Computer Science / Artificial Intelligence

All posts under category "Computer Science / Artificial Intelligence"

25 posts total
Sorted by date
No Image

FlashInfer-Bench: Building the Virtuous Cycle for AI-driven LLM Systems

FlashInferโ€‘Bench ๋…ผ๋ฌธ์€ โ€œAIโ€‘generated GPU kernelโ€์ด๋ผ๋Š” ์ตœ์‹  ์—ฐ๊ตฌ ํ๋ฆ„์„ ์‹ค์ œ ์„œ๋น„์Šค ํ™˜๊ฒฝ์— ์ ์šฉํ•˜๊ธฐ ์œ„ํ•œ ์ธํ”„๋ผ์ŠคํŠธ๋Ÿญ์ฒ˜ ์„ค๊ณ„๋ผ๋Š” ๊ด€์ ์—์„œ ๋งค์šฐ ์˜๋ฏธ ์žˆ๋Š” ๊ธฐ์—ฌ๋ฅผ ํ•˜๊ณ  ์žˆ๋‹ค. ์ฒซ ๋ฒˆ์งธ ํ•ต์‹ฌ์€ FlashInfer Trace ๋ผ๋Š” ๋ฉ”ํƒ€๋ฐ์ดํ„ฐ ์Šคํ‚ค๋งˆ์ด๋‹ค. ๊ธฐ์กด์— LLM์ด ์ƒ์„ฑํ•œ ์ฝ”๋“œ๋ฅผ ๋‹จ์ˆœํžˆ ํ…์ŠคํŠธ๋กœ ์ €์žฅํ•˜๊ณ  ์ธ๊ฐ„์ด ์ˆ˜๋™์œผ๋กœ ๊ฒ€์ฆํ•˜๋Š” ๋ฐฉ์‹์€ ํ™•์žฅ์„ฑ์ด ๋–จ์–ด์ง„๋‹ค. Trace๋Š” ์ปค๋„ ์ธํ„ฐํŽ˜์ด์Šค(์ž…์ถœ๋ ฅ ํ…์„œ ํ˜•ํƒœ, ๋ฉ”๋ชจ๋ฆฌ ์š”๊ตฌ๋Ÿ‰), ์›Œํฌ๋กœ๋“œ ํŠน์„ฑ(๋ฐฐ์น˜ ํฌ๊ธฐ, ์‹œํ€€์Šค ๊ธธ์ด), ๊ตฌํ˜„ ์„ธ๋ถ€์‚ฌํ•ญ(์–ธ์–ด, ์ปดํŒŒ์ผ ์˜ต์…˜)

Computer Science Artificial Intelligence System
Promoting scientific thinking with robots

Promoting scientific thinking with robots

: ์ด ๋…ผ๋ฌธ์€ ๋กœ๋ด‡์„ ํ™œ์šฉํ•˜์—ฌ ํ•™์ƒ๋“ค์˜ ๊ณผํ•™์  ์‚ฌ๊ณ  ๋Šฅ๋ ฅ์„ ํ–ฅ์ƒ์‹œํ‚ค๋Š” ๋ฐฉ๋ฒ•์— ๋Œ€ํ•ด ๊นŠ์ด ์žˆ๊ฒŒ ๋ถ„์„ํ•˜๊ณ  ์žˆ๋‹ค. ์ฃผ์š” ๋‚ด์šฉ๊ณผ ๊ทธ ์ค‘์š”์„ฑ์„ ์‚ดํŽด๋ณด์ž. 1. ๋กœ๋ด‡์˜ ์„ค๊ณ„์™€ ๊ตฌ์กฐ ๊ตฌ์„ฑ ์š”์†Œ : ์ด ๋กœ๋ด‡์€ DC ๋ชจํ„ฐ, ๊ด‘ ์„ผ์„œ, Arduino ์ œ์–ด ๋ณด๋“œ ๋“ฑ์œผ๋กœ ๊ตฌ์„ฑ๋˜์–ด ์žˆ๋‹ค. ์ž‘๋™ ์›๋ฆฌ : ๊ด‘ ์„ผ์„œ๋Š” ๋น›์„ ๊ฐ์ง€ํ•˜๊ณ  ์ด๋ฅผ ํ†ตํ•ด ๋ชจํ„ฐ์˜ ์†๋„๋ฅผ ์กฐ์ ˆํ•œ๋‹ค. ์„ผ์„œ๊ฐ€ ๊ฐ์ง€ํ•œ ๋น›์˜ ๊ฐ•๋„์— ๋”ฐ๋ผ ๋ชจํ„ฐ์˜ ํšŒ์ „ ์†๋„๊ฐ€ ๋ณ€ํ•˜๋ฉฐ, ์ด๋กœ ์ธํ•ด ๋กœ๋ด‡์€ ๋น›์„ ์ถ”์ ํ•˜๋Š” ํ–‰๋™์„ ๋ณด์ธ๋‹ค. ํ”„๋กœ๊ทธ๋ž˜๋ฐ : Arduino ํ”„๋กœ๊ทธ๋žจ์„ ํ†ตํ•ด ์ œ์–ด๋˜๋ฉฐ, ์ด๋ฅผ ํ†ตํ•ด ๋‹ค์–‘ํ•œ ์‹คํ—˜๊ณผ ๊ฐ€์„ค

Robotics Physics Computer Science Artificial Intelligence
Application of the Modified 2-opt and Jumping Gene Operators in   Multi-Objective Genetic Algorithm to solve MOTSP

Application of the Modified 2-opt and Jumping Gene Operators in Multi-Objective Genetic Algorithm to solve MOTSP

: ๋ณธ ๋…ผ๋ฌธ์€ ๋‹ค๋ชฉ์  ์—ฌํ–‰ ํŒ๋งค์› ๋ฌธ์ œ(Multi Objective Traveling Salesman Problem, MOTSP)๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•œ ์œ ์ „ ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ํ˜์‹ ์ ์ธ ์ ‘๊ทผ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ์ด ์—ฐ๊ตฌ๋Š” ํŠนํžˆ ์ˆ˜์ •๋œ 2 opt์™€ ์ ํ”„ ์œ ์ „์ž ์—ฐ์‚ฐ์ž๋ฅผ ํ™œ์šฉํ•œ Elitist ๋น„์šฐ์›” ์ •๋ ฌ ์œ ์ „ ์•Œ๊ณ ๋ฆฌ์ฆ˜(NSGA II)์— ์ดˆ์ ์„ ๋งž์ถ”๊ณ  ์žˆ๋‹ค. ๋ฌธ์ œ ์ •์˜ ๋ฐ ๋ฐฐ๊ฒฝ ์—ฌํ–‰ ํŒ๋งค์› ๋ฌธ์ œ(TSP)๋Š” ์ฃผ์–ด์ง„ ๋„์‹œ๋“ค ์‚ฌ์ด์—์„œ ๊ฐ€์žฅ ์ €๋ ดํ•œ ๊ฒฝ๋กœ๋ฅผ ์ฐพ๋Š” ๋ฌธ์ œ๋กœ, ๋‹จ์ผ ๋ชฉ์  TSP๋Š” NP ์™„์ „ ๋ฌธ์ œ์ด๋‹ค. ๋‹ค๋ชฉ์  TSP์—์„œ๋Š” ์—ฌ๋Ÿฌ ๋ชฉํ‘œ(์˜ˆ: ๋น„์šฉ๊ณผ ๊ฑฐ๋ฆฌ)๋ฅผ ์ตœ

Neural Computing Artificial Intelligence Computer Science
Self-Organizing Mixture Networks for Representation of Grayscale Digital   Images

