General

All posts under category "General"

253 posts total
Sorted by date
Hyperbolic Graph Embeddings: a Survey and an Evaluation on Anomaly Detection

Hyperbolic Graph Embeddings: a Survey and an Evaluation on Anomaly Detection

ํ•˜์ดํผ๋ณผ๋ฆญ ๊ทธ๋ž˜ํ”„ ์ž„๋ฒ ๋”ฉ์€ ์ตœ๊ทผ ๋ณต์žกํ•˜๊ณ  ๋น„์œ ํด๋ฆฌ๋“œ์ ์ธ ๋„คํŠธ์›Œํฌ ๊ตฌ์กฐ๋ฅผ ๋ชจ๋ธ๋งํ•˜๋Š” ๋ฐ ์ฃผ๋ชฉ๋ฐ›๊ณ  ์žˆ๋‹ค. ์ „ํ†ต์ ์ธ ์œ ํด๋ฆฌ๋“œ ์ž„๋ฒ ๋”ฉ์€ ๋…ธ๋“œ ๊ฐ„ ๊ฑฐ๋ฆฌ์™€ ๊ด€๊ณ„๋ฅผ ํ‰๋ฉด ํ˜น์€ ์ €์ฐจ์› ์œ ํด๋ฆฌ๋“œ ๊ณต๊ฐ„์— ํˆฌ์‚ฌํ•จ์œผ๋กœ์จ ํŠธ๋ฆฌ ๊ตฌ์กฐ๋‚˜ ์Šค์ผ€์ผโ€‘ํ”„๋ฆฌ ๋„คํŠธ์›Œํฌ์™€ ๊ฐ™์€ ๊ณ ์ฐจ์›์  ๊ณ„์ธต์„ฑ์„ ์ถฉ๋ถ„ํžˆ ํ‘œํ˜„ํ•˜์ง€ ๋ชปํ•œ๋‹ค. ๋ฐ˜๋ฉด, ํ•˜์ดํผ๋ณผ๋ฆญ ๊ณต๊ฐ„์€ ์ง€์ˆ˜์ ์œผ๋กœ ํ™•์žฅ๋˜๋Š” ๋ณผ๋ฅจ ํŠน์„ฑ์„ ๊ฐ€์ง€๊ณ  ์žˆ์–ด, ๋™์ผํ•œ ์ฐจ์› ๋‚ด์—์„œ ๋” ๋งŽ์€ ๋…ธ๋“œ๋ฅผ ๊ตฌ๋ถ„ํ•  ์ˆ˜ ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ํŠน์„ฑ์€ ํŠนํžˆ ์ด์ƒ ํƒ์ง€์™€ ๊ฐ™์ด ์ •์ƒ ํŒจํ„ด๊ณผ ๋น„์ •์ƒ ํŒจํ„ด ์‚ฌ์ด์˜ ๋ฏธ์„ธํ•œ ์ฐจ์ด๋ฅผ ํฌ์ฐฉํ•ด์•ผ ํ•˜๋Š” ์ž‘์—…์— ์œ ๋ฆฌํ•˜๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š”

Detection
A Formal Descriptive Language for Learning Dynamics: A Five-Layer Structural Coordinate System

A Formal Descriptive Language for Learning Dynamics: A Five-Layer Structural Coordinate System

์ด ๋…ผ๋ฌธ์ด ์ œ์‹œํ•˜๋Š” ๋‹ค์ธต ํ˜•์‹ ๊ธฐ์ˆ  ํ”„๋ ˆ์ž„์›Œํฌ๋Š” ํ•™์Šต ๊ณผ์ •์„ โ€˜๊ธฐ์ˆ โ€™ํ•œ๋‹ค๋Š” ์ ์—์„œ ๊ธฐ์กด์˜ โ€˜์˜ˆ์ธกยท์ตœ์ ํ™”โ€™ ์ค‘์‹ฌ ๋ชจ๋ธ๊ณผ ๊ทผ๋ณธ์ ์œผ๋กœ ์ฐจ๋ณ„ํ™”๋œ๋‹ค. ํ•™์Šต์€ ๋‹จ์ˆœํžˆ ์„ฑ๊ณผ๋ฅผ ๋†’์ด๋Š” ๋ชฉํ‘œ ํ•จ์ˆ˜์˜ ์ตœ์†Œํ™”๊ฐ€ ์•„๋‹ˆ๋ผ, ํ•™์Šต์ž ๋‚ด๋ถ€์˜ ์ƒํƒœ๊ฐ€ ์™ธ๋ถ€ ์ž๊ทน๊ณผ ์–ด๋–ป๊ฒŒ ์ƒํ˜ธ์ž‘์šฉํ•˜๋ฉด์„œ ๋ณ€ํ˜•๋˜๋Š”๊ฐ€์— ๋Œ€ํ•œ ์„œ์ˆ ์  ์ดํ•ด๊ฐ€ ํ•„์š”ํ•˜๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ์ €์ž๋Š” ํ•™์Šต์„ ๋„ค ๊ฐœ์˜ ๊ธฐ๋Šฅ์  ์ธตโ€”๋ถ€ํ•˜ ์ƒ์„ฑ์ธต, ๋‚ด๋ถ€ ๋ณ€ํ™˜์ธต, ๊ด€์ฐฐยท์ธก์ •์ธต, ํ‰๊ฐ€ยท์กฐ์ ˆ์ธตโ€”์œผ๋กœ ๋ถ„๋ฆฌํ•˜๊ณ , ๊ฐ ์ธต์ด ๋‹ด๋‹นํ•˜๋Š” ์ฑ…์ž„์„ ๋ช…ํ™•ํžˆ ์ •์˜ํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ ๋ถ€ํ•˜ ์ƒ์„ฑ์ธต์€ ์™ธ๋ถ€ ๊ณผ์ œยท์ž๋ฃŒ๊ฐ€ ํ•™์Šต์ž์—๊ฒŒ ์ œ๊ณต๋  ๋•Œ ๋ฐœ์ƒํ•˜๋Š” ์ธ์ง€ ๋ถ€

Learning System
High-Dimensional Data Processing: Benchmarking Machine Learning and Deep Learning Architectures in Local and Distributed Environments

High-Dimensional Data Processing: Benchmarking Machine Learning and Deep Learning Architectures in Local and Distributed Environments

์ข…ํ•ฉ ๋ถ„์„: ๋น…๋ฐ์ดํ„ฐ ๊ต์œก ์‹ค์Šต ๋ณด๊ณ ์„œ 1. ์—ฐ๊ตฌ ๊ฐœ์š”์™€ ๋ฐฉ๋ฒ•๋ก  ๋ณธ ์—ฐ๊ตฌ๋Š” ๋น…๋ฐ์ดํ„ฐ ํ”„๋กœ์ ํŠธ์˜ ํ†ตํ•ฉ์  ์ ‘๊ทผ ๋ฐฉ์‹์„ ์ทจํ•˜๋ฉฐ, ์„ธ ๊ฐ€์ง€ ์‚ฌ๋ก€๋ฅผ ํ†ตํ•ด ๋‹ค์–‘ํ•œ ๋ฐ์ดํ„ฐ ์œ ํ˜•๊ณผ ๊ทœ๋ชจ์— ๋Œ€ํ•œ ๋ถ„์„ ๊ธฐ๋ฒ•์„ ๋‹ค๋ฃน๋‹ˆ๋‹ค. Epsilon ๋ฐ์ดํ„ฐ์…‹ : ์ด์ง„ ๋ถ„๋ฅ˜ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด MLP ๋ชจ๋ธ์„ ์‚ฌ์šฉํ•˜์—ฌ 2000๊ฐœ์˜ ํŠน์ง•๊ณผ 100,000๊ฐœ์˜ ์ธ์Šคํ„ด์Šค๋กœ ํ›ˆ๋ จ๋˜์—ˆ์Šต๋‹ˆ๋‹ค. PyTorch์™€ GPU ๊ฐ€์†(CUDA)์„ ํ™œ์šฉํ•ด 88.98%์˜ ์ •ํ™•๋„๋ฅผ ๋‹ฌ์„ฑํ–ˆ์Šต๋‹ˆ๋‹ค. Rest Mex ๋ฐ์ดํ„ฐ์…‹ : ๋ฉ•์‹œ์ฝ” ๊ด€๊ด‘ ๋ฆฌ๋ทฐ ๋ฐ์ดํ„ฐ์…‹์— ๋Œ€ํ•ด ๊ฐ์ • ๋ถ„์„ ํŒŒ์ดํ”„๋ผ์ธ์„ ๊ตฌํ˜„ํ•˜์˜€์Šต๋‹ˆ๋‹ค.

Data Learning
Architectures for Building Agentic AI

Architectures for Building Agentic AI

์ด ๋…ผ๋ฌธ์ด ์ œ์‹œํ•˜๋Š” ํ•ต์‹ฌ ๋…ผ์ง€๋Š” โ€œ์‹ ๋ขฐ์„ฑ์€ ๋ชจ๋ธ ์ž์ฒด๊ฐ€ ์•„๋‹ˆ๋ผ ์‹œ์Šคํ…œ์˜ ๊ตฌ์กฐ์— ๋‹ฌ๋ ค ์žˆ๋‹คโ€๋Š” ์ ์ด๋‹ค. ์—์ด์ „ํŠธํ˜• AI๋ฅผ ๋‹จ์ˆœํžˆ ๋Œ€๊ทœ๋ชจ ์–ธ์–ด ๋ชจ๋ธ์ด๋‚˜ ์ด๋ฏธ์ง€ ์ƒ์„ฑ ๋ชจ๋ธ์˜ ์ง‘ํ•ฉ์œผ๋กœ ๋ณด๋Š” ๊ด€์ ์—์„œ ๋ฒ—์–ด๋‚˜, ๋ชฉํ‘œโ€‘๊ด€๋ฆฌ์ž, ํ”Œ๋ž˜๋„ˆ, ๋„๊ตฌโ€‘๋ผ์šฐํ„ฐ, ์‹คํ–‰๊ธฐ, ๋ฉ”๋ชจ๋ฆฌ, ๊ฒ€์ฆ๊ธฐ, ์•ˆ์ „โ€‘๋ชจ๋‹ˆํ„ฐ, ํ…”๋ ˆ๋ฉ”ํŠธ๋ฆฌ ๋“ฑ์œผ๋กœ ๋ช…ํ™•ํžˆ ๊ตฌ๋ถ„๋œ ๋ชจ๋“ˆ๋“ค๋กœ ๊ตฌ์„ฑ๋œ โ€˜์•„ํ‚คํ…์ฒ˜โ€™๋ฅผ ๊ฐ•์กฐํ•œ๋‹ค. ๊ฐ ๋ชจ๋“ˆ์€ ์Šคํ‚ค๋งˆโ€‘์ œํ•œ ์ธํ„ฐํŽ˜์ด์Šค ๋ฅผ ํ†ตํ•ด์„œ๋งŒ ํ†ต์‹ ํ•˜๋„๋ก ์„ค๊ณ„๋˜๋ฉฐ, ์ด๋Š” ์ž…๋ ฅยท์ถœ๋ ฅ ํ˜•์‹์ด ์‚ฌ์ „์— ์ •์˜๋œ JSON ์Šคํ‚ค๋งˆ ๋“ฑ์œผ๋กœ ๊ฒ€์ฆ๋จ์„ ์˜๋ฏธํ•œ๋‹ค. ์ด๋ ‡๊ฒŒ ํ•˜๋ฉด ๋ชจ๋ธ์ด ์˜ˆ๊ธฐ์น˜ ์•Š์€ ํ˜•ํƒœ

CourtPressGER: A German Court Decision to Press Release Summarization Dataset

CourtPressGER: A German Court Decision to Press Release Summarization Dataset

๋ณธ ๋…ผ๋ฌธ์€ ๋ฒ•๋ฅ  ๋ถ„์•ผ์—์„œ ์ผ๋ฐ˜ ๋Œ€์ค‘์—๊ฒŒ ํŒ๊ฒฐ์„ ์ „๋‹ฌํ•˜๋Š” โ€˜๋ณด๋„์ž๋ฃŒโ€™๋ผ๋Š” ํŠน์ˆ˜ํ•œ ํ…์ŠคํŠธ ์žฅ๋ฅด์— ์ดˆ์ ์„ ๋งž์ถ˜ ์ตœ์ดˆ์˜ ๋Œ€๊ทœ๋ชจ ๋ฐ์ดํ„ฐ์…‹๊ณผ ๋ฒค์น˜๋งˆํฌ๋ฅผ ์ œ์‹œํ•œ๋‹ค๋Š” ์ ์—์„œ ํ•™์ˆ ์ ยท์‹ค์šฉ์  ์˜์˜๊ฐ€ ํฌ๋‹ค. ๊ธฐ์กด NLP ์—ฐ๊ตฌ๋Š” ์ฃผ๋กœ ํŒ๊ฒฐ๋ฌธ ์ž์ฒด์˜ ๊ตฌ์กฐ์  ์š”์•ฝ์ด๋‚˜ ๋ฒ•๋ฅ ์šฉ์–ด ์ถ”์ถœ ๋“ฑ์— ๋จธ๋ฌผ๋ €์œผ๋ฉฐ, ์‹œ๋ฏผ์ด ์ดํ•ดํ•˜๊ธฐ ์‰ฌ์šด ํ˜•ํƒœ์˜ ์ปค๋ฎค๋‹ˆ์ผ€์ด์…˜์„ ๋‹ค๋ฃจ์ง€๋Š” ์•Š์•˜๋‹ค. ๋”ฐ๋ผ์„œ CourtPressGER์€ โ€˜ํŒ๊ฒฐ๋ฌธโ€‘๋ณด๋„์ž๋ฃŒโ€‘ํ”„๋กฌํ”„ํŠธโ€™๋ผ๋Š” ์‚ผ์ค‘ ํŠธ๋ฆฌํ”Œ ๊ตฌ์กฐ๋ฅผ ํ†ตํ•ด, ์›๋ฌธ๊ณผ ์ธ๊ฐ„์ด ๋งŒ๋“  ์š”์•ฝ(๋ณด๋„์ž๋ฃŒ) ์‚ฌ์ด์˜ ์ •๋ฐ€ํ•œ ์ •๋ ฌ์„ ์ œ๊ณตํ•œ๋‹ค. ์ด๋Š” LLM์ด ๋‹จ์ˆœํžˆ ์š”์•ฝ์„ ๋„˜์–ด, ๋ฒ•์ 

Data
Meta Hierarchical Reinforcement Learning for Scalable Resource Management in O-RAN

Meta Hierarchical Reinforcement Learning for Scalable Resource Management in O-RAN

