General

All posts under category "General"

272 posts total
Sorted by date
No Image

Adversarial VR: An Open-Source Testbed for Evaluating Adversarial Robustness of VR Cybersickness Detection and Mitigation

์ด ๋…ผ๋ฌธ์€ ๊ฐ€์ƒํ˜„์‹ค(VR) ํ™˜๊ฒฝ์—์„œ ์‚ฌ์ด๋ฒ„์งˆ๋ณ‘(CS)์˜ ์‹ฌ๊ฐ๋„ ์กฐ์ž‘ ๋ฐ ๊ทธ์— ๋”ฐ๋ฅธ ์ ์ ˆํ•˜์ง€ ์•Š์€ ์™„ํ™” ์ „๋žต์„ ์—ฐ๊ตฌํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ํŠนํžˆ, ๋กœ์ปฌ VR ํ™˜๊ฒฝ๊ณผ ํด๋ผ์šฐ๋“œ ๊ธฐ๋ฐ˜ VR ํ™˜๊ฒฝ์ด ๊ฒฐํ•ฉ๋œ ํ…Œ์ŠคํŠธ๋ฒ ๋“œ๋ฅผ ๊ฐœ๋ฐœํ•˜์—ฌ ์ด ๋ฌธ์ œ๋ฅผ ํƒ๊ตฌํ•ฉ๋‹ˆ๋‹ค. ๋กœ์ปฌ ํ™˜๊ฒฝ์—์„œ๋Š” ์‚ฌ์šฉ์ž์˜ ์ฒดํ—˜ ์ค‘์— CS ์™„ํ™”๊ฐ€ ์ด๋ฃจ์–ด์ง€๋ฉฐ, ํด๋ผ์šฐ๋“œ ํ™˜๊ฒฝ์—์„œ๋Š” ๋”ฅ๋Ÿฌ๋‹(DL) ๋ชจ๋ธ์„ ํ™œ์šฉํ•ด CS ๊ฐ์ง€๋ฅผ ์ˆ˜ํ–‰ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ๋…ผ๋ฌธ์˜ ํ•ต์‹ฌ์€ ์ ๋Œ€์  ์˜ˆ์ œ๋ฅผ ์ƒ์„ฑํ•˜์—ฌ DL ๋ชจ๋ธ์— ์ž…๋ ฅํ•จ์œผ๋กœ์จ CS์˜ ์‹ฌ๊ฐ๋„๋ฅผ ์กฐ์ž‘ํ•˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ์ ‘๊ทผ๋ฒ•์€ VR ์‚ฌ์šฉ์ž์˜ ์ฒดํ—˜ ์งˆ์„ ์ €ํ•˜์‹œํ‚ค๊ฑฐ๋‚˜, ์‹ฌ์ง€์–ด๋Š”

Detection
Design and Evaluation of Cost-Aware PoQ for Decentralized LLM Inference

Design and Evaluation of Cost-Aware PoQ for Decentralized LLM Inference

์ด ๋…ผ๋ฌธ์€ ๋ถ„์‚ฐ ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(LLM) ์ถ”๋ก ์˜ ํ’ˆ์งˆ ๊ฒ€์ฆ์— ๋Œ€ํ•œ ์ƒˆ๋กœ์šด ์ ‘๊ทผ ๋ฐฉ์‹์„ ์ œ์‹œํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ๊ธฐ์กด์˜ ํ’ˆ์งˆ ์ฆ๋ช…(PoQ) ๋ฐฉ๋ฒ•์€ ๊ณ„์‚ฐ ๊ฒฐ๊ณผ์˜ ์•”ํ˜ธํ•™์  ๊ฒ€์ฆ์„ ์‚ฌ์šฉํ•˜์ง€๋งŒ, ์ด ๋…ผ๋ฌธ์—์„œ๋Š” ์ถœ๋ ฅ ํ’ˆ์งˆ์— ๋Œ€ํ•œ ํ•ฉ์˜๋ฅผ ํ†ตํ•ด ์ด๋ฅผ ๋Œ€์ฒดํ•ฉ๋‹ˆ๋‹ค. ํŠนํžˆ, ์ถ”๋ก  ๋…ธ๋“œ์™€ ํ‰๊ฐ€์ž ๋…ธ๋“œ ๊ฐ„์˜ ์ด์งˆ์ ์ธ ์ปดํ“จํŒ… ๋น„์šฉ์„ ๊ณ ๋ คํ•˜์—ฌ ๋ณด์ƒ ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ๊ฐœ์„ ํ•˜๋Š” ๋ฐ ์ดˆ์ ์„ ๋งž์ถ”๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ๋…ผ๋ฌธ์€ ๋‹ค์–‘ํ•œ LLM๊ณผ ํ‰๊ฐ€ ๋ชจ๋ธ์„ ์‚ฌ์šฉํ•œ ์‹คํ—˜ ๊ฒฐ๊ณผ๋ฅผ ํ†ตํ•ด, ํŠน์ • ์•„ํ‚คํ…์ฒ˜์˜ ์ค‘์š”์„ฑ์„ ๊ฐ•์กฐํ•ฉ๋‹ˆ๋‹ค. ํŠนํžˆ, ์‹ฌ๋ฏธ์  ํ…์ŠคํŠธ ์œ ์‚ฌ์„ฑ(bi encoder)์ด ๊ต์ฐจ ์ธ์ฝ”๋”๋ณด๋‹ค ๋”

No Image

Towards AI-Supported Research: a Vision of the TIB AIssistant

๋ณธ ๋…ผ๋ฌธ์€ ์ƒ์„ฑํ˜• ์ธ๊ณต์ง€๋Šฅ(AI)๊ณผ ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(Large Language Models, LLMs)์˜ ๋ฐœ์ „์ด ์—ฐ๊ตฌ ๋ฐฉ๋ฒ•๋ก ์— ๋ฏธ์น˜๋Š” ์ž ์žฌ์  ๋ณ€ํ™”๋ฅผ ํƒ๊ตฌํ•˜๊ณ  ์žˆ๋‹ค. ํŠนํžˆ, AI๊ฐ€ ์ œ๊ณตํ•˜๋Š” ์ƒˆ๋กœ์šด ๊ธฐํšŒ์™€ ๊ทธ๋กœ ์ธํ•ด ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ๋Š” ๋„์ „ ๊ณผ์ œ๋“ค์„ ๋ถ„์„ํ•œ๋‹ค. ๋…ผ๋ฌธ์€ TIB AIssistant๋ผ๋Š” ํ”Œ๋žซํผ์„ ์ œ์•ˆํ•˜๋ฉฐ, ์ด ํ”Œ๋žซํผ์€ ๋‹ค์–‘ํ•œ ํ•™๋ฌธ ๋ถ„์•ผ์˜ ์—ฐ๊ตฌ์ž๋“ค์ด AI๋ฅผ ํ™œ์šฉํ•˜์—ฌ ์—ฐ๊ตฌ ์ƒ๋ช… ์ฃผ๊ธฐ ์ „๋ฐ˜์— ๊ฑธ์นœ ์ž‘์—…์„ ์ˆ˜ํ–‰ํ•˜๋„๋ก ์ง€์›ํ•˜๋Š” ๊ฒƒ์„ ๋ชฉํ‘œ๋กœ ํ•œ๋‹ค. TIB AIssistant๋Š” ํ”„๋กฌํ”„ํŠธ์™€ ๋„๊ตฌ ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ, ๊ณต์œ  ๋ฐ์ดํ„ฐ ์ €์žฅ์†Œ, ์œ ์—ฐํ•œ ์กฐ์ •

Using Gaussian Splats to Create High-Fidelity Facial Geometry and Texture

Using Gaussian Splats to Create High-Fidelity Facial Geometry and Texture

๋ณธ ์—ฐ๊ตฌ๋Š” 3์ฐจ์› ์‹ ๊ฒฝ๋ง ํ‘œํ˜„์„ ํ™œ์šฉํ•˜์—ฌ ์บ˜๋ฆฌ๋ธŒ๋ ˆ์ด์…˜๋˜์ง€ ์•Š์€ ์—ฌ๋Ÿฌ ๊ฐœ์˜ ์ธ๊ฐ„ ์–ผ๊ตด ์ด๋ฏธ์ง€๋ฅผ ํ†ตํ•ฉํ•˜๊ณ  ์ผ๊ด€๋œ ์„ค๋ช…์„ ์ œ๊ณตํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์‹œํ•ฉ๋‹ˆ๋‹ค. ํŠนํžˆ, Gaussian Splatting ๊ธฐ๋ฒ•์ด NeRFs๋ณด๋‹ค ๋” ๋ช…ํ™•ํ•˜๊ฒŒ ๊ตฌ์กฐํ™”๋˜์–ด ์žˆ์–ด ์ œ์•ฝ ์กฐ๊ฑด์— ์ž˜ ๋Œ€์‘ํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ์ ์—์„œ ์ฃผ๋ชฉํ•  ๋งŒํ•œ ์—ฐ๊ตฌ์ž…๋‹ˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์€ ์„ธ๊ทธ๋ฉ˜ํ…Œ์ด์…˜ ์ฃผ์„์„ ํ™œ์šฉํ•˜์—ฌ ์–ผ๊ตด์˜ ์˜๋ฏธ์  ์˜์—ญ์„ ์ •๋ ฌํ•จ์œผ๋กœ์จ, 11์žฅ์˜ ์ด๋ฏธ์ง€๋งŒ์œผ๋กœ ์ค‘๋ฆฝ ์ž์„ธ๋ฅผ ์žฌ๊ตฌ์„ฑํ•˜๋Š” ๋ฐ ์„ฑ๊ณตํ–ˆ์Šต๋‹ˆ๋‹ค. ์ด๋Š” ๊ธฐ์กด์— ๊ธด ๋™์˜์ƒ์ด ํ•„์š”ํ–ˆ๋˜ ๊ฒƒ๊ณผ ๋Œ€์กฐ๋˜๋Š” ์ค‘์š”ํ•œ ๋ฐœ์ „์ž…๋‹ˆ๋‹ค. ๋˜ํ•œ ๋ณธ ๋…ผ๋ฌธ์€ Gaussia

No Image

Enhancing Tree Species Classification: Insights from YOLOv8 and Explainable AI Applied to TLS Point Cloud Projections

๋ณธ ๋…ผ๋ฌธ์€ TLS(Terrestrial Laser Scanning) ๋ฐ์ดํ„ฐ๋ฅผ ํ™œ์šฉํ•œ ๋‚˜๋ฌด ์ข…๋ฅ˜ ๋ถ„๋ฅ˜ ๋ชจ๋ธ์˜ ๊ฒฐ์ • ๊ณผ์ • ํ•ด์„์— ์ดˆ์ ์„ ๋งž์ถ”๊ณ  ์žˆ๋‹ค. ํŠนํžˆ, Finer CAM(Class Activation Mapping)์ด๋ผ๋Š” ๊ธฐ์ˆ ์„ ํ†ตํ•ด ๋”ฅ๋Ÿฌ๋‹ ๋ชจ๋ธ์ด ์–ด๋–ค ํŠน์ง•์— ์ง‘์ค‘ํ•˜์—ฌ ๋‚˜๋ฌด ์ข…์„ ๊ตฌ๋ถ„ํ•˜๋Š”์ง€ ๋ถ„์„ํ•œ๋‹ค. ์—ฐ๊ตฌํŒ€์€ 7์ข…๋ฅ˜์˜ ์œ ๋Ÿฝ ๋‚˜๋ฌด๋“ค๋กœ๋ถ€ํ„ฐ ์ˆ˜์ง‘๋œ TLS ๋ฐ์ดํ„ฐ๋ฅผ ์ด์šฉํ•ด YOLOv8 ๋ชจ๋ธ์„ ํ•™์Šตํ•˜๊ณ  ๊ฒ€์ฆํ•˜์˜€์œผ๋ฉฐ, ํ‰๊ท  ์ •ํ™•๋„๋Š” 96%์— ๋‹ฌํ–ˆ๋‹ค. ์ด ์—ฐ๊ตฌ์—์„œ ์ค‘์š”ํ•œ ๋ฐœ๊ฒฌ ์ค‘ ํ•˜๋‚˜๋Š”, ๋”ฅ๋Ÿฌ๋‹ ๋ชจ๋ธ์ด ๋‚˜๋ฌด์˜ ์ฝ˜ํฌ๋กœ๋‚˜ํŠธ(crown) ํŠน์ง•์— ํฌ

Foundation Models in Biomedical Imaging: Turning Hype into Reality

Foundation Models in Biomedical Imaging: Turning Hype into Reality

๋ณธ ๋…ผ๋ฌธ์€ ๊ธฐ๋ฐ˜๋ชจ๋ธ(Foundation Models)์ด ์˜๋ฃŒ ์˜์ƒ ๋ถ„์•ผ์—์„œ ์–ด๋–ป๊ฒŒ ํ™œ์šฉ๋˜๊ณ  ์žˆ๋Š”์ง€์— ๋Œ€ํ•ด ๊นŠ์ด ์žˆ๊ฒŒ ๋ถ„์„ํ•ฉ๋‹ˆ๋‹ค. FMs๋Š” ๋‹จ์ˆœํžˆ ํŒจํ„ด์„ ์ธ์‹ํ•˜๋Š” ๋ฐ ๊ทธ์น˜์ง€ ์•Š๊ณ , ๋ณต์žกํ•œ ์ž„์ƒ ์‚ฌ๊ณ ๋ฅผ ๋ชจ๋ฐฉํ•˜๊ณ  ๊ณต๊ฐ„ ๊ด€๊ณ„๋ฅผ ์ดํ•ดํ•˜๋ฉฐ ๋‹ค์ค‘๋ชจ๋‹ฌ ๋ฐ์ดํ„ฐ๋ฅผ ํ†ตํ•ฉํ•˜๋Š” ๋Šฅ๋ ฅ์„ ๊ฐ–์ถ”๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ด๋Ÿฌํ•œ ๊ฐ€๋Šฅ์„ฑ๊ณผ ์‹ค์ œ ํ™œ์šฉ ์‚ฌ์ด์—๋Š” ํฐ ๊ฐ„๊ทน์ด ์กด์žฌํ•ฉ๋‹ˆ๋‹ค. ๋…ผ๋ฌธ์€ FMs์˜ ํ•ต์‹ฌ ๊ธฐ๋Šฅ๊ณผ ํ•œ๊ณ„๋ฅผ ํ‰๊ฐ€ํ•˜๋ฉด์„œ, ์ด๋“ค ๋ชจ๋ธ๋“ค์ด ์ง„์ •ํ•œ ์ธ์ง€๋ ฅ์„ ๋ณด์—ฌ์ฃผ๊ณ  ์žˆ๋Š”์ง€ ์•„๋‹ˆ๋ฉด ํ‘œ๋ฉด์ ์ธ ํŒจํ„ด์„ ๋‹จ์ˆœํžˆ ํ‰๋‚ด ๋‚ด๋Š” ๊ฒƒ์ธ์ง€์— ๋Œ€ํ•ด ๊ฒ€ํ† ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ๋˜ํ•œ ๋…ผ๋ฌธ์€ ํ†ต๊ณ„์ 

Model
No Image

End-to-End Learning-based Video Streaming Enhancement Pipeline: A Generative AI Approach