Self-Organizing Mixture Networks for Representation of Grayscale Digital Images

๋ณธ ๋…ผ๋ฌธ์€ ๊ทธ๋ ˆ์ด ์Šค์ผ€์ผ ๋””์ง€ํ„ธ ์ด๋ฏธ์ง€๋ฅผ ํ‘œํ˜„ํ•˜๊ณ  ํด๋Ÿฌ์Šคํ„ฐ๋งํ•˜๋Š” ๋ฐฉ๋ฒ•์— ๋Œ€ํ•ด ์‹ฌ๋„ ์žˆ๊ฒŒ ๋‹ค๋ฃจ๊ณ  ์žˆ๋‹ค. ํŠนํžˆ, ์ฝ”ํ˜ธ๋„จ ๋„คํŠธ์›Œํฌ (Self Organizing Map, SOM)๊ณผ ํ˜ผํ•ฉ ์†Œ์Šค ์ฝ”ํ˜ธ๋„จ ๋„คํŠธ์›Œํฌ (Self Organizing Mixture Network, SOMN)๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์ด๋ฏธ์ง€๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ํ‘œํ˜„ํ•˜๊ณ  ํด๋Ÿฌ์Šคํ„ฐ๋งํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. 1. ๊ทธ๋ ˆ์ด ์Šค์ผ€์ผ ์ด๋ฏธ์ง€์˜ ํ‘œํ˜„ ๊ทธ๋ ˆ์ด ์Šค์ผ€์ผ ์ด๋ฏธ์ง€๋Š” ํ”ฝ์…€ ๊ทธ๋ฆฌ๋“œ๋กœ ์ •์˜๋˜๋ฉฐ, ๊ฐ ํ”ฝ์…€์€ ๋ฐ๊ธฐ ๊ฐ•๋„ ๊ฐ’์„ ๊ฐ€์ง„๋‹ค. ์ด ๊ฐ’๋“ค์€ ์ผ๋ฐ˜์ ์œผ๋กœ 0์—์„œ 255 ์‚ฌ์ด์˜ ์ •์ˆ˜๋กœ ๋””ํฌ๋ ˆํ‹ฐํ™”๋˜์–ด ์ปดํ“จํ„ฐ ๋ฉ”

Artificial Intelligence Network Computer Science
An Ontology-driven Framework for Supporting Complex Decision Process

An Ontology-driven Framework for Supporting Complex Decision Process

: ๋ณธ ๋…ผ๋ฌธ์€ ๋ณต์žกํ•œ ๊ทธ๋ฃน ์˜์‚ฌ๊ฒฐ์ • ๊ณผ์ •์„ ์ง€์›ํ•˜๊ธฐ ์œ„ํ•œ ์˜จํ†จ๋กœ์ง€ ๊ธฐ๋ฐ˜ ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์†Œ๊ฐœํ•˜๊ณ , ์ด๋ฅผ ํ†ตํ•ด ์˜์‚ฌ๊ฒฐ์ • ๊ณผ์ •์˜ ํšจ์œจ์„ฑ๊ณผ ์ •ํ™•์„ฑ์„ ํ–ฅ์ƒ์‹œํ‚ค๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์‹œํ•ฉ๋‹ˆ๋‹ค. ์ด ๋…ผ๋ฌธ์€ DSS(Decision Support System)์˜ ์ง„ํ™”์™€ ํ•จ๊ป˜ ๊ฐœ๋ฐœ๋˜์—ˆ์œผ๋ฉฐ, ํŠนํžˆ ์—ฌ๋Ÿฌ ์‚ฌ๋žŒ์ด ์ฐธ์—ฌํ•˜๋Š” ๋ณต์žกํ•œ ์˜์‚ฌ๊ฒฐ์ • ๋ฌธ์ œ์— ์ดˆ์ ์„ ๋งž์ถฅ๋‹ˆ๋‹ค. 1. DSS์˜ ๋ฐœ์ „๊ณผ ๊ทธ๋ฃน ์˜์‚ฌ๊ฒฐ์ • DSS๋Š” 1960๋…„๋Œ€ ํ›„๋ฐ˜๋ถ€ํ„ฐ ์˜์‚ฌ๊ฒฐ์ •์ž์˜ ํšจ์œจ์„ฑ๊ณผ ์ •ํ™•์„ฑ์„ ํ–ฅ์ƒ์‹œํ‚ค๊ธฐ ์œ„ํ•ด ์ œ์•ˆ๋˜์–ด ์™”์Šต๋‹ˆ๋‹ค. ์ดˆ๊ธฐ์—๋Š” ๊ฐœ์ธ์˜ ๊ฒฐ์ •์— ์ดˆ์ ์„ ๋งž์ถ”์—ˆ์ง€๋งŒ, ์—ฐ๊ตฌ์ž๋“ค์€ ์‹ค์ œ ์˜์‚ฌ๊ฒฐ์ •์ด ์ข…์ข…

Framework Computer Science Artificial Intelligence
Jenius Agent: Towards Experience-Driven Accuracy Optimization in Real-World Scenarios

Jenius Agent: Towards Experience-Driven Accuracy Optimization in Real-World Scenarios

Jeniusโ€‘Agent ๋…ผ๋ฌธ์€ ์ตœ๊ทผ LLMโ€‘๊ธฐ๋ฐ˜ ์—์ด์ „ํŠธ๊ฐ€ ์ง๋ฉดํ•œ ๋‘ ๊ฐ€์ง€ ๊ทผ๋ณธ์ ์ธ ํ•œ๊ณ„๋ฅผ ๋ช…ํ™•ํžˆ ์งš๊ณ  ์žˆ๋‹ค. ์ฒซ ๋ฒˆ์งธ๋Š” โ€œ์‹คํ–‰ ๊ฐ€์‹œ์„ฑ ๋ถ€์กฑโ€์ด๋‹ค. ๊ธฐ์กด ๋ฒค์น˜๋งˆํฌ๋Š” ์ตœ์ข… ์ถœ๋ ฅ๋งŒ์„ ํ‰๊ฐ€ ์ง€ํ‘œ๋กœ ์‚ผ์•„, ์—์ด์ „ํŠธ๊ฐ€ ๋‚ด๋ถ€์ ์œผ๋กœ ์–ด๋–ค ํ”„๋กฌํ”„ํŠธ๋ฅผ ์ƒ์„ฑํ•˜๊ณ , ์–ด๋–ค ๋„๊ตฌ๋ฅผ ์–ธ์ œ ํ˜ธ์ถœํ–ˆ๋Š”์ง€, ์ƒํƒœ๋ฅผ ์–ด๋–ป๊ฒŒ ์—…๋ฐ์ดํŠธํ–ˆ๋Š”์ง€๋ฅผ ํŒŒ์•…ํ•  ๋ฐฉ๋ฒ•์„ ์ œ๊ณตํ•˜์ง€ ์•Š๋Š”๋‹ค. ์ด๋กœ ์ธํ•ด ๊ฐœ๋ฐœ์ž๋Š” ์˜ค๋ฅ˜ ์›์ธ์„ ์ถ”์ ํ•˜๊ธฐ ์œ„ํ•ด ๋กœ๊ทธ๋ฅผ ์ผ์ผ์ด ์ˆ˜์ž‘์—…์œผ๋กœ ๋ถ„์„ํ•ด์•ผ ํ•˜๋ฉฐ, ์žฌํ˜„์„ฑ๋„ ๋–จ์–ด์ง„๋‹ค. ๋‘ ๋ฒˆ์งธ๋Š” โ€œ์žฅ๊ธฐยท๋„๊ตฌโ€‘๋ณด๊ฐ• ์ž‘์—…์—์„œ์˜ ๋ถˆ์•ˆ์ •์„ฑโ€์ด๋‹ค. LLM์€ ์งง์€ ์ปจํ…์ŠคํŠธ์—์„œ๋Š” ๋›ฐ์–ด๋‚œ

Computer Science Artificial Intelligence
ElecTwit: A Framework for Studying Persuasion in Multi-Agent Social Systems