๋ณธ ๋…ผ๋ฌธ์€ Oโ€‘RAN ํ™˜๊ฒฝ์—์„œ ์ž์› ํ• ๋‹น๊ณผ ๋„คํŠธ์›Œํฌ ์Šฌ๋ผ์ด์‹ฑ์„ ๋™์‹œ์— ์ตœ์ ํ™”ํ•˜๊ธฐ ์œ„ํ•œ ์ƒˆ๋กœ์šด ํ•™์Šต ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์‹œํ•œ๋‹ค๋Š” ์ ์—์„œ ํ•™์ˆ ์ ยท์‹ค๋ฌด์  ์˜์˜๊ฐ€ ํฌ๋‹ค. ์ฒซ ๋ฒˆ์งธ๋กœ, ๊ธฐ์กด ๋ฉ”ํƒ€โ€‘๊ฐ•ํ™”ํ•™์Šต(Metaโ€‘RL) ์—ฐ๊ตฌ๋“ค์€ ์ฃผ๋กœ ๋‹จ์ผ ๋ ˆ๋ฒจ ์ •์ฑ…์„ ํ•™์Šตํ•˜๋Š” ๋ฐ ๊ทธ์ณค์œผ๋ฉฐ, ๋ณต์žกํ•œ Oโ€‘RAN ์‹œ์Šคํ…œ์ฒ˜๋Ÿผ ๋‹ค์ค‘ ๊ณ„์ธต์˜ ์˜์‚ฌ๊ฒฐ์ • ๊ตฌ์กฐ๋ฅผ ๋ฐ˜์˜ํ•˜์ง€ ๋ชปํ–ˆ๋‹ค. ์ €์ž๋Š” ์ด๋ฅผ ๋ณด์™„ํ•˜๊ธฐ ์œ„ํ•ด ๊ณ ์ˆ˜์ค€ โ€˜์ž์› ํ• ๋‹น ์ปจํŠธ๋กค๋Ÿฌโ€™์™€ ์ €์ˆ˜์ค€ โ€˜์Šฌ๋ผ์ด์Šค ๋‚ด๋ถ€ ์Šค์ผ€์ค„๋Ÿฌโ€™๋ผ๋Š” ๋‘ ๊ฐœ์˜ ์—์ด์ „ํŠธ๋ฅผ ๊ณ„์ธต์ ์œผ๋กœ ๋ฐฐ์น˜ํ•˜๊ณ , ๊ฐ๊ฐ์ด ๋…๋ฆฝ์ ์ธ ๊ฐ•ํ™”ํ•™์Šต ๊ณผ์ •์„ ์ˆ˜ํ–‰ํ•˜๋„๋ก ์„ค๊ณ„ํ•˜์˜€๋‹ค. ์ด๋Ÿฌํ•œ

Learning
A Unifying Human-Centered AI Fairness Framework

A Unifying Human-Centered AI Fairness Framework

๋ณธ ๋…ผ๋ฌธ์€ AI ์‹œ์Šคํ…œ์˜ ๊ณต์ •์„ฑ์„ ๋‹ค๋ฃจ๋Š” ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค์˜ ํ•œ๊ณ„๋ฅผ ์ •ํ™•ํžˆ ์งš์–ด๋‚ธ๋‹ค. ํ˜„์žฌ๊นŒ์ง€ ๋Œ€๋ถ€๋ถ„์˜ ์—ฐ๊ตฌ๋Š” ํ•˜๋‚˜์˜ ๊ณต์ •์„ฑ ์ง€ํ‘œโ€”์˜ˆ๋ฅผ ๋“ค์–ด ๊ทธ๋ฃน ๊ณต์ •์„ฑ ํ˜น์€ ๊ฐœ๋ณ„ ๊ณต์ •์„ฑโ€”์— ์ดˆ์ ์„ ๋งž์ถ”์–ด ํ•ด๋‹น ์ง€ํ‘œ๋ฅผ ์ตœ์ ํ™”ํ•˜๋ ค๋Š” ์ ‘๊ทผ์„ ์ทจํ–ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์‹ค์ œ ์‚ฌํšŒ์ ยท๋ฒ•์  ๋งฅ๋ฝ์—์„œ๋Š” ์—ฌ๋Ÿฌ ๊ณต์ •์„ฑ ๊ฐœ๋…์ด ๋™์‹œ์— ์ถฉ๋Œํ•˜๊ณ , ์ดํ•ด๊ด€๊ณ„์ž๋งˆ๋‹ค ์ค‘์‹œํ•˜๋Š” ๊ฐ€์น˜๊ฐ€ ๋‹ค๋ฅด๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด ์‚ฌ๋ฒ• ๋ถ„์•ผ์—์„œ๋Š” โ€˜๋™๋“ฑ ๊ธฐํšŒ(EOP)โ€™์™€ โ€˜๊ฒฐ๊ณผ ํ‰๋“ฑโ€™ ์‚ฌ์ด์— ๋šœ๋ ทํ•œ ๊ธด์žฅ์ด ์กด์žฌํ•˜๊ณ , ์˜๋ฃŒ ๋ถ„์•ผ์—์„œ๋Š” ํ™˜์ž ๊ทธ๋ฃน ๊ฐ„์˜ ์ ‘๊ทผ์„ฑ ์ฐจ์ด๋ฅผ ์ตœ์†Œํ™”ํ•˜๋ ค๋Š” ๋™์‹œ์— ์น˜๋ฃŒ ํšจ์œจ์„ฑ์„ ์œ ์ง€ํ•ด์•ผ ํ•˜๋Š” ๋ณตํ•ฉ์ 

Framework
Detrended cross-correlations and their random matrix limit: an example from the cryptocurrency market

Detrended cross-correlations and their random matrix limit: an example from the cryptocurrency market

๋ณธ ๋…ผ๋ฌธ์€ ๋ณต์žก๊ณ„ ๋ถ„์„์—์„œ ํ”ํžˆ ๋งˆ์ฃผ์น˜๋Š” ์„ธ ๊ฐ€์ง€ ํ•ต์‹ฌ ๋‚œ์ œโ€”๋น„์ •์ƒ์„ฑ, ์žฅ๊ธฐ ์˜์กด์„ฑ(๋กฑ ๋ฉ”๋ชจ๋ฆฌ), ๊ทธ๋ฆฌ๊ณ  ํ—ค๋น„ํ…Œ์ผ ๋ถ„ํฌโ€”๋ฅผ ๋™์‹œ์— ๊ณ ๋ คํ•œ ์ƒˆ๋กœ์šด ์ƒ๊ด€ํ–‰๋ ฌ ๊ตฌ์ถ• ๋ฐฉ๋ฒ•์„ ์ œ์‹œํ•œ๋‹ค๋Š” ์ ์—์„œ ํ•™๋ฌธ์  ์˜์˜๊ฐ€ ํฌ๋‹ค. ๊ธฐ์กด์˜ ๊ณต๋ถ„์‚ฐ ํ–‰๋ ฌ์€ ํ‰๊ท ๊ณผ ๋ถ„์‚ฐ์„ ์ „์ œ๋กœ ํ•˜์—ฌ ๋น„์ •์ƒ์ ์ธ ํŠธ๋ Œ๋“œ๋‚˜ ๋น„์„ ํ˜• ๋ณ€๋™์„ ์ œ๋Œ€๋กœ ํฌ์ฐฉํ•˜์ง€ ๋ชปํ•œ๋‹ค. ์ €์ž๋“ค์€ ๋‹ค์ค‘ํ”„๋ž™ํƒˆ ๋น„์ •์ƒ ๊ต์ฐจ์ƒ๊ด€๊ณ„์ˆ˜ ฯ r์„ ๋„์ž…ํ•จ์œผ๋กœ์จ, ์‹œ๊ณ„์—ด์„ ๋‹ค์ค‘์Šค์ผ€์ผ๋กœ ๋ถ„ํ•ดํ•˜๊ณ  ๊ฐ ์Šค์ผ€์ผ์—์„œ ํŠน์ • ์ง„ํญ ๋ฒ”์œ„์˜ ๋ณ€๋™๋งŒ์„ ๊ฐ•์กฐํ•˜๋„๋ก ์„ค๊ณ„ํ•˜์˜€๋‹ค. ์—ฌ๊ธฐ์„œ r์€ ๋ณ€๋™์˜ ํฌ๊ธฐ๋ฅผ ์กฐ์ ˆํ•˜๋Š” ์ฐจ์ˆ˜ ๋งค๊ฐœ๋ณ€์ˆ˜๋กœ, r > 0์ด๋ฉด

Evolutionary System 2 Reasoning: An Empirical Proof

Evolutionary System 2 Reasoning: An Empirical Proof

๋ณธ ๋…ผ๋ฌธ์€ ํ˜„์žฌ ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ์ด ๋ณด์—ฌ์ฃผ๋Š” โ€œํŠน์ • ์ž‘์—…์— ๋Œ€ํ•œ ๋›ฐ์–ด๋‚œ ์„ฑ๋Šฅโ€๊ณผ โ€œ์ผ๋ฐ˜์ ์ธ ์ง€๋Šฅ, ํŠนํžˆ ์‹œ์Šคํ…œ 2์™€ ์—ฐ๊ด€๋œ ๋А๋ฆฐ ์‚ฌ๊ณ  ๋Šฅ๋ ฅโ€ ์‚ฌ์ด์˜ ๊ฒฉ์ฐจ๋ฅผ ๋ช…ํ™•ํžˆ ์งš์–ด๋‚ธ๋‹ค. ์‹œ์Šคํ…œ 2๋Š” ์ธ๊ฐ„์ด ๋ณต์žกํ•œ ๋…ผ๋ฆฌ์  ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•  ๋•Œ ์˜์‹์ ์œผ๋กœ ์ˆ˜ํ–‰ํ•˜๋Š” ๊ณ ์ฐจ์›์  ์‚ฌ๊ณ  ๊ณผ์ •์„ ์˜๋ฏธํ•œ๋‹ค. ๊ธฐ์กด LLM์€ ๋Œ€๊ทœ๋ชจ ๋ฐ์ดํ„ฐ์— ๊ธฐ๋ฐ˜ํ•œ ํŒจํ„ด ํ•™์Šต์„ ํ†ตํ•ด ๋น ๋ฅธ ์‹œ์Šคํ…œ 1 ์Šคํƒ€์ผ์˜ ์‘๋‹ต์„ ์ œ๊ณตํ•˜์ง€๋งŒ, ๋…ผ๋ฆฌ์  ์ผ๊ด€์„ฑ์ด๋‚˜ ๋‹ค๋‹จ๊ณ„ ์ถ”๋ก ์ด ์š”๊ตฌ๋˜๋Š” ์ƒํ™ฉ์—์„œ๋Š” ์˜ค๋ฅ˜๊ฐ€ ๋นˆ๋ฒˆํžˆ ๋ฐœ์ƒํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด ์ €์ž๋“ค์€ ์ง„ํ™”๋ก ์  ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ์ฐจ์šฉํ•œ ERO ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ

System
Mechanistic Interpretability of Antibody Language Models Using SAEs

Mechanistic Interpretability of Antibody Language Models Using SAEs

๋ณธ ๋…ผ๋ฌธ์€ ๋‹จ๋ฐฑ์งˆ ์–ธ์–ด ๋ชจ๋ธ, ํŠนํžˆ ํ•ญ์ฒด ์„œ์—ด์„ ์ƒ์„ฑํ•˜๋„๋ก ์„ค๊ณ„๋œ pIgGen์— ๋Œ€ํ•œ ๋ฉ”์ปค๋‹ˆ์ฆ˜์  ํ•ด์„์„ ๋ชฉํ‘œ๋กœ ํ•œ๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ๋‘ ์ข…๋ฅ˜์˜ ํฌ์†Œ ์˜คํ† ์ธ์ฝ”๋”, ์ฆ‰ TopK SAE์™€ Ordered SAE๋ฅผ ๋„์ž…ํ•˜์˜€๋‹ค. TopK SAE๋Š” ๊ฐ ๋ ˆ์ด์–ด์—์„œ ๊ฐ€์žฅ ํฐ K๊ฐœ์˜ ํ™œ์„ฑ๊ฐ’๋งŒ์„ ๋ณด์กดํ•จ์œผ๋กœ์จ ํฌ์†Œ์„ฑ์„ ๊ฐ•์ œํ•˜๊ณ , ์ด๋ฅผ ํ†ตํ•ด ์ž ์žฌ ๊ณต๊ฐ„์˜ ๊ฐœ๋ณ„ ์ฐจ์›์ด ํŠน์ • ์ƒ๋ฌผํ•™์  ํŠน์„ฑ๊ณผ ๊ฐ•ํ•˜๊ฒŒ ์—ฐ๊ด€๋˜๋Š”์ง€๋ฅผ ํƒ์ƒ‰ํ•œ๋‹ค. ์‹คํ—˜์—์„œ๋Š” ํŠน์ • ๋‰ด๋Ÿฐ(๋˜๋Š” ๋‰ด๋Ÿฐ ์ง‘ํ•ฉ)์ด ํ•ญ์ฒด์˜ CDR(Complementarity Determining Region) ๊ธธ์ด, ์นœํ™”๋„, ํ˜น์€ ํŠน

Model
The Seeds of Scheming: Weakness of Will in the Building Blocks of Agentic Systems

The Seeds of Scheming: Weakness of Will in the Building Blocks of Agentic Systems

๋ถ„์„ ์š”์•ฝ 1. ๋…ผ๋ฌธ ์ฃผ์ œ ๋ฐ ๋ชฉํ‘œ: ๋ณธ ๋…ผ๋ฌธ์€ ์ธ๊ณต์ง€๋Šฅ(AI) ์‹œ์Šคํ…œ์˜ ์•ˆ์ „์„ฑ๊ณผ ๊ด€๋ จ๋œ ๋ฌธ์ œ๋ฅผ ๋‹ค๋ฃน๋‹ˆ๋‹ค. ํŠนํžˆ, '์•„ํฌ๋ผ์‹œ์•„'๋ผ๋Š” ๊ฐœ๋…์„ ํ†ตํ•ด AI์˜ ์ผ๊ด€์„ฑ ๋ถ•๊ดด์™€ ๋ชฉํ‘œ ์ „์ด๋ฅผ ๋ถ„์„ํ•ฉ๋‹ˆ๋‹ค. ์•„ํฌ๋ผ์‹œ์•„๋Š” ๊ณ ๋Œ€ ์ฒ ํ•™์—์„œ ์ธ๊ฐ„์˜ ํŒ๋‹จ๊ณผ ์ถฉ๋™ ์‚ฌ์ด์˜ ๊ฐˆ๋“ฑ์„ ์„ค๋ช…ํ•˜๋Š” ์šฉ์–ด๋กœ, ์ด ๋…ผ๋ฌธ์—์„œ๋Š” ์ด๋ฅผ AI ๋งฅ๋ฝ์— ์ ์šฉํ•˜์—ฌ ๋ชจ๋ธ์ด ๊ธ€๋กœ๋ฒŒ ์ง€์‹๊ณผ ๋กœ์ปฌ ์ปจํ…์ŠคํŠธ ์‚ฌ์ด์—์„œ ์ผ๊ด€์„ฑ์„ ์œ ์ง€ํ•˜์ง€ ๋ชปํ•  ๋•Œ ๋ฐœ์ƒํ•˜๋Š” ๋ฌธ์ œ๋ฅผ ํƒ๊ตฌํ•ฉ๋‹ˆ๋‹ค. 2. ์•„ํฌ๋ผ์‹œ์•„ ๋ฒค์น˜๋งˆํฌ์˜ ๊ฐœ๋ฐœ: ๋…ผ๋ฌธ์€ '์•„ํฌ๋ผ์‹œ์•„ ๋ฒค์น˜๋งˆํฌ'๋ผ๋Š” ์ƒˆ๋กœ์šด ํ‰๊ฐ€ ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. ์ด ๋ฒค์น˜๋งˆํฌ๋Š” ๋ชจ๋ธ์ด ๊ธ€๋กœ

System
Towards A Cultural Intelligence and Values Inferences Quality Benchmark for Community Values and Common Knowledge

Towards A Cultural Intelligence and Values Inferences Quality Benchmark for Community Values and Common Knowledge