ELVIS ์•„ํ‚คํ…์ฒ˜๋Š” ์ „ํ†ต์ ์ธ ์ฝ”๋“œํฌ์™€์˜ ์ฐจ๋ณ„ํ™”๋œ ์ ‘๊ทผ๋ฒ•์œผ๋กœ ์ฃผ๋ชฉํ•  ๋งŒํ•ฉ๋‹ˆ๋‹ค. ์ด ๋…ผ๋ฌธ์€ ์„œ๋ฒ„ ์ธก ์ธ์ฝ”๋”ฉ ์ตœ์ ํ™”์™€ ํด๋ผ์ด์–ธํŠธ ์ธก ์ƒ์„ฑํ˜• ์ธํŽ˜์ธํŒ…์„ ๊ฒฐํ•ฉํ•˜์—ฌ ์ค‘๋ณต ๋ฐ์ดํ„ฐ๋ฅผ ์ œ๊ฑฐํ•˜๊ณ  ์žฌ๊ตฌ์„ฑํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์‹œํ•ฉ๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ์ ‘๊ทผ๋ฒ•์€ ๋Œ€์—ญํญ ์‚ฌ์šฉ์„ ์ค„์ด๋ฉด์„œ๋„ ๋†’์€ ํ™”์งˆ์„ ์œ ์ง€ํ•  ์ˆ˜ ์žˆ๋Š” ์ƒˆ๋กœ์šด ๊ฐ€๋Šฅ์„ฑ์„ ์—ด์–ด์ค๋‹ˆ๋‹ค. ELVIS์˜ ๋ชจ๋“ˆ์‹ ์„ค๊ณ„๋Š” ๋‹ค์–‘ํ•œ ์ฝ”๋“œํฌ, ์ธํŽ˜์ธํŒ… ๋ชจ๋ธ, ํ’ˆ์งˆ ์ง€ํ‘œ๋ฅผ ์‰ฝ๊ฒŒ ํ†ตํ•ฉํ•  ์ˆ˜ ์žˆ๊ฒŒ ํ•˜๋ฉฐ, ์ด๋Š” ๋ฏธ๋ž˜ ๊ธฐ์ˆ  ๋ฐœ์ „์— ๋Œ€ํ•œ ์œ ์—ฐ์„ฑ๊ณผ ํ™•์žฅ์„ฑ์„ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค. ๋˜ํ•œ, ํ˜„์žฌ ๊ธฐ์ˆ ์ด ๋ฒ ์ด์Šค๋ผ์ธ๋ณด๋‹ค ์ตœ๋Œ€ 11 VMAF ์ ์„ ๊ฐœ์„ ํ•œ ๊ฒฐ๊ณผ

Learning
Explainable Preference Learning: a Decision Tree-based Surrogate Model for Preferential Bayesian Optimization

Explainable Preference Learning: a Decision Tree-based Surrogate Model for Preferential Bayesian Optimization

๋ณธ ๋…ผ๋ฌธ์€ ๋ฒ ์ด์ง€์•ˆ ์ตœ์ ํ™”์˜ ํ•œ๊ณ„์ ์„ ๊ทน๋ณตํ•˜๊ณ ์ž ๊ฒฐ์ •ํŠธ๋ฆฌ๋ฅผ ์ƒˆ๋กœ์šด ๋Œ€๋ฆฌ ๋ชจ๋ธ๋กœ ์ œ์‹œํ•œ๋‹ค. ์ด๋Š” ๊ฐ€์šฐ์‹œ์•ˆ ํ”„๋กœ์„ธ์Šค(GP)๋ฅผ ์‚ฌ์šฉํ•˜๋Š” ๊ธฐ์กด ๋ฐฉ๋ฒ•๊ณผ ๋‹ฌ๋ฆฌ ํ•ด์„์„ฑ์ด ๋›ฐ์–ด๋‚˜๋ฉฐ, ์—ฐ์†ํ˜• ๋ฐ ๋ฒ”์ฃผํ˜• ๋ฐ์ดํ„ฐ ์ฒ˜๋ฆฌ ๋Šฅ๋ ฅ์ด ๊ฐ•ํ™”๋˜์–ด ์‹ค์ œ ์ ์šฉ์— ์œ ์šฉํ•˜๋‹ค. ๊ฒฐ์ •ํŠธ๋ฆฌ๋Š” ๋ณต์žกํ•œ ๋ชจ๋ธ์„ ์ดํ•ดํ•˜๊ธฐ ์‰ฝ๊ฒŒ ์‹œ๊ฐํ™”ํ•  ์ˆ˜ ์žˆ์–ด, ์ตœ์ ํ™” ๊ณผ์ •์—์„œ ์–ป์€ ๊ฒฐ๊ณผ๋ฅผ ์ง๊ด€์ ์œผ๋กœ ํ•ด์„ํ•˜๊ณ  ํ™œ์šฉํ•˜๋Š” ๋ฐ ๋„์›€์ด ๋œ๋‹ค. ํŠนํžˆ, ๋ณธ ๋…ผ๋ฌธ์˜ ์‹คํ—˜์—์„œ๋Š” ๋‚ ์นด๋กœ์šด ํ•จ์ˆ˜์— ๋Œ€ํ•œ ์„ฑ๋Šฅ ํ–ฅ์ƒ์ด ํ™•์ธ๋˜์—ˆ์œผ๋ฉฐ, ์ด๋Š” ์‹ค์ œ ์„ธ๊ณ„์—์„œ ์ž์ฃผ ๋ฐœ์ƒํ•˜๋Š” ๋ถˆ๊ทœ์น™์ ์ธ ๋ฐ์ดํ„ฐ ๋ถ„ํฌ์— ํšจ๊ณผ์ ์ผ ์ˆ˜ ์žˆ์Œ์„ ์‹œ์‚ฌํ•œ๋‹ค.

Learning Model
Reasoning Relay: Evaluating Stability and Interchangeability of Large Language Models in Mathematical Reasoning

Reasoning Relay: Evaluating Stability and Interchangeability of Large Language Models in Mathematical Reasoning

๋ณธ ๋…ผ๋ฌธ์€ ์ถ”๋ก  ์—ฐ์‡„์˜ ์ค‘๊ฐ„ ์‚ฐ์ถœ๋ฌผ์„ ๋‹ค๋ฅธ ๋ชจ๋ธ์ด ์ด์–ด๋ฐ›์„ ์ˆ˜ ์žˆ๋Š”์ง€๋ฅผ ์‹คํ—˜์ ์œผ๋กœ ๊ฒ€์ฆํ•จ์œผ๋กœ์จ, LLM ์—ฐ๊ตฌ ๋ถ„์•ผ์— ์ƒˆ๋กœ์šด ์‹œ๊ฐ์„ ์ œ๊ณตํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ ํ•ต์‹ฌ ๊ธฐ์—ฌ๋Š” โ€˜์ถ”๋ก  ๊ตํ™˜ ๊ฐ€๋Šฅ์„ฑโ€™์ด๋ผ๋Š” ๊ฐœ๋…์„ ์ •์˜ํ•˜๊ณ , ์ด๋ฅผ ์ •๋Ÿ‰ํ™”ํ•˜๊ธฐ ์œ„ํ•œ ํ‰๊ฐ€ ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ๊ตฌ์ถ•ํ•œ ์ ์ด๋‹ค. ์ €์ž๋“ค์€ ํ† ํฐโ€‘๋ ˆ๋ฒจ ๋กœ๊ทธโ€‘ํ™•๋ฅ ์„ ๊ธฐ์ค€์œผ๋กœ ์ถ”๋ก ์„ ์„ธ ๋‹จ๊ณ„(์ดˆ๊ธฐ, ์ค‘๊ฐ„, ํ›„๊ธฐ)๋กœ ํŠธ๋ ์ผ€์ดํŠธํ•˜๊ณ , ๊ฐ ๋‹จ๊ณ„๋งˆ๋‹ค ํ”„๋กœ์„ธ์Šค ๋ณด์ƒ ๋ชจ๋ธ(PRM)์„ ์ ์šฉํ•ด ๋…ผ๋ฆฌ์  ์ผ๊ด€์„ฑ๊ณผ ์ •๋‹ต ์ •ํ™•๋„๋ฅผ ์ธก์ •ํ•œ๋‹ค. ์ด๋•Œ ์‚ฌ์šฉ๋œ ๋‘ ๋ฒ ์ด์Šค ๋ชจ๋ธ์ธ Gemmaโ€‘3โ€‘4Bโ€‘IT์™€ LLaMAโ€‘3.1โ€‘70Bโ€‘In

Model
No Image

TiCard: Deployable EXPLAIN-only Residual Learning for Cardinality Estimation

์ด ๋…ผ๋ฌธ์€ ์นด๋””๋„๋ฆฌํ‹ฐ ์ถ”์ • ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด TiCard๋ผ๋Š” ์ƒˆ๋กœ์šด ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์†Œ๊ฐœํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์นด๋””๋„๋ฆฌํ‹ฐ ์ถ”์ •์€ ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค ์ฟผ๋ฆฌ ์ตœ์ ํ™”์—์„œ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•˜์ง€๋งŒ, ๊ธฐ์กด์˜ ๋ฐฉ๋ฒ•๋“ค์€ ์ƒ๊ด€๊ด€๊ณ„๋ฅผ ๊ณ ๋ คํ•˜์ง€ ๋ชปํ•˜๊ฑฐ๋‚˜ ํŠน์ • ์ž‘์—… ๋ถ€ํ•˜์— ๋งž๋Š” ๋ณ„๋„์˜ ํ›ˆ๋ จ ํŒŒ์ดํ”„๋ผ์ธ๊ณผ ํ†ตํ•ฉ์ด ํ•„์š”ํ•˜๋‹ค๋Š” ๋ฌธ์ œ์ ์ด ์žˆ์Šต๋‹ˆ๋‹ค. TiCard๋Š” ์ด๋Ÿฌํ•œ ์ œ์•ฝ์„ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค์˜ ์›๋ž˜ ์ถ”์ •๊ธฐ๋ฅผ ๋ณด์™„ํ•˜๋Š” ๋ฐฉ์‹์œผ๋กœ ์„ค๊ณ„๋˜์—ˆ์Šต๋‹ˆ๋‹ค. TiCard๋Š” ๋‘ ๊ฐ€์ง€ ์ฃผ์š” ๊ตฌ์„ฑ ์š”์†Œ๋ฅผ ์‚ฌ์šฉํ•ฉ๋‹ˆ๋‹ค: ๊ทธ๋ ˆ๋””์–ธํŠธ ๋ถ€์ŠคํŒ… ํšŒ๊ท€๊ธฐ(Gradient Boosting Regressor

Learning
Understanding and Improving Hyperbolic Deep Reinforcement Learning

Understanding and Improving Hyperbolic Deep Reinforcement Learning

๋ณธ ๋…ผ๋ฌธ์€ ๊ฐ•ํ™”ํ•™์Šต(Reinforcement Learning, RL) ์—์ด์ „ํŠธ์˜ ์„ฑ๋Šฅ ํ–ฅ์ƒ์„ ์œ„ํ•ด ํ•˜์ดํผ๋ณผ๋ฆญ ํŠน์ง• ๊ณต๊ฐ„์„ ํ™œ์šฉํ•˜๋Š” ๋ฐฉ๋ฒ•์— ๋Œ€ํ•ด ๊นŠ๊ฒŒ ๋ถ„์„ํ•˜๊ณ  ์žˆ๋‹ค. ํŠนํžˆ, ํฌ์•™์นด๋ ˆ ๊ณต(Poincarรฉ Ball)๊ณผ ํ•˜์ดํผ๋ณผ๋กœ์ด๋“œ(Hyperboloid) ๋ชจ๋ธ์—์„œ ํ•ต์‹ฌ ์—ฐ์‚ฐ๋“ค์˜ ๊ทธ๋ž˜๋””์–ธํŠธ๋ฅผ ๋ถ„์„ํ•จ์œผ๋กœ์จ, ํฐ ๋…ธ๋ฆ„(embedding norm)์€ ๊ทธ๋ž˜๋””์–ธํŠธ ๊ธฐ๋ฐ˜ ํ›ˆ๋ จ์„ ๋ถˆ์•ˆ์ •ํ•˜๊ฒŒ ๋งŒ๋“ค๊ณ  ๊ทผ์ ‘ ์ •์ฑ… ์ตœ์ ํ™”(Proximal Policy Optimization, PPO)์˜ ์‹ ๋ขฐ ์˜์—ญ ์œ„๋ฐ˜(trust region violation)์„ ์ดˆ๋ž˜ํ•œ๋‹ค๋Š” ๊ฒƒ

Learning
Can LLMs Understand What We Cannot Say? Measuring Multilevel Alignment Through Abortion Stigma Across Cognitive, Interpersonal, and Structural Levels

Can LLMs Understand What We Cannot Say? Measuring Multilevel Alignment Through Abortion Stigma Across Cognitive, Interpersonal, and Structural Levels

์ด ๋…ผ๋ฌธ์€ ์ธ๊ณต์ง€๋Šฅ ์œค๋ฆฌ์™€ ์ธ๊ฐ„โ€‘์ปดํ“จํ„ฐ ์ƒํ˜ธ์ž‘์šฉ ๋ถ„์•ผ์—์„œ ๋งค์šฐ ์‹œ์˜์ ์ ˆํ•œ ์งˆ๋ฌธ์„ ์ œ๊ธฐํ•œ๋‹ค. ๋‚™ํƒœ์™€ ๊ฐ™์ด ์‚ฌํšŒ์ ยท๋ฌธํ™”์  ๊ฐˆ๋“ฑ์ด ์‹ฌํ•œ ์ฃผ์ œ๋Š” ๊ฐœ์ธ์˜ ๋‚ด๋ฉด์  ํŒ๋‹จ, ์ฃผ๋ณ€์ธ๊ณผ์˜ ๊ด€๊ณ„, ๊ทธ๋ฆฌ๊ณ  ์‚ฌํšŒ ๊ตฌ์กฐ์  ์••๋ ฅ์ด๋ผ๋Š” ์„ธ ์ธต์œ„์—์„œ ๋ณตํ•ฉ์ ์œผ๋กœ ์ž‘๋™ํ•œ๋‹ค. ์ €์ž๋“ค์€ ์ด๋Ÿฌํ•œ ๋‹ค์ธต์  ๊ตฌ์กฐ๋ฅผ ์ •๋Ÿ‰ํ™”ํ•œ ILAS(Individual Level Abortion Stigma Scale)๋ฅผ ๊ธฐ์ค€์œผ๋กœ, GPTโ€‘4, Claude, Llama 2 ๋“ฑ ํ˜„์žฌ ๊ฐ€์žฅ ๋„๋ฆฌ ์‚ฌ์šฉ๋˜๋Š” ๋‹ค์„ฏ ๊ฐœ LLM์„ 627๋ช…์˜ ๊ฐ€์ƒ ํŽ˜๋ฅด์†Œ๋‚˜์— ์ ์šฉํ•ด ์ฒด๊ณ„์ ์ธ ์‹คํ—˜์„ ์„ค๊ณ„ํ–ˆ๋‹ค. ์ฒซ ๋ฒˆ์งธ ํ•ต์‹ฌ

No Image

Context Branching for LLM Conversations: A Version Control Approach to Exploratory Programming

