ํšจ๋Šฅ์„ฑ์€ AI ๋ฆฌํ„ฐ๋Ÿฌ์‹œ์™€ ์œค๋ฆฌ์  ํŒ๋‹จ๋ ฅ์„ ํฌํ•จํ•˜๋ฉฐ, ์ธ๊ฐ„์˜ ํ•„์š”๋ฅผ ์ธ์‹ํ•˜๋ฉด์„œ๋„ ๊ทธ ์ค‘ ์ผ๋ถ€๊ฐ€ ์ถฉ๋Œํ•˜๊ฑฐ๋‚˜ ํ•ด๋กญ๊ฒŒ ๋  ์ˆ˜ ์žˆ๋‹ค๋Š” ์ ์„ ์ธ์ •ํ•˜๋Š” ํฌ๊ด„์ ์ธ ์ ‘๊ทผ๋ฒ•์ž…๋‹ˆ๋‹ค. ๋…ผ๋ฌธ์€ ๋˜ํ•œ ์‚ฌ๋žŒ๋“ค์ด ์ž์‹ ์˜ ์š•๊ตฌ๋‚˜ ๋‘๋ ค์›€์„ AI ์‹œ์Šคํ…œ์— ํˆฌ์˜ํ•  ๊ฐ€๋Šฅ์„ฑ์„

No Image

Embedding-Based Rankings of Educational Resources based on Learning Outcome Alignment: Benchmarking, Expert Validation, and Learner Performance

๋ณธ ๋…ผ๋ฌธ์€ ๊ต์œก ๊ธฐ์ˆ  ๋ถ„์•ผ์—์„œ โ€˜ํ•™์Šต ๋ชฉํ‘œ์™€ ๊ต์œก ์ž๋ฃŒ ๊ฐ„ ์ •๋ ฌ(alignment)โ€™์ด๋ผ๋Š” ํ•ต์‹ฌ ๋ฌธ์ œ๋ฅผ ์ž๋™ํ™”ํ•˜๋ ค๋Š” ์‹œ๋„๋กœ์„œ, ํ…์ŠคํŠธ ์ž„๋ฒ ๋”ฉ ๋ชจ๋ธ์„ ํ™œ์šฉํ•œ ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์‹œํ•œ๋‹ค. ์—ฐ๊ตฌ๋Š” ํฌ๊ฒŒ ์„ธ ๋‹จ๊ณ„๋กœ ๊ตฌ์„ฑ๋œ๋‹ค. ์ฒซ ๋ฒˆ์งธ ๋‹จ๊ณ„์—์„œ๋Š” ์ธ๊ฐ„์ด ์ง์ ‘ ๋งŒ๋“  ๊ต์œก ์ž๋ฃŒ๋ฅผ ๊ธฐ์ค€ ๋ฐ์ดํ„ฐ์…‹์œผ๋กœ ํ™œ์šฉํ•ด ์—ฌ๋Ÿฌ LLM ๊ธฐ๋ฐ˜ ์ž„๋ฒ ๋”ฉ ๋ชจ๋ธ(Voyage, OpenAIโ€‘Ada ๋“ฑ)์„ ๋น„๊ต ํ‰๊ฐ€ํ•˜์˜€๋‹ค. ์—ฌ๊ธฐ์„œ โ€˜์ •๋ ฌโ€™์€ ํ•™์Šต ๋ชฉํ‘œ์™€ ์ž๋ฃŒ ๋‚ด์šฉ ์‚ฌ์ด์˜ ์˜๋ฏธ์  ์œ ์‚ฌ์„ฑ์„ ์ˆ˜์น˜ํ™”ํ•œ ์ ์ˆ˜๋กœ ์ •์˜๋˜๋ฉฐ, ์ธ๊ฐ„ ํ‰๊ฐ€์ž๋“ค์˜ ๋ผ๋ฒจ๋ง์„ ์ •๋‹ต์œผ๋กœ ์‚ผ์•„ ๋ชจ๋ธ์˜ ์ •ํ™•๋„๋ฅผ ์ธก์ •ํ•˜์˜€๋‹ค.