ElecTwit: A Framework for Studying Persuasion in Multi-Agent Social Systems

ElecTwit์ด ์ œ์‹œํ•˜๋Š” ๊ฐ€์žฅ ํฐ ํ˜์‹ ์€ ์„ค๋“ ์—ฐ๊ตฌ๋ฅผ ์œ„ํ•œ ์‹คํ—˜ ํ™˜๊ฒฝ์„ โ€˜๊ฒŒ์ž„โ€™์ด๋ผ๋Š” ์ธ์œ„์  ์„ค์ •์—์„œ ๋ฒ—์–ด๋‚˜ ์‹ค์ œ ์†Œ์…œ ๋ฏธ๋””์–ด ํ”Œ๋žซํผ์˜ ๊ตฌ์กฐ์™€ ํ–‰ํƒœ๋ฅผ ๋ชจ์‚ฌํ•œ ์ ์ด๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ์ €์ž๋“ค์€ ํŠธ์œ„ํ„ฐ์™€ ์œ ์‚ฌํ•œ ๊ฒŒ์‹œยท๋ฆฌํŠธ์œ—ยทํŒ”๋กœ์šฐ ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ๊ตฌํ˜„ํ•˜๊ณ , ์ •์น˜์  ์„ ๊ฑฐ๋ผ๋Š” ๊ตฌ์ฒด์  ์‹œ๋‚˜๋ฆฌ์˜ค๋ฅผ ์„ค์ •ํ•จ์œผ๋กœ์จ ์—์ด์ „ํŠธ ๊ฐ„์˜ ์ •๋ณด ํ๋ฆ„, ์˜๊ฒฌ ํ˜•์„ฑ, ๊ทธ๋ฆฌ๊ณ  ์„ค๋“ ์ „๋žต์˜ ์ „๊ฐœ ๊ณผ์ •์„ ์ •๋ฐ€ํ•˜๊ฒŒ ๊ด€์ฐฐํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ํŠนํžˆ 25๊ฐ€์ง€ ์„ค๋“ ๊ธฐ๋ฒ•์„ ์‚ฌ์ „ ์ •์˜ํ•˜๊ณ , ๊ฐ LLM์ด ์ด๋ฅผ ์–ด๋–ป๊ฒŒ ์„ ํƒยท์กฐํ•ฉํ•˜๋Š”์ง€๋ฅผ ์ •๋Ÿ‰ํ™”ํ•œ ๋ฐฉ๋ฒ•๋ก ์€ ์„ค๋“ ๊ธฐ์ˆ ์˜ โ€˜๋ ˆ์‹œํ”ผโ€™๋ฅผ ๋น„๊ต ๋ถ„์„ํ•˜๋Š” ๋ฐ

Computer Science Artificial Intelligence Framework System
An AI Monkey Gets Grapes for Sure -- Sphere Neural Networks for Reliable Decision-Making

An AI Monkey Gets Grapes for Sure -- Sphere Neural Networks for Reliable Decision-Making

๋ณธ ์—ฐ๊ตฌ๋Š” ํ˜„์žฌ ์ธ๊ณต์ง€๋Šฅ ์ถ”๋ก  ๋ถ„์•ผ์—์„œ ๊ฐ€์žฅ ๋…ผ์Ÿ์ด ๋˜๋Š” ์„ธ ๊ฐ€์ง€ ์ ‘๊ทผ๋ฒ•์„ ์ฒด๊ณ„์ ์œผ๋กœ ๋น„๊ตํ•จ์œผ๋กœ์จ, โ€œ์‹ ๋ขฐ์„ฑโ€์ด๋ผ๋Š” ๊ด€์ ์—์„œ ์ค‘์š”ํ•œ ํ†ต์ฐฐ์„ ์ œ๊ณตํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ ๋ฒ”์ฃผ์ธ ๋Œ€๊ทœ๋ชจ ์–ธ์–ด ๋ชจ๋ธ(LLM) ๊ธฐ๋ฐ˜ ์ถ”๋ก ์€ ๋ฐฉ๋Œ€ํ•œ ํ…์ŠคํŠธ ์ฝ”ํผ์Šค๋ฅผ ์‚ฌ์ „ ํ•™์Šตํ•จ์œผ๋กœ์จ ์–ธ์–ด์  ์œ ์—ฐ์„ฑ์„ ์–ป์ง€๋งŒ, ๋…ผ๋ฆฌ์  ์ผ๊ด€์„ฑ ์œ ์ง€์™€ ๊ฐ™์€ ์—„๊ฒฉํ•œ ํŒ๋‹จ์—์„œ๋Š” ์—ฌ์ „ํžˆ ๋ถˆ์•ˆ์ •ํ•œ ๊ฒฐ๊ณผ๋ฅผ ๋ณด์ธ๋‹ค. ์ด๋Š” LLM์ด ํ†ต๊ณ„์  ํŒจํ„ด์— ๊ธฐ๋ฐ˜ํ•œ ์˜ˆ์ธก์„ ์ˆ˜ํ–‰ํ•˜๊ธฐ ๋•Œ๋ฌธ์—, ๋ช…์‹œ์ ์ธ ๋…ผ๋ฆฌ ๊ทœ์น™์„ ๋‚ด์žฌํ™”ํ•˜์ง€ ๋ชปํ•œ๋‹ค๋Š” ๊ทผ๋ณธ์ ์ธ ํ•œ๊ณ„์™€ ์—ฐ๊ฒฐ๋œ๋‹ค. ๋‘ ๋ฒˆ์งธ์ธ ๊ฐ๋… ํ•™์Šต ๊ธฐ๋ฐ˜ ์ถ”๋ก ์€ ํŠน์ • ๋…ผ๋ฆฌ ๊ณผ์ œ์— ๋Œ€ํ•ด ๋ผ

Network Computer Science Artificial Intelligence
Counterfactual Self-Questioning for Stable Policy Optimization in Language Models

Counterfactual Self-Questioning for Stable Policy Optimization in Language Models

๋ณธ ๋…ผ๋ฌธ์ด ์ œ์‹œํ•˜๋Š” Counterfactual Selfโ€‘Questioning(CSQ)์€ ๊ธฐ์กด ์ž๊ธฐ ๊ฐœ์„  ๋ฉ”์ปค๋‹ˆ์ฆ˜์ด ์•ˆ๊ณ  ์žˆ๋˜ โ€œ์™ธ๋ถ€ ์˜์กด์„ฑโ€์ด๋ผ๋Š” ๊ทผ๋ณธ์ ์ธ ๋ฌธ์ œ๋ฅผ ๊ทผ๋ณธ์ ์œผ๋กœ ํ•ด๊ฒฐํ•œ๋‹ค๋Š” ์ ์—์„œ ํ•™์ˆ ์ ยท์‹ค์šฉ์  ์˜๋ฏธ๊ฐ€ ํฌ๋‹ค. ๋จผ์ €, CSQ๋Š” ํ•˜๋‚˜์˜ ์–ธ์–ด ๋ชจ๋ธ์ด ์Šค์Šค๋กœ โ€œ์™œ ์ด ์ถ”๋ก ์ด ํ‹€๋ ธ๋Š”๊ฐ€โ€๋ฅผ ํƒ์ƒ‰ํ•˜๋„๋ก ์„ค๊ณ„๋œ ์„ธ ๋‹จ๊ณ„ ํŒŒ์ดํ”„๋ผ์ธ์„ ๋„์ž…ํ•œ๋‹ค. ์ดˆ๊ธฐ ๋กค์•„์›ƒ ๋‹จ๊ณ„์—์„œ ๋ชจ๋ธ์€ ์ผ๋ฐ˜์ ์ธ chainโ€‘ofโ€‘thought ๋ฐฉ์‹์œผ๋กœ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ณ , ๊ทธ ๊ณผ์ •์—์„œ ์ƒ์„ฑ๋œ ์ค‘๊ฐ„ ๋‹จ๊ณ„์™€ ์ตœ์ข… ๋‹ต์•ˆ์„ ๊ทธ๋Œ€๋กœ ๋ณด๊ด€ํ•œ๋‹ค. ์ด์–ด์ง€๋Š” ์ž๊ธฐ์งˆ๋ฌธ ๋‹จ๊ณ„์—์„œ๋Š” ๋ชจ๋ธ์ด โ€œ