์ด ๋…ผ๋ฌธ์€ ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(LLMs)์˜ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด ContextBranch๋ผ๋Š” ์ƒˆ๋กœ์šด ์‹œ์Šคํ…œ์„ ์ œ์‹œํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. LLMs๋Š” ์—ฌ๋Ÿฌ ์ฐจ๋ก€์— ๊ฑธ์นœ ๋Œ€ํ™”์—์„œ ์„ฑ๋Šฅ์ด ํฌ๊ฒŒ ์ €ํ•˜๋˜๋ฉฐ, ์ด๋กœ ์ธํ•ด ๊ฐœ๋ฐœ์ž๊ฐ€ ๋‹ค์–‘ํ•œ ์ ‘๊ทผ ๋ฐฉ์‹์„ ํƒ์ƒ‰ํ•˜๋Š” ๋ฐ ์–ด๋ ค์›€์„ ๊ฒช์Šต๋‹ˆ๋‹ค. ContextBranch๋Š” ์ฒดํฌํฌ์ธํŠธ, ๋ถ„๊ธฐ, ์ „ํ™˜, ์ฃผ์ž…์ด๋ผ๋Š” ๋„ค ๊ฐ€์ง€ ํ•ต์‹ฌ ๊ธฐ๋Šฅ์„ ์ œ๊ณตํ•˜์—ฌ ์‚ฌ์šฉ์ž๊ฐ€ ๋Œ€ํ™” ์ƒํƒœ๋ฅผ ์บก์ฒ˜ํ•˜๊ณ  ๊ณ ๋ฆฝ๋œ ํ™˜๊ฒฝ์—์„œ ๋‹ค์–‘ํ•œ ์ ‘๊ทผ ๋ฐฉ์‹์„ ํƒ์ƒ‰ํ•˜๋ฉฐ ํ†ตํ•ฉํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•ฉ๋‹ˆ๋‹ค. ์‹คํ—˜ ๊ฒฐ๊ณผ, ContextBranch๋Š” ์„ ํ˜• ๋Œ€ํ™”๋ณด๋‹ค 2.5% ๋” ๋†’์€ ์‘๋‹ต ํ’ˆ์งˆ์„

Generative AI for Video Translation: A Scalable Architecture for Multilingual Video Conferencing

Generative AI for Video Translation: A Scalable Architecture for Multilingual Video Conferencing

๋ณธ ๋…ผ๋ฌธ์ด ๋‹ค๋ฃจ๋Š” ํ•ต์‹ฌ ๋ฌธ์ œ๋Š” โ€œ์‹ค์‹œ๊ฐ„โ€์ด๋ผ๋Š” ์—„๊ฒฉํ•œ ์‹œ๊ฐ„ ์ œ์•ฝ ํ•˜์— ๋ณต์ˆ˜์˜ ์ƒ์„ฑํ˜• AI ๋ชจ๋ธ์„ ์—ฐ์†์ ์œผ๋กœ ์‹คํ–‰ํ•ด์•ผ ํ•˜๋Š” ์ƒํ™ฉ์—์„œ ๋ฐœ์ƒํ•˜๋Š” ์‹œ์Šคํ…œ ๋ ˆ๋ฒจ์˜ ๋ณ‘๋ชฉ ํ˜„์ƒ์ด๋‹ค. ์ „ํ†ต์ ์ธ ํŒŒ์ดํ”„๋ผ์ธ ๋ฐฉ์‹์€ ๊ฐ ํ”„๋ ˆ์ž„ ํ˜น์€ ์˜์ƒ ์„ธ๊ทธ๋จผํŠธ์— ๋Œ€ํ•ด ์Œ์„ฑ ์ธ์‹, ๋ฒˆ์—ญ, ํ…์ŠคํŠธโ€‘ํˆฌโ€‘์Šคํ”ผ์น˜, ์˜์ƒ ํ•ฉ์„ฑ ๋“ฑ ์—ฌ๋Ÿฌ ๋ชจ๋ธ์„ ์ˆœ์ฐจ์ ์œผ๋กœ ํ˜ธ์ถœํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ์ˆœ์ฐจ ํ˜ธ์ถœ์€ ๋ชจ๋ธ๋งˆ๋‹ค ์ˆ˜๋ฐฑ ๋ฐ€๋ฆฌ์ดˆ์—์„œ ์ˆ˜์ดˆ์— ์ด๋ฅด๋Š” ์ถ”๋ก  ์ง€์—ฐ์„ ์œ ๋ฐœํ•˜๊ณ , ํŠนํžˆ ๋‹ค์ค‘ ์‚ฌ์šฉ์ž๊ฐ€ ๋™์‹œ์— ์ฐธ์—ฌํ•˜๋Š” ํ™”์ƒ ํšŒ์˜์—์„œ๋Š” ๊ฐ ์‚ฌ์šฉ์ž์˜ ์ŠคํŠธ๋ฆผ์— ๋Œ€ํ•ด ๋™์ผํ•œ ํŒŒ์ดํ”„๋ผ์ธ์„ ๋…๋ฆฝ์ ์œผ๋กœ ์ ์šฉํ•ด์•ผ ํ•˜๋ฏ€๋กœ ์ „์ฒด ์—ฐ

Socratic Students: Teaching Language Models to Learn by Asking Questions

Socratic Students: Teaching Language Models to Learn by Asking Questions

๋ณธ ๋…ผ๋ฌธ์€ โ€œ์งˆ๋ฌธโ€์ด๋ผ๋Š” ํ–‰๋™์„ LLM์˜ ํ•ต์‹ฌ ๋Šฅ๋ ฅ์œผ๋กœ ์žฌ์ •์˜ํ•˜๊ณ , ์ด๋ฅผ ํ•™์Šต ๊ฐ€๋Šฅํ•œ ์ •์ฑ…์œผ๋กœ ์ „ํ™˜ํ•˜๋Š” ํ˜์‹ ์ ์ธ ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์‹œํ•œ๋‹ค. ์ „ํ†ต์ ์ธ LLM ํ™œ์šฉ ๋ฐฉ์‹์€ ์ฃผ์–ด์ง„ ํ”„๋กฌํ”„ํŠธ์— ๋Œ€ํ•ด ๊ฐ€๋Šฅํ•œ ํ•œ ์ •ํ™•ํ•œ ๋‹ต์„ ์ƒ์„ฑํ•˜๋Š” ๋ฐ ์ดˆ์ ์„ ๋งž์ถ”์ง€๋งŒ, ์‹ค์ œ ๊ณ ์œ„ํ—˜ ์‘์šฉ์—์„œ๋Š” ์‚ฌ์šฉ์ž๊ฐ€ ์ œ๊ณตํ•œ ์ •๋ณด๊ฐ€ ๋ถˆ์™„์ „ํ•˜๊ฑฐ๋‚˜ ๋ชจํ˜ธํ•  ๋•Œ ์ถ”๊ฐ€์ ์ธ ์งˆ์˜๊ฐ€ ํ•„์š”ํ•˜๋‹ค. ์ด๋Ÿฌํ•œ ์ƒํ™ฉ์„ ๋ชจ๋ธ์ด ์Šค์Šค๋กœ ์ธ์‹ํ•˜๊ณ , ๊ต์‚ฌ ๋ชจ๋ธ(๋ณด๋‹ค ๊ฐ•๋ ฅํ•œ LLM)์—๊ฒŒ ๋ณด์™„ ์ •๋ณด๋ฅผ ์š”์ฒญํ•˜๋„๋ก ํ•™์Šต์‹œํ‚ค๋Š” ๊ฒƒ์ด ํ•ต์‹ฌ ์•„์ด๋””์–ด์ด๋‹ค. ODQS๋Š” ๋‘ ๋‹จ๊ณ„ ํ•™์Šต ํŒŒ์ดํ”„๋ผ์ธ์„ ์‚ฌ์šฉํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ ๋‹จ๊ณ„๋Š”

Model
TraPO: A Semi-Supervised Reinforcement Learning Framework for Boosting LLM Reasoning

TraPO: A Semi-Supervised Reinforcement Learning Framework for Boosting LLM Reasoning

๋ณธ ๋…ผ๋ฌธ์€ ๊ฐ•ํ™”ํ•™์Šต๊ณผ ์ค€๊ฐ๋… ํ•™์Šต์„ ๊ฒฐํ•ฉํ•˜์—ฌ ๋Œ€๊ทœ๋ชจ ์ถ”๋ก  ๋ชจ๋ธ(LRMs)์„ ํšจ์œจ์ ์œผ๋กœ ํ›ˆ๋ จํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ํŠนํžˆ, TRAPO ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ํ†ตํ•ด ์†Œ๋Ÿ‰์˜ ๋ผ๋ฒจ๋ง ๋ฐ์ดํ„ฐ์™€ ๋งŽ์€ ๋น„๋ผ๋ฒจ ๋ฐ์ดํ„ฐ๋ฅผ ํ™œ์šฉํ•ด ๋ชจ๋ธ์„ ์•ˆ์ •ํ™”์‹œํ‚ค๊ณ , ์ด๋ฅผ ํ†ตํ•ด ๋†’์€ ์ •ํ™•๋„์™€ ๊ฐ•๋ ฅํ•œ ์ผ๋ฐ˜ํ™” ์„ฑ๋Šฅ์„ ๋‹ฌ์„ฑํ•  ์ˆ˜ ์žˆ์Œ์„ ๋ณด์—ฌ์ฃผ์—ˆ์Šต๋‹ˆ๋‹ค. ์ด ์—ฐ๊ตฌ๋Š” ๊ธฐ์กด ๋ฌด๊ฐ๋… RLVR ๋ฐฉ๋ฒ•๋“ค์ด ํ›ˆ๋ จ ํ›„๊ธฐ ๋‹จ๊ณ„์—์„œ ์ผ๊ด€์„ฑ์„ ์œ ์ง€ํ•˜์ง€ ๋ชปํ•˜๊ณ  ๋ชจ๋ธ ๋ถ•๊ดด๋ฅผ ๊ฒช๋Š” ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๋Š” ๋ฐ ์ค‘์ ์„ ๋‘๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. TRAPO ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ํ•™์Šต ๊ฒฝ๋กœ ์œ ์‚ฌ์„ฑ ๋ถ„์„์„ ํ†ตํ•ด ์‹ ๋ขฐํ•  ์ˆ˜ ์žˆ๋Š” ๋น„๋ผ๋ฒจ ์ƒ˜ํ”Œ์„

Framework Learning
No Image

CoRe3D: Collaborative Reasoning as a Foundation for 3D Intelligence

CoRe3D๋Š” 3D ์ดํ•ด์™€ ์ƒ์„ฑ์˜ ํ†ตํ•ฉ์  ์ถ”๋ก  ํ”„๋ ˆ์ž„์›Œํฌ๋กœ, ๊ธฐ์กด์˜ ๋‹ค๋ชจ๋‹ฌ ๋ชจ๋ธ์—์„œ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•˜๋Š” ๋ช…์‹œ์ ์ธ ์ถ”๋ก  ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ 3D ์˜์—ญ์— ํ™•์žฅํ•˜๋Š” ๊ฒƒ์„ ๋ชฉํ‘œ๋กœ ํ•œ๋‹ค. ์ด ์—ฐ๊ตฌ๋Š” ์–ธ์–ด์™€ ๋น„์ „ ์ž‘์—…์—์„œ ํšจ๊ณผ์ ์œผ๋กœ ์ž…์ฆ๋œ ์ถ”๋ก  ์ค‘์‹ฌ ์ ‘๊ทผ๋ฒ•์ด ์•„์ง ์ถฉ๋ถ„ํžˆ ๊ฐœ๋ฐœ๋˜์ง€ ์•Š์€ 3D ๋ถ„์•ผ์—์„œ๋„ ์œ ์‚ฌํ•œ ์„ฑ๊ณผ๋ฅผ ๋‚ผ ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ฐ€์„ค์„ ์ œ์‹œํ•œ๋‹ค. CoRe3D์˜ ํ•ต์‹ฌ์€ ๊ณต๊ฐ„์  ๊ทผ๊ฑฐ๋ฅผ ๊ฐ–์ถ˜ ์ถ”๋ก  ํ‘œํ˜„์œผ๋กœ, ์ด๋ฅผ ํ†ตํ•ด ๋ชจ๋ธ์€ 3D ์ž ์žฌ ๊ณต๊ฐ„์„ ์ง€์—ญํ™”๋œ ์˜์—ญ์œผ๋กœ ๋ถ„ํ•ดํ•˜๊ณ , ์ด๋Ÿฌํ•œ ๋ถ„ํ•ด๋œ ๋ถ€๋ถ„๋“ค์— ๋Œ€ํ•ด ์กฐํ•ฉ์ ์ด๊ณ  ์ ˆ์ฐจ์ ์ธ ๋ฐฉ์‹์œผ๋กœ ๊ธฐํ•˜ํ•™์  ํŠน์„ฑ์„ ์ถ”๋ก ํ•  ์ˆ˜ ์žˆ

Diffusion Model-Based Posterior Sampling in Full Waveform Inversion

Diffusion Model-Based Posterior Sampling in Full Waveform Inversion

์ด ๋…ผ๋ฌธ์€ ๋ฒ ์ด์ง€์•ˆ ์ „ํŒŒํ˜• ์—ญ์‚ฐ(FWI) ๊ธฐ๋ฒ•์„ ์ด์šฉํ•ด ์ง€ํ•˜ ๋ชจ๋ธ์˜ ๋ถˆํ™•์‹ค์„ฑ์„ ํšจ๊ณผ์ ์œผ๋กœ ์ฒ˜๋ฆฌํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์‹œํ•˜๊ณ  ์žˆ๋‹ค. ํŠนํžˆ, ๋Œ€๊ทœ๋ชจ ํ˜„์žฅ ์กฐ์‚ฌ์—์„œ ์‹ค์šฉ์ ์ด์ง€ ์•Š๋‹ค๋Š” ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ํ™•์‚ฐ ๊ธฐ๋ฐ˜ ์‚ฌํ›„ ํ‘œ๋ณธ ์ถ”์ถœ๊ณผ ๋™์‹œ ์†Œ์Šค FWI ๋ฐ์ดํ„ฐ๋ฅผ ๊ฒฐํ•ฉํ•œ ์ƒˆ๋กœ์šด ์ ‘๊ทผ ๋ฐฉ์‹์„ ์ œ์•ˆํ•œ๋‹ค. ์ด ๋ฐฉ๋ฒ•์€ ๊ฐ ๋‹จ๊ณ„์—์„œ ํŒŒ ๋ฐฉ์ •์‹ ํ•ด์˜ ์ˆ˜๋ฅผ ์ค„์ด๊ณ , ๋ชจ๋ธ ๊ณต๊ฐ„์—์„œ ์Šคํ† ์บ์Šคํ‹ฑ ์ •๊ตํ™” ๋‹จ๊ณ„๋ฅผ ์ ์šฉํ•˜์—ฌ ๊ณ„์‚ฐ ๋น„์šฉ์„ ํฌ๊ฒŒ ๊ฐ์†Œ์‹œํ‚ค๋ฉด์„œ๋„ ๋†’์€ ์ •ํ™•์„ฑ์„ ์œ ์ง€ํ•  ์ˆ˜ ์žˆ๋‹ค. ๋˜ํ•œ, ์†๋„ ํŒจ์น˜์™€ ๋ณผ๋ฅจ์— ๋Œ€ํ•œ ์กฐ๊ฑด ์—†๋Š” ํ™•์‚ฐ ์‚ฌ์ „ ํ›ˆ๋ จ์„ ํ†ตํ•ด ์†Œ์Šค ๊ด€๋ จ ์ˆ˜์น˜์  ์˜ค๋ฅ˜

Model
Explainable Artificial Intelligence for Economic Time Series: A Comprehensive Review and a Systematic Taxonomy of Methods and Concepts

Explainable Artificial Intelligence for Economic Time Series: A Comprehensive Review and a Systematic Taxonomy of Methods and Concepts