Learning
Qonvolution: Towards Learning High-Frequency Signals with Queried Convolution

Qonvolution: Towards Learning High-Frequency Signals with Queried Convolution

๋ณธ ๋…ผ๋ฌธ์€ ๊ณ ์ฃผํŒŒ ์‹ ํ˜ธ ํ•™์Šต์˜ ์–ด๋ ค์›€์„ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด Qonvolutions์ด๋ผ๋Š” ์ƒˆ๋กœ์šด ์ ‘๊ทผ๋ฒ•์„ ์ œ์‹œํ•ฉ๋‹ˆ๋‹ค. ์ด ๋ฐฉ๋ฒ•์€ ๊ธฐ์กด์˜ ์‹ ๊ฒฝ๋ง์ด ๊ณ ์ฃผํŒŒ ์ •๋ณด๋ฅผ ์ฒ˜๋ฆฌํ•˜๋Š” ๋ฐ ์–ด๋ ค์›€์„ ๊ฒช๋Š” ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ณ ์ž ์ €์ฃผํŒŒ ์‹ ํ˜ธ์™€ ์ฟผ๋ฆฌ(์˜ˆ: ์ขŒํ‘œ)๋ฅผ ํ•ฉ์„ฑํ•˜์—ฌ ๊ณ ์ฃผํŒŒ ์‹ ํ˜ธ๋ฅผ ๋” ์ž˜ ํ•™์Šตํ•  ์ˆ˜ ์žˆ๊ฒŒ ํ•ฉ๋‹ˆ๋‹ค. Qonvolutions์€ ๊ฐ„๋‹จํ•œ ๋ฐฉ๋ฒ•์ž„์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ , 1D ํšŒ๊ท€, 2D ์ดˆํ•ด์ƒ๋„, 2D ์ด๋ฏธ์ง€ ํšŒ๊ท€ ๋ฐ ์ƒˆ๋กœ์šด ์‹œ์  ํ•ฉ์„ฑ(NVS)๊ณผ ๊ฐ™์€ ๋‹ค์–‘ํ•œ ์ž‘์—…์—์„œ ์šฐ์ˆ˜ํ•œ ์„ฑ๋Šฅ์„ ๋ณด์—ฌ์ค๋‹ˆ๋‹ค. ํŠนํžˆ NVS์—์„œ๋Š” ๊ฐ€์šฐ์‹œ์•ˆ ์ŠคํŒŸํŒ…๊ณผ ๊ฒฐํ•ฉํ•˜์—ฌ ์‹ค์ œ ๋ณต์žกํ•œ ์žฅ๋ฉด์—์„œ๋„ ๋ผ

Learning
No Image

Reproducibility and Standardization in gem5 Resources v25.0

๋ณธ ๋…ผ๋ฌธ์€ ํ˜„์žฌ ์ปดํ“จํ„ฐ ์•„ํ‚คํ…์ฒ˜ ์—ฐ๊ตฌ์—์„œ ๋„๋ฆฌ ์‚ฌ์šฉ๋˜๋Š” ์ „ ์‹œ์Šคํ…œ ์‹œ๋ฎฌ๋ ˆ์ดํ„ฐ์ธ gem5๊ฐ€ ์ง๋ฉดํ•œ ์žฌํ˜„์„ฑ ๋ฌธ์ œ๋ฅผ ์ฒด๊ณ„์ ์œผ๋กœ ์ง„๋‹จํ•˜๊ณ , ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•œ ์‹ค์งˆ์ ์ธ ๊ฐœ์„ ์•ˆ์„ ์ œ์‹œํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ ๋ฌธ์ œ๋Š” ๋””์Šคํฌ ์ด๋ฏธ์ง€์™€ ์ปค๋„, ๋ฒค์น˜๋งˆํฌ ๋“ฑ ํ•„์ˆ˜ ์•„ํ‹ฐํŒฉํŠธ๋ฅผ ๊ฐœ๋ณ„ ์—ฐ๊ตฌ์ž๊ฐ€ ์ง์ ‘ ๊ตฌ์ถ•ํ•ด์•ผ ํ•˜๋Š” ๋น„ํšจ์œจ์„ฑ์ด๋‹ค. ํŠนํžˆ ISA๋งˆ๋‹ค ์ด๋ฏธ์ง€ ์ƒ์„ฑ ์ ˆ์ฐจ๊ฐ€ ๋‹ฌ๋ผ ํ˜‘์—…๊ณผ ๊ณต์œ ๊ฐ€ ์–ด๋ ค์› ์œผ๋ฉฐ, ์ด๋ฏธ์ง€ ํ’ˆ์งˆ ๊ฒ€์ฆ์ด ๋ถ€์กฑํ•ด ๊ฒฐ๊ณผ์˜ ์‹ ๋ขฐ์„ฑ์ด ์ €ํ•˜๋  ์œ„ํ—˜์ด ์žˆ์—ˆ๋‹ค. ์ €์ž๋“ค์€ Packer๋ผ๋Š” ์ž๋™ํ™” ๋„๊ตฌ๋ฅผ ๋„์ž…ํ•ด x86, ARM, RISCโ€‘V ์„ธ ISA์— ๋Œ€ํ•ด ๋™์ผํ•œ ์›Œํฌ

