Computer Science / Machine Learning

All posts under category "Computer Science / Machine Learning"

25 posts total
Sorted by date
Optimizing LSTM Neural Networks for Resource-Constrained Retail Sales Forecasting: A Model Compression Study

Optimizing LSTM Neural Networks for Resource-Constrained Retail Sales Forecasting: A Model Compression Study

์ด ๋…ผ๋ฌธ์€ ์†Œ๋งค ํŒ๋งค ์˜ˆ์ธก ๋ถ„์•ผ์—์„œ LSTM ๋„คํŠธ์›Œํฌ์˜ ํšจ์œจ์„ฑ๊ณผ ์ •ํ™•์„ฑ์„ ๊ทน๋Œ€ํ™”ํ•˜๋Š” ๋ฐฉ๋ฒ•์— ๋Œ€ํ•ด ๊นŠ์ด ์žˆ๊ฒŒ ํƒ๊ตฌํ•˜๊ณ  ์žˆ๋‹ค. ํŠนํžˆ, ์ด ์—ฐ๊ตฌ๋Š” ์ž์› ์ œ์•ฝ์„ ๊ฐ€์ง„ ์†Œ๊ทœ๋ชจ ๋ฐ ์ค‘์†Œ ๊ทœ๋ชจ ๋งค์žฅ์—์„œ๋„ ํšจ๊ณผ์ ์ธ AI ๊ธฐ๋ฐ˜ ์˜ˆ์ธก ์‹œ์Šคํ…œ์„ ๊ตฌ์ถ•ํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•˜๋Š” ๋ชจ๋ธ ์••์ถ• ๊ธฐ๋ฒ•์˜ ์ค‘์š”์„ฑ์„ ๊ฐ•์กฐํ•œ๋‹ค. ๊ธฐ์ˆ ์  ํ˜์‹ ์„ฑ ์ด ๋…ผ๋ฌธ์€ LSTM ๋„คํŠธ์›Œํฌ๋ฅผ ์••์ถ•ํ•˜๋Š” ๋‹ค์–‘ํ•œ ๋ฐฉ๋ฒ•๋ก ์„ ์ฒด๊ณ„์ ์œผ๋กœ ํ‰๊ฐ€ํ•˜๊ณ , ํŠนํžˆ 64๊ฐœ ์€๋‹‰ ์œ ๋‹›์„ ๊ฐ€์ง„ ๋ชจ๋ธ์ด ๊ฐ€์žฅ ๋†’์€ ์˜ˆ์ธก ์ •ํ™•๋„๋ฅผ ๋ณด์ด๋Š” ๊ฒƒ์„ ๋ฐœ๊ฒฌํ–ˆ๋‹ค. ์ด๋Š” ํ‘œ์ค€ LSTM(128๊ฐœ ์€๋‹‰ ์œ ๋‹›)๋ณด๋‹ค ๋ฉ”๋ชจ๋ฆฌ ์‚ฌ์šฉ๋Ÿ‰์„ ์ค„์ด๊ณ  ์ถ”๋ก 

Computer Science Network Machine Learning Model
VC dimension of ellipsoids

VC dimension of ellipsoids

: ๋ณธ ๋…ผ๋ฌธ์€ ์—˜๋ฆฝ์†Œ์ด๋“œ์˜ ๋ณต์žก์„ฑ์„ ์ธก์ •ํ•˜๋Š” VC ์ฐจ์›์— ๋Œ€ํ•œ ์‹ฌ์ธต์ ์ธ ์—ฐ๊ตฌ๋ฅผ ์ˆ˜ํ–‰ํ•œ๋‹ค. ์ด๋Š” ํ•™์Šต ์ด๋ก ์—์„œ ์ค‘์š”ํ•œ ๊ฐœ๋…์œผ๋กœ, ๋ฐ์ดํ„ฐ ๋ถ„์„ ๋ฐ ๋ชจ๋ธ ์„ ํƒ์— ํ™œ์šฉ๋œ๋‹ค. 1. VC ์ฐจ์›์˜ ์ •์˜์™€ ์ค‘์š”์„ฑ VC ์ฐจ์›์€ ์ง‘ํ•ฉ์ด ์–ผ๋งˆ๋‚˜ ๋ณต์žกํ•œ ํ˜•ํƒœ๋ฅผ ๊ฐ€์งˆ ์ˆ˜ ์žˆ๋Š”์ง€๋ฅผ ์ธก์ •ํ•˜๋Š” ์ง€ํ‘œ๋กœ, ๊ฒฝํ—˜์  ๊ณผ์ • ์ด๋ก , ํ†ต๊ณ„ ๋ฐ ๊ณ„์‚ฐ ํ•™์Šต ์ด๋ก , ๊ทธ๋ฆฌ๊ณ  ์ด์‚ฐ ๊ธฐํ•˜ํ•™ ๋“ฑ ๋‹ค์–‘ํ•œ ๋ถ„์•ผ์—์„œ ํ™œ์šฉ๋œ๋‹ค. ํŠนํžˆ, VC ์ฐจ์›์€ ๋ฐ์ดํ„ฐ์˜ ๋ณต์žก์„ฑ์„ ์ธก์ •ํ•˜๊ณ  ๋ชจ๋ธ ์„ ํƒ์— ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•œ๋‹ค. 2. ์—˜๋ฆฝ์†Œ์ด๋“œ์™€ ๊ฐ€์šฐ์‹œ์•ˆ ํ˜ผํ•ฉ ๋ชจ๋ธ ์—˜๋ฆฝ์†Œ์ด๋“œ๋Š” d์ฐจ์› ๊ณต๊ฐ„์—์„œ ์ •์˜๋˜๋Š” ์ง‘ํ•ฉ์œผ๋กœ,

Mathematics Statistics Computer Science Machine Learning
No Image

Handling uncertainties in SVM classification

๋ณธ ๋…ผ๋ฌธ์€ ๋ถˆํ™•์‹คํ•œ ๋ ˆ์ด๋ธ”์„ ๋‹ค๋ฃจ๋Š” ๋ฐฉ๋ฒ•์œผ๋กœ์„œ ์ƒˆ๋กœ์šด SVM ๋ถ„๋ฅ˜ ๊ธฐ๋ฒ•์„ ์ œ์•ˆํ•˜๊ณ , ์ด๋ฅผ ํ†ตํ•ด ์‹ค์ œ ์ƒํ™œ์—์„œ ๋ฐœ์ƒํ•˜๋Š” ์ฃผ์„ ๋ฌธ์ œ์— ๋Œ€์‘ํ•˜๋ ค๊ณ  ํ•ฉ๋‹ˆ๋‹ค. ์ด ์—ฐ๊ตฌ์˜ ํ•ต์‹ฌ ์•„์ด๋””์–ด๋Š” ํ™•๋ฅ ์  ๋ ˆ์ด๋ธ”์„ ๋„์ž…ํ•˜์—ฌ ๋ถˆํ™•์‹ค์„ฑ์„ ์ฒ˜๋ฆฌํ•˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค. 1. ๋ฌธ์ œ ์ •์˜์™€ ๋ฐฐ๊ฒฝ ์ „ํ†ต์ ์ธ ๊ฐ๋… ํ•™์Šต์—์„œ๋Š” ๋ฐ์ดํ„ฐ ์„ธํŠธ๋ฅผ ์ „๋ฌธ๊ฐ€์—๊ฒŒ ๋ ˆ์ด๋ธ”๋งํ•˜๋Š” ๊ณผ์ •์ด ํ•„์š”ํ•ฉ๋‹ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ด๋Š” ๋งŽ์€ ์‘์šฉ ๋ถ„์•ผ์—์„œ ์–ด๋ ค์›€์„ ๊ฒช๊ฒŒ ๋˜๋ฉฐ, ํŠนํžˆ ์˜๋ฃŒ ์˜์ƒ ๋ถ„์•ผ์—์„œ๋Š” ์ฐธ์กฐ ๋ณ‘๋ฆฌ ์ •๋ณด ์—†์ด ์•…์„ฑ ์กฐ์ง์„ ์œค๊ณฝ์„ ์œผ๋กœ ๊ทธ๋ฆด ๋•Œ ์ด๋Ÿฌํ•œ ๋ฌธ์ œ์ ์ด ๋ฐœ์ƒํ•ฉ๋‹ˆ๋‹ค. ์ด๋กœ ์ธํ•ด ํ›ˆ๋ จ ๋ฐ์ดํ„ฐ์— ๋ถ€์ •ํ™•ํ•œ ํด