์ด ๋…ผ๋ฌธ์€ ๊ณ„์‚ฐ๊ฒฝ์ œํ•™์—์„œ ํ•ด์„๊ฐ€๋Šฅ ์ธ๊ณต์ง€๋Šฅ(XAI)์˜ ์ค‘์š”์„ฑ์„ ๊ฐ•์กฐํ•˜๋ฉฐ, ํŠนํžˆ ๊ธฐ๊ณ„ ํ•™์Šต ์˜ˆ์ธก์ž๊ฐ€ ๊ณ ์ „์ ์ธ ๊ฒฝ์ œํ•™์  ๋ชจ๋ธ์„ ๋Šฅ๊ฐ€ํ•  ์ˆ˜ ์žˆ์ง€๋งŒ ๊ทธ ๋‚ด๋ถ€ ์ž‘๋™ ์›๋ฆฌ๊ฐ€ ๋ถˆํˆฌ๋ช…ํ•˜๋‹ค๋Š” ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด XAI์— ๋Œ€ํ•œ ๊ด€์‹ฌ์ด ์ฆ๊ฐ€ํ•˜๊ณ  ์žˆ์Œ์„ ์„ค๋ช…ํ•ฉ๋‹ˆ๋‹ค. ๋…ผ๋ฌธ์€ ์‹œ๊ฐ„ ์‹œ๋ฆฌ์ฆˆ ๋ฐ์ดํ„ฐ์˜ ํŠน์„ฑ, ์ฆ‰ ์ž๊ธฐ์ƒ๊ด€์„ฑ, ๋น„์ •์ƒ์„ฑ, ๊ณ„์ ˆ์„ฑ, ํ˜ผํ•ฉ ์ฃผ๊ธฐ, ๊ทธ๋ฆฌ๊ณ  ์ œ๋„ ๋ณ€ํ™” ๋“ฑ์ด ํ‘œ์ค€์ ์ธ ์„ค๋ช… ๊ธฐ๋ฒ•์„ ๋ถˆ์•ˆ์ •ํ•˜๊ฑฐ๋‚˜ ๊ฒฝ์ œ์ ์œผ๋กœ ์„ค๋“๋ ฅ ์—†๊ฒŒ ๋งŒ๋“ค ์ˆ˜ ์žˆ๋‹ค๋Š” ์ ์— ์ฃผ๋ชฉํ•ฉ๋‹ˆ๋‹ค. ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ๋…ผ๋ฌธ์€ XAI ๋ฐฉ๋ฒ•๋ก ์„ ์„ธ ๊ฐ€์ง€ ๋ฒ”์ฃผ๋กœ ๋ถ„๋ฅ˜ํ•˜๊ณ , ๊ฐ ๋ฒ”์ฃผ์˜ ํŠน์ง•๊ณผ ์‹œ๊ฐ„

System
Information-Consistent Language Model Recommendations through Group Relative Policy Optimization

Information-Consistent Language Model Recommendations through Group Relative Policy Optimization

๋ณธ ๋…ผ๋ฌธ์€ ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(LLMs)์˜ ์ผ๊ด€์„ฑ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•œ ์ƒˆ๋กœ์šด ์ ‘๊ทผ ๋ฐฉ์‹์„ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. LLMs๋Š” ๋‹ค์–‘ํ•œ ๋น„์ฆˆ๋‹ˆ์Šค ๋ถ„์•ผ์—์„œ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•˜์ง€๋งŒ, ์‚ฌ์šฉ์ž์—๊ฒŒ ์ผ๊ด€๋œ ์ •๋ณด๋ฅผ ์ œ๊ณตํ•˜๋Š” ๋ฐ ์–ด๋ ค์›€์ด ์žˆ์Šต๋‹ˆ๋‹ค. ์ด๋Š” ํŠนํžˆ ๊ธฐ์—… ํ™˜๊ฒฝ์—์„œ ์ค‘์š”ํ•˜๋ฉฐ, HR ์ž…๋ฌธ, ๊ณ ๊ฐ ์ง€์›, ์ •์ฑ… ๊ณต๊ฐœ ๋“ฑ๊ณผ ๊ฐ™์€ ์‹œ๋‚˜๋ฆฌ์˜ค์—์„œ๋Š” ์ •๋ณด์˜ ์•ˆ์ •์„ฑ์ด ํ•„์ˆ˜์ ์ž…๋‹ˆ๋‹ค. ๊ธฐ์กด ์ ‘๊ทผ ๋ฐฉ์‹์€ ์‚ฌ์‹ค์„ฑ ํ–ฅ์ƒ์ด๋‚˜ ํ™•๋ฅ ์„ฑ์„ ์ค„์ด๋Š” ๋ฐ ์ค‘์ ์„ ๋‘์ง€๋งŒ, ์˜๋ฏธ์ ์œผ๋กœ ๋™๋“ฑํ•œ ํ”„๋กฌํ”„ํŠธ ๊ฐ„์˜ ์ผ๊ด€์„ฑ์„ ๋ณด์žฅํ•˜์ง€๋Š” ๋ชปํ•ฉ๋‹ˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ ์ œ์•ˆํ•˜๋Š” ๋ฐฉ๋ฒ•์€ ๊ทธ๋ฃน ์ƒ๋Œ€ ์ •์ฑ… ์ตœ์ ํ™”(GRPO)

Model
AI as a Teaching Partner: Early Lessons from Classroom Codesign with Secondary Teachers

AI as a Teaching Partner: Early Lessons from Classroom Codesign with Secondary Teachers

์ด ์—ฐ๊ตฌ๋Š” ์ธ๊ณต์ง€๋Šฅ(AI)์ด ์‹ค์‹œ๊ฐ„ ๊ต์œก ํ™˜๊ฒฝ์—์„œ ์–ด๋–ป๊ฒŒ ํ†ตํ•ฉ๋˜๊ณ  ํ™œ์šฉ๋˜๋Š”์ง€๋ฅผ ์ƒ์„ธํžˆ ๋ถ„์„ํ•ฉ๋‹ˆ๋‹ค. ํŠนํžˆ, AI๊ฐ€ ์ œ3์˜ ์ฐธ์—ฌ์ž๋กœ์„œ ์ˆ˜์—…์— ๋„์ž…๋˜์—ˆ์œผ๋ฉฐ, ์ด๋กœ ์ธํ•ด ํ”ผ๋“œ๋ฐฑ ์ค‘์žฌ์™€ ํƒ๊ตฌ ์ง€์› ๋“ฑ ๋‹ค์–‘ํ•œ ์—ญํ• ์„ ์ˆ˜ํ–‰ํ•˜๊ฒŒ ๋˜์—ˆ์Šต๋‹ˆ๋‹ค. ์—ฐ๊ตฌ๋Š” 21๋ช…์˜ ๊ต์‚ฌ์™€ ๊ทธ๋“ค์ด ์ง€๋„ํ•˜๋Š” ํ•™์ƒ๋“ค(600์—ฌ ๋ช…)์ด AI ๊ธฐ๋ฐ˜ ํ”Œ๋žซํผ์˜ ๋„ค ๊ฐ€์ง€ ์ฃผ์š” ๊ธฐ๋Šฅ(Teaching Aide, Assessment & AI Grading, AI Tutor, Student Growth Insights)์„ ํ†ตํ•ฉํ•œ ๊ฒฐ๊ณผ๋ฅผ ๋ถ„์„ํ•˜์˜€์Šต๋‹ˆ๋‹ค. ์ด ์—ฐ๊ตฌ๋Š” ๊ต์‚ฌ๋“ค์˜ ์—ญํ• ๊ณผ AI์˜ ํ™œ์šฉ ๋ฐฉ

Condensation-Concatenation Framework for Dynamic Graph Continual Learning

Condensation-Concatenation Framework for Dynamic Graph Continual Learning

Analysis of the Paper '๋™์  ๊ทธ๋ž˜ํ”„ ์ง€์†ํ•™์Šต์„ ์œ„ํ•œ ์••์ถ• ์—ฐ๊ฒฐ ํ”„๋ ˆ์ž„์›Œํฌ CCC' Abstract: The paper introduces a new framework called CCC (Condensation Concatenation Framework for Dynamic Graph Continual Learning) , which aims to address the limitations of existing graph neural networks (GNNs) in handling dynamic graphs. I

Framework Learning
Mapping AI Risk Mitigations: Evidence Scan and Preliminary AI Risk Mitigation Taxonomy

Mapping AI Risk Mitigations: Evidence Scan and Preliminary AI Risk Mitigation Taxonomy

์ด ๋…ผ๋ฌธ์€ AI ์œ„ํ—˜ ๊ด€๋ฆฌ์— ๋Œ€ํ•œ ์ฒด๊ณ„์ ์ธ ์ ‘๊ทผ๋ฒ•์„ ์ œ์‹œํ•˜๋ฉฐ, ํŠนํžˆ ๋‹ค์–‘ํ•œ ํ”„๋ ˆ์ž„์›Œํฌ์™€ ์šฉ์–ด์˜ ํ˜ผ๋ž€์„ ํ•ด๊ฒฐํ•˜๋ ค๋Š” ์‹œ๋„๋ฅผ ๋ณด์—ฌ์ค๋‹ˆ๋‹ค. ์ €์ž๋“ค์€ 2023๋…„๋ถ€ํ„ฐ 2025๋…„ ์‚ฌ์ด์— ๋ฐœํ–‰๋œ 13๊ฐœ์˜ AI ์œ„ํ—˜ ์™„ํ™” ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ๋ถ„์„ํ•˜์—ฌ, ์ด 831๊ฐ€์ง€์˜ ๋…ํŠนํ•œ ์œ„ํ—˜ ์™„ํ™” ๋ฐฉ๋ฒ•์„ ์ถ”์ถœํ•˜๊ณ  ์ด๋ฅผ ๋ถ„๋ฅ˜์ฒด๊ณ„๋กœ ๊ตฌ์„ฑํ•˜์˜€์Šต๋‹ˆ๋‹ค. ์ด ๋ถ„๋ฅ˜์ฒด๊ณ„๋Š” AI ์‹œ์Šคํ…œ์— ๋Œ€ํ•œ ์ธ๊ฐ„ ๊ฐ๋…, ๊ธฐ์ˆ ์  ๋ณด์•ˆ, ์šด์˜ ํ”„๋กœ์„ธ์Šค, ๊ทธ๋ฆฌ๊ณ  ํˆฌ๋ช…์„ฑ๊ณผ ์ฑ…์ž„์„ฑ์„ ํฌํ•จํ•˜๋Š” ๋„ค ๊ฐ€์ง€ ์ฃผ์š” ๋ฒ”์ฃผ๋กœ ๋‚˜๋‰ฉ๋‹ˆ๋‹ค. ์ด ์—ฐ๊ตฌ์˜ ํ•ต์‹ฌ์€ ๋‹ค์–‘ํ•œ ์šฉ์–ด์™€ ๊ฐœ๋…์„ ์ผ๊ด€๋˜๊ฒŒ ์ •๋ฆฌํ•˜๊ณ  ํ†ตํ•ฉํ•˜๋ ค๋Š” ๋…ธ๋ ฅ์— ์žˆ์Šต๋‹ˆ๋‹ค

Advancing LLM-Based Security Automation with Customized Group Relative Policy Optimization for Zero-Touch Networks

Advancing LLM-Based Security Automation with Customized Group Relative Policy Optimization for Zero-Touch Networks

๋ณธ ๋…ผ๋ฌธ์€ ์ฐจ์„ธ๋Œ€ 6G ํ†ต์‹ ๋ง์—์„œ ํ•ต์‹ฌ์ ์ธ ๋ณด์•ˆ ๊ณผ์ œ๋ฅผ ๋‘ ๋‹จ๊ณ„๋กœ ๋ช…ํ™•ํžˆ ๊ตฌ๋ถ„ํ•˜๊ณ , ๊ฐ๊ฐ์— ๋Œ€ํ•œ ํ˜์‹ ์ ์ธ ํ•ด๊ฒฐ์ฑ…์„ ์ œ์‹œํ•œ๋‹ค๋Š” ์ ์—์„œ ํ•™์ˆ ์ ยท์‹ค์šฉ์  ์˜์˜๊ฐ€ ํฌ๋‹ค. ์ฒซ ๋ฒˆ์งธ ๊ณผ์ œ๋Š” โ€œ๋ณด์•ˆ ์ „๋žต์˜ ์ „์ฃผ๊ธฐ ์ž๋™ํ™”โ€์ด๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค์€ ์ฃผ๋กœ ์นจ์ž… ํƒ์ง€ยท์ฐจ๋‹จ๊ณผ ๊ฐ™์€ ๊ฐœ๋ณ„ ๊ธฐ๋Šฅ์— ์ดˆ์ ์„ ๋งž์ถ”์—ˆ์œผ๋ฉฐ, ์ „๋žต ์ˆ˜๋ฆฝ๋ถ€ํ„ฐ ๊ฒ€์ฆ, ์—…๋ฐ์ดํŠธ๊นŒ์ง€์˜ ์—ฐ์†์ ์ธ ํ๋ฆ„์„ ์ž๋™ํ™”ํ•˜๋Š” ์ฒด๊ณ„๋Š” ๋ถ€์žฌํ–ˆ๋‹ค. ์—ฌ๊ธฐ์„œ ์ €์ž๋“ค์€ ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(LLM)์„ ํ™œ์šฉํ•ด ์ธ๊ฐ„ ์ „๋ฌธ๊ฐ€๊ฐ€ ์ˆ˜ํ–‰ํ•˜๋˜ ์ „๋žต ์ƒ์„ฑ ๊ณผ์ •์„ ์ž๋™ํ™”ํ•˜๊ณ , ์ด๋ฅผ ๋„คํŠธ์›Œํฌ ์˜ค์ผ€์ŠคํŠธ๋ ˆ์ด์…˜ ์—”์ง„๊ณผ ์—ฐ๋™์‹œ์ผœ ์‹ค์‹œ๊ฐ„ ๋Œ€์‘๊นŒ์ง€ ํ™•์žฅ

Network
Are generative AI text annotations systematically biased?

Are generative AI text annotations systematically biased?