Rethinking Leveraging Pre-Trained Multi-Layer Representations for Speaker Verification

Rethinking Leveraging Pre-Trained Multi-Layer Representations for Speaker Verification

๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” Layer Attentive Pooling (LAP)์ด๋ผ๋Š” ์ƒˆ๋กœ์šด ์ ‘๊ทผ๋ฒ•์„ ์ œ์•ˆํ•˜๊ณ , ์ด๋ฅผ ํ†ตํ•ด ์‚ฌ์ „ ํ•™์Šต๋œ Transformer ๋ชจ๋ธ๋กœ๋ถ€ํ„ฐ ์–ป์€ ๊ณ„์ธต๋ณ„ ์ถœ๋ ฅ์„ ํšจ๊ณผ์ ์œผ๋กœ ํ†ตํ•ฉํ•˜๋Š” ๋ฐฉ๋ฒ•๋ก ์„ ๊ฐœ๋ฐœํ–ˆ๋‹ค. LAP์˜ ํ•ต์‹ฌ ์•„์ด๋””์–ด๋Š” ๊ฐ ๊ณ„์ธต์˜ ์ค‘์š”์„ฑ์„ ์‹œ๊ฐ„ ๋™์ ์œผ๋กœ ํ‰๊ฐ€ํ•˜๊ณ , ์ด์— ๋”ฐ๋ผ ์ตœ๋Œ€ ํ’€๋ง(max pooling)์„ ์‚ฌ์šฉํ•˜์—ฌ ํŠน์ง•๋“ค์„ ํ†ตํ•ฉํ•˜๋Š” ๊ฒƒ์ด๋‹ค. ์ด ์ ‘๊ทผ๋ฒ•์€ ๊ธฐ์กด์˜ ์ •์  ๊ฐ€์ค‘ ํ‰๊ท  ๋ฐฉ๋ฒ•๋ณด๋‹ค ๋” ์œ ์—ฐํ•˜๊ฒŒ ํ™”์ž ํŠน์„ฑ์˜ ๋ณ€ํ™”๋ฅผ ํฌ์ฐฉํ•  ์ˆ˜ ์žˆ๋Š” ์žฅ์ ์„ ๊ฐ€์ง€๊ณ  ์žˆ๋‹ค. ๋˜ํ•œ, ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” LAP๊ณผ Attentive Stat

A Disproof of Large Language Model Consciousness: The Necessity of Continual Learning for Consciousness

A Disproof of Large Language Model Consciousness: The Necessity of Continual Learning for Consciousness