Machine Learning Computer Science
Accelerating Storage-Based Training for Graph Neural Networks

Accelerating Storage-Based Training for Graph Neural Networks

๋ณธ ์—ฐ๊ตฌ๋Š” ๊ทธ๋ž˜ํ”„ ์‹ ๊ฒฝ๋ง(GNN) ํ•™์Šต์„ ๋Œ€๊ทœ๋ชจ ์‹ค์„ธ๊ณ„ ๊ทธ๋ž˜ํ”„์— ์ ์šฉํ•˜๊ธฐ ์œ„ํ•ด ์™ธ๋ถ€ ์Šคํ† ๋ฆฌ์ง€๋ฅผ ํ™œ์šฉํ•˜๋Š” โ€˜์Šคํ† ๋ฆฌ์ง€ ๊ธฐ๋ฐ˜โ€™ ์ ‘๊ทผ๋ฒ•์˜ ๊ทผ๋ณธ์ ์ธ ํ•œ๊ณ„๋ฅผ ์งš์–ด๋‚ธ๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค์€ ์ฃผ๋กœ ๋ฉ”๋ชจ๋ฆฌ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด NVMe SSD์™€ ๊ฐ™์€ ๊ณ ์† ์ €์žฅ์†Œ๋ฅผ ์ด์šฉํ–ˆ์ง€๋งŒ, ๊ทธ๋ž˜ํ”„ ๊ตฌ์กฐ๊ฐ€ ๋งค์šฐ ๋ถˆ๊ทœ์น™ํ•˜๊ณ  ์—ฃ์ง€์™€ ๋…ธ๋“œ๊ฐ€ ์ˆ˜๋ฐฑ๋งŒ~์ˆ˜์‹ญ์–ต ์ˆ˜์ค€์œผ๋กœ ๋ถ„์‚ฐ๋ผ ์žˆ๊ธฐ ๋•Œ๋ฌธ์— ํ•™์Šต ๊ณผ์ •์—์„œ ๋ฐœ์ƒํ•˜๋Š” ์ˆ˜์‹ญ๋งŒ~์ˆ˜๋ฐฑ๋งŒ ๊ฐœ์˜ ์ž‘์€ I/O ์š”์ฒญ์„ ํšจ์œจ์ ์œผ๋กœ ๋ณ‘ํ•ฉํ•˜๊ฑฐ๋‚˜ ์Šค์ผ€์ค„๋งํ•˜์ง€ ๋ชปํ•œ๋‹ค. ์ด๋Ÿฌํ•œ โ€˜์†Œํ˜• I/O ํญ์ฃผโ€™๋Š” ์Šคํ† ๋ฆฌ์ง€์˜ ์ˆœ์ฐจ ์ „์†ก ๋Œ€์—ญํญ์„ ํ™œ์šฉํ•˜์ง€ ๋ชปํ•˜๊ฒŒ ๋งŒ๋“ค๊ณ , ๊ฒฐ

Machine Learning Computer Science Network
Data Complexity-aware Deep Model Performance Forecasting

Data Complexity-aware Deep Model Performance Forecasting

์ด ๋…ผ๋ฌธ์€ โ€œ๋ฐ์ดํ„ฐ ๋ณต์žก๋„ ์ธ์‹ ๋”ฅ ๋ชจ๋ธ ์„ฑ๋Šฅ ์˜ˆ์ธกโ€์ด๋ผ๋Š” ์ฃผ์ œ๋กœ, ๋ชจ๋ธ ์„ค๊ณ„ ๋‹จ๊ณ„์—์„œ ์‚ฌ์ „์ ์œผ๋กœ ์„ฑ๋Šฅ์„ ์ถ”์ •ํ•  ์ˆ˜ ์žˆ๋Š” ๊ฒฝ๋Ÿ‰ํ™”๋œ ๋‘ ๋‹จ๊ณ„ ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์‹œํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ ๋‹จ๊ณ„๋Š” ๋ฐ์ดํ„ฐ ์ž์ฒด์˜ ํ†ต๊ณ„์ ยท๊ตฌ์กฐ์  ํŠน์„ฑ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ๋ฒ ์ด์Šค๋ผ์ธ ์„ฑ๋Šฅ์„ ์˜ˆ์ธกํ•œ๋‹ค. ์—ฌ๊ธฐ์—๋Š” ๋ฐ์ดํ„ฐ ๋ถ„์‚ฐ, ํด๋ž˜์Šค ๋ถˆ๊ท ํ˜•, ์ด๋ฏธ์ง€ ํ•ด์ƒ๋„, ํ…์ŠคํŠธ ๊ธธ์ด ๋“ฑ ๋‹ค์–‘ํ•œ ๋ฉ”ํŠธ๋ฆญ์ด ํฌํ•จ๋˜๋ฉฐ, ์ด๋Ÿฌํ•œ ํŠน์„ฑ์€ ๊ธฐ์กด ์—ฐ๊ตฌ์—์„œ ๋ชจ๋ธ ๋ณต์žก๋„์™€ ์ง์ ‘์ ์ธ ์ƒ๊ด€๊ด€๊ณ„๋ฅผ ๋ณด์ธ ๋ฐ” ์žˆ๋‹ค. ๋‘ ๋ฒˆ์งธ ๋‹จ๊ณ„๋Š” ๋ชจ๋ธ ์•„ํ‚คํ…์ฒ˜(์˜ˆ: ๋ ˆ์ด์–ด ์ˆ˜, ํŒŒ๋ผ๋ฏธํ„ฐ ๊ทœ๋ชจ, ์—ฐ์‚ฐ๋Ÿ‰)์™€ ์ฃผ์š” ํ•˜์ดํผํŒŒ๋ผ๋ฏธํ„ฐ(ํ•™์Šต๋ฅ , ๋ฐฐ์น˜

Computer Science Data Machine Learning Model
REE-TTT: Highly Adaptive Radar Echo Extrapolation Based on Test-Time Training