์ด ๋…ผ๋ฌธ์€ ํ˜„์žฌ AIยทLLM ๋ถ„์•ผ์—์„œ ๊ธ‰๋ถ€์ƒํ•˜๊ณ  ์žˆ๋Š” ๋ฌธํ™”์  ํŽธํ–ฅ ๋ฌธ์ œ๋ฅผ ์‹ค์งˆ์ ์œผ๋กœ ํ•ด๊ฒฐํ•˜๋ ค๋Š” ์‹œ๋„๋กœ์„œ ์˜๋ฏธ๊ฐ€ ํฌ๋‹ค. ๊ธฐ์กด์˜ ๋Œ€๋ถ€๋ถ„ LLM์€ ๋Œ€๊ทœ๋ชจ ์ธํ„ฐ๋„ท ํ…์ŠคํŠธ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•™์Šต๋˜๊ธฐ ๋•Œ๋ฌธ์— ์„œ๊ตฌ ์ค‘์‹ฌ์˜ ์–ธ์–ดยท๋ฌธํ™”์  ์„œ์ˆ ์ด ๊ณผ๋‹คํ•˜๊ฒŒ ๋ฐ˜์˜๋œ๋‹ค. ๊ฒฐ๊ณผ์ ์œผ๋กœ ๋น„์„œ๊ตฌยท์†Œ์ˆ˜์ž ์ง‘๋‹จ์ด ๊ฒช๋Š” ๊ฒฝํ—˜์ด๋‚˜ ๊ฐ€์น˜๊ด€์ด ์ œ๋Œ€๋กœ ๋ฐ˜์˜๋˜์ง€ ์•Š์•„, ์ด๋“ค ์ง‘๋‹จ์ด LLM์„ ํ™œ์šฉํ•  ๋•Œ ์˜คํ•ดยท๋ถˆ์พŒ๊ฐ์„ ์œ ๋ฐœํ•˜๊ฑฐ๋‚˜, ์ค‘์š”ํ•œ ์˜์‚ฌ๊ฒฐ์ •์—์„œ ๋ถ€์ •ํ™•ํ•œ ์ •๋ณด๋ฅผ ์ œ๊ณตํ•  ์œ„ํ—˜์ด ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ ์ธ์‹ํ•˜๊ณ  โ€˜๋ฌธํ™”โ€‘์ธ์‹โ€™ LLM์„ ๊ฐœ๋ฐœํ•˜๋ ค๋Š” ์›€์ง์ž„์€ ํ•„์ˆ˜์ ์ด๋ฉฐ, ํŠนํžˆ ChatBlack

The promising potential of vision language models for the generation of textual weather forecasts

The promising potential of vision language models for the generation of textual weather forecasts

๋ณธ ์—ฐ๊ตฌ๋Š” ์ตœ๊ทผ ๊ธ‰๋ถ€์ƒํ•˜๊ณ  ์žˆ๋Š” ๋ฉ€ํ‹ฐ๋ชจ๋‹ฌ ๊ธฐ์ดˆ ๋ชจ๋ธ, ํŠนํžˆ ๋น„์ „โ€‘์–ธ์–ด ๋ชจ๋ธ(Visionโ€‘Language Model, VLM)์˜ ๊ธฐ์ƒ ๋ถ„์•ผ ์ ์šฉ ๊ฐ€๋Šฅ์„ฑ์„ ์ตœ์ดˆ๋กœ ์‹œ๋„ํ•œ ์‚ฌ๋ก€๋ผ ํ•  ์ˆ˜ ์žˆ๋‹ค. ์ „ํ†ต์ ์ธ ํ•ด์ƒ์˜ˆ๋ณด๋Š” ๊ธฐ์ƒ ๊ด€์ธก๊ฐ’(์œ„์„ฑ, ๋ ˆ์ด๋”, ๊ด€์ธก์†Œ ๋“ฑ)์„ ์ธ๊ฐ„ ๊ธฐ์ƒํ•™์ž๊ฐ€ ํ•ด์„ํ•˜๊ณ , ์ •ํ˜•ํ™”๋œ ํ…์ŠคํŠธ ํ˜•์‹์œผ๋กœ ์žฌ์ž‘์„ฑํ•˜๋Š” ๋ณตํ•ฉ์ ์ธ ์›Œํฌํ”Œ๋กœ์šฐ๋ฅผ ์š”๊ตฌํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ๊ณผ์ •์€ ๋†’์€ ์ธ์  ๋น„์šฉ๊ณผ ์‹œ๊ฐ„ ์ง€์—ฐ์„ ์ดˆ๋ž˜ํ•˜๋ฉฐ, ํŠนํžˆ ๊ธ‰๋ณ€ํ•˜๋Š” ๊ธฐ์ƒ ์ƒํ™ฉ์— ๋Œ€ํ•œ ์‹ค์‹œ๊ฐ„ ๋Œ€์‘๋ ฅ์„ ์ €ํ•ดํ•œ๋‹ค. ์—ฐ๊ตฌํŒ€์€ ๋จผ์ € ๊ฒฉ์žํ˜• ๊ธฐ์ƒ ๋ฐ์ดํ„ฐ๋ฅผ ์‹œ๊ฐ„โ€‘๊ณต๊ฐ„ ์ฐจ์›์„ ํฌํ•จํ•œ ๋น„๋””์˜ค ์‹œํ€€์Šค๋กœ

Model
Exploring Depth Generalization in Large Language Models for Solving Recursive Logic Tasks

Exploring Depth Generalization in Large Language Models for Solving Recursive Logic Tasks

๋ณธ ๋…ผ๋ฌธ์€ ํ˜„์žฌ ๊ฐ€์žฅ ๋„๋ฆฌ ์‚ฌ์šฉ๋˜๋Š” ํŠธ๋žœ์Šคํฌ๋จธ ๊ธฐ๋ฐ˜ ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(Large Language Model, LLM)์ด โ€œ๊นŠ์ด ์ผ๋ฐ˜ํ™”(depth generalization)โ€๋ผ๋Š” ์ค‘์š”ํ•œ ์ฐจ์›์—์„œ ํ•œ๊ณ„๋ฅผ ๋ณด์ธ๋‹ค๋Š” ์ ์„ ๋ช…ํ™•ํžˆ ๊ทœ๋ช…ํ•œ๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋Š” ์ฃผ๋กœ ์‹œํ€€์Šค ๊ธธ์ด๊ฐ€ ํ›ˆ๋ จ ๋ฐ์ดํ„ฐ๋ณด๋‹ค ๊ธธ์–ด์งˆ ๋•Œ ๋ชจ๋ธ์ด ์–ด๋–ป๊ฒŒ ์ผ๋ฐ˜ํ™”๋˜๋Š”์ง€๋ฅผ ํƒ๊ตฌํ–ˆ์œผ๋ฉฐ, ์ด๋ฅผ โ€œ๊ธธ์ด ์ผ๋ฐ˜ํ™”โ€๋ผ๊ณ  ๋ถ€๋ฅธ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์‹ค์ œ ์ž์—ฐ์–ด์™€ ์ˆ˜ํ•™ยท๋…ผ๋ฆฌ ๋ฌธ์ œ์—์„œ๋Š” ๋‹จ์ˆœํžˆ ์‹œํ€€์Šค๊ฐ€ ๊ธธ์–ด์ง€๋Š” ๊ฒƒ์ด ์•„๋‹ˆ๋ผ, ๊ด„ํ˜ธยท์—ฐ์‚ฐ์žยท๋…ผ๋ฆฌ ์—ฐ์‚ฐ์ž์˜ ์ค‘์ฒฉ ๊ตฌ์กฐ๊ฐ€ ๊นŠ์–ด์ง€๋Š” ๊ฒฝ์šฐ๊ฐ€ ๋นˆ๋ฒˆํ•˜๋‹ค. ์ด๋Ÿฌํ•œ ์ค‘์ฒฉ ๊ตฌ์กฐ๋Š” ์Šค

Model
Fine-Tuned Large Language Models for Logical Translation: Reducing Hallucinations with Lang2Logic

Fine-Tuned Large Language Models for Logical Translation: Reducing Hallucinations with Lang2Logic

๋ณธ ๋…ผ๋ฌธ์€ ์ž์—ฐ์–ดโ€‘๋…ผ๋ฆฌ ๋ณ€ํ™˜ ์ž‘์—…์—์„œ LLM์˜ ํ™˜๊ฐ ๋ฌธ์ œ๋ฅผ ์™„ํ™”ํ•˜๊ธฐ ์œ„ํ•œ ์‹ค์šฉ์ ์ธ ์ ‘๊ทผ๋ฒ•์„ ์ œ์‹œํ•œ๋‹ค๋Š” ์ ์—์„œ ์˜๋ฏธ๊ฐ€ ํฌ๋‹ค. ์ฒซ์งธ, ์ €์ž๋Š” โ€œ์ž์—ฐ์–ด โ†’ ๋…ผ๋ฆฌ์‹ โ†’ CNFโ€๋ผ๋Š” 3๋‹จ๊ณ„ ํŒŒ์ดํ”„๋ผ์ธ์„ ๋ช…ํ™•ํžˆ ์ •์˜ํ•˜๊ณ , ๊ฐ ๋‹จ๊ณ„์—์„œ ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ๋Š” ์˜ค๋ฅ˜ ์›์ธ์„ ๋ถ„์„ํ•œ๋‹ค. ํŠนํžˆ, ๋…ผ๋ฆฌ์‹ ์ƒ์„ฑ ๋‹จ๊ณ„์—์„œ LLM์ด ๋ฌธ๋งฅ์„ ์˜คํ•ดํ•˜๊ฑฐ๋‚˜ ๋…ผ๋ฆฌ ์—ฐ์‚ฐ์ž๋ฅผ ์ž˜๋ชป ์„ ํƒํ•˜๋Š” ๊ฒฝ์šฐ๊ฐ€ ๋นˆ๋ฒˆํžˆ ๋ฐœ์ƒํ•œ๋‹ค๋Š” ์ ์„ ์ง€์ ํ•˜๊ณ , ์ด๋ฅผ ์ž์ฒด ์ •์˜ ๋ฌธ๋ฒ•์œผ๋กœ ์ œํ•œํ•จ์œผ๋กœ์จ ๋ชจ๋ธ์ด ํ—ˆ์šฉ๋œ ๊ตฌ์กฐ ๋‚ด์—์„œ๋งŒ ์ถœ๋ ฅ์„ ์ƒ์„ฑํ•˜๋„๋ก ๊ฐ•์ œํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฌธ๋ฒ• ๊ธฐ๋ฐ˜ ํ•„ํ„ฐ๋ง์€ ๊ธฐ์กด์˜ ํ›„์ฒ˜๋ฆฌ ๋ฐฉ์‹๋ณด๋‹ค ์‚ฌ์ „

Model
Masking Matters: Unlocking the Spatial Reasoning Capabilities of LLMs for 3D Scene-Language Understanding

Masking Matters: Unlocking the Spatial Reasoning Capabilities of LLMs for 3D Scene-Language Understanding

๋ณธ ๋…ผ๋ฌธ์€ 3D ์žฅ๋ฉดโ€‘์–ธ์–ด ๋ฉ€ํ‹ฐ๋ชจ๋‹ฌ ๋ชจ๋ธ์—์„œ ๋””์ฝ”๋”์˜ ์–ดํ…์…˜ ๋งˆ์Šคํฌ๊ฐ€ ์„ฑ๋Šฅ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ์‹ฌ๋„ ์žˆ๊ฒŒ ํƒ๊ตฌํ•œ๋‹ค๋Š” ์ ์—์„œ ํฐ ์˜์˜๋ฅผ ๊ฐ€์ง„๋‹ค. ๊ธฐ์กด์˜ LLM ๊ธฐ๋ฐ˜ 3D ์ถ”๋ก  ๋ฐฉ๋ฒ•๋“ค์€ ์ž์—ฐ์–ด ์ฒ˜๋ฆฌ์—์„œ ๊ฒ€์ฆ๋œ ์ธ๊ณผ์ (causal) ๋งˆ์Šคํฌ๋ฅผ ๊ทธ๋Œ€๋กœ ์ฐจ์šฉํ–ˆ๋Š”๋ฐ, ์ด๋Š” ํ…์ŠคํŠธ๊ฐ€ ์ˆœ์ฐจ์  ๊ตฌ์กฐ๋ฅผ ๊ฐ–๋Š”๋‹ค๋Š” ์ „์ œ์— ๊ธฐ๋ฐ˜ํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ 3D ๊ฐ์ฒด๋Š” ๊ณต๊ฐ„์  ์œ„์น˜์™€ ๊ด€๊ณ„์— ์˜ํ•ด ์ •์˜๋˜๋ฉฐ, ๊ฐ์ฒด ๊ฐ„ ์ˆœ์„œ๋Š” ์˜๋ฏธ๊ฐ€ ์—†๊ฑฐ๋‚˜ ์˜คํžˆ๋ ค ๋ฐฉํ•ด๊ฐ€ ๋  ์ˆ˜ ์žˆ๋‹ค. ์ธ๊ณผ ๋งˆ์Šคํฌ๋Š” ์ด๋Ÿฌํ•œ ์ˆœ์„œโ€‘๋ฌด๊ด€์„ฑ์„ ๋ฌด์‹œํ•˜๊ณ , ๊ฐ์ฒด ํ† ํฐ์ด ์ด์ „ ํ† ํฐ์—๋งŒ ์˜์กดํ•˜๋„๋ก ๊ฐ•์ œํ•จ์œผ๋กœ์จ ๊ณต๊ฐ„์  ์ƒํ˜ธ์ž‘์šฉ์„

A Low-Cost Reliable Racetrack Cache Based on Data Compression

A Low-Cost Reliable Racetrack Cache Based on Data Compression

๋ณธ ์—ฐ๊ตฌ๋Š” ์ฐจ์„ธ๋Œ€ ๊ณ ๋ฐ€๋„ ๋น„ํœ˜๋ฐœ์„ฑ ๋ฉ”๋ชจ๋ฆฌ์ธ ๋ ˆ์ด์ŠคํŠธ๋ž™ ๋ฉ”๋ชจ๋ฆฌ(RTM)์˜ ์‹ ๋ขฐ์„ฑ ๋ฌธ์ œ๋ฅผ ๊ทผ๋ณธ์ ์œผ๋กœ ํ•ด๊ฒฐํ•˜๊ณ ์ž ํ•˜๋Š” ์‹œ๋„์ด๋‹ค. RTM์€ ์ „ํ†ต์ ์ธ SRAM์— ๋น„ํ•ด 10๋ฐฐ ์ด์ƒ ๋†’์€ ์ง‘์ ๋„๋ฅผ ์ œ๊ณตํ•˜๋ฉด์„œ๋„ ์ฝ๊ธฐยท์“ฐ๊ธฐ ์ง€์—ฐ์ด ์งง์•„ ์บ์‹œ ๋ฉ”๋ชจ๋ฆฌ ๊ต์ฒด ํ›„๋ณด๋กœ ์ ํ•ฉํ•˜์ง€๋งŒ, ์ „๋ฅ˜ ํ๋ฆ„์„ ์ œ์–ดํ•˜๊ธฐ ์œ„ํ•œ ๋„๋ฉ”์ธ ์ด๋™ ๊ณผ์ •์—์„œ ๋ฐœ์ƒํ•˜๋Š” ์Šคํ† ์บ์Šคํ‹ฑํ•œ ์˜ค๋ฅ˜์™€ ๋ฐ์ดํ„ฐ ์…”ํ”Œ๋ง ์˜ค๋ฅ˜๊ฐ€ ๋‹ค์ค‘ ๋น„ํŠธ ์˜ค๋ฅ˜๋ฅผ ์ดˆ๋ž˜ํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ์˜ค๋ฅ˜๋Š” ๊ธฐ์กด์˜ ๋‹จ์ผ ๋น„ํŠธ ECC(์˜ˆ: SEC)๋‚˜ 2๋น„ํŠธ ์ •์ • ECC(์˜ˆ: DECTED)๋กœ๋Š” ์ถฉ๋ถ„ํžˆ ๋ฐฉ์–ดํ•  ์ˆ˜ ์—†์œผ๋ฉฐ, ๋‹ค์ค‘ ๋น„ํŠธ ์ •์ •์„ ์œ„ํ•ด์„œ๋Š”

Data
Accelerating Large-Scale Reasoning Model Inference with Sparse Self-Speculative Decoding

Accelerating Large-Scale Reasoning Model Inference with Sparse Self-Speculative Decoding