๋ณธ ๋…ผ๋ฌธ์€ ์ƒ์„ฑํ˜• ๋Œ€๊ทœ๋ชจ ์–ธ์–ด ๋ชจ๋ธ(GLLM)์ด ์ž๋™ ์ฝ˜ํ…์ธ  ๋ถ„์„์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ๋‹ค๊ฐ๋„๋กœ ์กฐ๋ช…ํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ๋กœ, GPTโ€‘4์™€ ๊ฐ™์€ ์ตœ์‹  ๋ชจ๋ธ์ด ์‚ฌ์ „ ํ•™์Šต(preโ€‘training) ๋‹จ๊ณ„์—์„œ ๋ฐฉ๋Œ€ํ•œ ์›น ํ…์ŠคํŠธ๋ฅผ ํ•™์Šตํ•จ์œผ๋กœ์จ ์ธ๊ฐ„ ์ˆ˜์ค€์— ๊ทผ์ ‘ํ•˜๋Š” ์–ธ์–ด ์ดํ•ด ๋Šฅ๋ ฅ์„ ํš๋“ํ•œ๋‹ค๋Š” ์ ์„ ๊ฐ•์กฐํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ์‚ฌ์ „ ์ง€์‹์€ ์ „ํ†ต์ ์ธ ์ง€๋„ํ•™์Šต ๋ฐฉ์‹์ด ์š”๊ตฌํ•˜๋Š” ๋Œ€๋Ÿ‰์˜ ๋ผ๋ฒจ๋ง ๋ฐ์ดํ„ฐ์™€ ๋น„๊ตํ–ˆ์„ ๋•Œ, ์†Œ์ˆ˜์˜ ์ƒ˜ํ”Œ๋งŒ์œผ๋กœ๋„ ๋†’์€ ์„ฑ๋Šฅ์„ ๋Œ์–ด๋‚ผ ์ˆ˜ ์žˆ๊ฒŒ ๋งŒ๋“ ๋‹ค. ๋…ผ๋ฌธ์€ ์‹ค์ œ ์‹คํ—˜์„ ํ†ตํ•ด ํ…์ŠคํŠธ ๋ถ„๋ฅ˜, ๊ฐ์„ฑ ๋ถ„์„, ์ฃผ์ œ ๋ชจ๋ธ๋ง, ์ž๋™ ์š”์•ฝ ๋“ฑ ๋„ค ๊ฐ€์ง€ ๋Œ€ํ‘œ์ ์ธ ์ž‘

System
New Constructions of SSPDs and their Applications

New Constructions of SSPDs and their Applications

๋ฐ˜๋ถ„๋ฆฌ ์Œ ๋ถ„ํ•ด(SSPD)๋Š” ๊ฑฐ๋ฆฌ ๊ธฐ๋ฐ˜ ์•Œ๊ณ ๋ฆฌ์ฆ˜, ํŠนํžˆ ๊ทผ์ ‘ ํƒ์ƒ‰, ๋ฒ”์œ„ ๊ฒ€์ƒ‰ ๋ฐ ๊ทธ๋ž˜ํ”„ ์ŠคํŒŒ๋‹์— ํ•ต์‹ฌ์ ์ธ ์ „์ฒ˜๋ฆฌ ๊ตฌ์กฐ์ด๋‹ค. ๊ธฐ์กด์˜ SSPD ๊ตฌํ˜„์€ ๋ณดํ†ต ๊ฐ ์ ์ด O(log n)๊ฐœ์˜ ์Œ์— ํฌํ•จ๋˜๋Š” ํ˜•ํƒœ์˜€์œผ๋ฉฐ, ์ฐจ์› d๊ฐ€ ์ฆ๊ฐ€ํ•จ์— ๋”ฐ๋ผ ๋ณต์žก๋„๊ฐ€ ๊ธ‰๊ฒฉํžˆ ์•…ํ™”๋˜๋Š” ๋ฌธ์ œ๊ฐ€ ์žˆ์—ˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์€ โ€œ๊ฐ ์ ์ด ๋ช‡ ๊ฐœ์˜ ์Œ์—๋งŒ ์ฐธ์—ฌํ•œ๋‹คโ€๋Š” ๊ฐ•๋ ฅํ•œ ํฌ์†Œ์„ฑ ์กฐ๊ฑด์„ ๋งŒ์กฑํ•˜๋ฉด์„œ๋„ ์ „์ฒด ์Œ์˜ ๊ฐœ์ˆ˜๋ฅผ ฮ˜(n) ์ˆ˜์ค€์œผ๋กœ ์œ ์ง€ํ•˜๋Š” ์ตœ์  ๊ตฌ์„ฑ์„ ์ œ์‹œํ•œ๋‹ค. ์ด๋Š” ํŠนํžˆ ๋ฐฐ์œจ ์ฐจ์›(doubling dimension)์ด ๋‚ฎ์€ ๋ฉ”ํŠธ๋ฆญ ๊ณต๊ฐ„โ€”์˜ˆ๋ฅผ ๋“ค์–ด, ์ €์ฐจ์› ์œ ํด๋ฆฌ๋“œ ๊ณต๊ฐ„

Adaptive Test-Time Training for Predicting Need for Invasive Mechanical Ventilation in Multi-Center Cohorts

Adaptive Test-Time Training for Predicting Need for Invasive Mechanical Ventilation in Multi-Center Cohorts

AdaTTT ๋…ผ๋ฌธ์€ ์ž„์ƒ ํ˜„์žฅ์—์„œ ๊ธ‰๊ฒฉํžˆ ๋ณ€ํ•˜๋Š” ๋ฐ์ดํ„ฐ ๋ถ„ํฌ๋ฅผ ๊ณ ๋ คํ•œ ํ…Œ์ŠคํŠธโ€‘ํƒ€์ž„ ์ ์‘ ๋ฐฉ๋ฒ•์„ ์ œ์‹œํ•จ์œผ๋กœ์จ, ๊ธฐ์กด TTT ์ ‘๊ทผ๋ฒ•์˜ ํ•œ๊ณ„๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ๋ณด์™„ํ•œ๋‹ค๋Š” ์ ์—์„œ ํฐ ์˜์˜๋ฅผ ๊ฐ€์ง„๋‹ค. ์ฒซ ๋ฒˆ์งธ ๊ฐ•์ ์€ ์ด๋ก ์  ๊ธฐ์—ฌ์ด๋‹ค. ์ €์ž๋“ค์€ ๋ฉ”์ธ ํƒœ์Šคํฌ(IMV ์˜ˆ์ธก)์™€ ๋ณด์กฐ ํƒœ์Šคํฌ(์žฌ๊ตฌ์„ฑยท๋งˆ์Šคํฌ๋“œ ํ”ผ์ฒ˜ ๋ชจ๋ธ๋ง) ์‚ฌ์ด์˜ ์ƒํ˜ธ ์ •๋ณด๋Ÿ‰์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ…Œ์ŠคํŠธ ๋‹จ๊ณ„ ์˜ค๋ฅ˜์˜ ์ƒํ•œ์„ ๋„์ถœํ–ˆ์œผ๋ฉฐ, ์ด๋Š” ๋ชจ๋ธ์ด ์–ผ๋งˆ๋‚˜ ์ž˜ ์ผ๋ฐ˜ํ™”๋  ์ˆ˜ ์žˆ๋Š”์ง€๋ฅผ ์ •๋Ÿ‰์ ์œผ๋กœ ํ‰๊ฐ€ํ•  ์ˆ˜ ์žˆ๋Š” ํ‹€์„ ์ œ๊ณตํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ์ •๋ณดโ€‘์ด๋ก ์  ๋ถ„์„์€ ์‹คํ—˜์  ๊ฒฐ๊ณผ์™€ ๊ฒฐํ•ฉ๋ผ, ๋ณด์กฐ ํƒœ์Šคํฌ๊ฐ€ ๋ฉ”์ธ ํƒœ์Šคํฌ์™€

SUGAR: A Sweeter Spot for Generative Unlearning of Many Identities

SUGAR: A Sweeter Spot for Generative Unlearning of Many Identities

๋ณธ ๋…ผ๋ฌธ์€ ์ƒ์„ฑ ๋ชจ๋ธ์˜ โ€˜์–ธ๋Ÿฌ๋‹(unlearning)โ€™์ด๋ผ๋Š” ๋น„๊ต์  ์ƒˆ๋กœ์šด ์—ฐ๊ตฌ ์˜์—ญ์— ์‹ค์šฉ์ ์ธ ํ•ด๊ฒฐ์ฑ…์„ ์ œ์‹œํ•œ๋‹ค๋Š” ์ ์—์„œ ํฐ ์˜๋ฏธ๋ฅผ ๊ฐ€์ง„๋‹ค. ๊ธฐ์กด์˜ ์ƒ์„ฑ ๋ชจ๋ธ์€ ๋Œ€๊ทœ๋ชจ ๋ฐ์ดํ„ฐ์…‹์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•™์Šต๋˜๋ฉฐ, ํ•œ ๋ฒˆ ํ•™์Šต๋œ ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ์ˆ˜์ •ํ•˜๊ฑฐ๋‚˜ ํŠน์ • ์ƒ˜ํ”Œ์„ ์ œ๊ฑฐํ•˜๋ ค๋ฉด ์ „์ฒด ๋ชจ๋ธ์„ ์žฌํ•™์Šตํ•ด์•ผ ํ•˜๋Š” ๋น„ํšจ์œจ์ ์ธ ๊ตฌ์กฐ๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ์—ˆ๋‹ค. ํŠนํžˆ ์–ผ๊ตด ํ•ฉ์„ฑ์ฒ˜๋Ÿผ ๊ฐœ์ธ ์‹๋ณ„์ด ๊ฐ€๋Šฅํ•œ ๋ฐ์ดํ„ฐ๋ฅผ ๋‹ค๋ฃจ๋Š” ๊ฒฝ์šฐ, ๋ฒ•์ ยท์œค๋ฆฌ์  ์š”๊ตฌ์— ๋”ฐ๋ผ ํŠน์ • ์ธ๋ฌผ์˜ ๋ฐ์ดํ„ฐ๋ฅผ ์ฆ‰์‹œ ์‚ญ์ œํ•  ํ•„์š”๊ฐ€ ์žˆ๋‹ค. SUGAR๋Š” ์ด๋Ÿฌํ•œ ์š”๊ตฌ๋ฅผ ์ถฉ์กฑ์‹œํ‚ค๊ธฐ ์œ„ํ•ด ๋‘ ๊ฐ€์ง€ ํ•ต์‹ฌ ์•„์ด๋””์–ด๋ฅผ ๋„์ž…ํ•œ๋‹ค.

Learning
Quantifying Memory Use in Reinforcement Learning with Temporal Range

Quantifying Memory Use in Reinforcement Learning with Temporal Range

Temporal Range๋Š” ๊ฐ•ํ™”ํ•™์Šต ์—์ด์ „ํŠธ๊ฐ€ ๊ณผ๊ฑฐ ๊ด€์ธก์„ ์–ผ๋งˆ๋‚˜ ํ™œ์šฉํ•˜๋Š”์ง€๋ฅผ ์ •๋Ÿ‰ํ™”ํ•˜๋ ค๋Š” ์‹œ๋„์—์„œ ์ถœ๋ฐœํ•œ๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ์—์„œ๋Š” ์ •์ฑ… ๋„คํŠธ์›Œํฌ์˜ ๊ตฌ์กฐ์  ๋ฉ”๋ชจ๋ฆฌ ์šฉ๋Ÿ‰(์˜ˆ: RNN์˜ hidden size)์ด๋‚˜ ํ›ˆ๋ จ๋œ ๋ชจ๋ธ์˜ ์„ฑ๋Šฅ์„ ํ†ตํ•ด ๊ฐ„์ ‘์ ์œผ๋กœ ์ถ”์ •ํ–ˆ์ง€๋งŒ, ์‹ค์ œ ์ž…๋ ฅโ€‘์ถœ๋ ฅ ๊ด€๊ณ„๊ฐ€ ์–ด๋А ์‹œ์ ๊นŒ์ง€ ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š”์ง€๋Š” ๋ช…ํ™•ํžˆ ๋“œ๋Ÿฌ๋‚˜์ง€ ์•Š์•˜๋‹ค. ์ด ๋…ผ๋ฌธ์€ ๊ทธ๋Ÿฐ ๊ณต๋ฐฑ์„ ๋ฉ”์šฐ๊ธฐ ์œ„ํ•ด โ€œ์‹œ๊ฐ„์  ์˜ํ–ฅ ํ”„๋กœํŒŒ์ผโ€์ด๋ผ๋Š” ๊ฐœ๋…์„ ๋„์ž…ํ•œ๋‹ค. ๊ตฌ์ฒด์ ์œผ๋กœ, ์‹œ์  t ์—์„œ ์ž…๋ ฅ x t ๊ฐ€ ์ดํ›„ ์‹œ์  s ( t < s โ‰ค T )์˜ ์ถœ๋ ฅ y s ์— ๋ฏธ์น˜๋Š” 1์ฐจ ๋ฏผ๊ฐ

Learning
Variational Quantum Rainbow Deep Q-Network for Optimizing Resource Allocation Problem

Variational Quantum Rainbow Deep Q-Network for Optimizing Resource Allocation Problem

๋ณธ ๋…ผ๋ฌธ์€ ์ „ํ†ต์ ์ธ ์‹ฌ์ธต ๊ฐ•ํ™”ํ•™์Šต์ด ์ง๋ฉดํ•œ ํ‘œํ˜„๋ ฅ ํ•œ๊ณ„๋ฅผ ์–‘์ž ์ปดํ“จํŒ…์˜ ๊ณ ์œ  ํŠน์„ฑ์„ ์ด์šฉํ•ด ๊ทน๋ณตํ•˜๊ณ ์ž ํ•˜๋Š” ์‹œ๋„์ด๋‹ค. ๊ธฐ์กด Rainbow DQN์€ Double DQN, Prioritized Experience Replay, Dueling Network, Multiโ€‘step Learning, Distributional RL ๋“ฑ ์—ฌ์„ฏ ๊ฐ€์ง€ ๊ฐœ์„  ๊ธฐ๋ฒ•์„ ํ†ตํ•ฉํ•ด ์„ฑ๋Šฅ์„ ๋Œ์–ด์˜ฌ๋ ธ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ด๋“ค ๋ชจ๋‘๋Š” ๊ณ ์ „์ ์ธ ๋‰ด๋Ÿด ๋„คํŠธ์›Œํฌ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•˜๋ฉฐ, ํŒŒ๋ผ๋ฏธํ„ฐ ์ˆ˜๊ฐ€ ๊ธ‰๊ฒฉํžˆ ์ฆ๊ฐ€ํ•˜๋ฉด ํ•™์Šต์ด ๋ถˆ์•ˆ์ •ํ•ด์ง€๊ณ  ๋ฉ”๋ชจ๋ฆฌ ์š”๊ตฌ๋Ÿ‰์ด ์ปค์ง€๋Š” ๋ฌธ์ œ๊ฐ€ ์žˆ๋‹ค. ๋ณ€๋ถ„ ์–‘์ž

Network
From Kinematics to Interference: Operational Requirements for the Quantum Principle of Relativity

From Kinematics to Interference: Operational Requirements for the Quantum Principle of Relativity

์ด ๋…ผ๋ฌธ์€ ์–‘์ž์—ญํ•™๊ณผ ์ƒ๋Œ€์„ฑ ์ด๋ก  ์‚ฌ์ด์˜ ์˜ค๋ž˜๋œ ๋ถˆ์ผ์น˜๋ฅผ ์ƒˆ๋กœ์šด ๊ด€์ ์—์„œ ์ ‘๊ทผํ•œ๋‹ค๋Š” ์ ์—์„œ ํ•™์ˆ ์  ์˜๋ฏธ๊ฐ€ ํฌ๋‹ค. ๊ธฐ์กด์˜ โ€˜์–‘์ž ์ƒ๋Œ€์„ฑ ์›๋ฆฌ(QPR)โ€™๋Š” ์ดˆ๊ด‘์† ๋กœ๋ Œ์ธ  ๋ณ€ํ™˜์„ ํ—ˆ์šฉํ•จ์œผ๋กœ์จ, ํŠน์ˆ˜ ์ƒ๋Œ€์„ฑ ์ด๋ก ์˜ ๊ธฐ๋ณธ ๊ฐ€์ •์ธ ๋น›์†๋„ ์ƒํ•œ์„ ํ˜•์‹์ ์œผ๋กœ ๊นจ๋œจ๋ฆฐ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ €์ž๋Š” ์ด ๋ณ€ํ™˜ ์ž์ฒด๊ฐ€ ๋ฌผ๋ฆฌ์  ์‹ค์žฌ๋ฅผ ์˜๋ฏธํ•˜์ง€ ์•Š์œผ๋ฉฐ, ์‹ค์ œ ๋ฌผ๋ฆฌํ•™์€ ์‹คํ—˜์  ์šด์˜ ์ •์˜์— ์˜ํ•ด ๊ทœ์ •๋œ๋‹ค๊ณ  ๊ฐ•์กฐํ•œ๋‹ค. ํŠนํžˆ ์–‘์ž ์ค‘์ฒฉ์„ โ€˜๋‹ค์ค‘ ๊ฒฝ๋กœโ€™๋ฅผ ๊ทธ๋ฆฌ๋Š” ํ–‰์œ„๊ฐ€ ์•„๋‹ˆ๋ผ, ์„œ๋กœ ๋‹ค๋ฅธ ๋Œ€์•ˆ์ด ๊ฐ„์„ญ ๊ณ ๋ฆฌ์—์„œ ์žฌ๊ฒฐํ•ฉํ•  ๋•Œ ๋‚˜ํƒ€๋‚˜๋Š” ๊ด€์ธก ๊ฐ€๋Šฅํ•œ ์œ„์ƒ ์ฐจ์ด์™€ ํ™•๋ฅ  ๋ถ„ํฌ๋กœ ์ •์˜ํ•œ๋‹ค๋Š”