REE-TTT: Highly Adaptive Radar Echo Extrapolation Based on Test-Time Training

๋ณธ ๋…ผ๋ฌธ์€ ๋ ˆ์ด๋” ์—์ฝ” ์™ธ์‚ฝ(Radar Echo Extrapolation, REE) ๋ถ„์•ผ์—์„œ ๊ฐ€์žฅ ์‹œ๊ธ‰ํ•œ ๋ฌธ์ œ์ธ ๋„๋ฉ”์ธ ์ „์ด์™€ ๋ฐ์ดํ„ฐ ๋ถ„ํฌ ๋ณ€ํ™” ์— ๋Œ€ํ•œ ํ•ด๊ฒฐ์ฑ…์„ ์ œ์‹œํ•œ๋‹ค. ๊ธฐ์กด์˜ ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜ REE ๋ชจ๋ธ์€ ๋Œ€๊ทœ๋ชจ ๋ ˆ์ด๋” ์‹œํ€€์Šค๋ฅผ ํ•™์Šตํ•ด ๋‹จ๊ธฐ ๊ฐ•์ˆ˜ ์˜ˆ๋ณด๋ฅผ ์ˆ˜ํ–‰ํ•˜์ง€๋งŒ, ํ•™์Šต ๋‹จ๊ณ„์—์„œ ์‚ฌ์šฉ๋œ ์ง€์—ญยท์‹œ์ฆŒยท๊ธฐํ›„ ์กฐ๊ฑด์— ๊ฐ•ํ•˜๊ฒŒ ์˜์กดํ•œ๋‹ค. ๋”ฐ๋ผ์„œ ์ƒˆ๋กœ์šด ์ง€์—ญ์ด๋‚˜ ๊ทนํ•œ ๊ฐ•์ˆ˜ ์ƒํ™ฉ์— ์ ์šฉํ•˜๋ฉด ์„ฑ๋Šฅ์ด ๊ธ‰๊ฒฉํžˆ ์ €ํ•˜๋˜๋Š” ๊ฒƒ์ด ์ผ๋ฐ˜์ ์ด๋‹ค. 1. ํ•ต์‹ฌ ์•„์ด๋””์–ด์™€ ๊ธฐ์—ฌ ํ…Œ์ŠคํŠธโ€‘์‹œ์  ํ•™์Šต(Testโ€‘Time Training, TTT) ์ ์šฉ : ๋ชจ๋ธ ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ

Computer Science Machine Learning
LOFA: Online Influence Maximization under Full-Bandit Feedback using Lazy Forward Selection

LOFA: Online Influence Maximization under Full-Bandit Feedback using Lazy Forward Selection

๋ณธ ๋…ผ๋ฌธ์ด ๋‹ค๋ฃจ๋Š” ์˜จ๋ผ์ธ ์˜ํ–ฅ๋ ฅ ์ตœ๋Œ€ํ™”(Online Influence Maximization, OIM) ๋ฌธ์ œ๋Š” ์ „ํ†ต์ ์ธ ์ •์  IM๊ณผ ๋‹ฌ๋ฆฌ ์‹œ๊ฐ„์— ๋”ฐ๋ผ ์‹œ๋“œ ์ง‘ํ•ฉ์„ ๋™์ ์œผ๋กœ ์„ ํƒํ•ด์•ผ ํ•˜๋Š” ์ƒํ™ฉ์„ ์ „์ œ๋กœ ํ•œ๋‹ค. ์—ฌ๊ธฐ์„œ โ€˜์ „์ฒด ๋ฐด๋”ง(fullโ€‘bandit) ํ”ผ๋“œ๋ฐฑโ€™์ด๋ผ๋Š” ๊ฐ€์ •์€ ์—์ด์ „ํŠธ๊ฐ€ ๋งค ๋ผ์šด๋“œ๋งˆ๋‹ค ์„ ํƒํ•œ ์‹œ๋“œ ์ง‘ํ•ฉ์— ์˜ํ•ด ์‹ค์ œ๋กœ ๋ฐœ์ƒํ•œ ํ™•์‚ฐ ๊ทœ๋ชจ(์ฆ‰, ์ „์ฒด ํ™œ์„ฑํ™”๋œ ๋…ธ๋“œ ์ˆ˜)๋งŒ์„ ๊ด€์ฐฐํ•œ๋‹ค๋Š” ์˜๋ฏธ์ด๋ฉฐ, ์ด๋Š” ๊ฐ ๋…ธ๋“œ๋ณ„ ํ™œ์„ฑํ™” ์—ฌ๋ถ€๋‚˜ ๋„คํŠธ์›Œํฌ์˜ ์ธ์ ‘ ํ–‰๋ ฌ ๋“ฑ ์ถ”๊ฐ€์ ์ธ ๊ตฌ์กฐ์  ์ •๋ณด๋ฅผ ์ „ํ˜€ ์ œ๊ณตํ•˜์ง€ ์•Š๋Š”๋‹ค. ์ด๋Ÿฌํ•œ ์ œํ•œ๋œ ํ”ผ๋“œ๋ฐฑ ํ™˜๊ฒฝ์—์„œ๋Š”

Machine Learning Computer Science
Causify DataFlow: A Framework For High-performance Machine Learning Stream Computing

Causify DataFlow: A Framework For High-performance Machine Learning Stream Computing

๋ณธ ๋…ผ๋ฌธ์€ ๋ฐ์ดํ„ฐ ๊ณผํ•™ ์‹ค๋ฌด์—์„œ ๊ฐ€์žฅ ๋นˆ๋ฒˆํžˆ ๋งˆ์ฃผ์น˜๋Š” โ€˜๋ฐ์ดํ„ฐ๋Š” ์œ ํ•œํ•˜๊ณ  ์™„์ „ํ•˜๋‹คโ€™๋Š” ๊ฐ€์ •์„ ๊ทผ๋ณธ์ ์œผ๋กœ ๋’คํ”๋“ ๋‹ค. ์ „ํ†ต์ ์ธ ๋ฐฐ์น˜ ๊ธฐ๋ฐ˜ ์›Œํฌํ”Œ๋กœ์šฐ๋Š” ๊ณ ์ •๋œ ๋ฐ์ดํ„ฐ์…‹์„ ํ•œ ๋ฒˆ์— ๋ฉ”๋ชจ๋ฆฌ๋กœ ๋กœ๋“œํ•˜๊ฑฐ๋‚˜ ๋‹จ์ผ ํŒจ์Šค๋กœ ์ฒ˜๋ฆฌํ•œ๋‹ค๋Š” ์ „์ œํ•˜์— ์„ค๊ณ„๋˜์—ˆ์œผ๋ฉฐ, ์ด๋Š” ์„ผ์„œ ์ŠคํŠธ๋ฆผ, ๊ธˆ์œต ๊ฑฐ๋ž˜ ๋กœ๊ทธ, ์‹œ์Šคํ…œ ์ด๋ฒคํŠธ์™€ ๊ฐ™์ด ์‹œ๊ฐ„์— ๋”ฐ๋ผ ์ง€์†์ ์œผ๋กœ ์ƒ์„ฑ๋˜๋Š” ๋ฐ์ดํ„ฐ์™€๋Š” ๊ทผ๋ณธ์ ์œผ๋กœ ๋งž์ง€ ์•Š๋Š”๋‹ค. ์ €์ž๋Š” ์ด๋Ÿฌํ•œ ๋ถˆ์ผ์น˜๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด Causify DataFlow๋ผ๋Š” ํ†ตํ•ฉ ์ปดํ“จํ…Œ์ด์…”๋„ ๋ชจ๋ธ์„ ์ œ์•ˆํ•œ๋‹ค. ์ฒซ์งธ, ํ”„๋ ˆ์ž„์›Œํฌ๋Š” DAG๋ฅผ ์„ ์–ธ์ ์œผ๋กœ ์ •์˜ํ•˜๊ณ , ๋™์ผํ•œ ์ •์˜๋ฅผ

Framework Machine Learning Computer Science Learning Data
A Variant of Azumas Inequality for Martingales with Subgaussian Tails