๋ณธ ๋…ผ๋ฌธ์€ ํ˜„๋Œ€ ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(LLMs)์˜ ์˜์‹ ๊ฐ€๋Šฅ์„ฑ์— ๋Œ€ํ•œ ์ฒ ํ•™์ ์ด๊ณ  ๊ณผํ•™์ ์ธ ์ ‘๊ทผ๋ฒ•์„ ์ œ์‹œํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ €์ž๋Š” ์ฆ๋ช… ๋ถˆ๊ฐ€๋Šฅ์„ฑ๊ณผ ๋น„์ž๋ช…์„ฑ์„ ์ถฉ์กฑํ•˜๋Š” ์ด๋ก ์ด ์žˆ์–ด์•ผ ํ•œ๋‹ค๋Š” ์š”๊ตฌ ์‚ฌํ•ญ์„ ๊ฐ•์กฐํ•˜๋ฉฐ, ์ด๋ฅผ ํ†ตํ•ด ํ˜„๋Œ€ LLMs์˜ ์˜์‹ ๊ฐ€๋Šฅ์„ฑ์„ ๊ฒ€์ฆํ•ฉ๋‹ˆ๋‹ค. ๋…ผ๋ฌธ์€ ๊ธฐ์กด์˜ ์ธ๊ณผ ๊ตฌ์กฐ์™€ ๊ธฐ๋Šฅ์— ๊ธฐ๋ฐ˜ํ•œ ์˜์‹ ์ด๋ก ๋“ค์ด ์ด๋Ÿฌํ•œ ์š”๊ตฌ ์กฐ๊ฑด์„ ๋งŒ์กฑํ•˜์ง€ ๋ชปํ•œ๋‹ค๋Š” ์ ์„ ์ง€์ ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. LLMs๋Š” ์ž…๋ ฅ/์ถœ๋ ฅ ๊ธฐ๋Šฅ ์ธก๋ฉด์—์„œ ํŠน์ • ์‹œ์Šคํ…œ๋“ค๊ณผ ๋™๋“ฑํ•˜๊ธฐ ๋•Œ๋ฌธ์—, ๊ทธ๋“ค์— ๋Œ€ํ•œ ์˜์‹ ๊ฐ€๋Šฅ์„ฑ์€ ์ฆ๋ช… ๋ถˆ๊ฐ€๋Šฅ์„ฑ๊ณผ ๋น„์ž๋ช…์„ฑ์„ ์ถฉ์กฑํ•˜๋Š” ์ด๋ก ์ด ์กด์žฌํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜

Learning Model
Algorithmic Criminal Liability in Greenwashing: Comparing India, United States, and European Union

Algorithmic Criminal Liability in Greenwashing: Comparing India, United States, and European Union

๋ณธ ๋…ผ๋ฌธ์€ AI ๊ธฐ๋ฐ˜์˜ ๋…น์ƒ‰์„ธํƒ์ด ๊ธฐ์—… ์ง€์† ๊ฐ€๋Šฅ์„ฑ ๊ด€๋ฆฌ์—์„œ ์ค‘์š”ํ•œ ๋„์ „ ๊ณผ์ œ์ž„์„ ๊ฐ•์กฐํ•˜๊ณ  ์žˆ๋‹ค. ๋…น์ƒ‰์„ธํƒ์€ ํ™˜๊ฒฝ ๊ณต์‹œ์˜ ๋ถˆํˆฌ๋ช…์„ฑ์„ ๊ฐ€์ค‘์‹œํ‚ค๊ณ , ๊ทœ์ œ ๊ฐ๋…์„ ๋ฐฉํ•ดํ•œ๋‹ค. ์—ฐ๊ตฌ๋Š” ์ธ๋„, ๋ฏธ๊ตญ, EU๋ฅผ ๋Œ€์ƒ์œผ๋กœ AI ๋งค๊ฐœ ๋…น์ƒ‰์„ธํƒ์— ๋Œ€ํ•œ ๋ฒ”์ฃ„ ์ฑ…์ž„์„ ๋น„๊ต ๋ถ„์„ํ•˜์—ฌ, ๊ธฐ์กด ๋ฒ•๋ฅ ์ด ์ธ๊ฐ„ ์˜๋„๋ฅผ ์ „์ œ๋กœ ํ•˜์—ฌ ์•Œ๊ณ ๋ฆฌ์ฆ˜ ์‹œ์Šคํ…œ์—์„œ ๋ฐœ์ƒํ•œ ์†์ž„์ˆ˜์— ๋Œ€ํ•ด ๋ถˆํ•ฉ๋ฆฌํ•˜๊ฒŒ ์ ์šฉ๋˜๊ณ  ์žˆ์Œ์„ ๋“œ๋Ÿฌ๋‚ธ๋‹ค. ์ด๋Š” ํ˜„ํ–‰ ์‚ฌ๊ธฐ ๋ฐ ํ™˜๊ฒฝ ๊ด€๋ จ ๋ฒ•๋ฅ ๋“ค์ด AI๊ฐ€ ์ƒ์„ฑํ•˜๋Š” ์˜คํ•ด๋ฅผ ์ฒ˜๋ฆฌํ•  ์ˆ˜ ์—†๊ฒŒ ๋งŒ๋“œ๋Š” ๋ฌธ์ œ์ ์„ ๋ณด์—ฌ์ค€๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ๊ธฐ์กด ํŒ๋ก€, ๋ฒ•๋ น, ๊ทœ์ œ ์ง€์นจ์„ ์ฒด๊ณ„์ ์œผ๋กœ