Computer Science Artificial Intelligence Model
Let It Flow: Agentic Crafting on Rock and Roll, Building the ROME Model within an Open Agentic Learning Ecosystem

Let It Flow: Agentic Crafting on Rock and Roll, Building the ROME Model within an Open Agentic Learning Ecosystem

๋ณธ ๋…ผ๋ฌธ์€ โ€œ์—์ด์ „ํŠธ ์ œ์ž‘(agentic crafting)โ€์ด๋ผ๋Š” ๊ฐœ๋…์„ ๊ธฐ์กด์˜ ์ผํšŒ์„ฑ ํ…์ŠคํŠธ ์ƒ์„ฑ๊ณผ ๊ตฌ๋ณ„ํ•˜์—ฌ, ์‹ค์ œ ์„ธ๊ณ„์—์„œ ๋‹ค์ค‘ ํ„ด์„ ๊ฑฐ์ณ ํ–‰๋™ํ•˜๊ณ  ๊ทธ ๊ฒฐ๊ณผ๋ฅผ ๊ด€์ฐฐยทํ”ผ๋“œ๋ฐฑํ•˜๋Š” ๋ฐ˜๋ณต์  ํ”„๋กœ์„ธ์Šค๋กœ ์ •์˜ํ•œ๋‹ค. ์ด๋Š” ๋‹จ์ˆœํžˆ ์ฝ”๋“œ๋ฅผ ์ž๋™ ์ƒ์„ฑํ•˜๋Š” ์ˆ˜์ค€์„ ๋„˜์–ด, ๋ณตํ•ฉ์ ์ธ ํˆด ์ฒด์ธ๊ณผ ์–ธ์–ด ๊ธฐ๋ฐ˜ ์›Œํฌํ”Œ๋กœ ์ „๋ฐ˜์— ๊ฑธ์ณ ๋ชจ๋ธ์ด ๊ณ„ํšยท์‹คํ–‰ยท๋ชจ๋‹ˆํ„ฐ๋งยท์ˆ˜์ •๊นŒ์ง€ ์ „ ๊ณผ์ •์„ ๋‹ด๋‹นํ•ด์•ผ ํ•จ์„ ์˜๋ฏธํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ์š”๊ตฌ๋ฅผ ์ถฉ์กฑํ•˜๋ ค๋ฉด ๋ชจ๋ธ ์ž์ฒด๋ฟ ์•„๋‹ˆ๋ผ, ๋ชจ๋ธ์ด ์ž‘๋™ํ•  ํ™˜๊ฒฝ, ๋ฐ์ดํ„ฐ ํŒŒ์ดํ”„๋ผ์ธ, ํ•™์Šตยท๋ฐฐํฌ ์ธํ”„๋ผ๊ฐ€ ๋ชจ๋‘ ์œ ๊ธฐ์ ์œผ๋กœ ์—ฐ๊ฒฐ๋œ โ€˜์—์ด์ „ํŠธ ํ•™์Šต ์ƒํƒœ๊ณ„(AL

Model Artificial Intelligence System Computer Science Learning
Benchmark Success, Clinical Failure: When Reinforcement Learning Optimizes for Benchmarks, Not Patients

Benchmark Success, Clinical Failure: When Reinforcement Learning Optimizes for Benchmarks, Not Patients

๋ณธ ๋…ผ๋ฌธ์€ ์˜๋ฃŒ ์˜์ƒ ๋ถ„์•ผ์—์„œ ์ตœ๊ทผ ๊ฐ๊ด‘๋ฐ›๊ณ  ์žˆ๋Š” ๊ฐ•ํ™”ํ•™์Šต(RL) ๊ธฐ๋ฐ˜ ํŒŒ์ธํŠœ๋‹์ด ์‹ค์ œ ์ž„์ƒ ์ ์šฉ์— ์–ด๋–ค ํ•จ์˜๋ฅผ ๊ฐ–๋Š”์ง€ ์‹ฌ๋„ ์žˆ๊ฒŒ ํƒ๊ตฌํ•œ๋‹ค. ๋จผ์ € ์ €์ž๋“ค์€ โ€œR1โ€‘styleโ€์ด๋ผ ๋ช…๋ช…ํ•œ ๋‘ ๋‹จ๊ณ„ ํ•™์Šต ํŒŒ์ดํ”„๋ผ์ธ์„ ์ œ์‹œํ•œ๋‹ค. ์ฒซ ๋‹จ๊ณ„๋Š” ๋น„๊ต์  ์ ์€ ์–‘(2,000๊ฐœ)์˜ ๋ผ๋ฒจ๋ง๋œ ์ด๋ฏธ์ง€โ€‘ํ…์ŠคํŠธ ์Œ์„ ์ด์šฉํ•œ ์ง€๋„ํ•™์Šต(Supervised Fineโ€‘Tuning, SFT)์ด๋ฉฐ, ๋‘ ๋ฒˆ์งธ ๋‹จ๊ณ„๋Š” 1,000๊ฐœ์˜ RL ์ƒ˜ํ”Œ์„ ํ™œ์šฉํ•ด GRPO(Goalโ€‘oriented Rewardโ€‘based Policy Optimization)๋ผ๋Š” ์ •์ฑ… ์ตœ์ ํ™” ๊ธฐ๋ฒ•์„

Computer Science Artificial Intelligence Learning
No Image

Class-based Rough Approximation with Dominance Principle

์ด ๋…ผ๋ฌธ์€ ๋‹ค์ค‘ ๊ธฐ์ค€ ์˜์‚ฌ๊ฒฐ์ • ๋ถ„์„(MCDA)๊ณผ ์ง€๋ฐฐ ๊ธฐ๋ฐ˜ ๊ฑฐ์นœ ์ง‘ํ•ฉ ์ ‘๊ทผ๋ฒ•(DRSA)์„ ์ค‘์‹ฌ์œผ๋กœ, ๊ณ ์ „์ ์ธ ๊ฑฐ์นœ ์ง‘ํ•ฉ ์ ‘๊ทผ๋ฒ•(CRSA)์˜ ํ•œ๊ณ„์™€ DRSA์˜ ์žฅ์ ์„ ํƒ๊ตฌํ•œ๋‹ค. MCDA๋Š” ๋‹ค์–‘ํ•œ ๊ธฐ์ค€์— ๋”ฐ๋ผ ํ‰๊ฐ€๋œ ๊ฐ์ฒด๋“ค ์ค‘์—์„œ ์ตœ์ ์˜ ๊ฒฐ์ •์„ ๋‚ด๋ฆฌ๋Š” ๋ฐ ์‚ฌ์šฉ๋˜๋ฉฐ, ์ด ๋…ผ๋ฌธ์€ ์ด๋ฅผ ์œ„ํ•œ ํšจ๊ณผ์ ์ธ ์ˆ˜ํ•™์  ๋„๊ตฌ๋กœ์„œ CRSA์™€ DRSA๋ฅผ ๋น„๊ตํ•˜๊ณ  ๋ถ„์„ํ•œ๋‹ค. CRSA๋Š” ๋ถˆ๋ถ„๋ช…์„ฑ ๊ด€๊ณ„๋ฅผ ํ†ตํ•ด ์ง€์‹ ๊ฑฐ์น ๊ธฐ๋ฅผ ๊ตฌ์ถ•ํ•˜๋Š” ๋ฐ˜๋ฉด, DRSA๋Š” ์˜์‚ฌ๊ฒฐ์ • ํ‘œ์—์„œ์˜ ์ง€๋ฐฐ ๊ด€๊ณ„์— ์ดˆ์ ์„ ๋งž์ถ˜๋‹ค. ์ด ๋…ผ๋ฌธ์€ ํŠนํžˆ ์„ ํ˜ธ๋„ ์ˆœ์„œ ๋ฐ์ดํ„ฐ ์ฒ˜๋ฆฌ์— ํ•œ๊ณ„๊ฐ€ ์žˆ๋Š” CRSA์™€