A Variant of Azumas Inequality for Martingales with Subgaussian Tails

๋ณธ ๋…ผ๋ฌธ์€ Azuma ๋ถ€๋“ฑ์‹์˜ ๋ณ€ํ˜•์— ๋Œ€ํ•ด ๊นŠ์ด ์žˆ๊ฒŒ ๋ถ„์„ํ•˜๊ณ  ์žˆ๋‹ค. ๊ธฐ์กด Azuma ๋ถ€๋“ฑ์‹์€ ํ™•๋ฅ ์  ๊ณผ์ •์—์„œ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•˜๋Š”๋ฐ, ํŠนํžˆ ๋งˆ๋ฅดํŒ…์•Œ์˜ ์ˆ˜๋ ด์„ฑ์„ ๋ณด์žฅํ•˜๋Š” ๊ฐ•๋ ฅํ•œ ๋„๊ตฌ์ด๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ด ๋ถ€๋“ฑ์‹์€ ๋ชจ๋“  ์‹œ๊ฐ„ t์— ๋Œ€ํ•ด |Zt|๊ฐ€ ์ƒ์ˆ˜ b ์ด๋‚ด๋กœ ์ œํ•œ๋˜์–ด์•ผ ํ•œ๋‹ค๋Š” ์—„๊ฒฉํ•œ ๊ฐ€์ •์„ ํ•„์š”๋กœ ํ•˜๋ฉฐ, ์ด๋Š” ์‹ค์ œ ๋ฌธ์ œ์—์„œ ์ ์šฉํ•˜๊ธฐ ์–ด๋ ค์šด ๊ฒฝ์šฐ๊ฐ€ ๋งŽ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์ด๋Ÿฌํ•œ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ณ ์ž ๋งˆ๋ฅดํŒ…์•Œ์˜ ๊ฐ ํ•ญ์ด ๊ณ ํ™•๋ฅ ๋กœ ํฐ ๊ฐ’์„ ๊ฐ€์ง€๋”๋ผ๋„ Azuma ๋ถ€๋“ฑ์‹์„ ์ผ๋ฐ˜ํ™”ํ•˜๋Š” ์ƒˆ๋กœ์šด ๋ณ€ํ˜•์„ ์ œ์‹œํ•œ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด, '๊ฑฐ์˜ ๊ฒฝ๊ณ„๊ฐ€ ์žˆ๋Š”' ๋งˆ๋ฅดํŒ…์•Œ์—

Mathematics Machine Learning Computer Science
No Image

Pose Estimation from a Single Depth Image for Arbitrary Kinematic Skeletons

๋ณธ ๋…ผ๋ฌธ์€ ๊นŠ์ด ์ด๋ฏธ์ง€๋กœ๋ถ€ํ„ฐ ์ž„์˜์˜ ๊ด€์ ˆ ๊ตฌ์กฐ๋ฅผ ๊ฐ€์ง„ ๋ฌผ์ฒด์˜ 3D ์ž์„ธ๋ฅผ ์ถ”์ •ํ•˜๋Š” ๋ฌธ์ œ์— ๋Œ€ํ•ด ์ง„ํ™” ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ํ™œ์šฉํ•œ ์ƒˆ๋กœ์šด ์ ‘๊ทผ๋ฒ•์„ ์ œ์‹œํ•œ๋‹ค. ์ด ์—ฐ๊ตฌ๋Š” ๊ธฐ์กด์˜ ๋ฐฉ๋ฒ•๋“ค์ด ์‚ฌ์ „ ํ›ˆ๋ จ์ด๋‚˜ ๋„๋ฉ”์ธ ํŠน์ • ์ง€์‹์— ํฌ๊ฒŒ ์˜์กดํ•˜๊ณ , ์ด๋ฅผ ์ผ๋ฐ˜ํ™”ํ•˜๊ธฐ ์œ„ํ•œ ์ถ”๊ฐ€์ ์ธ ๋…ธ๋ ฅ์ด ํ•„์š”ํ•˜๋‹ค๋Š” ํ•œ๊ณ„์ ์„ ๊ทน๋ณตํ•˜๋ ค๊ณ  ์‹œ๋„ํ•œ๋‹ค. 1. ๋ฌธ์ œ ์ •์˜์™€ ์ ‘๊ทผ ๋ฐฉ์‹ ์ž์„ธ ์ถ”์ •์€ ๋ฌผ์ฒด์˜ ๊ด€์ ˆ ๊ตฌ์กฐ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ๊นŠ์ด ์ด๋ฏธ์ง€์—์„œ ๋ฌผ์ฒด์˜ ์œ„์น˜์™€ ์ž์„ธ๋ฅผ ๊ฒฐ์ •ํ•˜๋Š” ๊ณผ์ •์ด๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์ด ๋ฌธ์ œ๋ฅผ ๋ชจ๋ธ ๊ธฐ๋ฐ˜ ์ถ”์ • ๋ฌธ์ œ๋กœ ์ •์˜ํ•˜๊ณ , ์ง„ํ™” ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ํ™œ์šฉํ•˜์—ฌ ์ตœ์ ์˜ ์ž์„ธ ๋งค๊ฐœ๋ณ€์ˆ˜๋ฅผ ์ฐพ

Computer Science Artificial Intelligence Machine Learning Computer Vision
Length-Aware Adversarial Training for Variable-Length Trajectories: Digital Twins for Mall Shopper Paths

Length-Aware Adversarial Training for Variable-Length Trajectories: Digital Twins for Mall Shopper Paths

๋ณธ ๋…ผ๋ฌธ์€ ๊ฐ€๋ณ€ ๊ธธ์ด ์‹œํ€€์Šค, ํŠนํžˆ ์‡ผํ•‘๋ชฐ ๋‚ด ๊ณ ๊ฐ์˜ ์ด๋™ ๊ฒฝ๋กœ์™€ ๊ฐ™์€ ๋ณตํ•ฉ์ ์ธ ์‹œ๊ฐ„ยท๊ณต๊ฐ„ ๋ฐ์ดํ„ฐ๋ฅผ ์ƒ์„ฑํ•˜๋Š” ๋ฌธ์ œ์— ์ดˆ์ ์„ ๋งž์ถ˜๋‹ค. ์ „ํ†ต์ ์ธ ๋ฏธ๋‹ˆ๋ฐฐ์น˜ ํ•™์Šต์—์„œ๋Š” ๋™์ผ ๋ฐฐ์น˜ ๋‚ด์— ๊ธธ์ด๊ฐ€ ํฌ๊ฒŒ ๋‹ค๋ฅธ ์‹œํ€€์Šค๊ฐ€ ์„ž์ด๊ฒŒ ๋˜๋Š”๋ฐ, ์ด๋Š” ๊ทธ๋ž˜๋””์–ธํŠธ์˜ ์Šค์ผ€์ผ ์ฐจ์ด๋ฅผ ์•ผ๊ธฐํ•˜๊ณ  ์ตœ์ ํ™” ๊ณผ์ •์—์„œ ๋ถˆ์•ˆ์ •์„ฑ์„ ์ดˆ๋ž˜ํ•œ๋‹ค. ํŠนํžˆ GAN ๊ธฐ๋ฐ˜ ์ƒ์„ฑ ๋ชจ๋ธ์€ ํŒ๋ณ„์ž๊ฐ€ โ€œ๊ธธ์ด ์ž์ฒดโ€๋ฅผ ์‰ฝ๊ฒŒ ๊ตฌ๋ถ„ํ•˜๋Š” ๋‹จ์ถ•(shortcut) ์ „๋žต์„ ์ทจํ•  ์œ„ํ—˜์ด ์žˆ๋Š”๋ฐ, ์ด๋Š” ์‹ค์ œ ์˜๋ฏธ ์žˆ๋Š” ํŒจํ„ด(์˜ˆ: ๋ฐฉ๋ฌธ ์ˆœ์„œ, ์ฒด๋ฅ˜ ์‹œ๊ฐ„)๋ณด๋‹ค ๊ธธ์ด ์ฐจ์ด์—๋งŒ ๋ฏผ๊ฐํ•˜๊ฒŒ ๋ฐ˜์‘ํ•˜๊ฒŒ ๋งŒ๋“ ๋‹ค. ๊ฒฐ๊ณผ์ ์œผ๋กœ ์ƒ์„ฑ