์ด ๋…ผ๋ฌธ์€ ์ตœ๊ทผ ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ์ด ๋ณต์žกํ•œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ์ฒด์ธโ€‘์˜ค๋ธŒโ€‘์“ฐ๋ฃจ(Chainโ€‘ofโ€‘Thought)์™€ ๊ฐ™์€ ๊ธด ์ถ”๋ก  ๊ณผ์ •์„ ๊ฑฐ์น  ๋•Œ, ๋ฉ”๋ชจ๋ฆฌ ๋Œ€์—ญํญ์ด ์ฃผ์š” ๋ณ‘๋ชฉ์œผ๋กœ ์ž‘์šฉํ•œ๋‹ค๋Š” ์ ์„ ์ •ํ™•ํžˆ ์งš์–ด๋‚ธ๋‹ค. ์ „ํ†ต์ ์ธ ๋””์ฝ”๋”ฉ ๋ฐฉ์‹์—์„œ๋Š” ๋งค ํ† ํฐ๋งˆ๋‹ค KVโ€‘Cache์— ์ €์žฅ๋œ ๋ชจ๋“  ์ด์ „ ํ† ํฐ์— ๋Œ€ํ•ด ์™„์ „ ์–ดํ…์…˜์„ ์ˆ˜ํ–‰ํ•œ๋‹ค. ํ† ํฐ ์ˆ˜๊ฐ€ ๋Š˜์–ด๋‚ ์ˆ˜๋ก KVโ€‘Cache์˜ ํฌ๊ธฐ๋„ ์„ ํ˜•์ ์œผ๋กœ ์ฆ๊ฐ€ํ•˜๊ณ , ์ด์— ๋”ฐ๋ผ ๋ฉ”๋ชจ๋ฆฌ ์ฝ๊ธฐยท์“ฐ๊ธฐ ๋น„์šฉ์ด ๊ธ‰์ฆํ•œ๋‹ค. ํŠนํžˆ GPU ๋ฉ”๋ชจ๋ฆฌ ์šฉ๋Ÿ‰์ด ์ œํ•œ์ ์ธ ์ƒํ™ฉ์—์„œ ์ด๋Ÿฌํ•œ ๋ฉ”๋ชจ๋ฆฌโ€‘๋ฐ”์šด๋“œ ํŠน์„ฑ์€ ์‹ค์‹œ๊ฐ„ ์‘์šฉ์— ํฐ ์ œ์•ฝ์ด ๋œ

Model
From Black Hole to Galaxy: Neural Operator: Framework for Accretion and Feedback Dynamics

From Black Hole to Galaxy: Neural Operator: Framework for Accretion and Feedback Dynamics

์ดˆ๋Œ€์งˆ๋Ÿ‰ ๋ธ”๋ž™ํ™€(SMBH)๊ณผ ๊ทธ ์ˆ™์ฃผ ์€ํ•˜์˜ ๊ณต๋™ ์ง„ํ™”๋Š” ํ˜„๋Œ€ ์ฒœ์ฒด๋ฌผ๋ฆฌํ•™์—์„œ ๊ฐ€์žฅ ๋‚œ์ œ ์ค‘ ํ•˜๋‚˜์ด๋‹ค. ๋ฌผ๋ฆฌ์  ๊ณผ์ •์ด ๋ธ”๋ž™ํ™€ ์ฃผ๋ณ€์˜ ๋ฐ€๋ฆฌํŒŒ์„น ๊ทœ๋ชจ์—์„œ ์€ํ•˜ ์ „์ฒด์˜ ๋ฉ”๊ฐ€ํŒŒ์„น ๊ทœ๋ชจ์— ์ด๋ฅด๊ธฐ๊นŒ์ง€ 10โน๋ฐฐ์— ๋‹ฌํ•˜๋Š” ๊ฑฐ๋ฆฌ์™€ ์‹œ๊ฐ„ ์Šค์ผ€์ผ์„ ํฌ๊ด„ํ•œ๋‹ค๋Š” ์ ์—์„œ, ์ „ํ†ต์ ์ธ ์ฒซ ์›๋ฆฌ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์€ ๊ณ„์‚ฐ ์ž์› ํ•œ๊ณ„๋กœ ์ธํ•ด ์‹คํ˜„ ๋ถˆ๊ฐ€๋Šฅํ•˜๋‹ค. ๋”ฐ๋ผ์„œ ์—ฐ๊ตฌ์ž๋“ค์€ โ€˜์„œ๋ธŒ๊ทธ๋ฆฌ๋“œโ€™ ์ ‘๊ทผ๋ฒ•์„ ์‚ฌ์šฉํ•ด ๋ฏธ์„ธ ์Šค์ผ€์ผ์˜ ๋ฌผ๋ฆฌํ•™์„ ๊ฑฐ์‹œ ์Šค์ผ€์ผ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์— ์‚ฝ์ž…ํ•œ๋‹ค. ๊ธฐ์กด ์„œ๋ธŒ๊ทธ๋ฆฌ๋“œ ๋ชจ๋ธ์€ ๋ณดํ†ต ๊ณ ์ •๋œ ํšจ์œจ ํŒŒ๋ผ๋ฏธํ„ฐ(์˜ˆ: Eddington ์ œํ•œ, ฮฑ ๋””์Šคํฌ ๋ชจ๋ธ)๋‚˜ ์ด๋ก ์  ์ถ”์ •

Framework
GrndCtrl: Grounding World Models via Self-Supervised Reward Alignment

GrndCtrl: Grounding World Models via Self-Supervised Reward Alignment

๋ณธ ๋…ผ๋ฌธ์ด ์ œ์‹œํ•˜๋Š” โ€œReinforcement Learning with World Groundingโ€(RLWG) ์ ‘๊ทผ๋ฒ•์€ ๊ธฐ์กด ๋น„๋””์˜ค ๊ธฐ๋ฐ˜ ์„ธ๊ณ„ ๋ชจ๋ธ์ด ๊ฒช๋Š” ๊ธฐํ•˜ํ•™์  ๋ถˆ์ผ์น˜ ๋ฌธ์ œ๋ฅผ ๊ทผ๋ณธ์ ์œผ๋กœ ํ•ด๊ฒฐํ•˜๋ ค๋Š” ์‹œ๋„์ด๋‹ค. ์ „ํ†ต์ ์ธ ๋น„๋””์˜ค ์„ธ๊ณ„ ๋ชจ๋ธ์€ ์ฃผ๋กœ ํ”„๋ ˆ์ž„โ€‘๊ฐ„ ์žฌ๊ตฌ์„ฑ ์†์‹ค์„ ์ตœ์†Œํ™”ํ•จ์œผ๋กœ์จ ํ•™์Šต๋˜๋Š”๋ฐ, ์ด๋Ÿฌํ•œ ์†์‹ค์€ ์‹œ๊ฐ์  ์ผ๊ด€์„ฑ์€ ํ™•๋ณดํ•˜์ง€๋งŒ ๋ฌผ๋ฆฌ์ ยท๊ธฐํ•˜ํ•™์  ์ œ์•ฝ์„ ์ถฉ๋ถ„ํžˆ ๋ฐ˜์˜ํ•˜์ง€ ๋ชปํ•œ๋‹ค. ๊ฒฐ๊ณผ์ ์œผ๋กœ ๋ชจ๋ธ์ด ์ƒ์„ฑํ•œ ๊ฐ€์ƒ ํ™˜๊ฒฝ์€ ์ธ๊ฐ„์ด ์ง๊ด€์ ์œผ๋กœ ์ธ์‹ํ•˜๋Š” ๋ฌผ๋ฆฌ ๋ฒ•์น™๊ณผ ์–ด๊ธ‹๋‚˜๋Š” ๊ฒฝ์šฐ๊ฐ€ ๋นˆ๋ฒˆํ•˜๋‹ค. RLWG๋Š” ์ด๋Ÿฌํ•œ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด ๋‘ ๊ฐ€

Model
HalluGraph: Auditable Hallucination Detection for Legal RAG Systems via Knowledge Graph Alignment

HalluGraph: Auditable Hallucination Detection for Legal RAG Systems via Knowledge Graph Alignment

๋ณธ ๋…ผ๋ฌธ์€ ๋ฒ•๋ฅ  ๋ถ„์•ผ์—์„œ ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ์ž๋™ ๋ฌธ์„œ ์ƒ์„ฑ์ด ์ง๋ฉดํ•œ ๊ฐ€์žฅ ํ•ต์‹ฌ์ ์ธ ๋ฌธ์ œ์ธ โ€˜ํ™˜๊ฐ(hallucination)โ€™์„ ๊ทธ๋ž˜ํ”„ ์ด๋ก ์„ ํ™œ์šฉํ•ด ์ฒด๊ณ„์ ์œผ๋กœ ํ•ด๊ฒฐํ•˜๋ ค๋Š” ์‹œ๋„๋‹ค. ๊ธฐ์กด์˜ ํ™˜๊ฐ ํƒ์ง€ ๋ฐฉ๋ฒ•์€ ์ฃผ๋กœ ํ…์ŠคํŠธ ๊ฐ„ ์˜๋ฏธ ์œ ์‚ฌ๋„๋ฅผ ๊ณ„์‚ฐํ•˜๋Š” ๋ฐฉ์‹์— ์˜์กดํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ์ ‘๊ทผ๋ฒ•์€ ๋ฌธ๋งฅ์ƒ ์œ ์‚ฌํ•ด ๋ณด์ด์ง€๋งŒ ์‹ค์ œ๋กœ๋Š” ์ค‘์š”ํ•œ ์—”ํ„ฐํ‹ฐ(์˜ˆ: ๋‹น์‚ฌ์ž๋ช…, ์‚ฌ๊ฑด ์ผ์ž, ์กฐํ•ญ ๋ฒˆํ˜ธ)๊ฐ€ ์ž˜๋ชป ๊ต์ฒด๋˜๊ฑฐ๋‚˜ ๋ˆ„๋ฝ๋˜๋Š” ๊ฒฝ์šฐ๋ฅผ ํฌ์ฐฉํ•˜์ง€ ๋ชปํ•œ๋‹ค. ๋ฒ•๋ฅ  ๋ฌธ์„œ๋Š” ์ž‘์€ ์—”ํ„ฐํ‹ฐ์˜ ๋ณ€ํ˜•๋งŒ์œผ๋กœ๋„ ํŒ๊ฒฐ ๊ฒฐ๊ณผ์— ํฐ ์˜ํ–ฅ์„ ๋ฏธ์น  ์ˆ˜ ์žˆ๊ธฐ ๋•Œ๋ฌธ์—, ๋ณด๋‹ค ์ •๋ฐ€ํ•˜๊ณ  ํ•ด์„ ๊ฐ€๋Šฅํ•œ ๊ฒ€์ฆ ๋ฉ”์ปค๋‹ˆ

Detection System
A Benchmark of Causal vs Correlation AI for Predictive Maintenance

A Benchmark of Causal vs Correlation AI for Predictive Maintenance

์˜ˆ์ธก ์œ ์ง€๋ณด์ˆ˜๋Š” ์„ค๋น„ ๊ณ ์žฅ์„ ์‚ฌ์ „์— ๊ฐ์ง€ํ•ด ์ƒ์‚ฐ ์ค‘๋‹จ์„ ๋ฐฉ์ง€ํ•˜๊ณ , ์œ ์ง€๋ณด์ˆ˜ ๋น„์šฉ์„ ์ตœ์†Œํ™”ํ•˜๋ ค๋Š” ํ•ต์‹ฌ ์ „๋žต์ด๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ œ์กฐ ํ˜„์žฅ์—์„œ๋Š” ๊ณ ์žฅ์„ ๋†“์น˜๋Š” ๋น„์šฉ์ด ์˜ค๊ฒฝ๋ณด(๋ถˆํ•„์š”ํ•œ ์ •๋น„) ๋น„์šฉ๋ณด๋‹ค ์ˆ˜์‹ญ ๋ฐฐ์—์„œ ์ˆ˜๋ฐฑ ๋ฐฐ๊นŒ์ง€ ํฌ๊ฒŒ ์ฐจ์ด ๋‚˜๋Š” โ€˜๋น„์šฉ ๋น„๋Œ€์นญโ€™ ํ˜„์ƒ์ด ์กด์žฌํ•œ๋‹ค. ์ด ๋น„๋Œ€์นญ์€ ๋‹จ์ˆœํžˆ ์ •ํ™•๋„(accuracy)๋‚˜ AUC์™€ ๊ฐ™์€ ํ†ต๊ณ„์  ์ง€ํ‘œ๋งŒ์œผ๋กœ๋Š” ๋ชจ๋ธ์˜ ์‹ค์ œ ๊ฐ€์น˜๋ฅผ ํ‰๊ฐ€ํ•˜๊ธฐ ์–ด๋ ต๊ฒŒ ๋งŒ๋“ ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด, ๊ณ ์žฅ ๋ฐœ์ƒ๋ฅ ์ด 3.3%์— ๋ถˆ๊ณผํ•œ ์ƒํ™ฉ์—์„œ 99% ์ •ํ™•๋„๋ฅผ ๋‹ฌ์„ฑํ•˜๋”๋ผ๋„ ์˜ค๊ฒฝ๋ณด๊ฐ€ ๊ณผ๋‹คํ•˜๋ฉด ์ „์ฒด ๋น„์šฉ์ด ๊ธ‰์ฆํ•œ๋‹ค. ๋”ฐ๋ผ์„œ ๋น„์šฉ ๊ธฐ๋ฐ˜ ๋ชฉํ‘œ ํ•จ

Teleportation-Based Defenses for Privacy in Approximate Machine Unlearning

Teleportation-Based Defenses for Privacy in Approximate Machine Unlearning

๊ธฐ๊ณ„ ํ•™์Šต ๋ชจ๋ธ์—์„œ ํŠน์ • ์ƒ˜ํ”Œ์„ โ€˜์‚ญ์ œโ€™ํ•˜๋Š” ์ž‘์—…์€ ์‹ค์ œ ์„œ๋น„์Šค ํ™˜๊ฒฝ์—์„œ ๊ฐœ์ธ์ •๋ณด ๋ณดํ˜ธ ๊ทœ์ •์„ ์ค€์ˆ˜ํ•˜๊ธฐ ์œ„ํ•ด ํ•„์ˆ˜์ ์ด๋‹ค. ์ „ํ†ต์ ์ธ ์™„์ „ ์žฌํ•™์Šต ๋ฐฉ์‹์€ ๋น„์šฉ์ด ๋งŽ์ด ๋“ค๊ณ  ์‹ค์‹œ๊ฐ„ ์„œ๋น„์Šค์— ์ ์šฉํ•˜๊ธฐ ์–ด๋ ต๋‹ค. ๋”ฐ๋ผ์„œ ์ตœ๊ทผ์—๋Š” ๊ทผ์‚ฌ ์‚ญ์ œ(approximate unlearning) ๊ธฐ๋ฒ•์ด ํ™œ๋ฐœํžˆ ์—ฐ๊ตฌ๋˜๊ณ  ์žˆ๋‹ค. ์ด๋“ค ๊ธฐ๋ฒ•์€ ์›๋ณธ ๋ชจ๋ธ ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ์•ฝ๊ฐ„๋งŒ ์กฐ์ •ํ•˜๊ฑฐ๋‚˜, ์†์‹ค ํ•จ์ˆ˜์— ์‚ญ์ œ ๋Œ€์ƒ ์ƒ˜ํ”Œ์„ ์ œ์™ธํ•œ ํ˜•ํƒœ๋กœ ์žฌํ•™์Šตํ•จ์œผ๋กœ์จ ๋น ๋ฅธ ์‚ญ์ œ๋ฅผ ๋ชฉํ‘œ๋กœ ํ•œ๋‹ค. ํ•˜์ง€๋งŒ ๋ณธ ๋…ผ๋ฌธ์ด ์ง€์ ํ•˜๋“ฏ, ๊ทผ์‚ฌ ์‚ญ์ œ๋Š” ๋‘ ๊ฐ€์ง€ ๊ตฌ์กฐ์  ํŠน์„ฑ ๋•Œ๋ฌธ์— ํ”„๋ผ์ด๋ฒ„์‹œ ์œ„ํ—˜์„ ๋‚ดํฌํ•œ๋‹ค