No Image

Co-Exploration and Co-Exploitation via Shared Structure in Multi-Task Bandits

๋ณธ ๋…ผ๋ฌธ์€ ๋ถ€๋ถ„์ ์œผ๋กœ ๊ด€์ฐฐ๋˜๋Š” ์ปจํ…์ŠคํŠธ์™€ ์ž ์žฌ ๋ณ€์ˆ˜์— ์˜ํ•ด ์œ ๋„๋˜๋Š” ์˜์กด์„ฑ์„ ๊ณ ๋ คํ•œ ์ƒˆ๋กœ์šด ๋ฒ ์ด์ง€์•ˆ ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์‹œํ•ฉ๋‹ˆ๋‹ค. ์ด ์ ‘๊ทผ๋ฒ•์˜ ํ•ต์‹ฌ์€ ๋ชจ๋“  ์ž‘์—…์—์„œ ์ˆ˜์ง‘๋œ ๋ฐ์ดํ„ฐ๋ฅผ ํ†ตํ•ฉํ•˜์—ฌ ์ „์—ญ์ ์ธ ๊ฒฐํ•ฉ ๋ถ„ํฌ๋ฅผ ํ•™์Šตํ•˜๋ฉด์„œ, ๊ฐ๊ฐ์˜ ์‚ฌ์šฉ์ž ๋˜๋Š” ์ž‘์—…์— ๋งž๋Š” ๊ฐœ์ธํ™”๋œ ์ถ”๋ก ์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค. ๋…ผ๋ฌธ์—์„œ๋Š” ๋‘ ๊ฐ€์ง€ ์ฃผ์š” ๋ถˆํ™•์‹ค์„ฑ ์š”์ธ, ์ฆ‰ ํŒ”๊ณผ ์ž‘์—… ๊ฐ„์˜ ์ž ์žฌ์  ๋ณด์ƒ ์˜์กด์„ฑ์—์„œ ๋ฐœ์ƒํ•˜๋Š” ๊ตฌ์กฐ์  ๋ถˆํ™•์‹ค์„ฑ ๋ฐ ๋ถ€์กฑํ•œ ์ปจํ…์ŠคํŠธ์™€ ์ œํ•œ๋œ ์ƒํ˜ธ์ž‘์šฉ ์—ญ์‚ฌ๋กœ ์ธํ•ด ๋ฐœ์ƒํ•˜๋Š” ์‚ฌ์šฉ์ž๋ณ„ ๋ถˆํ™•์‹ค์„ฑ์„ ์‹๋ณ„ํ•˜๊ณ  ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•œ ๋ฐฉ๋ฒ•์„ ์ œ์‹œํ•ฉ๋‹ˆ๋‹ค. ๋…ผ๋ฌธ์˜ ์ฃผ

EXFormer: A Multi-Scale Trend-Aware Transformer with Dynamic Variable Selection for Foreign Exchange Returns Prediction

EXFormer: A Multi-Scale Trend-Aware Transformer with Dynamic Variable Selection for Foreign Exchange Returns Prediction

์ด ๋…ผ๋ฌธ์€ ๊ตญ์ œ ๊ธˆ์œต์—์„œ ์˜ค๋žซ๋™์•ˆ ํ•ด๊ฒฐ๋˜์ง€ ์•Š์•˜๋˜ ๋ฌธ์ œ์ธ ๋งค์ผ์˜ ํ™˜์œจ ๋ณ€๋™๋ฅ  ์˜ˆ์ธก์— ์ดˆ์ ์„ ๋งž์ถ”๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ด ์—ฐ๊ตฌ๋Š” EXFormer์ด๋ผ๋Š” ์ƒˆ๋กœ์šด Transformer ๊ธฐ๋ฐ˜ ์•„ํ‚คํ…์ฒ˜๋ฅผ ์ œ์‹œํ•˜๋ฉฐ, ์ด๋ฅผ ํ†ตํ•ด ๋‹ค์–‘ํ•œ ์‹œ์žฅ ์š”์ธ๋“ค์— ์˜ํ•ด ์ฃผ๋„๋˜๊ณ  ๊ณ ์ฃผํŒŒ ๋ณ€๋™์„ฑ์„ ๋ณด์ด๋Š” ํ™˜์œจ ๋ณ€๋™๋ฅ ์„ ํšจ๊ณผ์ ์œผ๋กœ ์˜ˆ์ธกํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•ฉ๋‹ˆ๋‹ค. ํŠนํžˆ, ์ด ๋…ผ๋ฌธ์€ ๋‹ค์ค‘ ์Šค์ผ€์ผ ์ถ”์„ธ ์ธ์‹ ์ž๊ธฐ ์ฃผ์˜ ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ๋„์ž…ํ•˜์—ฌ ์„œ๋กœ ๋‹ค๋ฅธ ์ˆ˜์šฉ ํ•„๋“œ๋ฅผ ๊ฐ€์ง„ ๋ณ‘๋ ฌ ์ปจ๋ณผ๋ฃจ์…˜ ๋ธŒ๋žœ์น˜๋ฅผ ์‚ฌ์šฉํ•ด ๋กœ์ปฌ ๊ธฐ์šธ๊ธฐ์— ๋”ฐ๋ผ ๊ด€์ฐฐ ๊ฐ’์„ ์ •๋ ฌํ•ฉ๋‹ˆ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ์žฅ๊ธฐ ์ข…์†์„ฑ์„ ์œ ์ง€ํ•˜๋ฉด์„œ๋„ ์‹œ์žฅ ์ƒ