Machine Learning Computer Science
Data-Driven Assessment of Concrete Mixture Compositions on Chloride Transport via Standalone Machine Learning Algorithms

Data-Driven Assessment of Concrete Mixture Compositions on Chloride Transport via Standalone Machine Learning Algorithms

์ด ๋…ผ๋ฌธ์€ ์ฝ˜ํฌ๋ฆฌํŠธ ๊ตฌ์กฐ๋ฌผ ๋‚ด์—์„œ ์—ผํ™”๋ฌผ์˜ ์‹œ๊ฐ„ ๊ฒฝ๊ณผ ๋ณ€ํ™”์— ๋ฏธ์น˜๋Š” ํ˜ผํ•ฉ๋ฌผ ์กฐ์„ฑ์˜ ์˜ํ–ฅ์„ ๋ถ„์„ํ•˜๋Š”๋ฐ ์ดˆ์ ์„ ๋งž์ถ”๊ณ  ์žˆ๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ๋‹ค์–‘ํ•œ ๋จธ์‹ ๋Ÿฌ๋‹ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์‚ฌ์šฉํ•˜์—ฌ ๋ฐ์ดํ„ฐ ์ฃผ๋„์  ์ ‘๊ทผ๋ฒ•์„ ์ ์šฉํ•œ๋‹ค. ์—ฐ๊ตฌ ๋ฐฉ๋ฒ•๋ก ์€ ๊ฐ„๋‹จํ•œ ์„ ํ˜• ํšŒ๊ท€, k ์ตœ๊ทผ์ ‘ ์ด์›ƒ ํšŒ๊ท€, ์ปค๋„ ๋ฆฌ์ง€ ํšŒ๊ท€์™€ ๋ณต์žกํ•œ ์„œํฌํŠธ ๋ฒกํ„ฐ ํšŒ๊ท€, ๊ฐ€์šฐ์‹œ์•ˆ ํ”„๋กœ์„ธ์Šค ํšŒ๊ท€, ๋‹ค์ธต ํผ์…‰ํŠธ๋ก (MLP), ๊ฒŒ์ดํŠธ ์ˆœํ™˜ ์œ ๋‹›(GRU)์„ ํฌํ•จํ•œ๋‹ค. ๊ฐ ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ์„ฑ๋Šฅ์€ ๋‹ค์–‘ํ•œ ์ง€ํ‘œ๋ฅผ ํ†ตํ•ด ํ‰๊ฐ€๋˜๋ฉฐ, ํŠนํžˆ GPR ๋ชจ๋ธ์€ ๋ช…ํ™•ํ•˜๊ณ  ์„ค๋ช… ๊ฐ€๋Šฅํ•œ ์ถ”์„ธ๋ฅผ ์ œ๊ณตํ•˜์—ฌ ์ˆจ๊ฒจ์ง„ ์ƒ๊ด€๊ด€๊ณ„๋ฅผ ๋“œ๋Ÿฌ๋‚ด๋Š” ๋ฐ ํšจ๊ณผ

Computer Science Learning Data Machine Learning
Learning from Historical Activations in Graph Neural Networks

Learning from Historical Activations in Graph Neural Networks

HISTOGRAPH๋Š” ๊ทธ๋ž˜ํ”„ ์‹ ๊ฒฝ๋ง(GNN) ๋ถ„์•ผ์˜ ์ค‘์š”ํ•œ ๋ฐœ์ „์„ ์ด๋Œ์–ด๋‚ด๋ฉฐ, ํŠนํžˆ ๋…ธ๋“œ ์ž„๋ฒ ๋”ฉ์˜ ์ง„ํ™”์™€ ๊ณต๊ฐ„์  ์ƒํ˜ธ์ž‘์šฉ์„ ๋™์‹œ์— ๋ชจ๋ธ๋งํ•˜๋Š” ๋ฐ ์ค‘์ ์„ ๋‘๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ์ ‘๊ทผ๋ฒ•์€ ๊ธฐ์กด GNN ์•„ํ‚คํ…์ฒ˜๋ฅผ ๊ฐœ์„ ํ•˜๊ณ , ๋‹ค์–‘ํ•œ ๊ทธ๋ž˜ํ”„ ๊ด€๋ จ ์ž‘์—…์—์„œ ์šฐ์ˆ˜ํ•œ ์„ฑ๋Šฅ์„ ๋‹ฌ์„ฑํ•  ์ˆ˜ ์žˆ๋Š” ์ƒˆ๋กœ์šด ๋ฐฉํ–ฅ์„ฑ์„ ์ œ์‹œํ•ฉ๋‹ˆ๋‹ค. ๊ธฐ์ˆ ์  ํ˜์‹ ์„ฑ: HISTOGRAPH์˜ ํ•ต์‹ฌ ํ˜์‹  ์ค‘ ํ•˜๋‚˜๋Š” ์—ญ์‚ฌ์  ํ™œ์„ฑํ™” ์ถ”์  ์ž…๋‹ˆ๋‹ค. ์ด ์ ‘๊ทผ๋ฒ•์€ GNN์ด ๋ฉ”์‹œ์ง€ ์ „๋‹ฌ๊ณผ ์ง‘๊ณ„๋ฅผ ํ†ตํ•ด ๋…ธ๋“œ ์ž„๋ฒ ๋”ฉ์„ ์ƒ์„ฑํ•˜๋Š” ๊ณผ์ •์—์„œ ๋ฐœ์ƒํ•œ ์‹œ๊ฐ„์  ๊ฒฝ๋กœ๋ฅผ ๊ณ ๋ คํ•ฉ๋‹ˆ๋‹ค. ๊ฐ ๋…ธ๋“œ์˜ ์ธต๋ณ„ ํ‘œํ˜„์„ ์‹œํ€€์Šค

Computer Science Network Learning Machine Learning
No Image

Warp-Cortex: An Asynchronous, Memory-Efficient Architecture for Million-Agent Cognitive Scaling on Consumer Hardware

๋ณธ ๋…ผ๋ฌธ์€ ์›Œํ”„ ์ฝ”๋ฅดํ…์Šค ์•„ํ‚คํ…์ฒ˜๋ฅผ ํ†ตํ•ด ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(LLM)์˜ ๋ณ‘๋ ฌ ์ถ”๋ก  ๋Šฅ๋ ฅ์„ ํฌ๊ฒŒ ํ–ฅ์ƒ์‹œํ‚ค๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์‹œํ•œ๋‹ค. ์ด ์•„ํ‚คํ…์ฒ˜๋Š” ์—์ด์ „ํŠธ๊ฐ€ ๋…๋ฆฝ์ ์ธ ํ”„๋กœ์„ธ์Šค๊ฐ€ ์•„๋‹Œ ๋น„๋™๊ธฐ ์Šค๋ ˆ๋“œ๋กœ์„œ ๋™์ž‘ํ•˜๋„๋ก ์„ค๊ณ„๋˜์–ด, ๊ฐ€์ค‘์น˜์™€ ์ปจํ…์ŠคํŠธ ๋ฉ”๋ชจ๋ฆฌ์˜ ๋ณต์žก๋„๋ฅผ ํฌ๊ฒŒ ์ค„์ธ๋‹ค. ํŠนํžˆ, ํ† ํด๋กœ์ง€ ๋ฐ์ดํ„ฐ ๋ถ„์„(TDA)์—์„œ ์œ ๋ž˜ํ•œ ํ•˜์ด๋ธŒ๋ฆฌ๋“œ ๋žœ๋“œ๋งˆํฌ ๊ธฐ๋ฒ•์„ ํ†ตํ•ด KV ์บ์‹œ๋ฅผ ์  ํด๋ผ์šฐ๋“œ๋กœ ์ทจ๊ธ‰ํ•˜๊ณ , ์ฆ์ธ ๋ณต์žก์ฒด์— ์˜๊ฐ์„ ๋ฐ›์€ ํฌ๋ฐ•ํ™” ๋ฐฉ๋ฒ•์„ ์ ์šฉํ•˜์—ฌ ์ปจํ…์ŠคํŠธ์˜ ์ง€์†์  ํ˜ธ๋ชจ๋กœ์ง€ ํŠน์„ฑ์„ ์œ ์ง€ํ•˜๋ฉด์„œ ๋ฉ”๋ชจ๋ฆฌ ์‚ฌ์šฉ๋Ÿ‰์„ ํฌ๊ฒŒ ์ค„์ผ ์ˆ˜ ์žˆ๋‹ค. ๋…ผ๋ฌธ์—์„œ ์ œ์‹œ๋œ ์›Œํ”„ ์ฝ”๋ฅดํ…