Computational Complexity Computer Science Artificial Intelligence
No Image

Pose Estimation from a Single Depth Image for Arbitrary Kinematic Skeletons

๋ณธ ๋…ผ๋ฌธ์€ ๊นŠ์ด ์ด๋ฏธ์ง€๋กœ๋ถ€ํ„ฐ ์ž„์˜์˜ ๊ด€์ ˆ ๊ตฌ์กฐ๋ฅผ ๊ฐ€์ง„ ๋ฌผ์ฒด์˜ 3D ์ž์„ธ๋ฅผ ์ถ”์ •ํ•˜๋Š” ๋ฌธ์ œ์— ๋Œ€ํ•ด ์ง„ํ™” ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ํ™œ์šฉํ•œ ์ƒˆ๋กœ์šด ์ ‘๊ทผ๋ฒ•์„ ์ œ์‹œํ•œ๋‹ค. ์ด ์—ฐ๊ตฌ๋Š” ๊ธฐ์กด์˜ ๋ฐฉ๋ฒ•๋“ค์ด ์‚ฌ์ „ ํ›ˆ๋ จ์ด๋‚˜ ๋„๋ฉ”์ธ ํŠน์ • ์ง€์‹์— ํฌ๊ฒŒ ์˜์กดํ•˜๊ณ , ์ด๋ฅผ ์ผ๋ฐ˜ํ™”ํ•˜๊ธฐ ์œ„ํ•œ ์ถ”๊ฐ€์ ์ธ ๋…ธ๋ ฅ์ด ํ•„์š”ํ•˜๋‹ค๋Š” ํ•œ๊ณ„์ ์„ ๊ทน๋ณตํ•˜๋ ค๊ณ  ์‹œ๋„ํ•œ๋‹ค. 1. ๋ฌธ์ œ ์ •์˜์™€ ์ ‘๊ทผ ๋ฐฉ์‹ ์ž์„ธ ์ถ”์ •์€ ๋ฌผ์ฒด์˜ ๊ด€์ ˆ ๊ตฌ์กฐ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ๊นŠ์ด ์ด๋ฏธ์ง€์—์„œ ๋ฌผ์ฒด์˜ ์œ„์น˜์™€ ์ž์„ธ๋ฅผ ๊ฒฐ์ •ํ•˜๋Š” ๊ณผ์ •์ด๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์ด ๋ฌธ์ œ๋ฅผ ๋ชจ๋ธ ๊ธฐ๋ฐ˜ ์ถ”์ • ๋ฌธ์ œ๋กœ ์ •์˜ํ•˜๊ณ , ์ง„ํ™” ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ํ™œ์šฉํ•˜์—ฌ ์ตœ์ ์˜ ์ž์„ธ ๋งค๊ฐœ๋ณ€์ˆ˜๋ฅผ ์ฐพ

Computer Vision Computer Science Artificial Intelligence Machine Learning
No Image

A construction of an optimal base for conditional attribute and attributional condition implications in triadic contexts

์‚ผ์ค‘ ์ปจํ…์ŠคํŠธ๋Š” ์ „ํ†ต์ ์ธ ์ดํ•ญ ๊ด€๊ณ„๋ฅผ ๋„˜์–ด ๊ฐ์ฒดโ€‘์†์„ฑโ€‘์กฐ๊ฑด์ด๋ผ๋Š” ์„ธ ์ฐจ์›์„ ๋™์‹œ์— ๊ณ ๋ คํ•˜๋Š” ๋ฐ์ดํ„ฐ ๋ชจ๋ธ๋กœ, ์ง€์‹ ๋ฐœ๊ฒฌ ๋ฐ ์˜๋ฏธ๋ก ์  ๋ถ„์„์— ์žˆ์–ด ๊ฐ•๋ ฅํ•œ ํ‘œํ˜„๋ ฅ์„ ์ œ๊ณตํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ด๋Ÿฌํ•œ ๋‹ค์ฐจ์› ๊ตฌ์กฐ์—์„œ๋Š” ๊ธฐ์กด์˜ ์ดํ•ญ ์ปจํ…์ŠคํŠธ์—์„œ ์‚ฌ์šฉ๋˜๋Š” ํ•จ์ถ•(implication) ๊ธฐ๋ฐ˜ ์ถ”๋ก  ๊ธฐ๋ฒ•์„ ๊ทธ๋Œ€๋กœ ์ ์šฉํ•˜๊ธฐ ์–ด๋ ต๋‹ค. ํŠนํžˆ ์กฐ๊ฑด ์†์„ฑ(conditional attribute)๊ณผ ๊ท€์† ์กฐ๊ฑด(attributional condition)์ด๋ผ๋Š” ๋‘ ์ข…๋ฅ˜์˜ ํ•จ์ถ•์ด ๋™์‹œ์— ์กด์žฌํ•  ๊ฒฝ์šฐ, ์„œ๋กœ ์–ฝํžˆ๋Š” ์ „์ œ์™€ ๊ฒฐ๋ก  ์‚ฌ์ด์˜ ์ค‘๋ณต ๋ฐ ๋ถˆํ•„์š”ํ•œ ํ•จ์ถ•์ด ๊ธ‰์ฆํ•˜์—ฌ ํšจ์œจ

Computer Science Artificial Intelligence
KGCE: Knowledge-Augmented Dual-Graph Evaluator for Cross-Platform Educational Agent Benchmarking with Multimodal Language Models

KGCE: Knowledge-Augmented Dual-Graph Evaluator for Cross-Platform Educational Agent Benchmarking with Multimodal Language Models

KGCE ๋…ผ๋ฌธ์€ ํ˜„์žฌ ๊ต์œก์šฉ AI ์—์ด์ „ํŠธ ํ‰๊ฐ€ ์ฒด๊ณ„๊ฐ€ ์ง๋ฉดํ•œ ๋‘ ๊ฐ€์ง€ ํ•ต์‹ฌ ํ•œ๊ณ„๋ฅผ ์ฒด๊ณ„์ ์œผ๋กœ ์ง„๋‹จํ•˜๊ณ , ์ด๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•œ ์„ค๊ณ„ ์›์น™์„ ๋ช…ํ™•ํžˆ ์ œ์‹œํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ ํ•œ๊ณ„๋Š” โ€˜ํ”„๋ผ์ด๋น— ๋„๋ฉ”์ธ ์†Œํ”„ํŠธ์›จ์–ดโ€™์— ๋Œ€ํ•œ ๊ตฌ์กฐ์  ์ดํ•ด ๋ถ€์กฑ์ด๋‹ค. XiaoYa Intelligent Assistant๋‚˜ HuaShi XiaZi์™€ ๊ฐ™์€ ํ•™๊ต ์ „์šฉ ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜์€ UI ํ๋ฆ„, API ํ˜ธ์ถœ ๋ฐฉ์‹, ๋ฐ์ดํ„ฐ ํฌ๋งท ๋“ฑ์ด ์ผ๋ฐ˜ ์ƒ์šฉ ์†Œํ”„ํŠธ์›จ์–ด์™€ ํฌ๊ฒŒ ๋‹ค๋ฅด๋‹ค. ๊ธฐ์กด ๋ฉ€ํ‹ฐ๋ชจ๋‹ฌ LLM ๊ธฐ๋ฐ˜ ์—์ด์ „ํŠธ๋Š” ์‚ฌ์ „ ํ•™์Šต ๋ฐ์ดํ„ฐ์— ์ด๋Ÿฌํ•œ ํŠน์ˆ˜ ์‚ฌ๋ก€๊ฐ€ ๊ฑฐ์˜ ํฌํ•จ๋˜์ง€ ์•Š์•„, ์‹ค์ œ ์‹คํ–‰