Learning
Prompted Policy Search: Reinforcement Learning through Linguistic and Numerical Reasoning in LLMs

Prompted Policy Search: Reinforcement Learning through Linguistic and Numerical Reasoning in LLMs

Prompted Policy Search(ProPS)๋Š” ๊ธฐ์กด ๊ฐ•ํ™”ํ•™์Šต ํŒจ๋Ÿฌ๋‹ค์ž„์— ๊ทผ๋ณธ์ ์ธ ๋ณ€ํ™”๋ฅผ ์‹œ๋„ํ•œ๋‹ค. ์ „ํ†ต์ ์ธ RL ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ์ฃผ๋กœ ํ™˜๊ฒฝ์œผ๋กœ๋ถ€ํ„ฐ ์–ป๋Š” ์Šค์นผ๋ผ ๋ณด์ƒ์— ๊ธฐ๋ฐ˜ํ•ด ์ •์ฑ…์„ ์—…๋ฐ์ดํŠธํ•œ๋‹ค. ์ด ์ ‘๊ทผ๋ฒ•์€ ์ˆ˜ํ•™์ ์œผ๋กœ๋Š” ๊น”๋”ํ•˜์ง€๋งŒ, ์‹ค์ œ ๋ฌธ์ œ์—์„œ๋Š” ๋ชฉํ‘œ ์„ค๋ช…, ์ œ์•ฝ ์กฐ๊ฑด, ์ธ๊ฐ„ ์ „๋ฌธ๊ฐ€์˜ ์กฐ์–ธ ๋“ฑ ํ…์ŠคํŠธ ํ˜•ํƒœ์˜ ํ’๋ถ€ํ•œ ๋ฉ”ํƒ€ ์ •๋ณด๋ฅผ ๋ฌด์‹œํ•œ๋‹ค๋Š” ํ•œ๊ณ„๊ฐ€ ์žˆ๋‹ค. ProPS๋Š” ์ด๋Ÿฌํ•œ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(LLM)์„ ์ •์ฑ… ์ตœ์ ํ™”์˜ ํ•ต์‹ฌ ์—”์ง„์œผ๋กœ ํ™œ์šฉํ•œ๋‹ค. ๊ตฌ์ฒด์ ์œผ๋กœ, ์—์ด์ „ํŠธ๊ฐ€ ํ™˜๊ฒฝ์—์„œ ์–ป์€ ๋ณด์ƒ๊ณผ ํ•จ๊ป˜ โ€œ๋ชฉํ‘œ๋Š” โ€˜๊ณต์„ ์žก์•„

Learning
HVAdam: A Full-Dimension Adaptive Optimizer

HVAdam: A Full-Dimension Adaptive Optimizer

๋ณธ ์—ฐ๊ตฌ๋Š” ํ˜„์žฌ ๋”ฅ๋Ÿฌ๋‹ ์ปค๋ฎค๋‹ˆํ‹ฐ์—์„œ ๋„๋ฆฌ ์‚ฌ์šฉ๋˜๋Š” ์ ์‘ํ˜• ์˜ตํ‹ฐ๋งˆ์ด์ €์ธ AdamยทRMSProp์ด ๊ฐ–๋Š” ๊ทผ๋ณธ์ ์ธ ๊ตฌ์กฐ์  ํ•œ๊ณ„๋ฅผ ์ง€์ ํ•œ๋‹ค. ๊ธฐ์กด ์ ์‘ํ˜• ๋ฐฉ๋ฒ•์€ 1์ฐจ์›(๊ฐ ํŒŒ๋ผ๋ฏธํ„ฐ)๋ณ„๋กœ ์ˆœ๊ฐ„์ ์ธ 1์ฐจยท2์ฐจ ๋ชจ๋ฉ˜ํŠธ๋ฅผ ์ถ”์ •ํ•ด ํ•™์Šต๋ฅ ์„ ์กฐ์ •ํ•œ๋‹ค. ์ด๋Š” ๊ฐ ํŒŒ๋ผ๋ฏธํ„ฐ๊ฐ€ ๋…๋ฆฝ์ ์œผ๋กœ ์›€์ง์ธ๋‹ค๋Š” ์ „์ œ ํ•˜์— ์„ค๊ณ„๋œ ๊ฒƒ์ด๋ฉฐ, ์‹ค์ œ ๊ณ ์ฐจ์› ์†์‹ค ํ‘œ๋ฉด์—์„œ๋Š” ํŒŒ๋ผ๋ฏธํ„ฐ ๊ฐ„ ์ƒ๊ด€๊ด€๊ณ„๊ฐ€ ๋ณต์žกํ•˜๊ฒŒ ์–ฝํ˜€ ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ์ƒ๊ด€๊ด€๊ณ„๋ฅผ ๋ฌด์‹œํ•˜๋ฉด, ์˜ˆ๋ฅผ ๋“ค์–ด ์†์‹ค์ด ์ข์€ ๊ณจ์งœ๊ธฐ ํ˜•ํƒœ๋กœ ์—ฐ์†๋˜๋Š” ๊ฒฝ์šฐ ํ•œ ์ฐจ์›์—์„œ๋Š” ๊ธ‰๊ฒฉํžˆ ๊ฐ์†Œํ•˜์ง€๋งŒ ๋‹ค๋ฅธ ์ฐจ์›์—์„œ๋Š” ์™„๋งŒํžˆ ๋ณ€ํ•˜๋Š” ์ƒํ™ฉ์—์„œ, ๊ฐœ๋ณ„ ํ•™

MotionV2V: Editing Motion in a Video

MotionV2V: Editing Motion in a Video

๋ณธ ๋…ผ๋ฌธ์€ ์ตœ๊ทผ ๊ธ‰๊ฒฉํžˆ ๋ฐœ์ „ํ•˜๊ณ  ์žˆ๋Š” ํ…์ŠคํŠธโ€‘ํˆฌโ€‘๋น„๋””์˜คยท์ด๋ฏธ์ง€โ€‘ํˆฌโ€‘๋น„๋””์˜ค ์ƒ์„ฑ ๋ชจ๋ธ์˜ โ€˜์›€์ง์ž„ ์ œ์–ดโ€™ ๋ผ๋Š” ๋ถ€์ˆ˜์  ๊ธฐ๋Šฅ์„, โ€˜์ •๋ฐ€ ์›€์ง์ž„ ํŽธ์ง‘โ€™ ์ด๋ผ๋Š” ์ƒˆ๋กœ์šด ๊ด€์ ์œผ๋กœ ์ „ํ™˜ํ•œ๋‹ค๋Š” ์ ์—์„œ ํ•™์ˆ ์ ยท์‚ฐ์—…์  ์˜์˜๊ฐ€ ํฌ๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋Š” ์ฃผ๋กœ ํ…์ŠคํŠธ ํ”„๋กฌํ”„ํŠธ์— ๋”ฐ๋ผ ์ „๋ฐ˜์ ์ธ ๋™์ž‘์„ ์ƒ์„ฑํ•˜๊ฑฐ๋‚˜, ์ด๋ฏธ์ง€์— ๋ถ€์ฐฉ๋œ ํฌ์ฆˆ๋ฅผ ์• ๋‹ˆ๋ฉ”์ด์…˜ํ™”ํ•˜๋Š” ๋ฐฉ์‹์— ๋จธ๋ฌผ๋ €๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์‹ค์ œ ์˜์ƒ ํŽธ์ง‘ ํ˜„์žฅ์—์„œ๋Š” ํŠน์ • ๊ฐ์ฒด์˜ ๊ฒฝ๋กœ๋ฅผ ๋ฏธ์„ธํ•˜๊ฒŒ ์ˆ˜์ •ํ•˜๊ฑฐ๋‚˜, ํŠน์ • ๊ตฌ๊ฐ„์—์„œ๋งŒ ์›€์ง์ž„์„ ๋ฐ”๊พธ๊ณ  ์‹ถ์–ดํ•˜๋Š” ์š”๊ตฌ๊ฐ€ ๋นˆ๋ฒˆํžˆ ๋ฐœ์ƒํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ์š”๊ตฌ๋ฅผ ์ถฉ์กฑ์‹œํ‚ค๊ธฐ ์œ„ํ•ด ์ €์ž๋“ค์€ ์ž…๋ ฅ ์˜์ƒ์œผ๋กœ๋ถ€

AttackPilot: Autonomous Inference Attacks Against ML Services With LLM-Based Agents

AttackPilot: Autonomous Inference Attacks Against ML Services With LLM-Based Agents

๋ณธ ์—ฐ๊ตฌ๋Š” ์ถ”๋ก  ๊ณต๊ฒฉ(inference attack)์ด๋ผ๋Š” ๊ธฐ์กด ๋ณด์•ˆ ํ‰๊ฐ€ ๊ธฐ๋ฒ•์— LLM ๊ธฐ๋ฐ˜ ์ž์œจ ์—์ด์ „ํŠธ๋ฅผ ๊ฒฐํ•ฉํ•จ์œผ๋กœ์จ, โ€œ์ „๋ฌธ๊ฐ€ ์ˆ˜์ค€์˜ ๊ณต๊ฒฉ ์ˆ˜ํ–‰์„ ๋น„์ „๋ฌธ๊ฐ€์—๊ฒŒ ์ œ๊ณตํ•œ๋‹คโ€๋Š” ํ˜์‹ ์ ์ธ ๋ชฉํ‘œ๋ฅผ ์„ค์ •ํ•œ๋‹ค. ๋จผ์ €, ๊ณต๊ฒฉ ์ˆ˜ํ–‰์— ํ•„์š”ํ•œ ๋‹จ๊ณ„โ€”๋ชฉํ‘œ ๋ชจ๋ธ ์‹๋ณ„, ๋ฐ์ดํ„ฐ ์ˆ˜์ง‘, ๊ณต๊ฒฉ ์ „๋žต ์„ ํƒ, ํŒŒ๋ผ๋ฏธํ„ฐ ํŠœ๋‹, ๊ฒฐ๊ณผ ํ•ด์„โ€”๋ฅผ ๋ช…์‹œ์ ์œผ๋กœ ํ–‰๋™(action)์œผ๋กœ ๋ถ„ํ•ดํ•˜๊ณ , ๊ฐ๊ฐ์„ LLM์ด ํ˜ธ์ถœํ•  ์ˆ˜ ์žˆ๋Š” API ํ˜•ํƒœ๋กœ ๊ตฌํ˜„ํ•˜์˜€๋‹ค. ์ด๋Ÿฌํ•œ ์ž‘์—…โ€‘ํŠนํ™” ํ–‰๋™ ๊ณต๊ฐ„์€ ์—์ด์ „ํŠธ๊ฐ€ ๋ถˆํ•„์š”ํ•œ ์ถ”๋ก ์„ ์ตœ์†Œํ™”ํ•˜๊ณ , ํ† ํฐ ๋น„์šฉ์„ ํฌ๊ฒŒ ์ ˆ๊ฐํ•˜๋„๋ก ์„ค๊ณ„๋˜์—ˆ๋‹ค๋Š” ์ ์ด

Trust-Based Social Learning for Communication (TSLEC) Protocol Evolution in Multi-Agent Reinforcement Learning

Trust-Based Social Learning for Communication (TSLEC) Protocol Evolution in Multi-Agent Reinforcement Learning

TSLEC ๋…ผ๋ฌธ์€ ๊ธฐ์กด์˜ ๋‹ค์ค‘ ์—์ด์ „ํŠธ ์ปค๋ฎค๋‹ˆ์ผ€์ด์…˜ ์—ฐ๊ตฌ์—์„œ ๊ฐ„๊ณผ๋˜๋˜ โ€˜์‚ฌํšŒ์  ์ „์ดโ€™๋ฅผ ์ฒด๊ณ„์ ์œผ๋กœ ๋ชจ๋ธ๋งํ•œ ์ ์ด ๊ฐ€์žฅ ํฐ ํ˜์‹ ์ด๋‹ค. ๊ธฐ์กด ์ ‘๊ทผ๋ฒ•์€ ๊ฐ ์—์ด์ „ํŠธ๊ฐ€ ํ™˜๊ฒฝ ๋ณด์ƒ๋งŒ์„ ์ด์šฉํ•ด ๋…๋ฆฝ์ ์œผ๋กœ ์–ธ์–ด๋ฅผ ํ˜•์„ฑํ•˜๋„๋ก ์„ค๊ณ„๋ผ, ์ดˆ๊ธฐ ํƒ์ƒ‰ ๋‹จ๊ณ„์—์„œ ๋ฌด์ˆ˜ํžˆ ๋งŽ์€ ๋น„ํšจ์œจ์ ์ธ ์‹ ํ˜ธ ์กฐํ•ฉ์ด ๋ฐœ์ƒํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ๋น„ํšจ์œจ์„ฑ์€ ํ•™์Šต ๊ณก์„ ์ด ์™„๋งŒํ•˜๊ณ , ์ตœ์ข… ํ”„๋กœํ† ์ฝœ์ด ๋น„๊ตฌ์กฐ์ ์ด๋ฉฐ, ํ™˜๊ฒฝ ๋ณ€ํ™”์— ์ทจ์•ฝํ•œ ๋‹จ์ ์œผ๋กœ ์ด์–ด์ง„๋‹ค. TSLEC์€ ๋‘ ๊ฐ€์ง€ ํ•ต์‹ฌ ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ๋„์ž…ํ•œ๋‹ค. ์ฒซ์งธ, ๊ต์‚ฌโ€‘ํ•™์ƒ ๋ฉ”์ปค๋‹ˆ์ฆ˜ ์„ ํ†ตํ•ด ์—์ด์ „ํŠธ๊ฐ€ ์ž์‹ ์˜ ์„ฑ๊ณต์ ์ธ ํ–‰๋™โ€‘์‹ ํ˜ธ ๋งคํ•‘์„ ๋‹ค๋ฅธ ์—์ด์ „

Learning
MultiGA: Leveraging Multi-Source Seeding in Genetic Algorithms

MultiGA: Leveraging Multi-Source Seeding in Genetic Algorithms

๋ณธ ๋…ผ๋ฌธ์ด ์ œ์‹œํ•˜๋Š” MultiGA๋Š” ๊ธฐ์กด LLM ํ™œ์šฉ ๋ฐฉ์‹์— ์ค‘์š”ํ•œ ๋ณ€ํ™”๋ฅผ ๋„์ž…ํ•œ๋‹ค. ์ „ํ†ต์ ์œผ๋กœ ํ•˜๋‚˜์˜ ์‚ฌ์ „ ํ•™์Šต๋œ ๋ชจ๋ธ์„ ์„ ํƒํ•˜๊ณ , ํ•„์š”์— ๋”ฐ๋ผ ํŒŒ์ธํŠœ๋‹ํ•˜๊ฑฐ๋‚˜ ํ”„๋กฌํ”„ํŠธ ์—”์ง€๋‹ˆ์–ด๋ง์„ ์ ์šฉํ•ด ์„ฑ๋Šฅ์„ ๋Œ์–ด์˜ฌ๋ฆฌ๋Š” ๊ฒƒ์ด ์ผ๋ฐ˜์ ์ด์—ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ํŒŒ์ธํŠœ๋‹์€ ๋Œ€๊ทœ๋ชจ ๋ฐ์ดํ„ฐ์™€ ์—ฐ์‚ฐ ๋น„์šฉ์ด ์š”๊ตฌ๋˜๋ฉฐ, ํ”„๋กฌํ”„ํŠธ ์„ค๊ณ„๋Š” ์ „๋ฌธ๊ฐ€ ์ˆ˜์ค€์˜ ๋…ธํ•˜์šฐ๊ฐ€ ํ•„์š”ํ•˜๋‹ค. ์ด์— ๋น„ํ•ด MultiGA๋Š” โ€œ๋‹ค์ค‘ ์†Œ์Šค ์‹œ๋”ฉโ€์ด๋ผ๋Š” ์•„์ด๋””์–ด๋ฅผ ํ†ตํ•ด ์—ฌ๋Ÿฌ LLM์˜ ์ถœ๋ ฅ์„ ๋™์‹œ์— ํ™œ์šฉํ•œ๋‹ค๋Š” ์ ์—์„œ ํ˜์‹ ์ ์ด๋‹ค. ์ดˆ๊ธฐ ์ง‘๋‹จ์„ ๋‹ค์–‘ํ•œ ๋ชจ๋ธ์—์„œ ์ถ”์ถœํ•จ์œผ๋กœ์จ, ๊ฐ ๋ชจ๋ธ์ด ๊ฐ€์ง„ ๊ณ ์œ ํ•œ ๊ฐ•์ (์˜ˆ:

Fuzzy-Logic and Deep Learning for Environmental Condition-Aware Road Surface Classification

Fuzzy-Logic and Deep Learning for Environmental Condition-Aware Road Surface Classification

๋ณธ ์—ฐ๊ตฌ๋Š” ์‹ค์‹œ๊ฐ„ ๋„๋กœ ์ƒํƒœ ๋ชจ๋‹ˆํ„ฐ๋ง ์‹œ์Šคํ…œ์˜ ๊ฐœ๋ฐœ์„ ๋ชฉํ‘œ๋กœ ํ•˜๋ฉฐ, ์ด๋ฅผ ํ†ตํ•ด ์ฐจ๋Ÿ‰ ๊ด€๋ฆฌ ๋ฐ ํ™œ์„ฑ ์ฐจ๋Ÿ‰ ์ œ์–ด ์‹œ์Šคํ…œ์— ํ•„์š”ํ•œ ์ •๋ณด๋ฅผ ์ œ๊ณตํ•˜๊ณ ์ž ํ•ฉ๋‹ˆ๋‹ค. ์ „ํ†ต์ ์ธ ๋ฐฉ๋ฒ•๋“ค์ด ๋น„์šฉ๊ณผ ์‹œ๊ฐ„์ด ๋งŽ์ด ์†Œ์š”๋˜๋Š” ๋ฐ˜๋ฉด, ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋‚ ์”จ ์กฐ๊ฑด ๋ฐ์ดํ„ฐ์™€ ๋„๋กœ ํ‘œ๋ฉด ์ƒํƒœ ๋ฐ์ดํ„ฐ๋ฅผ ํ™œ์šฉํ•œ ์ƒˆ๋กœ์šด ์ ‘๊ทผ๋ฒ•์„ ์ œ์‹œํ•ฉ๋‹ˆ๋‹ค. ํŠนํžˆ, ์นผ์Šค๋ฃจ์— ๊ณต๊ณผ๋Œ€ํ•™๊ต ์ฃผ๋ณ€ ๋„๋กœ์—์„œ ๋ชจ๋ฐ”์ผ ํฐ ์นด๋ฉ”๋ผ๋ฅผ ์ด์šฉํ•ด ์ˆ˜์ง‘๋œ ์ด๋ฏธ์ง€ ๋ฐ์ดํ„ฐ์™€ ๊ฐ€์†๋„ ๋ฐ์ดํ„ฐ๋ฅผ ํ†ตํ•ด ๋‹ค์–‘ํ•œ ๋”ฅ๋Ÿฌ๋‹ ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ์„ฑ๋Šฅ์„ ๋น„๊ตํ•˜์˜€์Šต๋‹ˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” Alexnet, LeNet, VGG ๋ฐ Resnet ๋“ฑ ๋„ค ๊ฐ€

Learning
No Image

Flexible Multitask Learning with Factorized Diffusion Policy

๋ณธ ๋…ผ๋ฌธ์€ ๋‹ค์ค‘ ์ž‘์—… ํ•™์Šต์˜ ๋ณต์žก์„ฑ์„ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ์ƒˆ๋กœ์šด ์ ‘๊ทผ๋ฒ•์„ ์ œ์‹œํ•ฉ๋‹ˆ๋‹ค. ๋กœ๋ด‡ ํ–‰๋™ ๋ถ„ํฌ๋Š” ๋งค์šฐ ๋‹ค์–‘ํ•˜๊ณ , ์ด๋กœ ์ธํ•ด ์ผ๊ด€๋œ ๋ชจ๋ธ์ด ์ด๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ํ•™์Šตํ•˜๋Š” ๋ฐ ์–ด๋ ค์›€์„ ๊ฒช์Šต๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ๋…ผ๋ฌธ์€ ๋ชจ๋“ˆํ™”๋œ ํ™•์‚ฐ ์ •์ฑ… ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. ์ด ํ”„๋ ˆ์ž„์›Œํฌ๋Š” ๋ณต์žกํ•œ ํ–‰๋™ ๋ถ„ํฌ๋ฅผ ์—ฌ๋Ÿฌ ๊ฐœ์˜ ํŠน์ˆ˜ํ™”๋œ ํ™•์‚ฐ ๋ชจ๋ธ๋กœ ๋ถ„ํ•ดํ•˜์—ฌ ๊ฐ๊ฐ์ด ํŠน์ • ํ•˜์œ„ ๋ชจ๋“œ๋ฅผ ํฌ์ฐฉํ•˜๋„๋ก ํ•ฉ๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ์ ‘๊ทผ๋ฒ•์€ ๊ฐ ๋ชจ๋“ˆ์ด ๋…๋ฆฝ์ ์œผ๋กœ ํ•™์Šตํ•˜๊ณ , ํ•„์š”์— ๋”ฐ๋ผ ์ถ”๊ฐ€ํ•˜๊ฑฐ๋‚˜ ์กฐ์ •ํ•  ์ˆ˜ ์žˆ์–ด ์ƒˆ๋กœ์šด ์ž‘์—…์— ๋Œ€ํ•œ ์œ ์—ฐํ•œ ์ ์‘์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•ฉ๋‹ˆ๋‹ค. ๋˜ํ•œ,

Learning
Introducing TrGLUE and SentiTurca: A Comprehensive Benchmark for Turkish General Language Understanding and Sentiment Analysis

Introducing TrGLUE and SentiTurca: A Comprehensive Benchmark for Turkish General Language Understanding and Sentiment Analysis

์ด ๋…ผ๋ฌธ์€ ํ„ฐํ‚ค์–ด ์ž์—ฐ์–ด ์ฒ˜๋ฆฌ(NLP)์˜ ์„ฑ๋Šฅ ํ‰๊ฐ€๋ฅผ ์œ„ํ•ด ํ•„์š”ํ•œ ์ข…ํ•ฉ์ ์ธ ๋ฒค์น˜๋งˆํฌ๋ฅผ ์ œ์‹œํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ํŠนํžˆ, TrGLUE์™€ SentiTurca๋ผ๋Š” ๋‘ ๊ฐ€์ง€ ์ƒˆ๋กœ์šด ๋ฒค์น˜๋งˆํฌ๋ฅผ ์†Œ๊ฐœํ•˜๋ฉฐ, ์ด๋Š” ํ„ฐํ‚ค์–ด NLU ๋Šฅ๋ ฅ์„ ํ‰๊ฐ€ํ•˜๋Š” ๋ฐ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•ฉ๋‹ˆ๋‹ค. GLUE ๋ฒค์น˜๋งˆํฌ๊ฐ€ ์˜์–ด NLU์˜ ์„ฑ๋Šฅ ํ‰๊ฐ€์— ๋Œ€ํ•œ ํ‘œ์ค€์„ ์ œ๊ณตํ•œ ๊ฒƒ์ฒ˜๋Ÿผ, TrGLUE๋Š” ํ„ฐํ‚ค์–ด์—์„œ๋„ ์œ ์‚ฌํ•œ ๊ธฐ๋Šฅ์„ ์ˆ˜ํ–‰ํ•ฉ๋‹ˆ๋‹ค. ๋…ผ๋ฌธ์€ ๋‹ค์–‘ํ•œ ์–ธ์–ด๋ณ„๋กœ ๊ฐœ๋ฐœ๋œ ๋ฒค์น˜๋งˆํฌ๋ฅผ ์†Œ๊ฐœํ•˜๋ฉฐ, ์ด๋Ÿฌํ•œ ๋ฒค์น˜๋งˆํฌ์˜ ์ค‘์š”์„ฑ์„ ๊ฐ•์กฐํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ํŠนํžˆ, ํ„ฐํ‚ค์–ด์— ๋Œ€ํ•œ ์ข…ํ•ฉ์ ์ธ NLU ํ‰๊ฐ€ ๋ฒค์น˜๋งˆํฌ๊ฐ€ ๋ถ€์žฌํ•œ

Analysis
No Image

LibContinual: A Comprehensive Library towards Realistic Continual Learning

์ด ๋…ผ๋ฌธ์€ ๊ณ„์†ํ•™์Šต(Continual Learning) ๋ถ„์•ผ์—์„œ ์ค‘์š”ํ•œ ๋ฌธ์ œ์ธ ์น˜๋ช…์ ์ธ ์žŠ์Œ์„ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด LibContinual์ด๋ผ๋Š” ์ƒˆ๋กœ์šด ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ๋ฅผ ์ œ์•ˆํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ด ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ๋Š” ๊ณ ๊ฒฐํ•ฉ ์ €๊ฒฐ์ฐฉ ๋ชจ๋“ˆํ˜• ์•„ํ‚คํ…์ฒ˜๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ, 5๊ฐœ์˜ ์ฃผ์š” ๋ฐฉ๋ฒ•๋ก  ์นดํ…Œ๊ณ ๋ฆฌ์— ๊ฑธ์ณ 19๊ฐœ์˜ ๋Œ€ํ‘œ์ ์ธ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ํ†ตํ•ฉํ•˜์—ฌ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ๊ตฌ์กฐ๋Š” ๋‹ค์–‘ํ•œ CL ๋ฐฉ๋ฒ•๋“ค์„ ๋น„๊ตํ•˜๊ณ  ์žฌํ˜„ ๊ฐ€๋Šฅํ•œ ์—ฐ๊ตฌ ํ™˜๊ฒฝ์„ ์ œ๊ณตํ•˜๋Š” ๋ฐ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•ฉ๋‹ˆ๋‹ค. ๋…ผ๋ฌธ์€ ๋˜ํ•œ ํ˜„์žฌ ํ‰๊ฐ€์—์„œ ์ผ๋ฐ˜์ ์œผ๋กœ ๋ฐœ๊ฒฌ๋˜๋Š” ์„ธ ๊ฐ€์ง€ ์•”๋ฌต์ ์ธ ๊ฐ€์ •(์˜คํ”„๋ผ์ธ ๋ฐ์ดํ„ฐ ์ ‘๊ทผ ๊ฐ€๋Šฅ์„ฑ, ์ œํ•œ ์—†๋Š”

Learning
S&P 500 Stock's Movement Prediction using CNN

S&P 500 Stock's Movement Prediction using CNN

์ด ๋…ผ๋ฌธ์€ S&P 500 ์ง€์ˆ˜๋ฅผ ๊ตฌ์„ฑํ•˜๋Š” ์ฃผ์‹์˜ ์›€์ง์ž„์„ ์˜ˆ์ธกํ•˜๋Š”๋ฐ ์ดˆ์ ์„ ๋งž์ถ”๊ณ  ์žˆ๋‹ค. ๊ณผ๊ฑฐ์—๋Š” ๋‹ค์–‘ํ•œ ๋ฐฉ๋ฒ•๋ก ์„ ์‚ฌ์šฉํ•˜์—ฌ ์ฃผ๊ฐ€ ์˜ˆ์ธก์— ๋Œ€ํ•œ ๋งŽ์€ ์ ‘๊ทผ๋ฒ•๋“ค์ด ์‹œ์žฅ์—์„œ ์•Œ๊ณ ๋ฆฌ์ฆ˜ ๊ฑฐ๋ž˜์™€ ์•ŒํŒŒ ์ƒ์„ฑ ์‹œ์Šคํ…œ์— ํ™œ์šฉ๋˜์–ด ์™”๋‹ค. ์ตœ๊ทผ ์ธ๊ณต ์‹ ๊ฒฝ๋ง์˜ ์„ฑ๊ณต์€ ๊ธฐ๊ณ„ ํ•™์Šต๊ณผ ๋”ฅ๋Ÿฌ๋‹ ๋ถ„์•ผ์˜ ์ตœ์‹  ์—ฐ๊ตฌ๋ฅผ ํ†ตํ•ด ์˜ˆ์ธก์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•˜๋Š” ๊ธธ์„ ์—ด์—ˆ๋‹ค. ์ด ๋…ผ๋ฌธ์—์„œ๋Š” ์‹ค์„ธ๊ณ„ ์‹œ์žฅ ๋ฐ์ดํ„ฐ์—์„œ ๋ฐœ์ƒํ•˜๋Š” ์ฃผ์‹ ๋ถ„ํ• /๋ฐฐ๋‹น ์ด๋ฒคํŠธ๋ฅผ ํฌํ•จํ•œ ๋‹ค๋ณ€๋Ÿ‰ ์›์‹œ ๋ฐ์ดํ„ฐ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ, ์ด๋ฏธ์ง€ ๋ถ„๋ฅ˜์— ๊ฐ€์žฅ ์ž˜ ์•Œ๋ ค์ง„ ๋„๊ตฌ์ธ ์ปจ๋ณผ๋ฃจ์…˜ ์‹ ๊ฒฝ๋ง(CNN)์„ ์ ์šฉํ•˜๊ณ  ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ์ ‘๊ทผ๋ฒ•์€ ๊ฐ๊ฐ

The Illusion of Clinical Reasoning: A Benchmark Reveals the Pervasive Gap in Vision-Language Models for Clinical Competency

The Illusion of Clinical Reasoning: A Benchmark Reveals the Pervasive Gap in Vision-Language Models for Clinical Competency

์ด ๋…ผ๋ฌธ์€ ์˜๋ฃŒ ๋ถ„์•ผ์—์„œ ์ธ๊ณต ์ง€๋Šฅ(AI)์˜ ์‹ค์ œ ์„ฑ๋Šฅ์„ ํ‰๊ฐ€ํ•˜๋Š” ์ค‘์š”ํ•œ ์—ฐ๊ตฌ๋ฅผ ์ œ๊ณตํ•œ๋‹ค. ํŠนํžˆ, ์ด ์—ฐ๊ตฌ๋Š” AI ๋ชจ๋ธ๋“ค์ด ์‹ค์ œ ์ž„์ƒ ์ƒํ™ฉ์—์„œ ์–ผ๋งˆ๋‚˜ ํšจ๊ณผ์ ์œผ๋กœ ์ž‘๋™ํ•˜๋Š”์ง€์— ๋Œ€ํ•œ ๊นŠ์ด ์žˆ๋Š” ํ†ต์ฐฐ๋ ฅ์„ ์ œ๊ณตํ•œ๋‹ค. B&J ๋ฒค์น˜๋งˆํฌ๋Š” ์˜๋ฃŒ ๋ถ„์•ผ์—์„œ AI์˜ ์„ฑ๋Šฅ์„ ์ข…ํ•ฉ์ ์œผ๋กœ ํ‰๊ฐ€ํ•˜๊ธฐ ์œ„ํ•œ ์ฒด๊ณ„์ ์ธ ์ ‘๊ทผ๋ฒ•์„ ์ œ์‹œํ•˜๋ฉฐ, ์ด๋Š” ๊ธฐ์กด์˜ ๋‹จ์ˆœํ•œ ์„ ํƒ์ง€ ๋ฌธ์ œ๋ฅผ ๋„˜์–ด ์‹ค์ œ ํ™˜์ž ์น˜๋ฃŒ์— ํ•„์š”ํ•œ ๋‹ค์–‘ํ•œ ์ถ”๋ก  ๋Šฅ๋ ฅ์„ ํ‰๊ฐ€ํ•œ๋‹ค. ์—ฐ๊ตฌ ๊ฒฐ๊ณผ๋Š” AI ๋ชจ๋ธ๋“ค์ด ๊ตฌ์กฐํ™”๋œ ์งˆ๋ฌธ์—์„œ๋Š” ๋†’์€ ์„ฑ๋Šฅ์„ ๋ณด์ด์ง€๋งŒ, ์‹ค์ œ ์ž„์ƒ ์ƒํ™ฉ์—์„œ ์š”๊ตฌ๋˜๋Š” ๋ณต์žกํ•˜๊ณ  ๋‹ค์ค‘๋ชจ๋‹ฌ์ ์ธ ์ถ”๋ก ์—๋Š” ์•„์ง