Computer Science Machine Learning
Conformal Prediction Under Distribution Shift: A COVID-19 Natural Experiment

Conformal Prediction Under Distribution Shift: A COVID-19 Natural Experiment

์ด ๋…ผ๋ฌธ์€ ์ปจํฌ๋ฉ€ ์˜ˆ์ธก์ด ์‹ค์ œ ์šด์˜ ํ™˜๊ฒฝ์—์„œ ๋งˆ์ฃผ์น˜๋Š” โ€˜๋ถ„ํฌ ๋ณ€๋™(distribution shift)โ€™์— ์–ผ๋งˆ๋‚˜ ์ทจ์•ฝํ•œ์ง€๋ฅผ ์ฝ”๋กœ๋‚˜19๋ผ๋Š” ์ „ ์„ธ๊ณ„์  ์ถฉ๊ฒฉ์„ ์ด์šฉํ•ด ์‹ค์ฆ์ ์œผ๋กœ ๋ณด์—ฌ์ค€๋‹ค. ์—ฐ๊ตฌ์ž๋Š” 8๊ฐœ์˜ ๊ณต๊ธ‰๋ง ๊ด€๋ จ ํƒœ์Šคํฌ๋ฅผ ์„ ์ •ํ•˜๊ณ , ํŒฌ๋ฐ๋ฏน ์ด์ „๊ณผ ์ดํ›„์˜ ๋ฐ์ดํ„ฐ ํŠน์„ฑ์„ Jaccard ์ง€์ˆ˜๋ฅผ ํ†ตํ•ด ์ •๋Ÿ‰ํ™”ํ•˜์˜€๋‹ค. ํฅ๋ฏธ๋กญ๊ฒŒ๋„, Jaccard ์ง€์ˆ˜๊ฐ€ ๊ฑฐ์˜ 0์— ๊ฐ€๊นŒ์›Œ ํŠน์ง• ์ž์ฒด๋Š” ๊ฑฐ์˜ ๋ณ€ํ•˜์ง€ ์•Š์•˜์Œ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ , ์˜ˆ์ธก ๊ตฌ๊ฐ„์˜ ์‹ค์ œ ์ปค๋ฒ„๋ฆฌ์ง€๋Š” 0 %์—์„œ 86.7 %๊นŒ์ง€ ๊ทน๋‹จ์ ์ธ ์ฐจ์ด๋ฅผ ๋ณด์˜€๋‹ค. ์ด๋Š” ์ปจํฌ๋ฉ€ ๋ฐฉ๋ฒ•์ด ๋‹จ์ˆœํžˆ ํŠน์ง• ๋ถ„ํฌ์˜ ๋ณ€ํ™”๋ฅผ ๊ฐ

Machine Learning Computer Science
No Image

Geometric Regularization in Mixture-of-Experts: The Disconnect Between Weights and Activations

Mixtureโ€‘ofโ€‘Experts(MoE) ๊ตฌ์กฐ๋Š” ์ˆ˜๋ฐฑ์—์„œ ์ˆ˜์ฒœ ๊ฐœ์˜ ์ „๋ฌธ๊ฐ€ ์ค‘ ์ผ๋ถ€๋งŒ์„ ์„ ํƒ์ ์œผ๋กœ ํ™œ์„ฑํ™”ํ•จ์œผ๋กœ์จ ๊ณ„์‚ฐ ๋น„์šฉ์„ ํฌ๊ฒŒ ์ ˆ๊ฐํ•œ๋‹ค๋Š” ์žฅ์ ์ด ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ „๋ฌธ๊ฐ€๋“ค์ด ์‹ค์ œ๋กœ ์„œ๋กœ ๋‹ค๋ฅธ ๊ธฐ๋Šฅ์„ ์ˆ˜ํ–‰ํ•˜๋„๋ก ๋งŒ๋“ค๊ธฐ ์œ„ํ•ด์„œ๋Š” โ€œ์ „๋ฌธ๊ฐ€ ๋‹ค์–‘์„ฑโ€์ด ํ•„์ˆ˜์ ์ด๋ฉฐ, ์ด๋ฅผ ๋‹ฌ์„ฑํ•˜๊ธฐ ์œ„ํ•œ ๋‹ค์–‘ํ•œ ์ •๊ทœํ™” ๊ธฐ๋ฒ•์ด ์ œ์•ˆ๋˜์–ด ์™”๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๊ฐ€์žฅ ์ง๊ด€์ ์ธ ์ ‘๊ทผ๋ฒ• ์ค‘ ํ•˜๋‚˜์ธ ๊ฐ€์ค‘์น˜ ์ง๊ต ์†์‹ค์„ ์ ์šฉํ•˜์—ฌ ์ „๋ฌธ๊ฐ€ ๊ฐ„์˜ ๊ธฐํ•˜ํ•™์  ์ฐจ์ด๋ฅผ ๊ฐ•์ œํ•˜๊ณ , ๊ทธ ํšจ๊ณผ๋ฅผ ๋‹ค๊ฐ๋„๋กœ ํ‰๊ฐ€ํ•˜์˜€๋‹ค. ์ฒซ ๋ฒˆ์งธ ์‹คํ—˜์—์„œ๋Š” ๊ฐ€์ค‘์น˜ ๊ณต๊ฐ„ ์ค‘๋ณต๋„(MSO, Mean Subspace

Machine Learning Computer Science
Generative Classifiers Avoid Shortcut Solutions