Computer Science Artificial Intelligence Model
Logics-STEM: Empowering LLM Reasoning via Failure-Driven Post-Training and Document Knowledge Enhancement

Logics-STEM: Empowering LLM Reasoning via Failure-Driven Post-Training and Document Knowledge Enhancement

Logicsโ€‘STEM ๋…ผ๋ฌธ์€ ์ตœ๊ทผ LLM(Large Language Model) ๋ถ„์•ผ์—์„œ ๊ฐ€์žฅ ๋œจ๊ฑฐ์šด ์ด์Šˆ์ธ โ€œ์ถ”๋ก  ๋Šฅ๋ ฅ ๊ฐ•ํ™”โ€์— ๋Œ€ํ•ด ๋ฐ์ดํ„ฐ์™€ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ๋™์‹œ์— ์ตœ์ ํ™”ํ•˜๋Š” ์ „๋žต์„ ์ œ์‹œํ•œ๋‹ค. ๋จผ์ € ๋ฐ์ดํ„ฐ ์ธก๋ฉด์„ ์‚ดํŽด๋ณด๋ฉด, ์ €์ž๋“ค์€ 7.2 M ๊ทœ๋ชจ์˜ SFT( supervised fineโ€‘tuning ) ๋ฐ์ดํ„ฐ์…‹์„ ๊ตฌ์ถ•ํ•˜๊ธฐ ์œ„ํ•ด 5๋‹จ๊ณ„ ํŒŒ์ดํ”„๋ผ์ธ์„ ์ ์šฉํ–ˆ๋‹ค. ์ฃผ์„ ๋‹จ๊ณ„์—์„œ๋Š” ์ธ๊ฐ„ ์ „๋ฌธ๊ฐ€๊ฐ€ ์žฅ๊ธฐ ์‚ฌ๊ณ  ์‚ฌ์Šฌ(chainโ€‘ofโ€‘thought) ํ˜•ํƒœ์˜ ๋‹ต๋ณ€์„ ์ง์ ‘ ์ž‘์„ฑํ•˜๋„๋ก ํ•˜์—ฌ, ๋ชจ๋ธ์ด ๋‹จ์ˆœํžˆ ์ •๋‹ต์„ ๋งž์ถ”๋Š” ๊ฒƒ์ด ์•„๋‹ˆ๋ผ ์‚ฌ๊ณ  ๊ณผ์ •์„ ํ•™์Šตํ•˜๋„๋ก

Computer Science Artificial Intelligence
No Image

The Illusion of Insight in Reasoning Models

์ด ๋…ผ๋ฌธ์€ ์ตœ๊ทผ AI ์ปค๋ฎค๋‹ˆํ‹ฐ์—์„œ ํ™”์ œ๊ฐ€ ๋œ โ€œ์ถ”๋ก  ์ค‘ โ€˜์•„ํ•˜!โ€™ ์ˆœ๊ฐ„โ€์ด๋ผ๋Š” ํ˜„์ƒ์„ ๊ณผํ•™์ ์œผ๋กœ ๊ฒ€์ฆํ•˜๋ ค๋Š” ์‹œ๋„์ด๋‹ค. ์ €์ž๋“ค์€ ๋จผ์ € ๊ธฐ์กด ์—ฐ๊ตฌ๊ฐ€ ์ œ์‹œํ•œ ์‚ฌ๋ก€, ์ฆ‰ DeepSeekโ€‘R1โ€‘Zero๊ฐ€ ์ค‘๊ฐ„ ๋‹จ๊ณ„์—์„œ ๊ฐ‘์ž‘์Šค๋Ÿฌ์šด ์ „๋žต ์ „ํ™˜์„ ๋ณด์ด๋ฉฐ ์ •๋‹ต์„ ๋„์ถœํ•œ๋‹ค๋Š” ์ฃผ์žฅ์„ ์žฌํ˜„ํ•˜๋ ค ํ–ˆ๋‹ค. ์ด๋ฅผ ์œ„ํ•ด 1๋ฐฑ๋งŒ ๊ฐœ๊ฐ€ ๋„˜๋Š” ์ถ”๋ก  ํŠธ๋ ˆ์ด์Šค๋ฅผ ์ˆ˜์ง‘ํ•˜๊ณ , ๊ฐ ํŠธ๋ ˆ์ด์Šค์—์„œ ํ† ํฐ ์ˆ˜์ค€์˜ ํ™•๋ฅ  ๋ณ€ํ™”, ๋‚ด๋ถ€ ํ‘œํ˜„์˜ ๋ณ€๋™, ๊ทธ๋ฆฌ๊ณ  ์ถœ๋ ฅ ์ •ํ™•๋„๋ฅผ ๋™์‹œ์— ๊ธฐ๋กํ–ˆ๋‹ค. ๋ถ„์„ ๋Œ€์ƒ์€ ์ž์—ฐ์–ด ์งˆ๋ฌธโ€‘๋‹ต๋ณ€, ์ˆ˜ํ•™ ๋ฌธ์ œ ํ’€์ด, ์ฝ”๋”ฉ ์ƒ์„ฑ์ด๋ผ๋Š” ์„ธ ๊ฐ€์ง€ ๋„๋ฉ”์ธ์œผ๋กœ, ๊ฐ๊ฐ์˜ ๋„๋ฉ”์ธ

Computer Science Artificial Intelligence Model
No Image

Can Semantic Methods Enhance Team Sports Tactics? A Methodology for Football with Broader Applications

์ด ๋…ผ๋ฌธ์€ ์˜๋ฏธ๋ก ์  ๋ฒกํ„ฐ ๊ณต๊ฐ„์„ ํŒ€ ์Šคํฌ์ธ  ์ „์ˆ ์— ์ ์šฉํ•œ๋‹ค๋Š” ๋…์ฐฝ์ ์ธ ์•„์ด๋””์–ด๋ฅผ ์ œ์‹œํ•จ์œผ๋กœ์จ, ๊ธฐ์กด ์ „์ˆ  ๋ถ„์„ ๋ฐฉ๋ฒ•๋ก ๊ณผ๋Š” ์ฐจ๋ณ„ํ™”๋œ ํ•™์ˆ ์  ๊ฐ€์น˜๋ฅผ ์ œ๊ณตํ•œ๋‹ค. ์ฒซ์งธ, ์„ ์ˆ˜ ๊ฐœ๊ฐœ์ธ์„ ๋‹ค์ฐจ์› ๋ฒกํ„ฐ๋กœ ๋ชจ๋ธ๋งํ•œ๋‹ค๋Š” ์ ‘๊ทผ์€ ๊ธฐ์กด์˜ ๋‹จ์ˆœ ํ†ต๊ณ„ ๊ธฐ๋ฐ˜ ํ‰๊ฐ€๋ฅผ ๋„˜์–ด, ๊ธฐ์ˆ ยท์‹ ์ฒดยท์‹ฌ๋ฆฌ์  ํŠน์„ฑ์„ ๋™์‹œ์— ๊ณ ๋ คํ•œ ๋ณตํ•ฉ์ ์ธ ํŠน์„ฑ ํ‘œํ˜„์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•œ๋‹ค. ํŠนํžˆ, ์‹ฌ๋ฆฌ์  ๋ณ€์ˆ˜(์˜ˆ: ๊ฒฝ๊ธฐ ์ง‘์ค‘๋„, ์ŠคํŠธ๋ ˆ์Šค ์ˆ˜์ค€)๋ฅผ ์ˆ˜์น˜ํ™”ํ•˜์—ฌ ๋ฒกํ„ฐ์— ํฌํ•จ์‹œํ‚ค๋Š” ์‹œ๋„๋Š” ํ˜„์žฌ ์Šคํฌ์ธ  ๊ณผํ•™์—์„œ ์•„์ง ์ถฉ๋ถ„ํžˆ ๋‹ค๋ฃจ์–ด์ง€์ง€ ์•Š์€ ์˜์—ญ์ด๋ฉฐ, ์ „์ˆ ์  ์˜์‚ฌ๊ฒฐ์ •์— ์ธ๊ฐ„์ ์ธ ์š”์†Œ๋ฅผ ๋ฐ˜์˜ํ•œ๋‹ค๋Š” ์ ์—์„œ ์˜๋ฏธ๊ฐ€