Explainable AI as a Double-Edged Sword in Dermatology: The Impact on Clinicians versus The Public

Explainable AI as a Double-Edged Sword in Dermatology: The Impact on Clinicians versus The Public

๋ณธ ๋…ผ๋ฌธ์€ ์ธ๊ณต์ง€๋Šฅ(AI)์ด ์˜๋ฃŒ ๋ถ„์•ผ์— ๋ฏธ์น˜๋Š” ๋ณต์žกํ•œ ์˜ํ–ฅ์„ ํƒ๊ตฌํ•˜๊ณ  ์žˆ๋‹ค. ํŠนํžˆ, ์„ค๋ช… ๊ฐ€๋Šฅํ•œ AI(XAI)์˜ ๋„์ž…์ด ์ง„๋‹จ ์ •ํ™•๋„์™€ ์˜์‚ฌ๊ฒฐ์ • ๊ณผ์ •์— ์–ด๋–ค ํšจ๊ณผ๋ฅผ ๋ฏธ์น˜๋Š”์ง€๋ฅผ ์‚ดํŽด๋ณด์•˜๋‹ค. ์—ฐ๊ตฌ์—์„œ๋Š” ์ผ๋ฐ˜์ธ๊ณผ ๋‚ด๊ณผ ์˜์‚ฌ ๋‘ ๊ทธ๋ฃน์„ ๋Œ€์ƒ์œผ๋กœ ์‹คํ—˜์„ ์ง„ํ–‰ํ•˜์˜€์œผ๋ฉฐ, ์ด๋ฅผ ํ†ตํ•ด XAI๊ฐ€ ์‚ฌ์šฉ์ž๋“ค์˜ ์ „๋ฌธ์„ฑ๊ณผ AI ์ œ์•ˆ์˜ ํƒ€์ด๋ฐ์— ๋”ฐ๋ผ ๋‹ค์–‘ํ•œ ๊ฒฐ๊ณผ๋ฅผ ๋ณด์—ฌ์ฃผ๋Š” ๊ฒƒ์„ ํ™•์ธํ•˜์˜€๋‹ค. ์—ฐ๊ตฌ๊ฒฐ๊ณผ, ํ”ผ๋ถ€ ํ†ค ๊ฐ„ ๊ท ํ˜•์„ ๋งž์ถค์œผ๋กœ์จ AI ์ง€์›์€ ์ง„๋‹จ ์ •ํ™•๋„๋ฅผ ๋†’์ด๊ณ  ๋ถˆ๊ท ํ˜•์„ ์ค„์ด๋Š” ํšจ๊ณผ๊ฐ€ ์žˆ์—ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ LLMs์„ ํ†ตํ•œ ์„ค๋ช…์€ ์ผ๋ฐ˜ ์‚ฌ์šฉ์ž์™€ ๋‚ด๊ณผ ์˜์‚ฌ ์‚ฌ์ด์—์„œ

< Category Statistics (Total: 769) >

Electrical Engineering and Systems Science
7
General
272
General Relativity
9
HEP-EX
7
HEP-PH
12
HEP-TH
7
MATH-PH
4
NUCL-TH
1
Quantum Physics
10

Start searching

Enter keywords to search articles

โ†‘โ†“
โ†ต
ESC
โŒ˜K Shortcut