Generative Classifiers Avoid Shortcut Solutions

ํŒ๋ณ„ ๋ชจ๋ธ์€ ์ž…๋ ฅ ๋ฐ์ดํ„ฐ๋ฅผ ์ง์ ‘ ๋ผ๋ฒจ์— ๋งคํ•‘ํ•˜๋Š” ๋ฐฉ์‹์œผ๋กœ ํ•™์Šตํ•œ๋‹ค. ์ด ๊ณผ์ •์—์„œ ๋ชจ๋ธ์€ ํ›ˆ๋ จ ๋ฐ์ดํ„ฐ์— ์กด์žฌํ•˜๋Š” ํ†ต๊ณ„์  ํŒจํ„ด์„ ์ตœ์ ํ™”ํ•˜์ง€๋งŒ, ๋ผ๋ฒจ๊ณผ ์ง์ ‘์ ์ธ ์ธ๊ณผ๊ด€๊ณ„๊ฐ€ ์—†๋Š” ํŠน์ง•โ€”์˜ˆ๋ฅผ ๋“ค์–ด ๋ฐฐ๊ฒฝ ์ƒ‰, ์ดฌ์˜ ๊ฐ๋„, ํ˜น์€ ํ…์ŠคํŠธ์—์„œ ํ”ํžˆ ๋‚˜ํƒ€๋‚˜๋Š” ํŠน์ • ๋‹จ์–ดโ€”์— ๊ณผ๋„ํ•˜๊ฒŒ ์˜์กดํ•  ์œ„ํ—˜์ด ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ์Šคํ“จ๋ฆฌ์–ด์Šค ํŠน์ง•์€ ํ›ˆ๋ จ ๋ฐ์ดํ„ฐ ๋‚ด์—์„œ๋Š” ๋ผ๋ฒจ๊ณผ ๋†’์€ ์ƒ๊ด€๊ด€๊ณ„๋ฅผ ๋ณด์ด์ง€๋งŒ, ์‹ค์ œ ๋ฐฐํฌ ํ™˜๊ฒฝ์—์„œ ์‚ฌ์†Œํ•œ ๋ถ„ํฌ ์ด๋™์ด ๋ฐœ์ƒํ•˜๋ฉด ๊ธ‰๊ฒฉํžˆ ์‚ฌ๋ผ์ง„๋‹ค. ๊ฒฐ๊ณผ์ ์œผ๋กœ ํŒ๋ณ„ ๋ชจ๋ธ์€ โ€œ๋‹จ์ถ•(shortcut)โ€์„ ์ด์šฉํ•ด ๋†’์€ ์ •ํ™•๋„๋ฅผ ๋‹ฌ์„ฑํ•˜์ง€๋งŒ, ์ผ๋ฐ˜ํ™” ๋Šฅ๋ ฅ์€ ํฌ๊ฒŒ

Machine Learning Computer Science
No Image

More Than Bits: Multi-Envelope Double Binary Factorization for Extreme Quantization

์ด ๋…ผ๋ฌธ์€ ๋Œ€๊ทœ๋ชจ ์–ธ์–ด ๋ชจ๋ธ(LLM)์˜ ๊ทน์ €๋น„ํŠธ ์–‘์žํ™”์— ์žˆ์–ด ๊ธฐ์กด ์ด์ค‘ ์ด์ง„ ๋ถ„ํ•ด(Double Binary Factorization, DBF)์˜ ๊ตฌ์กฐ์  ํ•œ๊ณ„๋ฅผ ์ •ํ™•ํžˆ ์งš์–ด๋‚ธ๋‹ค. DBF๋Š” ๊ฐ€์ค‘์น˜๋ฅผ ๋ถ€ํ˜ธ ํ–‰๋ ฌ๊ณผ ์Šค์ผ€์ผ(์—”๋ฒจ๋กœํ”„) ํ–‰๋ ฌ์˜ ๊ณฑ์œผ๋กœ ํ‘œํ˜„ํ•˜๋Š”๋ฐ, ๋ถ€ํ˜ธ๋ฅผ 1๋น„ํŠธ๋กœ ๊ณ ์ •ํ•˜๊ณ  ์Šค์ผ€์ผ์„ ์‹ค์ˆ˜๊ฐ’์œผ๋กœ ๋‘์–ด ๋ฉ”๋ชจ๋ฆฌ ์‚ฌ์šฉ๋Ÿ‰์„ ํฌ๊ฒŒ ์ค„์ธ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์Šค์ผ€์ผ ํŒŒ๋ผ๋ฏธํ„ฐ๊ฐ€ ๋ชจ๋“  ๋žญํฌ ์„ฑ๋ถ„์— ๋™์ผํ•˜๊ฒŒ ์ ์šฉ๋˜๋ฉด์„œ, ๋ชจ๋ธ์ด ํ‘œํ˜„ํ•  ์ˆ˜ ์žˆ๋Š” ํฌ๊ธฐ ๋ณ€๋™ ํญ์ด ์ œํ•œ๋œ๋‹ค. ํŠนํžˆ, ๋žญํฌโ€‘R ๋ถ„ํ•ด์—์„œ R์ด ์ปค์งˆ์ˆ˜๋ก ๊ฐ ์„ฑ๋ถ„์ด ๋™์ผํ•œ ํฌ๊ธฐ ํ”„๋กœํŒŒ์ผ์„ ๊ณต์œ ํ•˜๊ฒŒ ๋˜๋ฏ€๋กœ

Machine Learning Computer Science
No Image

HOLOGRAPH: Active Causal Discovery via Sheaf-Theoretic Alignment of Large Language Model Priors

HOLOGRAPH ๋…ผ๋ฌธ์€ ์ธ๊ณผ ๊ตฌ์กฐ ํ•™์Šต์ด๋ผ๋Š” ์˜ค๋ž˜๋œ ๋ฌธ์ œ์— ์ตœ์‹  ์ธ๊ณต์ง€๋Šฅ ๊ธฐ์ˆ ์„ ์ˆ˜ํ•™์ ์œผ๋กœ ๊ฒฐํ•ฉํ•œ ์‹œ๋„๋ผ ํ•  ์ˆ˜ ์žˆ๋‹ค. ์ „ํ†ต์ ์ธ ์ธ๊ณผ ๋ฐœ๊ฒฌ ๋ฐฉ๋ฒ•์€ ์กฐ๊ฑด๋ถ€ ๋…๋ฆฝ์„ฑ ๊ฒ€์ •์ด๋‚˜ ๊ตฌ์กฐ์  ๋ฐฉ์ •์‹ ๋ชจ๋ธ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•˜์ง€๋งŒ, ๊ด€์ธก ๋ฐ์ดํ„ฐ๋งŒ์œผ๋กœ๋Š” ๋™์ผํ•œ ๋งˆ๋ฅด์ฝ”ํ”„ ๋“ฑ๊ฐ€ ํด๋ž˜์Šค ๋‚ด์˜ ์—ฌ๋Ÿฌ ๊ทธ๋ž˜ํ”„๋ฅผ ๊ตฌ๋ถ„ํ•˜๊ธฐ ์–ด๋ ต๋‹ค. ์ด ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด ์—ฐ๊ตฌ์ž๋“ค์€ ์™ธ๋ถ€ ์ง€์‹, ํŠนํžˆ ์ธ๊ฐ„์ด ๋งŒ๋“  ์ง€์‹ ๊ทธ๋ž˜ํ”„๋‚˜ ๋„๋ฉ”์ธ ์ „๋ฌธ๊ฐ€์˜ ์˜๊ฒฌ์„ ์‚ฌ์ „ํ™•๋ฅ ๋กœ ๋„์ž…ํ•ด ์™”๋‹ค. ์ตœ๊ทผ์—๋Š” LLM์ด ๋ฐฉ๋Œ€ํ•œ ํ…์ŠคํŠธ ์ฝ”ํผ์Šค๋ฅผ ํ•™์Šตํ•จ์œผ๋กœ์จ โ€œ์ธ๊ณผ์  ์ง๊ด€โ€์„ ๋‚ดํฌํ•˜๊ณ  ์žˆ๋‹ค๋Š” ์ ์— ์ฃผ๋ชฉํ•ด, LLM์„

Machine Learning Computer Science Model
OptRot: Mitigating Weight Outliers via Data-Free Rotations for Post-Training Quantization

OptRot: Mitigating Weight Outliers via Data-Free Rotations for Post-Training Quantization

๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(LLM)์€ ์ˆ˜์–ต์—์„œ ์ˆ˜์กฐ ๊ฐœ์˜ ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ๋ณด์œ ํ•˜๊ณ  ์žˆ์–ด, ์‹ค์ œ ์„œ๋น„์Šค ํ™˜๊ฒฝ์—์„œ ๋ฉ”๋ชจ๋ฆฌ์™€ ์—ฐ์‚ฐ ๋น„์šฉ์„ ํฌ๊ฒŒ ์ ˆ๊ฐํ•˜๊ธฐ ์œ„ํ•ด ์‚ฌํ›„ ์–‘์žํ™”(postโ€‘training quantization, PTQ)๊ฐ€ ํ•„์ˆ˜์ ์ด๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ LLM์˜ ๊ฐ€์ค‘์น˜์™€ ํ™œ์„ฑ๊ฐ’์—๋Š” โ€œ์ด์ƒ์น˜(outlier)โ€๋ผ ๋ถˆ๋ฆฌ๋Š” ๊ทน๋‹จ์ ์ธ ๊ฐ’๋“ค์ด ์กด์žฌํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ์ด์ƒ์น˜๋Š” ์–‘์žํ™” ๋‹จ๊ณ„์—์„œ ์Šค์ผ€์ผ๋ง์„ ํฌ๊ฒŒ ์žก์•„์•ผ ํ•˜๋ฏ€๋กœ, ์ „์ฒด ๋ถ„ํฌ๊ฐ€ ๊ณผ๋„ํ•˜๊ฒŒ ์••์ถ•๋˜๊ณ  ๊ฒฐ๊ณผ์ ์œผ๋กœ ์ •๋ฐ€๋„๊ฐ€ ํฌ๊ฒŒ ๋–จ์–ด์ง„๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋Š” ์ด ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ํšŒ์ „(rotation) ๊ธฐ๋ฒ•์„ ๋„์ž…ํ–ˆ๋Š”๋ฐ, ํšŒ์ „์€

Computer Science Data Machine Learning
No Image

Tubular Riemannian Laplace Approximations for Bayesian Neural Networks

๋ณธ ์—ฐ๊ตฌ๋Š” ๋ฒ ์ด์ง€์•ˆ ์‹ ๊ฒฝ๋ง(BNN)์—์„œ ๋ผํ”Œ๋ผ์Šค ๊ทผ์‚ฌ์˜ ํ•œ๊ณ„๋ฅผ ์ •ํ™•ํžˆ ์งš์–ด๋‚ธ ๋’ค, ๋ฆฌ๋งŒ ๊ธฐํ•˜ํ•™์„ ๋„์ž…ํ•ด ์ด๋ฅผ ๊ทน๋ณตํ•˜๋ ค๋Š” ์‹œ๋„๋ฅผ ๋ณด์—ฌ์ค€๋‹ค. ์ „ํ†ต์ ์ธ ๋ผํ”Œ๋ผ์Šค ๊ทผ์‚ฌ๋Š” MAP(์ตœ๋Œ€ ์‚ฌํ›„ ํ™•๋ฅ ) ์ถ”์ •์  ์ฃผ๋ณ€์„ ์œ ํด๋ฆฌ๋“œ ๊ฑฐ๋ฆฌ ๊ธฐ๋ฐ˜์˜ ๋‹ค๋ณ€๋Ÿ‰ ์ •๊ทœ๋ถ„ํฌ๋กœ ๊ทผ์‚ฌํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๋”ฅ๋Ÿฌ๋‹ ๋ชจ๋ธ์€ ์ˆ˜๋ฐฑ๋งŒ ์ฐจ์›์˜ ํŒŒ๋ผ๋ฏธํ„ฐ ๊ณต๊ฐ„์— ๋ณต์žกํ•œ ๋น„์„ ํ˜• ๊ตฌ์กฐ์™€ ๋‹ค์ค‘ ๋Œ€์นญ(์˜ˆ: ๋ ˆ์ด์–ด ์ˆœ์—ด, ์Šค์ผ€์ผ ๋ณ€ํ™˜ ๋“ฑ)๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ์–ด, ์†์‹ค ํ‘œ๋ฉด์€ ๊ทน๋„๋กœ ์–‡๊ณ  ๊ธด ๊ณจ์งœ๊ธฐ ํ˜•ํƒœ๋ฅผ ๋ค๋‹ค. ์ด๋Ÿฐ ์ƒํ™ฉ์—์„œ ์œ ํด๋ฆฌ๋“œ ๋ฉ”ํŠธ๋ฆญ์€ ์‹ค์ œ ๊ณก๋ฅ ์„ ๋ฌด์‹œํ•˜๊ณ , ๊ฒฐ๊ณผ์ ์œผ๋กœ ๊ณผ๋„ํ•˜๊ฒŒ ์ถ•์†Œ๋œ ํ˜น์€ ๊ณผ๋„ํ•˜๊ฒŒ

Computer Science Network Machine Learning
A Novel Template-Based Learning Model

A Novel Template-Based Learning Model

: ๋ณธ ๋…ผ๋ฌธ์€ ํ…œํ”Œ๋ฆฟ ๊ธฐ๋ฐ˜ ํ•™์Šต ๋ชจ๋ธ์„ ํ†ตํ•ด ์ƒˆ๋กœ์šด ๊ด€์ฐฐ ๋ฐ์ดํ„ฐ๋ฅผ ์ดํ•ดํ•˜๋Š” ๋ฐฉ๋ฒ•์— ๋Œ€ํ•ด ์„ค๋ช…ํ•˜๊ณ  ์žˆ๋‹ค. ์ด ๋ชจ๋ธ์€ ์ฃผ๋กœ ๊ด€์ฐฐ ๋ฐ์ดํ„ฐ ๊ฐ„์˜ ์œ ์‚ฌ์„ฑ ํƒ์ƒ‰๊ณผ ๋น„๊ต๋ฅผ ํ†ตํ•ด ์ƒˆ๋กœ์šด ๊ฐœ๋…์„ ํ•™์Šตํ•˜๊ณ  ์ถ”์ƒํ™”ํ•˜๋Š”๋ฐ ์ดˆ์ ์„ ๋งž์ถ”๊ณ  ์žˆ๋‹ค. 1. ํ…œํ”Œ๋ฆฟ ๊ธฐ๋ฐ˜ ํ•™์Šต ๋ชจ๋ธ์˜ ๊ตฌ์„ฑ ์š”์†Œ ๊ธฐํ•˜ํ•™์  ๋ฌ˜์‚ฌ : ์ด ๋ชจ๋ธ์€ ๊ด€์ฐฐ ๋ฐ์ดํ„ฐ๋ฅผ ๊ธฐํ•˜ํ•™์ ์œผ๋กœ ๋ฌ˜์‚ฌํ•˜๋Š” ๋ฐฉ์‹์„ ์‚ฌ์šฉํ•œ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ๊ฐ์ฒด์˜ ๊ฒฝ๊ณ„์™€ ํ˜•ํƒœ๋ฅผ ์ •ํ™•ํ•˜๊ฒŒ ํŒŒ์•…ํ•  ์ˆ˜ ์žˆ๋‹ค. ์ธ๊ฐ„ ์‹œ๊ฐ ์‹ ๊ฒฝ ์‹œ์Šคํ…œ์— ์˜๊ฐ ๋ฐ›์€ ์„ค๋ช…์ž : ์ธ๊ฐ„์˜ ์‹œ๊ฐ ์ธ์ง€ ๊ณผ์ •์—์„œ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•˜๋Š” ์š”์†Œ๋“ค์„ ๋ชจ๋ธ๋งํ•˜์—ฌ, ๋” ์ •๊ตํ•œ ๋ฐ์ดํ„ฐ

Model Machine Learning Computer Science Learning

< Category Statistics (Total: 702) >

Electrical Engineering and Systems Science
7
General
253
General Relativity
7
HEP-EX
5
HEP-PH
12
HEP-TH
5
MATH-PH
3
NUCL-TH
1
Quantum Physics
9

Start searching

Enter keywords to search articles

โ†‘โ†“
โ†ต
ESC
โŒ˜K Shortcut