Computer Science Artificial Intelligence
A study on constraint extraction and exception exclusion in care worker scheduling

A study on constraint extraction and exception exclusion in care worker scheduling

์ด ๋…ผ๋ฌธ์€ ์žฅ๊ธฐ ์š”์–‘ ์‹œ์„ค์ด๋ผ๋Š” ํŠน์ˆ˜ํ•œ ๋„๋ฉ”์ธ์—์„œ ๊ทผ๋ฌดํ‘œ ์ž๋™ ์ƒ์„ฑ์˜ ์‹ค์šฉ์„ฑ์„ ๋†’์ด๊ธฐ ์œ„ํ•ด โ€˜์ œ์•ฝ ํ…œํ”Œ๋ฆฟ ๊ธฐ๋ฐ˜ ์ถ”์ถœโ€™๊ณผ โ€˜์˜ˆ์™ธ ์ œ์™ธ ๋ฉ”์ปค๋‹ˆ์ฆ˜โ€™์ด๋ผ๋Š” ๋‘ ์ถ•์„ ์ œ์‹œํ•œ๋‹ค๋Š” ์ ์—์„œ ์˜๋ฏธ๊ฐ€ ํฌ๋‹ค. ๊ธฐ์กด ์Šค์ผ€์ค„๋ง ์—ฐ๊ตฌ๋Š” ์ฃผ๋กœ ์ผ๋ฐ˜์ ์ธ ์ œ์กฐยท์„œ๋น„์Šค ํ˜„์žฅ์— ์ ์šฉ ๊ฐ€๋Šฅํ•œ ์ œ์•ฝ ๋ชจ๋ธ์„ ์ œ์‹œํ–ˆ์œผ๋ฉฐ, ์‹ค์ œ ํ˜„์žฅ ์ ์šฉ ์‹œ ํ˜„์žฅ ๋‹ด๋‹น์ž์˜ ์•”๋ฌต์  ์ง€์‹์„ ๋ฐ˜์˜ํ•˜๊ธฐ ์–ด๋ ค์šด ํ•œ๊ณ„๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ์—ˆ๋‹ค. ์š”์–‘๋ณดํ˜ธ์‚ฌ ํ˜„์žฅ์€ ๊ต๋Œ€ ํŒจํ„ด, ์—ฐ์† ๊ทผ๋ฌด์ผ, ์ง์› ๊ฐ„ ์กฐํ•ฉ, ํ™˜์ž ํŠน์„ฑ ๋“ฑ ๋ณตํ•ฉ์ ์ธ ์ œ์•ฝ์ด ์กด์žฌํ•˜๊ณ , ์ด๋“ค ์ค‘ ์ผ๋ถ€๋Š” โ€˜์˜ˆ์™ธโ€™โ€”์˜ˆ๋ฅผ ๋“ค์–ด, ํŠน์ • ์ง์›์˜ ์ž„์‹œ ํœด๊ฐ€๋‚˜ ๊ธ‰

Computer Science Artificial Intelligence
Constructing a Neuro-Symbolic Mathematician from First Principles

Constructing a Neuro-Symbolic Mathematician from First Principles

Mathesis ๋…ผ๋ฌธ์€ ํ˜„์žฌ LLM์ด ์ง๋ฉดํ•œ โ€œ๋…ผ๋ฆฌ์  ์ผ๊ด€์„ฑ ๋ถ€์žฌโ€๋ผ๋Š” ๊ทผ๋ณธ์ ์ธ ํ•œ๊ณ„๋ฅผ ์‹ ๊ฒฝโ€‘๊ธฐํ˜ธ ํ•˜์ด๋ธŒ๋ฆฌ๋“œ ์ ‘๊ทผ๋ฒ•์œผ๋กœ ํ•ด๊ฒฐํ•˜๊ณ ์ž ํ•˜๋Š” ์‹œ๋„์ด๋‹ค. ๊ฐ€์žฅ ํฐ ํ˜์‹ ์€ ์ˆ˜ํ•™์  ์ง€์‹์„ ๊ณ ์ฐจ์› ํ•˜์ดํผ๊ทธ๋ž˜ํ”„ ํ˜•ํƒœ๋กœ ํ‘œํ˜„ํ•œ๋‹ค๋Š” ์ ์ด๋‹ค. ์ „ํ†ต์ ์ธ ํ† ํฐโ€‘์‹œํ€€์Šค ํ‘œํ˜„์€ ๋ณ€์ˆ˜์™€ ์—ฐ์‚ฐ์ž ์‚ฌ์ด์˜ ๋ณต์žกํ•œ ๊ด€๊ณ„๋ฅผ ์ถฉ๋ถ„ํžˆ ํฌ์ฐฉํ•˜์ง€ ๋ชปํ•˜์ง€๋งŒ, ํ•˜์ดํผ๊ทธ๋ž˜ํ”„๋Š” ๋…ธ๋“œ(๊ฐœ๋…)์™€ ํ•˜์ดํผ์—ฃ์ง€(๋‹ค์ค‘ ๊ด€๊ณ„)๋ฅผ ๋™์‹œ์— ๋ชจ๋ธ๋งํ•จ์œผ๋กœ์จ ๊ณต๋ฆฌ, ์ •์˜, ์ •๋ฆฌ, ์ฆ๋ช… ๋‹จ๊ณ„ ๋“ฑ์„ ์ž์—ฐ์Šค๋Ÿฝ๊ฒŒ ๊ตฌ์กฐํ™”ํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ๊ตฌ์กฐ ์œ„์— ์–น์–ด์ง„ Symbolic Reasoning Kernel(SRK) ์€ ์ฐจ

Computer Science Artificial Intelligence
Iterative Deployment Improves Planning Skills in LLMs

Iterative Deployment Improves Planning Skills in LLMs

๋ณธ ๋…ผ๋ฌธ์€ โ€œ๋ฐ˜๋ณต ๋ฐฐํฌ(iterative deployment)โ€๋ผ๋Š” ์ƒˆ๋กœ์šด ๋ชจ๋ธ ์ง„ํ™” ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์‹œํ•œ๋‹ค. ํ•ต์‹ฌ ์•„์ด๋””์–ด๋Š” ํ•œ ๋ฒˆ ๋ฐฐํฌ๋œ LLM์ด ์‹ค์ œ ์‚ฌ์šฉ์ž์™€ ์ƒํ˜ธ์ž‘์šฉํ•˜๋ฉด์„œ ์ƒ์„ฑํ•œ ์ถœ๋ ฅ๋ฌผ ์ค‘, ํŠนํžˆ ๊ณ„ํš ๋ฌธ์ œ์— ๋Œ€ํ•œ ๋‹ต๋ณ€์„ ์ธ๊ฐ„์ด ๊ฒ€ํ† ยท์„ ๋ณ„ํ•˜์—ฌ ๊ณ ํ’ˆ์งˆ ๋ฐ์ดํ„ฐ์…‹์„ ๋งŒ๋“ ๋‹ค. ์ด ๋ฐ์ดํ„ฐ์…‹์„ ์ด์šฉํ•ด ๊ธฐ์กด ๋ชจ๋ธ์„ ํŒŒ์ธํŠœ๋‹ํ•˜๊ณ , ๋‹ค์‹œ ๋ฐฐํฌํ•œ๋‹ค๋Š” ๊ณผ์ •์„ ์—ฌ๋Ÿฌ ์ฐจ๋ก€ ๋ฐ˜๋ณตํ•œ๋‹ค. ์ด๋ ‡๊ฒŒ ํ•˜๋ฉด ๋ชจ๋ธ์€ ์ ์ง„์ ์œผ๋กœ โ€œ์‚ฌ์šฉ์žโ€‘ํ”ผ๋“œ๋ฐฑโ€‘๋ฐ์ดํ„ฐโ€‘์žฌํ•™์Šตโ€์ด๋ผ๋Š” ์ˆœํ™˜ ๊ณ ๋ฆฌ๋ฅผ ํ†ตํ•ด ์Šค์Šค๋กœ ์„ฑ๋Šฅ์„ ํ–ฅ์ƒ์‹œํ‚จ๋‹ค. ์‹คํ—˜์—์„œ๋Š” ๊ณ ์ „์ ์ธ ํ”Œ๋ž˜๋‹ ๋„๋ฉ”์ธ(์˜ˆ: ๋ธ”๋ก์Šค ์›”๋“œ, ๋กœ