Educational Cone Model in Embedding Vector Spaces

Educational Cone Model in Embedding Vector Spaces

๋ณธ ๋…ผ๋ฌธ์€ ๊ต์œก์šฉ ํ…์ŠคํŠธ์˜ ๋‚œ์ด๋„ ํ‰๊ฐ€์— ์žˆ์–ด ๊ธฐ์กด์˜ ๋‹จ์ˆœ ํ†ต๊ณ„ ๊ธฐ๋ฐ˜ ์ ‘๊ทผ๋ฒ•์ด ๊ฐ–๋Š” ํ•œ๊ณ„๋ฅผ ์ง€์ ํ•˜๊ณ , ์˜๋ฏธ๋ก ์  ์ž„๋ฒ ๋”ฉ ๊ณต๊ฐ„์„ ํ™œ์šฉํ•œ ์ƒˆ๋กœ์šด ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์‹œํ•œ๋‹ค. ํ˜„์žฌ ์ž์—ฐ์–ด ์ฒ˜๋ฆฌ ๋ถ„์•ผ์—์„œ๋Š” Word2Vec, GloVe, FastText, BERT, RoBERTa ๋“ฑ ์ˆ˜์‹ญ ๊ฐ€์ง€ ์ž„๋ฒ ๋”ฉ ๊ธฐ๋ฒ•์ด ์กด์žฌํ•˜๋ฉฐ, ๊ฐ๊ฐ์ด ํ…์ŠคํŠธ์˜ ์˜๋ฏธ์  ์œ ์‚ฌ์„ฑ์„ ๋‹ค๋ฅธ ๋ฐฉ์‹์œผ๋กœ ํฌ์ฐฉํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๊ต์œก ํ˜„์žฅ์—์„œ ์š”๊ตฌ๋˜๋Š” โ€œ๋‚œ์ด๋„โ€๋ผ๋Š” ์ถ”์ƒ์  ํŠน์„ฑ์€ ๋‹จ์ˆœํ•œ ์˜๋ฏธ ์œ ์‚ฌ๋„์™€๋Š” ๋ณ„๊ฐœ์˜ ์ฐจ์›์„ ๊ฐ€์ง„๋‹ค. ๋”ฐ๋ผ์„œ ์–ด๋–ค ์ž„๋ฒ ๋”ฉ์ด ๋‚œ์ด๋„ ๊ตฌ๋ถ„์— ๊ฐ€์žฅ ์ ํ•ฉํ•œ์ง€๋ฅผ ์‚ฌ์ „์— ์•Œ๊ธฐ ์–ด๋ ต๋‹ค

Model
Learning Single-Image Super-Resolution in the JPEG Compressed Domain

Learning Single-Image Super-Resolution in the JPEG Compressed Domain

๋ณธ ๋…ผ๋ฌธ์€ ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜ ์ด๋ฏธ์ง€ ๋ณต์› ๋ถ„์•ผ์—์„œ ํ”ํžˆ ๊ฐ„๊ณผ๋˜๋Š” ๋ฐ์ดํ„ฐ ์ „์ฒ˜๋ฆฌ ๋‹จ๊ณ„, ์ฆ‰ JPEG ๋””์ฝ”๋”ฉ ๊ณผ์ •์ด ์ „์ฒด ํŒŒ์ดํ”„๋ผ์ธ์˜ ํšจ์œจ์„ฑ์„ ํฌ๊ฒŒ ์ €ํ•ดํ•œ๋‹ค๋Š” ์ ์„ ์ •ํ™•ํžˆ ์งš์–ด๋ƒˆ๋‹ค. JPEG ํฌ๋งท์€ ์ด๋ฏธ์ง€ ๋ฐ์ดํ„ฐ๋ฅผ 8ร—8 ๋ธ”๋ก ๋‹จ์œ„์˜ ์ด์‚ฐ ์ฝ”์‚ฌ์ธ ๋ณ€ํ™˜(DCT) ๊ณ„์ˆ˜์™€ ์–‘์žํ™” ํ…Œ์ด๋ธ”๋กœ ์••์ถ•ํ•˜๋Š”๋ฐ, ์ด ๊ณผ์ •์—์„œ ์›๋ณธ ํ”ฝ์…€๊ฐ’์„ ๋ณต์›ํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ์—ญ๋ณ€ํ™˜๊ณผ ์—ญ์–‘์žํ™”๊ฐ€ ํ•„์š”ํ•˜๋‹ค. ์ด๋Ÿฌํ•œ ์—ฐ์‚ฐ์€ CPU ์ค‘์‹ฌ์˜ ์ž‘์—…์œผ๋กœ, GPU ๊ฐ€์†์ด ๊ฐ€๋Šฅํ•œ ๋”ฅ๋Ÿฌ๋‹ ์—ฐ์‚ฐ๊ณผ๋Š” ๋ณ„๋„๋กœ ์ˆ˜ํ–‰๋˜๋ฉฐ ๋ฉ”๋ชจ๋ฆฌ ๋Œ€์—ญํญ๊ณผ I/O ๋ณ‘๋ชฉ์„ ์ดˆ๋ž˜ํ•œ๋‹ค. ๋…ผ๋ฌธ์€ ์ด๋Ÿฌํ•œ ๋ณ‘๋ชฉ์„ ํ•ด์†Œํ•˜๊ธฐ ์œ„ํ•ด, D

Learning
NavMapFusion: Diffusion-based Fusion of Navigation Maps for Online Vectorized HD Map Construction

NavMapFusion: Diffusion-based Fusion of Navigation Maps for Online Vectorized HD Map Construction

๋ณธ ๋…ผ๋ฌธ์€ ์ž์œจ์ฃผํ–‰ ์ฐจ๋Ÿ‰์ด ํ•„์š”๋กœ ํ•˜๋Š” ๊ณ ์ •๋ฐ€ ์ง€๋„(HD ๋งต)๋ฅผ ์‹ค์‹œ๊ฐ„์œผ๋กœ ์ƒ์„ฑํ•˜๊ธฐ ์œ„ํ•œ ์ƒˆ๋กœ์šด ์ ‘๊ทผ๋ฒ•์„ ์ œ์‹œํ•œ๋‹ค. ๊ธฐ์กด์˜ HD ๋งต์€ ์‚ฌ์ „ ๊ตฌ์ถ•๋œ ์ •์  ์ง€๋„์— ์˜์กดํ–ˆ์œผ๋ฉฐ, ๋„๋กœ ๊ณต์‚ฌ, ์ผ์‹œ์  ์ฐจ์„  ๋ณ€๊ฒฝ ๋“ฑ ํ™˜๊ฒฝ ๋ณ€ํ™”์— ์ฆ‰๊ฐ์ ์œผ๋กœ ๋Œ€์‘ํ•˜์ง€ ๋ชปํ•˜๋Š” ํ•œ๊ณ„๊ฐ€ ์žˆ์—ˆ๋‹ค. ๋ฐ˜๋ฉด, ์ „ ์„ธ๊ณ„์ ์œผ๋กœ ๋„๋ฆฌ ๋ฐฐํฌ๋˜๋Š” ํ‘œ์ค€์ •๋ฐ€ ์ง€๋„(SD ๋งต, ์˜ˆ: OpenStreetMap)๋Š” ์ตœ์‹ ์„ฑ์„ ์œ ์ง€ํ•˜๊ธฐ๋Š” ์–ด๋ ค์šฐ๋‚˜, ๋Œ€๋žต์ ์ธ ๋„๋กœ ๊ตฌ์กฐ์™€ ์œ„์น˜ ์ •๋ณด๋ฅผ ์ œ๊ณตํ•œ๋‹ค๋Š” ์ ์—์„œ ์œ ์šฉํ•œ โ€˜๊ฑฐ์นœ ์‚ฌ์ „(prior)โ€™์œผ๋กœ ํ™œ์šฉ๋  ์ˆ˜ ์žˆ๋‹ค. ๋…ผ๋ฌธ์€ ์ด๋Ÿฌํ•œ ์ €ํ•ด์ƒ๋„ ์‚ฌ์ „์„ ๊ณ ํ•ด์ƒ๋„ ์„ผ์„œ

SELF: A Robust Singular Value and Eigenvalue Approach for LLM Fingerprinting

SELF: A Robust Singular Value and Eigenvalue Approach for LLM Fingerprinting

SELF ๋…ผ๋ฌธ์€ LLM์˜ ์ง€์‹์žฌ์‚ฐ ๋ณดํ˜ธ๋ฅผ ์œ„ํ•œ ๊ทผ๋ณธ์ ์ธ ์ ‘๊ทผ๋ฒ•์„ ์ œ์‹œํ•œ๋‹ค๋Š” ์ ์—์„œ ์˜๋ฏธ๊ฐ€ ํฌ๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค์€ ์ฃผ๋กœ ๋ชจ๋ธ์˜ ์ถœ๋ ฅ ํ–‰๋™(์˜ˆ: ํŠน์ • ํ”„๋กฌํ”„ํŠธ์— ๋Œ€ํ•œ ์‘๋‹ต)์ด๋‚˜ ๊ตฌ์กฐ์  ๋ฉ”ํƒ€๋ฐ์ดํ„ฐ(์˜ˆ: ๋ ˆ์ด์–ด๋ณ„ ํŒŒ๋ผ๋ฏธํ„ฐ ๋ถ„ํฌ)๋ฅผ ํ™œ์šฉํ•ด ์ง€๋ฌธ์„ ์ƒ์„ฑํ–ˆ์œผ๋ฉฐ, ์ด๋Ÿฌํ•œ ๋ฐฉ์‹์€ ๊ณต๊ฒฉ์ž๊ฐ€ ๋ชจ๋ธ์„ ๋ฏธ์„ธ์กฐ์ •ํ•˜๊ฑฐ๋‚˜ ๊ฐ€์ค‘์น˜๋ฅผ ์žฌ๋ฐฐ์—ดํ•˜๋Š” ๊ฒฝ์šฐ ์‰ฝ๊ฒŒ ํšŒํ”ผ๋  ์ˆ˜ ์žˆ์—ˆ๋‹ค. SELF๋Š” ์ด๋Ÿฌํ•œ ๋ฌธ์ œ์ ์„ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด โ€˜๋‚ด์žฌ์  ๊ฐ€์ค‘์น˜ ๊ธฐ๋ฐ˜โ€™์ด๋ผ๋Š” ์ƒˆ๋กœ์šด ํŒจ๋Ÿฌ๋‹ค์ž„์„ ๋„์ž…ํ•œ๋‹ค. ๊ตฌ์ฒด์ ์œผ๋กœ, ์–ดํ…์…˜ ๋ฉ”์ปค๋‹ˆ์ฆ˜์˜ ๊ฐ€์ค‘์น˜ ํ–‰๋ ฌ์„ ํŠน์ด๊ฐ’ ๋ถ„ํ•ด(SVD)์™€ ๊ณ ์œ ๊ฐ’ ๋ถ„ํ•ด(EVD)๋กœ ๋ถ„์„

Text-Printed Image: Bridging the Image-Text Modality Gap for Text-centric Training of Large Vision-Language Models

Text-Printed Image: Bridging the Image-Text Modality Gap for Text-centric Training of Large Vision-Language Models

๋ณธ ๋…ผ๋ฌธ์€ ๋Œ€ํ˜• ๋น„์ „โ€‘์–ธ์–ด ๋ชจ๋ธ(LVLM)์˜ ํ•™์Šต ๋น„์šฉ์„ ํฌ๊ฒŒ ๋‚ฎ์ถœ ์ˆ˜ ์žˆ๋Š” ์ƒˆ๋กœ์šด ๋ฐ์ดํ„ฐ ์ƒ์„ฑ ๋ฐฉ์‹์„ ์ œ์‹œํ•œ๋‹ค๋Š” ์ ์—์„œ ์˜๋ฏธ๊ฐ€ ํฌ๋‹ค. ๊ธฐ์กด LVLM์€ ์ด๋ฏธ์ง€โ€‘ํ…์ŠคํŠธ ์Œ์„ ๋Œ€๊ทœ๋ชจ๋กœ ์ˆ˜์ง‘ํ•ด์•ผ ํ•˜๋Š”๋ฐ, ์ด๋Š” ์ดฌ์˜ยท์ €์ž‘๊ถŒยทํ”„๋ผ์ด๋ฒ„์‹œ ๋“ฑ ์—ฌ๋Ÿฌ ์ œ์•ฝ์œผ๋กœ ์ธํ•ด ํŠนํžˆ ์˜๋ฃŒยท๋ฒ•๋ฅ ยท์‚ฐ์—… ํ˜„์žฅ ๋“ฑ ํŠน์ˆ˜ ๋„๋ฉ”์ธ์—์„œ ์–ด๋ ค์›€์„ ๊ฒช๋Š”๋‹ค. ๋ฐ˜๋ฉด ํ…์ŠคํŠธ๋Š” ์›นยท๋…ผ๋ฌธยท๋ณด๊ณ ์„œ ๋“ฑ์—์„œ ์†์‰ฝ๊ฒŒ ํ™•๋ณดํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ, ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(LLM)์„ ์ด์šฉํ•ด ์ž๋™์œผ๋กœ ๋ณ€ํ˜•ยทํ™•์žฅํ•  ์ˆ˜ ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ํ…์ŠคํŠธ๋งŒ์œผ๋กœ LVLM์„ ํ•™์Šตํ•˜๋ฉด โ€˜๋ชจ๋‹ฌ๋ฆฌํ‹ฐ ๊ฒฉ์ฐจ(modality gap)โ€™๊ฐ€ ๋ฐœ์ƒํ•œ๋‹ค

Model
From Panel to Pixel: Zoom-In Vision-Language Pretraining from Biomedical Scientific Literature

From Panel to Pixel: Zoom-In Vision-Language Pretraining from Biomedical Scientific Literature