Model
No Image

BALLAST: Bandit-Assisted Learning for Latency-Aware Stable Timeouts in Raft

์ด ๋…ผ๋ฌธ์€ Raft ํ•ฉ์˜ ํ”„๋กœํ† ์ฝœ์—์„œ ๊ฐ€์žฅ ํ”ํžˆ ์‚ฌ์šฉ๋˜๋Š” ๋ฌด์ž‘์œ„ ์„ ์ถœ ํƒ€์ž„์•„์›ƒ์ด ์žฅ๊ธฐ ์ง€์—ฐ(longโ€‘tail latency)์ด๋‚˜ ๋„คํŠธ์›Œํฌ ํŒŒํ‹ฐ์…˜ ๋ณต๊ตฌ ์‹œ์— ๋ฐœ์ƒํ•˜๋Š” โ€œ๋ถ„ํ•  ํˆฌํ‘œ(split vote)โ€ ํ˜„์ƒ์œผ๋กœ ์ธํ•ด ์‹œ์Šคํ…œ ๊ฐ€์šฉ์„ฑ์ด ๊ธ‰๊ฒฉํžˆ ์ €ํ•˜๋˜๋Š” ๋ฌธ์ œ์ ์„ ์ •ํ™•ํžˆ ์งš์–ด๋‚ธ๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค์€ ํƒ€์ž„์•„์›ƒ ๊ฐ’์„ ๊ณ ์ •ํ•˜๊ฑฐ๋‚˜ ๋‹จ์ˆœํžˆ ํ‰๊ท  ์ง€์—ฐ์— ๊ธฐ๋ฐ˜ํ•œ ์กฐ์ • ๋ฐฉ์‹์„ ์ œ์•ˆํ–ˆ์ง€๋งŒ, ์ด๋Ÿฌํ•œ ์ ‘๊ทผ๋ฒ•์€ ๋„คํŠธ์›Œํฌ ์ƒํƒœ๊ฐ€ ๊ธ‰๋ณ€ํ•˜๊ฑฐ๋‚˜ ๋น„์ •์ƒ์ ์ธ ์ง€์—ฐ ๋ถ„ํฌ๊ฐ€ ๋‚˜ํƒ€๋‚  ๋•Œ ์ ์‘์„ฑ์ด ๋ถ€์กฑํ•˜๋‹ค. BALLAST๋Š” ์ด๋Ÿฌํ•œ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด โ€˜์ปจํ…์ŠคํŠธ ๋ฐด๋”ง(contextu

Learning
Leveraging Lightweight Entity Extraction for Scalable Event-Based Image Retrieval

Leveraging Lightweight Entity Extraction for Scalable Event-Based Image Retrieval

๋ถ„์„ ์š”์•ฝ 1. ๋…ผ๋ฌธ์˜ ์ฃผ์š” ๋‚ด์šฉ ๋ฐ ๋ชฉ์ : ์ด ๋…ผ๋ฌธ์€ ์ž์—ฐ์–ด ์„ค๋ช…์„ ๊ธฐ๋ฐ˜์œผ๋กœ ์ด๋ฏธ์ง€๋ฅผ ๊ฒ€์ƒ‰ํ•˜๋Š” ๊ฒฝ๋Ÿ‰ ๋‘ ๋‹จ๊ณ„ ํŒŒ์ดํ”„๋ผ์ธ ์‹œ์Šคํ…œ์„ ์ œ์•ˆํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ด ์‹œ์Šคํ…œ์€ ์‹ค์ œ ์„ธ๊ณ„ ์บก์…˜์—์„œ ์‹œ๊ฐ„์ , ๋ฌธ๋งฅ์  ์‹ ํ˜ธ๋ฅผ ํฌํ•จํ•œ ๋ณต์žกํ•œ ์ •๋ณด๋ฅผ ์ฒ˜๋ฆฌํ•  ์ˆ˜ ์žˆ๋„๋ก ์„ค๊ณ„๋˜์—ˆ์Šต๋‹ˆ๋‹ค. 2. ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ: ์‘์šฉ ๋ถ„์•ผ : ์ด๋ฏธ์ง€ ๊ฒ€์ƒ‰์€ ์›น ๊ฒ€์ƒ‰, ๋‰ด์Šค ์•„์นด์ด๋ธŒ, ์ „์ž์ƒ๊ฑฐ๋ž˜ ๋“ฑ ๋‹ค์–‘ํ•œ ๋ถ„์•ผ์—์„œ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•ฉ๋‹ˆ๋‹ค. ๋ฌธ์ œ์  : ๊ธฐ์กด ๋ชจ๋ธ๋“ค์€ ์งง์€ ์บก์…˜์— ์ตœ์ ํ™”๋˜์–ด ์žˆ์–ด ๋ณต์žกํ•œ ์‹ค์ œ ์„ธ๊ณ„ ์ฟผ๋ฆฌ ์ฒ˜๋ฆฌ ๋Šฅ๋ ฅ์ด ๋ถ€์กฑํ•ฉ๋‹ˆ๋‹ค. ์ด๋กœ ์ธํ•ด ๋‰ด์Šค๋‚˜ ์ด๋ฒคํŠธ ๊ฒ€์ƒ‰๊ณผ ๊ฐ™์€ ๋„๋ฉ”์ธ

Shape of Thought: When Distribution Matters More than Correctness in Reasoning Tasks

Shape of Thought: When Distribution Matters More than Correctness in Reasoning Tasks

์ด ๋…ผ๋ฌธ์€ ์–ธ์–ด ๋ชจ๋ธ์˜ ์ถ”๋ก  ๋Šฅ๋ ฅ์„ ํ–ฅ์ƒ์‹œํ‚ค๋Š” ์ƒˆ๋กœ์šด ์ ‘๊ทผ๋ฒ•์„ ์ œ์‹œํ•ฉ๋‹ˆ๋‹ค. ํ•ต์‹ฌ ์•„์ด๋””์–ด๋Š” ๋” ์šฐ์ˆ˜ํ•œ ๋ชจ๋ธ์—์„œ ์ƒ์„ฑ๋œ ์‚ฌ์Šฌํ˜• ์‚ฌ๊ณ (CoT) ์ถ”์ ์„ ์‚ฌ์šฉํ•˜์—ฌ ํ•ฉ์„ฑ ๋ฐ์ดํ„ฐ์…‹์„ ๋งŒ๋“ค์–ด ์ด๋ฅผ ํ†ตํ•ด ํ•™์Šตํ•˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค. ์ด ๋ฐฉ๋ฒ•์˜ ๋†€๋ผ์šด ์ ์€ ์ด๋Ÿฌํ•œ CoT ์ถ”์ ์ด ์ž˜๋ชป๋œ ์ตœ์ข… ๋‹ต์•ˆ์œผ๋กœ ์ด์–ด์ง„๋‹ค ํ•˜๋”๋ผ๋„, ์–ธ์–ด ๋ชจ๋ธ์˜ ์„ฑ๋Šฅ์ด ํ–ฅ์ƒ๋œ๋‹ค๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค. ๋…ผ๋ฌธ์—์„œ๋Š” ๋‘ ๊ฐ€์ง€ ์ฃผ์š” ๊ฐ€์„ค์„ ์ œ์‹œํ•ฉ๋‹ˆ๋‹ค: ์ฒซ์งธ, ํ•ฉ์„ฑ ๋ฐ์ดํ„ฐ์˜ ๋ถ„ํฌ๊ฐ€ ์–ธ์–ด ๋ชจ๋ธ ์ž์ฒด์˜ ๋ถ„ํฌ์™€ ๋” ๊ฐ€๊น๊ธฐ ๋•Œ๋ฌธ์— ํ•™์Šต์ด ์šฉ์ดํ•˜๋‹ค๋Š” ์ ์ž…๋‹ˆ๋‹ค. ์ด๋ฅผ ๊ฒ€์ฆํ•˜๊ธฐ ์œ„ํ•ด ์ธ๊ฐ„ ์ฃผ์„ ์ถ”์ ์„ ๋ฌธ์žฅ ๋ณ€ํ™˜ํ•˜์—ฌ ๋ถ„ํฌ

Zero-Shot Segmentation through Prototype-Guidance for Multi-Label Plant Species Identification

Zero-Shot Segmentation through Prototype-Guidance for Multi-Label Plant Species Identification

์ด ์—ฐ๊ตฌ๋Š” PlantCLEF 2025๋ผ๋Š” ๋Œ€๊ทœ๋ชจ ์‹๋ฌผ ์ด๋ฏธ์ง€ ์ธ์‹ ๋Œ€ํšŒ์—์„œ ๊ณ ํ•ด์ƒ๋„ ํ”Œ๋กฏ ์ด๋ฏธ์ง€์˜ ๋‹ค์ค‘ ๋ผ๋ฒจ ์‹๋ณ„์ด๋ผ๋Š” ์–ด๋ ค์šด ๊ณผ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ๋‘ ๊ฐ€์ง€ ํ•ต์‹ฌ ์•„์ด๋””์–ด๋ฅผ ๊ฒฐํ•ฉํ•˜์˜€๋‹ค. ์ฒซ ๋ฒˆ์งธ๋Š” ํด๋ž˜์Šค ํ”„๋กœํ† ํƒ€์ž… ์„ ํ™œ์šฉํ•œ ์ง€๋„ ํ•™์Šต์ด๋‹ค. ๊ธฐ์กด์˜ ๋‹ค์ค‘ ํด๋ž˜์Šค ๋ถ„๋ฅ˜์™€ ๋‹ฌ๋ฆฌ, ์—ฌ๊ธฐ์„œ๋Š” ํ›ˆ๋ จ ๋ฐ์ดํ„ฐ์—์„œ ๊ฐ ์ข…๋งˆ๋‹ค ๋Œ€ํ‘œ์ ์ธ ํŠน์ง• ๋ฒกํ„ฐ(ํ”„๋กœํ† ํƒ€์ž…)๋ฅผ Kโ€‘Means ๊ตฐ์ง‘ํ™”๋กœ ์ถ”์ถœํ•œ๋‹ค. K๊ฐ’์„ ํด๋ž˜์Šค ์ˆ˜์™€ ๋™์ผํ•˜๊ฒŒ ์„ค์ •ํ•จ์œผ๋กœ์จ, ๊ฐ ๊ตฐ์ง‘ ์ค‘์‹ฌ์ด ๊ณง ํ•ด๋‹น ์ข…์„ ๋Œ€ํ‘œํ•˜๋„๋ก ์„ค๊ณ„ํ•˜์˜€๋‹ค. ์ด๋Ÿฌํ•œ ํ”„๋กœํ† ํƒ€์ž…์€ ํ…Œ์ŠคํŠธ ์ด๋ฏธ์ง€์— ๋Œ€ํ•œ ์„ธ๊ทธ๋ฉ˜ํ…Œ์ด์…˜ ๋ชจ๋ธ์ด

Signal-SGN++: Topology-Enhanced Time-Frequency Spiking Graph Network for Skeleton-Based Action Recognition

Signal-SGN++: Topology-Enhanced Time-Frequency Spiking Graph Network for Skeleton-Based Action Recognition

์ด ๋…ผ๋ฌธ์€ ์‹ ํ˜ธ SGN++๋ผ๋Š” ์ƒˆ๋กœ์šด ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์•ˆํ•˜์—ฌ ๊ทธ๋ž˜ํ”„ ์ปจ๋ณผ๋ฃจ์…˜ ๋„คํŠธ์›Œํฌ(GCNs)์™€ ์ŠคํŒฝํ‚น ์‹ ๊ฒฝ๋ง(SNNs)์˜ ์žฅ์ ์„ ๊ฒฐํ•ฉํ•˜๊ณ ์ž ํ•ฉ๋‹ˆ๋‹ค. GCNs๋Š” ๊ด€์ ˆ ๊ตฌ์กฐ๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ๋ชจ๋ธ๋งํ•  ์ˆ˜ ์žˆ์ง€๋งŒ, ์‹ค์ˆ˜ ๊ณ„์‚ฐ์— ๋”ฐ๋ฅธ ์—๋„ˆ์ง€ ์†Œ๋น„๊ฐ€ ๋†’์€ ๋ฐ˜๋ฉด, SNNs๋Š” ์—๋„ˆ์ง€ ํšจ์œจ์ ์ด์ง€๋งŒ ์ธ๊ฐ„ ๋™์ž‘์˜ ๋ณต์žกํ•œ ์‹œ๊ฐ„ ์ฃผํŒŒ์ˆ˜ ๋ฐ ์œ„์ƒ ์˜์กด์„ฑ์„ ํฌ์ฐฉํ•˜๋Š” ๋ฐ ํ•œ๊ณ„๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค. ์‹ ํ˜ธ SGN++์€ ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด 1D Spiking Graph Convolution(1D SGC)๊ณผ Frequency Spiking Convolution(FSC)

Network
ChronoDreamer: Action-Conditioned World Model as an Online Simulator for Robotic Planning

ChronoDreamer: Action-Conditioned World Model as an Online Simulator for Robotic Planning

ChronoDreamer๋Š” ๋กœ๋ด‡ ๋งค๋‹ˆํ“ฐ๋ ˆ์ด์…˜ ๋ถ„์•ผ์—์„œ ๊ฐ€์žฅ ๋‚œํ•ดํ•œ ๋ฌธ์ œ ์ค‘ ํ•˜๋‚˜์ธ โ€˜์ ‘์ด‰ ์˜ˆ์ธกโ€™์„ ์‹œ๊ฐโ€‘์–ธ์–ดโ€‘๋ฌผ๋ฆฌ ํ†ตํ•ฉ ํ”„๋ ˆ์ž„์›Œํฌ๋กœ ํ’€์–ด๋‚ธ ์ ์ด ํ˜์‹ ์ ์ด๋‹ค. ๊ธฐ์กด ์„ธ๊ณ„ ๋ชจ๋ธ์€ ์ฃผ๋กœ ์ด๋ฏธ์ง€์™€ ๊ด€์ ˆ ์ƒํƒœ๋งŒ์„ ์ด์šฉํ•ด ๋ฏธ๋ž˜ ํ”„๋ ˆ์ž„์„ ์˜ˆ์ธกํ–ˆ์ง€๋งŒ, ์ ‘์ด‰ ์ •๋ณด๊ฐ€ ๊ฒฐ์—ฌ๋ผ ์‹ค์ œ ๋ฌผ๋ฆฌ์  ์ƒํ˜ธ์ž‘์šฉ์„ ์•ˆ์ „ํ•˜๊ฒŒ ๊ณ„ํšํ•˜๊ธฐ ์–ด๋ ค์› ๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ์ ‘์ด‰์„ โ€˜๊นŠ์ด ๊ฐ€์ค‘ ๊ฐ€์šฐ์‹œ์•ˆ ์Šคํ”Œ๋žซโ€™์ด๋ผ๋Š” 2D ์ด๋ฏธ์ง€ ํ˜•ํƒœ๋กœ ๋ณ€ํ™˜ํ•จ์œผ๋กœ์จ, ๊ธฐ์กด ๋น„์ „ ๋ฐฑ๋ณธ(ViT ๋“ฑ)๊ณผ ์ž์—ฐ์Šค๋Ÿฝ๊ฒŒ ๊ฒฐํ•ฉํ•œ๋‹ค. ์ด ๋ฐฉ์‹์€ 3D ํž˜ ๋ฒกํ„ฐ๋ฅผ ์นด๋ฉ”๋ผ ์ขŒํ‘œ๊ณ„์— ํˆฌ์‚ฌํ•ด ์‹œ๊ฐ์  ํŠน์ง•๊ณผ ๋™์‹œ ํ•™์Šต์ด ๊ฐ€๋Šฅํ•˜๋„๋ก