Computer Science Artificial Intelligence
Mortar: Evolving Mechanics for Automatic Game Design

Mortar: Evolving Mechanics for Automatic Game Design

MORTAR๋Š” ์ž๋™ ๊ฒŒ์ž„ ๋””์ž์ธ ๋ถ„์•ผ์—์„œ โ€˜๋ฉ”์ปค๋‹ˆ์ฆ˜โ€™์ด๋ผ๋Š” ํ•ต์‹ฌ ์š”์†Œ๋ฅผ ์ง„ํ™”์‹œํ‚ค๋Š” ์ƒˆ๋กœ์šด ์ ‘๊ทผ๋ฒ•์„ ์ œ์‹œํ•œ๋‹ค๋Š” ์ ์—์„œ ํ•™์ˆ ์ ยท์‹ค์šฉ์  ์˜๋ฏธ๊ฐ€ ํฌ๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค์€ ์ฃผ๋กœ ๋ ˆ๋ฒจ ๋””์ž์ธ์ด๋‚˜ ์Šคํ† ๋ฆฌ ํ…”๋ง์„ ์ž๋™ํ™”ํ•˜๋Š” ๋ฐ ์ดˆ์ ์„ ๋งž์ถ”์—ˆ์œผ๋ฉฐ, ๊ฒŒ์ž„ ๊ทœ์น™ ์ž์ฒด๋ฅผ ์ƒ์„ฑยท์กฐ์ •ํ•˜๋Š” ์ž‘์—…์€ ์—ฌ์ „ํžˆ ์ธ๊ฐ„ ๋””์ž์ด๋„ˆ์˜ ์ „๋ฌธ ์˜์—ญ์œผ๋กœ ๋‚จ์•„ ์žˆ์—ˆ๋‹ค. ๋ณธ ์‹œ์Šคํ…œ์€ ํ’ˆ์งˆโ€‘๋‹ค์–‘์„ฑ(QD) ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ํ™œ์šฉํ•ด โ€˜๋‹ค์–‘์„ฑโ€™๊ณผ โ€˜ํ’ˆ์งˆโ€™์ด๋ผ๋Š” ๋‘ ์ถ•์„ ๋™์‹œ์— ์ตœ์ ํ™”ํ•œ๋‹ค. ๊ตฌ์ฒด์ ์œผ๋กœ, ๋ฉ”์ปค๋‹ˆ์ฆ˜ ํ›„๋ณด๊ตฐ์„ LLM(์˜ˆ: GPTโ€‘4)์—๊ฒŒ ํ”„๋กฌํ”„ํŠธ๋กœ ์ œ์‹œํ•ด ์ž์—ฐ์–ด ๊ธฐ๋ฐ˜ ๊ทœ์น™์„ ์ƒ์„ฑํ•˜๊ณ , ์ด๋ฅผ

Computer Science Artificial Intelligence
No Image

Multi-modal cross-domain mixed fusion model with dual disentanglement for fault diagnosis under unseen working conditions

์ด ๋…ผ๋ฌธ์€ ์‚ฐ์—… ํ˜„์žฅ์—์„œ ํ”ํžˆ ๋งˆ์ฃผ์น˜๋Š” โ€˜๋ณด์ด์ง€ ์•Š๋Š” ์ž‘์—… ์กฐ๊ฑดโ€™์ด๋ผ๋Š” ๋ฌธ์ œ๋ฅผ ํ•ต์‹ฌ์œผ๋กœ ์‚ผ์•„, ๊ธฐ์กด ๊ฒฐํ•จ ์ง„๋‹จ ๋ชจ๋ธ๋“ค์˜ ์ผ๋ฐ˜ํ™” ํ•œ๊ณ„๋ฅผ ์ฒด๊ณ„์ ์œผ๋กœ ๊ทน๋ณตํ•˜๊ณ ์ž ํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ ํ•ต์‹ฌ ๊ธฐ์—ฌ๋Š” ์ด์ค‘ ๋ถ„๋ฆฌ(disentanglement) ํ”„๋ ˆ์ž„์›Œํฌ ์ด๋‹ค. ์—ฌ๊ธฐ์„œ๋Š” ๋‘ ์ฐจ์›์˜ ๋ถ„๋ฆฌ๋ฅผ ๋™์‹œ์— ์ˆ˜ํ–‰ํ•œ๋‹ค. ํ•˜๋‚˜๋Š” ๋ชจ๋‹ฌ๋ฆฌํ‹ฐ ์ฐจ์› ์œผ๋กœ, ์„œ๋กœ ๋‹ค๋ฅธ ์„ผ์„œ(์˜ˆ: ์ „๋ฅ˜, ์ง„๋™, ์˜จ๋„)์—์„œ ์ถ”์ถœ๋œ ํŠน์ง•์„ โ€˜๋ชจ๋‹ฌ๋ฆฌํ‹ฐ ๋ถˆ๋ณ€(modalityโ€‘invariant)โ€™๊ณผ โ€˜๋ชจ๋‹ฌ๋ฆฌํ‹ฐ ํŠนํ™”(modalityโ€‘specific)โ€™๋กœ ๋‚˜๋ˆˆ๋‹ค. ์ด๋Š” ๊ฐ ์„ผ์„œ๊ฐ€ ์ œ๊ณตํ•˜๋Š” ๊ณ ์œ ํ•œ ๋ฌผ๋ฆฌ์  ์ •

Computer Science Artificial Intelligence Model
An Efficient Real Time Method of Fingertip Detection

An Efficient Real Time Method of Fingertip Detection

: ๋ณธ ๋…ผ๋ฌธ์€ ์„ผ์„œ๋‚˜ ๋งˆ์ปค ์—†์ด ๋™์ ์ธ ์† ์ œ์Šค์ฒ˜๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ์ธ์‹ํ•˜๋Š” ๋ฐฉ๋ฒ•์— ๋Œ€ํ•ด ๊นŠ์ด ์žˆ๊ฒŒ ๋‹ค๋ฃฌ๋‹ค. ์ด ์—ฐ๊ตฌ๋Š” ๊ธฐ์กด์˜ ์ง€๋ฌธ ๊ฐ์ง€ ๊ธฐ์ˆ ์—์„œ ๋‚˜ํƒ€๋‚œ ์—ฌ๋Ÿฌ ๋ฌธ์ œ์ ์„ ํ•ด๊ฒฐํ•˜๋ ค๊ณ  ์‹œ๋„ํ•œ๋‹ค. 1. ๊ธฐ์กด ์ ‘๊ทผ๋ฒ•์˜ ํ•œ๊ณ„ Garg

Detection Artificial Intelligence Computer Vision Multimedia Computer Science

< Category Statistics (Total: 702) >

Electrical Engineering and Systems Science
7
General
253
General Relativity
7
HEP-EX
5
HEP-PH
12
HEP-TH
5
MATH-PH
3
NUCL-TH
1
Quantum Physics
9

Start searching

Enter keywords to search articles

โ†‘โ†“
โ†ต
ESC
โŒ˜K Shortcut