Panel2Patch๋Š” ๋ฐ”์ด์˜ค๋ฉ”๋””์ปฌ ์ด๋ฏธ์ง€โ€‘ํ…์ŠคํŠธ ํ•™์Šต ๋ถ„์•ผ์—์„œ ๊ธฐ์กด์˜ โ€œ๊ทธ๋ฆผโ€‘์ „์ฒดโ€ ์ ‘๊ทผ๋ฒ•์ด ๊ฐ–๋Š” ๊ทผ๋ณธ์ ์ธ ํ•œ๊ณ„๋ฅผ ๋›ฐ์–ด๋„˜๋Š”๋‹ค. ์ „ํ†ต์ ์ธ ์‚ฌ์ „ํ•™์Šต ํŒŒ์ดํ”„๋ผ์ธ์€ ๋…ผ๋ฌธ์— ์‹ค๋ฆฐ ๋ณตํ•ฉ์ ์ธ ๋ฉ€ํ‹ฐํŒจ๋„ ๊ทธ๋ฆผ์„ ํ•˜๋‚˜์˜ ์ด๋ฏธ์ง€โ€‘์บก์…˜ ์Œ์œผ๋กœ ๋‹จ์ˆœํ™”ํ•œ๋‹ค. ์ด ๊ณผ์ •์—์„œ ๊ฐ ํŒจ๋„์ด ์ „๋‹ฌํ•˜๋Š” ๊ตฌ์ฒด์ ์ธ ์‹คํ—˜ ๊ฒฐ๊ณผ, ์„ธํฌ ๊ตฌ์กฐ, ํ˜น์€ ๋งˆ์ปค ๋ผ๋ฒจ๋ง๊ณผ ๊ฐ™์€ ๋ฏธ์„ธํ•œ ์˜๋ฏธ๊ฐ€ ์†์‹ค๋œ๋‹ค. ์ž„์ƒ์˜๋‚˜ ์—ฐ๊ตฌ์ž๋Š” ์‹ค์ œ ์ง„๋‹จยท๋ถ„์„ ๋‹จ๊ณ„์—์„œ ํŠน์ • ์˜์—ญ์„ ํ™•๋Œ€ํ•ด ํ™•์ธํ•˜๋ฏ€๋กœ, ์ด๋Ÿฌํ•œ ๋ฏธ์„ธ ์ •๋ณด๊ฐ€ ๋ชจ๋ธ์— ๋ฐ˜์˜๋˜์ง€ ์•Š์œผ๋ฉด ์‹ค์ œ ํ™œ์šฉ๋„๋Š” ์ œํ•œ์ ์ด๋‹ค. Panel2Patch๋Š” ๋จผ์ € ๊ทธ๋ฆผ ๋ ˆ์ด์•„

Agentic Policy Optimization via Instruction-Policy Co-Evolution

Agentic Policy Optimization via Instruction-Policy Co-Evolution

๋ณธ ๋…ผ๋ฌธ์€ RLVR(๊ฐ•ํ™”ํ•™์Šต ๊ธฐ๋ฐ˜ ๊ฒ€์ฆ ๋ณด์ƒ) ์‹œ์Šคํ…œ์—์„œ ์ง€์‹œ๋ฌธ์ด ์ •์ ์ธ ์„ค๊ณ„์— ๋จธ๋ฌด๋ฅด๋Š” ํ•œ๊ณ„๋ฅผ ์ •ํ™•ํžˆ ์งš์–ด๋‚ธ๋‹ค. LLM์€ ์‚ฌ์ „ ํ•™์Šต๋œ ์–ธ์–ด ๋ชจ๋ธ์ด์ง€๋งŒ, ์‹ค์ œ ํ™˜๊ฒฝ์—์„œ์˜ ํ–‰๋™ ์ •์ฑ…์€ ์ง€์†์ ์œผ๋กœ ๋ณ€ํ™”ํ•œ๋‹ค. ๋”ฐ๋ผ์„œ ์ดˆ๊ธฐ ์„ค๊ณ„๋œ ํ”„๋กฌํ”„ํŠธ๊ฐ€ ์ตœ์ ์ด ์•„๋‹ ๊ฐ€๋Šฅ์„ฑ์ด ํฌ๋ฉฐ, ์ •์ฑ…์ด ์ง„ํ™”ํ•จ์— ๋”ฐ๋ผ ์ง€์‹œ๋ฌธ๋„ ๋™์ ์œผ๋กœ ์กฐ์ •๋  ํ•„์š”๊ฐ€ ์žˆ๋‹ค. INSPO๋Š” ์ด๋Ÿฌํ•œ ์š”๊ตฌ๋ฅผ ์ถฉ์กฑ์‹œํ‚ค๊ธฐ ์œ„ํ•ด โ€˜์ง€์‹œโ€‘์ •์ฑ… ๊ณต๋™ ์ง„ํ™”โ€™๋ผ๋Š” ์ƒˆ๋กœ์šด ํ•™์Šต ๋ฃจํ”„๋ฅผ ๋„์ž…ํ•œ๋‹ค. ํ•ต์‹ฌ ์•„์ด๋””์–ด๋Š” ์ง€์‹œ๋ฌธ์„ ๊ฐœ๋ณ„์ ์ธ ๊ฐœ์ฒด๋กœ ๋ณด๊ณ , ๊ฐ•ํ™”ํ•™์Šต ๋ณด์ƒ์„ ๊ฐ ์ง€์‹œ๋ฌธ์— ๊ท€์†์‹œ์ผœ ์„ฑ๋Šฅ ๊ธฐ๋ฐ˜ ์„ ํƒยท์‚ญ์ œ ๊ณผ์ •

IVE: An Accelerator for Single-Server Private Information Retrieval Using Versatile Processing Elements

IVE: An Accelerator for Single-Server Private Information Retrieval Using Versatile Processing Elements

ํ”„๋ผ์ด๋น— ์ •๋ณด ๊ฒ€์ƒ‰(PIR)์€ ์‚ฌ์šฉ์ž๊ฐ€ ์–ด๋–ค ๋ ˆ์ฝ”๋“œ๋ฅผ ์กฐํšŒํ–ˆ๋Š”์ง€ ์„œ๋ฒ„์— ๋…ธ์ถœ๋˜์ง€ ์•Š๋„๋ก ํ•˜๋Š” ์•”ํ˜ธํ•™์  ํ”„๋กœํ† ์ฝœ๋กœ, ํŠนํžˆ ํด๋ผ์šฐ๋“œ ์„œ๋น„์Šค๋‚˜ ์˜๋ฃŒยท๊ธˆ์œต ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค์™€ ๊ฐ™์ด ๊ฐœ์ธ์ •๋ณด ๋ณดํ˜ธ๊ฐ€ ํ•„์ˆ˜์ ์ธ ๋ถ„์•ผ์—์„œ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•œ๋‹ค. ์ „ํ†ต์ ์ธ ๋‹ค์ค‘ ์„œ๋ฒ„ PIR์€ ์„œ๋ฒ„ ๊ฐ„ ํ˜‘์—…์„ ์ „์ œ๋กœ ํ•˜์—ฌ ํ†ต์‹  ์˜ค๋ฒ„ํ—ค๋“œ์™€ ์‹ ๋ขฐ ๊ด€๊ณ„ ์„ค์ •์ด ๋ณต์žกํ•˜์ง€๋งŒ, ๋‹จ์ผ ์„œ๋ฒ„ PIR์€ ์„œ๋ฒ„ ํ•˜๋‚˜๋งŒ ์žˆ์œผ๋ฉด ๋˜๋ฏ€๋กœ ๋ฐฐํฌ๊ฐ€ ๊ฐ„๋‹จํ•˜๊ณ  ๋น„์šฉ ํšจ์œจ์ ์ด๋‹ค. ์ตœ๊ทผ ๋™ํ˜•์•”ํ˜ธ(Homomorphic Encryption, HE) ๊ธฐ๋ฐ˜ ๋‹จ์ผ ์„œ๋ฒ„ PIR๊ฐ€ ์—ฐ๊ตฌ๋˜๋ฉด์„œ, ์•”ํ˜ธ๋ฌธ ์ƒํƒœ์—์„œ ์ง์ ‘ ์—ฐ์‚ฐ์ด

Polynomial Neural Sheaf Diffusion: A Spectral Filtering Approach on Cellular Sheaves

Polynomial Neural Sheaf Diffusion: A Spectral Filtering Approach on Cellular Sheaves

Sheaf Neural Network(์ดํ•˜ SheafNN)๋Š” ์ „ํ†ต์ ์ธ ๊ทธ๋ž˜ํ”„ ์‹ ๊ฒฝ๋ง์ด ์ •์ ๋งˆ๋‹ค ๋™์ผํ•œ ํŠน์„ฑ ๊ณต๊ฐ„์„ ๊ฐ€์ •ํ•˜๋Š” ํ•œ๊ณ„๋ฅผ ๋„˜์–ด, ๊ฐ ์ •์ ์— ๋…๋ฆฝ์ ์ธ ๋ฒกํ„ฐ ๊ณต๊ฐ„(์Šคํ† ํฌ)์„ ํ• ๋‹นํ•˜๊ณ , ์ธ์ ‘ ์ •์  ์‚ฌ์ด์— ์„ ํ˜• ์ „์†ก(์ œํ•œ) ๋งต์„ ํ•™์Šตํ•จ์œผ๋กœ์จ ์ด์งˆ์„ฑ(homophily)๊ณผ ๊ณผํ‰ํ™œ(overโ€‘smoothing) ๋ฌธ์ œ๋ฅผ ๊ตฌ์กฐ์ ์œผ๋กœ ํ•ด๊ฒฐํ•œ๋‹ค๋Š” ์ ์—์„œ ํ˜์‹ ์ ์ด๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ํ˜„์žฌ ๊ฐ€์žฅ ๋„๋ฆฌ ์‚ฌ์šฉ๋˜๋Š” ํ™•์‚ฐ ๋ฉ”์ปค๋‹ˆ์ฆ˜์ธ Neural Sheaf Diffusion(NSD)์€ ๋‘ ๊ฐ€์ง€ ์ฃผ์š” ๋ณ‘๋ชฉ์„ ๊ฐ€์ง„๋‹ค. ์ฒซ์งธ, ์ •๊ทœํ™” ๊ณผ์ •์—์„œ SVD(ํŠน์ด๊ฐ’ ๋ถ„ํ•ด)๋ฅผ ์‚ฌ์šฉ

Privacy in Federated Learning with Spiking Neural Networks

Privacy in Federated Learning with Spiking Neural Networks

์ŠคํŒŒ์ดํ‚น ์‹ ๊ฒฝ๋ง(SNN)์ด ์ตœ๊ทผ ์—ฃ์ง€ ๋””๋ฐ”์ด์Šค์™€ ์ €์ „๋ ฅ AI ์†”๋ฃจ์…˜์—์„œ ๊ฐ๊ด‘๋ฐ›๋Š” ์ด์œ ๋Š”, ๋‰ด๋Ÿฐ์ด ์ŠคํŒŒ์ดํฌ(์ด์‚ฐ์ ์ธ ์ „๊ธฐ ํŽ„์Šค) ํ˜•ํƒœ๋กœ ์ •๋ณด๋ฅผ ์ „๋‹ฌํ•จ์œผ๋กœ์จ ์—ฐ์‚ฐ๋Ÿ‰๊ณผ ์—๋„ˆ์ง€ ์†Œ๋น„๋ฅผ ์ตœ์†Œํ™”ํ•  ์ˆ˜ ์žˆ๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค. ์ด๋Ÿฌํ•œ ๊ตฌ์กฐ์  ํŠน์„ฑ์€ ๊ธฐ์กด์˜ ์—ฐ์†์ ์ธ ํ™œ์„ฑ๊ฐ’์„ ์‚ฌ์šฉํ•˜๋Š” ์ธ๊ณต์‹ ๊ฒฝ๋ง(ANN)๊ณผ ๊ทผ๋ณธ์ ์œผ๋กœ ๋‹ค๋ฅด๋ฉฐ, ํŠนํžˆ ํ•™์Šต ๊ณผ์ •์—์„œ๋„ ์ฐจ๋ณ„์ ์„ ๋งŒ๋“ ๋‹ค. ANN์€ ์—ญ์ „ํŒŒ๋ฅผ ํ†ตํ•ด ์ •ํ™•ํ•œ ๋ฏธ๋ถ„๊ฐ’์„ ๊ณ„์‚ฐํ•ด ๊ฐ€์ค‘์น˜๋ฅผ ์—…๋ฐ์ดํŠธํ•˜์ง€๋งŒ, SNN์€ ์ŠคํŒŒ์ดํฌ ๋ฐœ์ƒ ์ž์ฒด๊ฐ€ ๋น„๋ฏธ๋ถ„ ๊ฐ€๋Šฅํ•˜๊ธฐ ๋•Œ๋ฌธ์— ๋Œ€๋ฆฌ ๊ทธ๋ž˜๋””์–ธํŠธ(surrogate gradient)๋ผ๋Š” ๊ทผ์‚ฌ ๋ฐฉ๋ฒ•์„ ๋„

Network Learning
Can Vibe Coding Beat Graduate CS Students? An LLM vs. Human Coding Tournament on Market-driven Strategic Planning

Can Vibe Coding Beat Graduate CS Students? An LLM vs. Human Coding Tournament on Market-driven Strategic Planning

์ด ๋…ผ๋ฌธ์€ ํ˜„์žฌ LLM ๊ธฐ๋ฐ˜ ์ฝ”๋“œ ์ƒ์„ฑ ์—ฐ๊ตฌ๊ฐ€ ์ง๋ฉดํ•œ ๊ทผ๋ณธ์ ์ธ ํ‰๊ฐ€ ๋ฌธ์ œ๋ฅผ ์งš์–ด๋‚ธ๋‹ค. ๋Œ€๋ถ€๋ถ„์˜ ๊ธฐ์กด ๋ฒค์น˜๋งˆํฌ๋Š” ๋‹จ์ˆœํžˆ ์ฝ”๋“œ๊ฐ€ ๋ฌธ๋ฒ•์ ์œผ๋กœ ์˜ฌ๋ฐ”๋ฅธ์ง€, ํ˜น์€ ์‚ฌ์ „ ์ •์˜๋œ ํ…Œ์ŠคํŠธ ์ผ€์ด์Šค๋ฅผ ํ†ต๊ณผํ•˜๋Š”์ง€๋งŒ์„ ํ™•์ธํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์‹ค์ œ ์‚ฐ์—… ํ˜„์žฅ์—์„œ๋Š” ์ฝ”๋“œ๊ฐ€ ๋ณต์žกํ•œ ์˜์‚ฌ๊ฒฐ์ • ํ๋ฆ„, ์ตœ์ ํ™” ์•Œ๊ณ ๋ฆฌ์ฆ˜, ๊ทธ๋ฆฌ๊ณ  ๋‹ค์ค‘ ์—์ด์ „ํŠธ ๊ฐ„์˜ ์ „๋žต์  ์ƒํ˜ธ์ž‘์šฉ์„ ํšจ๊ณผ์ ์œผ๋กœ ๊ตฌํ˜„ํ•ด์•ผ ํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ์š”๊ตฌ๋ฅผ ๋ฐ˜์˜ํ•˜๊ธฐ ์œ„ํ•ด ์—ฐ๊ตฌ์ง„์€ Auctionโ€‘Pickupโ€‘Delivery Problem(APDP)์ด๋ผ๋Š” ๋ณตํ•ฉ ๋ฌผ๋ฅ˜ ๋ฌธ์ œ๋ฅผ ์„ ํƒํ–ˆ๋‹ค. APDP๋Š” ์ž…์ฐฐ ๋‹จ๊ณ„์—์„œ ๋ถˆํ™•์‹คํ•œ ๊ฒฝ์Ÿ ์ƒํ™ฉ

Leveraging LLMs for reward function design in reinforcement learning control tasks

Leveraging LLMs for reward function design in reinforcement learning control tasks