Model
An Agentic AI Framework for Training General Practitioner Student Skills

An Agentic AI Framework for Training General Practitioner Student Skills

๋ณธ ์—ฐ๊ตฌ๋Š” ์˜๋ฃŒ ๊ต์œก ๋ถ„์•ผ์—์„œ ๊ฐ€์ƒ ํ™˜์ž ์‹œ๋ฎฌ๋ ˆ์ด์…˜(VSP)์˜ ์‹ค์šฉ์„ฑ์„ ํฌ๊ฒŒ ํ–ฅ์ƒ์‹œํ‚ฌ ์ˆ˜ ์žˆ๋Š” ์ƒˆ๋กœ์šด ํŒจ๋Ÿฌ๋‹ค์ž„์„ ์ œ์‹œํ•œ๋‹ค. ๊ธฐ์กด VSP๋Š” ์‹ค์ œ ํ™˜์ž๋ฅผ ๋Œ€์ฒดํ•˜๊ธฐ ์œ„ํ•ด ๊ณ ๋„๋กœ ์ •๊ตํ•œ ์‹œ๋‚˜๋ฆฌ์˜ค์™€ ํ”ผ๋“œ๋ฐฑ์„ ์ œ๊ณตํ•ด์•ผ ํ•จ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ , ์ธ๋ ฅยท์‹œ๊ฐ„ยท๋น„์šฉ ์ธก๋ฉด์—์„œ ํ•œ๊ณ„๊ฐ€ ์žˆ์—ˆ๋‹ค. ํŠนํžˆ, ์˜๋ฃŒ ์ •ํ™•์„ฑ ๋ถ€์กฑ๊ณผ ์—ญํ•  ์—ฐ๊ธฐ์˜ ์ผ๊ด€์„ฑ ๊ฒฐ์—ฌ๋Š” ํ•™์Šต ํšจ๊ณผ๋ฅผ ์ €ํ•ดํ•˜๋Š” ์ฃผ์š” ์š”์ธ์œผ๋กœ ์ง€์ ๋˜์–ด ์™”๋‹ค. ์ด ๋…ผ๋ฌธ์ด ์ œ์•ˆํ•˜๋Š” โ€˜์—์ด์ „ํŠธ ๊ธฐ๋ฐ˜ ํ”„๋ ˆ์ž„์›Œํฌโ€™๋Š” ์„ธ ๊ฐ€์ง€ ํ•ต์‹ฌ ๋ชจ๋“ˆ์„ ๋ช…ํ™•ํžˆ ๋ถ„๋ฆฌํ•œ๋‹ค. ์ฒซ์งธ, ๊ตฌ์„ฑ ๊ฐ€๋Šฅํ•œ ์ฆ๊ฑฐ ๊ธฐ๋ฐ˜ ์‚ฌ๋ก€ ์ƒ์„ฑ ๋ชจ๋“ˆ์€ ์ตœ์‹  ์ž„์ƒ ๊ฐ€์ด๋“œ๋ผ์ธ๊ณผ ๋ฐ์ด

Framework
MatSpray: Fusing 2D Material World Knowledge on 3D Geometry

MatSpray: Fusing 2D Material World Knowledge on 3D Geometry

MatSpray๋Š” ์ตœ๊ทผ ๊ธ‰๋ถ€์ƒํ•œ 2์ฐจ์› ํ™•์‚ฐ ๋ชจ๋ธ์˜ ํ’๋ถ€ํ•œ ์žฌ์งˆ ํ‘œํ˜„ ๋Šฅ๋ ฅ์„ 3์ฐจ์› ๊ฐ€์šฐ์‹œ์•ˆ ์Šคํ”Œ๋ž˜ํŒ… ํŒŒ์ดํ”„๋ผ์ธ์— ์ ‘๋ชฉํ•จ์œผ๋กœ์จ, ๊ธฐ์กด 3D ์žฌ๊ตฌ์„ฑ ๋ฐฉ๋ฒ•์ด ์ง๋ฉดํ•˜๋˜ ๋ฌผ๋ฆฌ ๊ธฐ๋ฐ˜ ๋ Œ๋”๋ง(PBR) ์žฌ์งˆ์˜ ์ •ํ™•๋„์™€ ์ผ๊ด€์„ฑ ๋ฌธ์ œ๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ํ•ด๊ฒฐํ•œ๋‹ค. ์ฒซ ๋‹จ๊ณ„์—์„œ๋Š” ๋‹ค์ค‘ ์‹œ์  ์ด๋ฏธ์ง€๋กœ๋ถ€ํ„ฐ ๊ฐ ์‹œ์ ๋งˆ๋‹ค ๋ฒ ์ด์Šค ์ปฌ๋Ÿฌ, ๋Ÿฌํ”„๋‹ˆ์Šค, ๋ฉ”ํƒˆ๋ฆญ๊ณผ ๊ฐ™์€ PBR ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ์ถ”์ถœํ•œ๋‹ค. ์—ฌ๊ธฐ์„œ ์ค‘์š”ํ•œ ์ ์€ โ€˜any 2D diffusionโ€‘based material modelโ€™์„ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ์ ์ด๋‹ค. ์ฆ‰, Stable Diffusion, Imagen ๋“ฑ ์ตœ์‹ 

Prediction and Forecast of Short-Term Drought Impacts Using Machine Learning to Support Mitigation and Adaptation Efforts

Prediction and Forecast of Short-Term Drought Impacts Using Machine Learning to Support Mitigation and Adaptation Efforts

๋ณธ ๋…ผ๋ฌธ์€ ์ตœ๊ทผ ์ฆ๊ฐ€ํ•˜๋Š” ๊ฑด์กฐ์˜ ์‹ฌ๊ฐ์„ฑ๊ณผ ๋นˆ๋„์— ๋Œ€์‘ํ•˜๊ธฐ ์œ„ํ•ด ๋จธ์‹ ๋Ÿฌ๋‹ ๊ธฐ๋ฒ•์„ ํ™œ์šฉํ•œ ๊ฑด์กฐ ์˜ํ–ฅ ์˜ˆ์ธก ๋ชจ๋ธ ๊ฐœ๋ฐœ์— ์ดˆ์ ์„ ๋งž์ถ”๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ํŠนํžˆ, Drought Severity and Coverage Index (DSCI)์™€ Evaporative Stress Index (ESI)๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๊ฑด์กฐ์˜ ์˜ํ–ฅ์„ ์˜ˆ์ธกํ•˜๊ณ ์ž ํ•˜์˜€์Šต๋‹ˆ๋‹ค. ์—ฐ๊ตฌ๋Š” 2005๋…„๋ถ€ํ„ฐ 2024๋…„๊นŒ์ง€์˜ ๋ฐ์ดํ„ฐ๋ฅผ ํ™œ์šฉํ•˜์˜€์œผ๋ฉฐ, Fire์™€ Relief ์˜์—ญ์—์„œ ๊ฐ€์žฅ ๋†’์€ ์˜ˆ์ธก ์ •ํ™•๋„๋ฅผ ๋ณด์˜€๊ณ , Agriculture์™€ Water ๋ถ„์•ผ์—์„œ๋Š” ๊ทธ ๋‹ค์Œ์œผ๋กœ ๋†’์€ ์ •ํ™•๋„๊ฐ€ ๋‚˜ํƒ€๋‚ฌ์Šต๋‹ˆ

Learning
From Priors to Predictions: Explaining and Visualizing Human Reasoning in a Graph Neural Network Framework

From Priors to Predictions: Explaining and Visualizing Human Reasoning in a Graph Neural Network Framework

์ด ๋…ผ๋ฌธ์€ ์ธ๊ฐ„์˜ ์ถ”์ƒ์  ์‚ฌ๊ณ ์™€ ๋ฌธ์ œ ํ•ด๊ฒฐ ๋Šฅ๋ ฅ์— ์ดˆ์ ์„ ๋งž์ถ”๋ฉฐ, ์ด๋ฅผ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•˜๋Š” ๊ท€๋‚ฉ์  ํŽธํ–ฅ์„ฑ์˜ ๊ณ„์‚ฐ์  ๊ตฌ์กฐ์™€ ์‹ ๊ฒฝํ•™์  ๊ตฌํ˜„์„ ํƒ๊ตฌํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์—ฐ๊ตฌ์ง„์€ ๊ทธ๋ž˜ํ”„ ์ด๋ก ๊ณผ GNN์„ ๊ฒฐํ•ฉํ•œ ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์‹œํ•˜์—ฌ ์ด๋Ÿฌํ•œ ํŽธํ–ฅ์„ฑ์„ ๋ช…ํ™•ํžˆ ์ •์‹ํ™”ํ•˜๊ณ , ์ด๋ฅผ ํ†ตํ•ด ์ธ๊ฐ„์˜ ์ถ”๋ก  ๊ณผ์ •์„ ๋” ์ž˜ ์ดํ•ดํ•  ์ˆ˜ ์žˆ๋Š” ๋ฐฉ๋ฒ•์„ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค. ํŠนํžˆ, ๋ณธ ๋…ผ๋ฌธ์—์„œ ์‚ฌ์šฉ๋œ ๋ฐ์ดํ„ฐ์…‹์€ Abstraction and Reasoning Corpus (ARC)์—์„œ ์ ์‘๋œ ๊ฒƒ์œผ๋กœ, ์ด๋Š” ์ธ๊ฐ„ ํ–‰๋™ ๋ฐ์ดํ„ฐ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•˜์—ฌ ์‹ค์ œ ์ธ๊ฐ„์˜ ๋ฌธ์ œ ํ•ด๊ฒฐ ๋Šฅ๋ ฅ์„ ๋ฐ˜์˜ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.

Network Framework
No Image

MedNeXt-v2: Scaling 3D ConvNeXts for Large-Scale Supervised Representation Learning in Medical Image Segmentation

๋ณธ ๋…ผ๋ฌธ์€ ์ตœ๊ทผ ์˜๋ฃŒ ์˜์ƒ ๋ถ„์•ผ์—์„œ ๊ธ‰๋ถ€์ƒํ•˜๊ณ  ์žˆ๋Š” โ€˜๋Œ€๊ทœ๋ชจ ๊ฐ๋… ์‚ฌ์ „ํ•™์Šต(Supervised Preโ€‘training)โ€™ ํ๋ฆ„์— ์ค‘์š”ํ•œ ์งˆ๋ฌธ์„ ์ œ๊ธฐํ•œ๋‹ค. ๋Œ€๋ถ€๋ถ„์˜ ์—ฐ๊ตฌ๊ฐ€ ๋ฐ์ดํ„ฐ ์–‘์„ ๋Š˜๋ฆฌ๋Š” ๋ฐฉํ–ฅ์—๋งŒ ์ง‘์ค‘ํ•œ ๋ฐ˜๋ฉด, ์‹ค์ œ ๋ชจ๋ธ์ด ๋Œ€๊ทœ๋ชจ ๋ฐ์ดํ„ฐ์—์„œ ์–ผ๋งˆ๋‚˜ ํšจ์œจ์ ์œผ๋กœ ํŠน์ง•์„ ์ถ”์ถœํ•˜๊ณ  ์ผ๋ฐ˜ํ™”ํ•  ์ˆ˜ ์žˆ๋Š”์ง€๋Š” ์ถฉ๋ถ„ํžˆ ๊ฒ€์ฆ๋˜์ง€ ์•Š์•˜๋‹ค. ์ €์ž๋“ค์€ ์ด๋Ÿฌํ•œ ๊ณต๋ฐฑ์„ ๋ฉ”์šฐ๊ธฐ ์œ„ํ•ด ConvNeXt๋ผ๋Š” ์ตœ์‹  2D ๋น„์ „ ๋ฐฑ๋ณธ์„ 3์ฐจ์› ๋ณผ๋ฅ˜๋ฉ”ํŠธ๋ฆญ ์ž‘์—…์— ๋งž๊ฒŒ ์žฌ์„ค๊ณ„ํ•˜๊ณ , ์ด๋ฅผ โ€˜MedNeXtโ€‘v2โ€™๋ผ๋Š” ์ด๋ฆ„์œผ๋กœ ์ œ์‹œํ•œ๋‹ค. ํ•ต์‹ฌ ๊ธฐ์—ฌ๋Š” ํฌ๊ฒŒ ๋„ค ๊ฐ€์ง€๋กœ ์ •๋ฆฌํ•  ์ˆ˜

Learning
No Image

Adversarial VR: An Open-Source Testbed for Evaluating Adversarial Robustness of VR Cybersickness Detection and Mitigation

์ด ๋…ผ๋ฌธ์€ ๊ฐ€์ƒํ˜„์‹ค(VR) ํ™˜๊ฒฝ์—์„œ ์‚ฌ์ด๋ฒ„์งˆ๋ณ‘(CS)์˜ ์‹ฌ๊ฐ๋„ ์กฐ์ž‘ ๋ฐ ๊ทธ์— ๋”ฐ๋ฅธ ์ ์ ˆํ•˜์ง€ ์•Š์€ ์™„ํ™” ์ „๋žต์„ ์—ฐ๊ตฌํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ํŠนํžˆ, ๋กœ์ปฌ VR ํ™˜๊ฒฝ๊ณผ ํด๋ผ์šฐ๋“œ ๊ธฐ๋ฐ˜ VR ํ™˜๊ฒฝ์ด ๊ฒฐํ•ฉ๋œ ํ…Œ์ŠคํŠธ๋ฒ ๋“œ๋ฅผ ๊ฐœ๋ฐœํ•˜์—ฌ ์ด ๋ฌธ์ œ๋ฅผ ํƒ๊ตฌํ•ฉ๋‹ˆ๋‹ค. ๋กœ์ปฌ ํ™˜๊ฒฝ์—์„œ๋Š” ์‚ฌ์šฉ์ž์˜ ์ฒดํ—˜ ์ค‘์— CS ์™„ํ™”๊ฐ€ ์ด๋ฃจ์–ด์ง€๋ฉฐ, ํด๋ผ์šฐ๋“œ ํ™˜๊ฒฝ์—์„œ๋Š” ๋”ฅ๋Ÿฌ๋‹(DL) ๋ชจ๋ธ์„ ํ™œ์šฉํ•ด CS ๊ฐ์ง€๋ฅผ ์ˆ˜ํ–‰ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ๋…ผ๋ฌธ์˜ ํ•ต์‹ฌ์€ ์ ๋Œ€์  ์˜ˆ์ œ๋ฅผ ์ƒ์„ฑํ•˜์—ฌ DL ๋ชจ๋ธ์— ์ž…๋ ฅํ•จ์œผ๋กœ์จ CS์˜ ์‹ฌ๊ฐ๋„๋ฅผ ์กฐ์ž‘ํ•˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ์ ‘๊ทผ๋ฒ•์€ VR ์‚ฌ์šฉ์ž์˜ ์ฒดํ—˜ ์งˆ์„ ์ €ํ•˜์‹œํ‚ค๊ฑฐ๋‚˜, ์‹ฌ์ง€์–ด๋Š”

Detection

< Category Statistics (Total: 702) >

Electrical Engineering and Systems Science
7
General
253
General Relativity
7
HEP-EX
5
HEP-PH
12
HEP-TH
5
MATH-PH
3
NUCL-TH
1
Quantum Physics
9

Start searching

Enter keywords to search articles

โ†‘โ†“
โ†ต
ESC
โŒ˜K Shortcut