๋ณธ ๋…ผ๋ฌธ์ด ์ œ์‹œํ•˜๋Š” LEARNโ€‘Opt ํ”„๋ ˆ์ž„์›Œํฌ๋Š” ๊ฐ•ํ™”ํ•™์Šต์—์„œ ๋ณด์ƒ ํ•จ์ˆ˜๋ฅผ ์„ค๊ณ„ํ•˜๋Š” ์ „ํ†ต์ ์ธ ์›Œํฌํ”Œ๋กœ์šฐ๋ฅผ ๊ทผ๋ณธ์ ์œผ๋กœ ์žฌ๊ตฌ์„ฑํ•œ๋‹ค๋Š” ์ ์—์„œ ํ•™์ˆ ์ ยท์‹ค์šฉ์  ์˜์˜๊ฐ€ ํฌ๋‹ค. ๊ธฐ์กด ๋ฐฉ๋ฒ•๋“ค์€ ๋ณดํ†ต ๋‘ ๋‹จ๊ณ„, ์ฆ‰(1) ์ธ๊ฐ„์ด ์ •์˜ํ•œ ๋ฉ”ํŠธ๋ฆญ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ›„๋ณด ๋ณด์ƒ ํ•จ์ˆ˜๋ฅผ ์ƒ์„ฑํ•˜๊ณ , (2) ์ธ๊ฐ„ ํ˜น์€ ์ „๋ฌธ๊ฐ€ ํ”ผ๋“œ๋ฐฑ์„ ํ†ตํ•ด ํ›„๋ณด๋ฅผ ์ •์ œํ•˜๋Š” ๊ณผ์ •์„ ๊ฑฐ์นœ๋‹ค. ์ด๋Ÿฌํ•œ ์ ‘๊ทผ์€ ์ธ๊ฐ„ ์ „๋ฌธ๊ฐ€์˜ ๊ฐ€์šฉ์„ฑ์— ํฌ๊ฒŒ ์˜์กดํ•˜๋ฉฐ, ํŠนํžˆ ๋ณต์žกํ•œ ๋„๋ฉ”์ธ์—์„œ๋Š” ๋ฉ”ํŠธ๋ฆญ ์„ค๊ณ„ ์ž์ฒด๊ฐ€ ์–ด๋ ค์šด ๋ฌธ์ œ๋‹ค. LEARNโ€‘Opt๋Š” LLM์„ ํ™œ์šฉํ•ด ์‹œ์Šคํ…œ ์„ค๋ช…๊ณผ ๊ณผ์ œ ๋ชฉํ‘œ๋งŒ์„ ์ž…๋ ฅ์œผ๋กœ ๋ฐ›์•„, ์ž๋™์œผ

Learning
Re-Key-Free, Risky-Free: Adaptable Model Usage Control

Re-Key-Free, Risky-Free: Adaptable Model Usage Control

ADALOC์ด ์ œ์‹œํ•˜๋Š” ํ•ต์‹ฌ ์•„์ด๋””์–ด๋Š” โ€œํ‚ค ์˜์—ญ(Access Key Region)โ€์„ ๋ชจ๋ธ ํŒŒ๋ผ๋ฏธํ„ฐ์˜ ์ผ๋ถ€๋กœ ๊ณ ์ •ํ•˜๊ณ , ์ดํ›„ ๋ฐœ์ƒํ•˜๋Š” ๋ชจ๋“  ํŒŒ์ธํŠœ๋‹ยท์ „์ดํ•™์Šตยท๋„๋ฉ”์ธ ์ ์‘ ๋“ฑ์„ ์ด ์˜์—ญ์—๋งŒ ์ œํ•œํ•œ๋‹ค๋Š” ์ ์ด๋‹ค. ๊ธฐ์กด์˜ ํ‚ค ๊ธฐ๋ฐ˜ ๋ณดํ˜ธ ๋ฐฉ์‹์€ ์ „์ฒด ํŒŒ๋ผ๋ฏธํ„ฐ์— ์•”ํ˜ธํ™”๋œ ๋งˆ์Šคํฌ๋ฅผ ์ ์šฉํ•˜๊ฑฐ๋‚˜, ํŠน์ • ๋ ˆ์ด์–ด์— ๋น„๋ฐ€๊ฐ’์„ ์‚ฝ์ž…ํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฐฉ๋ฒ•์€ ๋ชจ๋ธ์ด ์—…๋ฐ์ดํŠธ๋  ๋•Œ ๋งˆ์Šคํฌ๊ฐ€ ์†์ƒ๋˜๊ฑฐ๋‚˜, ์ƒˆ๋กœ์šด ํŒŒ๋ผ๋ฏธํ„ฐ๊ฐ€ ํ‚ค์™€ ๋…๋ฆฝ์ ์œผ๋กœ ๋ณ€ํ˜•๋ผ ๋ณดํ˜ธ๊ฐ€ ๋ฌดํšจํ™”๋˜๋Š” ๋ฌธ์ œ๊ฐ€ ์žˆ๋‹ค. ADALOC์€ ์ฒ˜์Œ ํ‚ค๋ฅผ ์„ ์ •ํ•  ๋•Œ, ๋ชจ๋ธ์˜ ์†์‹ค ๊ณก๋ฉด๊ณผ ํŒŒ๋ผ๋ฏธํ„ฐ ๋ฏผ๊ฐ๋„๋ฅผ ๋ถ„์„ํ•ด โ€œ์—…๋ฐ

Model
Understanding Accelerator Compilers via Performance Profiling

Understanding Accelerator Compilers via Performance Profiling

๋ณธ ๋…ผ๋ฌธ์€ ๊ฐ€์†๊ธฐ ์„ค๊ณ„ ์–ธ์–ด(ADL) ์ปดํŒŒ์ผ๋Ÿฌ๊ฐ€ ๊ฐ–๋Š” ๋ณธ์งˆ์ ์ธ ๋ณต์žก์„ฑ๊ณผ ์˜ˆ์ธก ๋ถˆ๊ฐ€๋Šฅ์„ฑ์„ ์ง€์ ํ•˜๊ณ , ์ด๋ฅผ ๋ณด์™„ํ•˜๊ธฐ ์œ„ํ•œ ํ”„๋กœํŒŒ์ผ๋ง ๋„๊ตฌ์˜ ํ•„์š”์„ฑ์„ ์„ค๋“๋ ฅ ์žˆ๊ฒŒ ์ œ์‹œํ•œ๋‹ค. ADL์€ ํ•˜๋“œ์›จ์–ด ์„ค๊ณ„์™€ ์†Œํ”„ํŠธ์›จ์–ด ๊ฐœ๋ฐœ ์‚ฌ์ด์˜ ์ค‘๊ฐ„ ๋‹จ๊ณ„์— ์œ„์น˜ํ•ด, ๋†’์€ ์ƒ์‚ฐ์„ฑ๊ณผ ์„ฑ๋Šฅ์„ ๋™์‹œ์— ์ถ”๊ตฌํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๊ณ ์ˆ˜์ค€ ์–ธ์–ด์˜ ์ถ”์ƒํ™”์™€ ์‚ฌ์ดํดโ€‘์ •๋ฐ€ ํ•˜๋“œ์›จ์–ด ๊ตฌํ˜„ ์‚ฌ์ด์˜ ๋ณ€ํ™˜ ๊ณผ์ •์€ ๋‹ค์ค‘ ๋‹จ๊ณ„ ์ตœ์ ํ™”์™€ ๋ณต์žกํ•œ ์Šค์ผ€์ค„๋ง์„ ์š”๊ตฌํ•œ๋‹ค. ํŠนํžˆ, ๋ฐ์ดํ„ฐ ๊ฒฝ๋กœ ์ตœ์ ํ™”์™€ ์ œ์–ด ํ๋ฆ„ ๋ณ€ํ™˜์€ ์„œ๋กœ ์ƒ์ถฉ๋˜๋Š” ๋ชฉํ‘œ๋ฅผ ๊ฐ€์งˆ ์ˆ˜ ์žˆ์–ด, ์ปดํŒŒ์ผ๋Ÿฌ๋Š” ํœด๋ฆฌ์Šคํ‹ฑ ๊ธฐ๋ฐ˜ ์˜์‚ฌ๊ฒฐ์ •์„ ๋ฐ˜๋ณตํ•œ๋‹ค. ์ด๋Ÿฌ

VADE: Variance-Aware Dynamic Sampling via Online Sample-Level Difficulty Estimation for Multimodal RL

VADE: Variance-Aware Dynamic Sampling via Online Sample-Level Difficulty Estimation for Multimodal RL

GRPO์™€ GSPO์™€ ๊ฐ™์€ ๊ทธ๋ฃน ๊ธฐ๋ฐ˜ ์ •์ฑ… ์ตœ์ ํ™” ๊ธฐ๋ฒ•์€ ๋‹ค์ค‘๋ชจ๋‹ฌ ๋ชจ๋ธ์ด ๋ณต์žกํ•œ ์ž…๋ ฅโ€‘์ถœ๋ ฅ ๊ด€๊ณ„๋ฅผ ํ•™์Šตํ•˜๋„๋ก ์„ค๊ณ„๋˜์—ˆ์œผ๋ฉฐ, ๊ทธ๋ฃน๋ณ„ ๋กค์•„์›ƒ์„ ํ†ตํ•ด ๋‹ค์–‘ํ•œ ์ƒํ™ฉ์— ๋Œ€ํ•œ ํ–‰๋™์„ ๋™์‹œ์— ํ‰๊ฐ€ํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ์ ‘๊ทผ๋ฒ•์˜ ํ•ต์‹ฌ ์žฅ์ ์€ โ€œ์ƒ๋Œ€ ์ด์ (relative advantage)โ€์„ ์ด์šฉํ•ด ๋™์ผํ•œ ๋ณด์ƒ์„ ๋ฐ›์€ ์ƒ˜ํ”Œ๋“ค ์‚ฌ์ด์—์„œ๋„ ๋ฏธ์„ธํ•œ ์ฐจ์ด๋ฅผ ํฌ์ฐฉํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ์ ์ด๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์‹ค์ œ ํ•™์Šต ๊ณผ์ •์—์„œ ํŠน์ • ๊ทธ๋ฃน ๋‚ด ๋ชจ๋“  ์‘๋‹ต์ด ๋™์ผํ•œ ๋ณด์ƒ์„ ๋ฐ›๋Š” ๊ฒฝ์šฐ, ์ด์  ์ถ”์ •๊ฐ’์ด 0์— ์ˆ˜๋ ดํ•˜๊ฒŒ ๋˜๊ณ , ๊ฒฐ๊ณผ์ ์œผ๋กœ ์ •์ฑ… ์—…๋ฐ์ดํŠธ์— ํ•„์š”ํ•œ ๊ทธ๋ž˜๋””์–ธํŠธ๊ฐ€ ์‚ฌ๋ผ์ง€๋Š” โ€˜๊ทธ๋ผ๋””์–ธ

Evaluating perturbation robustness of generative systems that use COBOL code inputs

Evaluating perturbation robustness of generative systems that use COBOL code inputs

๋ณธ ๋…ผ๋ฌธ์ด ๋‹ค๋ฃจ๋Š” ํ•ต์‹ฌ ๋ฌธ์ œ๋Š” โ€œLLM ๊ธฐ๋ฐ˜ ์‹œ์Šคํ…œ์ด ์ž…๋ ฅ ์ฝ”๋“œ์˜ ์‚ฌ์†Œํ•œ ๋ณ€ํ˜•์— ์–ผ๋งˆ๋‚˜ ์ทจ์•ฝํ•œ๊ฐ€โ€๋ผ๋Š” ์งˆ๋ฌธ์ด๋‹ค. ํŠนํžˆ COBOL์ด๋ผ๋Š” ๋ ˆ๊ฑฐ์‹œ ์–ธ์–ด๋Š” ๊ธˆ์œตยท๋ณดํ—˜ยท์ •๋ถ€ ๋“ฑ ํ•ต์‹ฌ ์‚ฐ์—…์—์„œ ์•„์ง๋„ ๋Œ€๊ทœ๋ชจ ์šด์˜ ์‹œ์Šคํ…œ์„ ์ง€ํƒฑํ•˜๊ณ  ์žˆ์œผ๋ฉฐ, ๊ทธ ์ฝ”๋“œ๋ฒ ์ด์Šค๋Š” ๋Œ€๋ถ€๋ถ„ ํ์‡„ํ˜•์ด๋ฉฐ LLM ํ›ˆ๋ จ ๋ฐ์ดํ„ฐ์— ํฌํ•จ๋˜์ง€ ์•Š๋Š”๋‹ค. ๋”ฐ๋ผ์„œ ๊ธฐ์กด์˜ LLM ํ‰๊ฐ€ ๋ฐฉ๋ฒ•์„ ๊ทธ๋Œ€๋กœ ์ ์šฉํ•˜๊ธฐ ์–ด๋ ต๋‹ค. ์ €์ž๋“ค์€ ์ด๋Ÿฌํ•œ ์ƒํ™ฉ์„ ์ธ์‹ํ•˜๊ณ , COBOL ์ฝ”๋“œ๋ฅผ ๋Œ€์ƒ์œผ๋กœ ํ•˜๋Š” ์ „์šฉ ๊ฒฌ๊ณ ์„ฑ ํ‰๊ฐ€ ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์„ค๊ณ„ํ•˜์˜€๋‹ค. ์ฒซ ๋ฒˆ์งธ ๊ธฐ์—ฌ๋Š” โ€œCOBOL ํŒŒ๋ผ๊ทธ๋ž˜ํ”„ ๋ฐ ์ „์ฒด ํ”„๋กœ๊ทธ๋žจ ์ˆ˜์ค€์˜ ๋ณ€

System
GNSS Jammer Direction Finding in Dynamic Scenarios Using an Inertial-based Multi-Antenna System

GNSS Jammer Direction Finding in Dynamic Scenarios Using an Inertial-based Multi-Antenna System

๋ณธ ๋…ผ๋ฌธ์€ GNSS ์žฌ๋ฐ ์‹ ํ˜ธ ํƒ์ง€ยท์œ„์น˜์ถ”์ • ๋ถ„์•ผ์—์„œ ๋‘ ๊ฐ€์ง€ ํ˜์‹ ์ ์ธ ์š”์†Œ๋ฅผ ๊ฒฐํ•ฉํ•œ๋‹ค. ์ฒซ์งธ, ์ €๋น„์šฉยท๋ฒ”์šฉ์ ์ธ SDR ํ”Œ๋žซํผ์ธ Ettus USRP X440๊ณผ 2 ร— 2 ํŒจ์น˜ ์•ˆํ…Œ๋‚˜ ๋ฐฐ์—ด์„ ํ™œ์šฉํ•ด ์‹ค์‹œ๊ฐ„ I/Q ๋ฐ์ดํ„ฐ๋ฅผ ํ™•๋ณดํ•œ๋‹ค๋Š” ์ ์€ ์‹คํ—˜ ์žฌํ˜„์„ฑ๊ณผ ํ™•์žฅ์„ฑ์„ ํฌ๊ฒŒ ๋†’์ธ๋‹ค. ์ „ํ†ต์ ์ธ ๋‹จ์ผ ์•ˆํ…Œ๋‚˜ ๊ธฐ๋ฐ˜ AoA ์ถ”์ •์€ ์•ˆํ…Œ๋‚˜ ๊ฐ„ ์œ„์ƒ ์ฐจ์ด๋ฅผ ์ด์šฉํ•˜์ง€๋งŒ, ๋ฐฐ์—ด์ด 2 ร— 2์— ๋ถˆ๊ณผํ•ด ๊ฐ๋„ ํ•ด์ƒ๋„๊ฐ€ ์ œํ•œ์ ์ด๋‹ค. ์ด๋ฅผ ๋ณด์™„ํ•˜๊ธฐ ์œ„ํ•ด ์ €์ž๋“ค์€ ํ”Œ๋žซํผ์˜ ์ด๋™์„ ์ด์šฉํ•œ ํ•ฉ์„ฑ ๊ฐœ๊ตฌ(Synthetic Aperture) ๋ฐฉ์‹์„ ๋„์ž…ํ•œ๋‹ค. ์ด๋™ ๊ฒฝ๋กœ์™€ ์†๋„

System

< Category Statistics (Total: 743) >

Electrical Engineering and Systems Science
7
General
272
General Relativity
7
HEP-EX
5
HEP-PH
12
HEP-TH
5
MATH-PH
3
NUCL-TH
1
Quantum Physics
10

Start searching

Enter keywords to search articles

โ†‘โ†“
โ†ต
ESC
โŒ˜K Shortcut